1
|
de Freitas Schatzer CA, Ferreira D, Lourenço RA, Domingues I, Nunes B, Teodorov E. Characterization of PAHs in environmentally relevant concentrations of crude oil WAF and its effects on enzymatic biomarkers on Artemia parthenogenetica. MARINE POLLUTION BULLETIN 2025; 216:117981. [PMID: 40250094 DOI: 10.1016/j.marpolbul.2025.117981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Oil seeps and spillage events can harm the environment in various ways. In the ocean, oil may form droplets or remain in the water column, becoming ingested by exposed species and potentially contaminating humans through seafood consumption. This study aimed to characterize and evaluate the toxicity of the water accommodated fraction (WAF) obtained from a solid soil-oil mass after the Brazilian oil spill of 2019 and its effects on enzymatic biomarkers in Artemia parthenogenetica. Cysts and nauplii were exposed to 100 %, 4 % and 0.16 % WAF for 48 h, with toxicological parameters and enzymatic activities measured. GC-MS analysis of the WAF identified 15 of the 16 EPA priority PAHs in the WAF, with ∑PAHs concentrations of ∼200 μg L-1, including toxicants like naphthalene and benzo[a]pyrene. WAF exposure did not affect hatching rate or mortality in A. parthenogenetica. On the other hand, significant increases in CAT, GPx, and GSTs activities, and cholinesterase impairment were observed in nauplii exposed to 100 % WAF compared to the control group. These results indicate that while no individual changes occurred, subindividual metabolic parameters were altered in animals exposed to 100 % WAF, suggesting activation of antioxidant defenses, increased phase II metabolic activity, and neurotoxicity, potentially impacting the development of juveniles of the tested species, and possibly of other marine species and thereby affecting marine ecosystem balance.
Collapse
|
2
|
Dal Pont G, Ostrensky A, Sadauskas-Henrique H, Castilho-Westphal GG, Dolatto RG, Grassi MT, de Souza-Bastos LR. The Combined Effects of Temperature and pH to the Toxicity of the Water-Soluble Fraction of Gasoline (WSFG) to the Neotropical Yellow-Tail Tetra, Astyanax altiparanae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:234-252. [PMID: 39373743 DOI: 10.1007/s00244-024-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Continental aquatic environments have undergone chemical pollution due to increased anthropogenic activities. Among those substances, petroleum hydrocarbons are a potential hazard for the aquatic animals. Additionally, alterations in the abiotic characteristics of the water, such as temperature and pH, can impose additional stress when those substances are present. We evaluate how alterations in water temperature and pH modified the acute (96 h) toxicity of the water-soluble fraction of gasoline (WSFG) to Astyanax altiparanae through physiological analysis. We also investigated the physiological responses after the fish recovery from exposure (96 h) in clean water. Both isolated and combined exposures to WSFG resulted in significant physiological changes. Alone, WSFG altered energetic metabolism and haematopoietic functions, potentially due to metabolic hypoxia. When combined with changes in water temperature (30 °C) and pH (4.0), A. altiparanae activated additional physiological mechanisms to counterbalance osmoregulatory and acid-base imbalances, likely exacerbated by severe metabolic hypoxia. In both isolated and combined exposure scenarios, A. altiparanae maintained cellular hydration, suggesting a robust capacity to uphold homeostasis under environmental stress conditions. Following a recovery in clean water, energetic metabolism returned to control levels. Nevertheless, plasmatic Na+ and Cl- levels and haematological parameters remained affected by WSFG exposure. Our findings underscore the impact of interactions between WSFG contaminants, temperature and pH, leading to additional biological damage in A. altiparanae.
Collapse
Affiliation(s)
- Giorgi Dal Pont
- Grupo Integrado de Aquicultura E Estudos Ambientais (GIA),, Departamento de Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540 -Cabral, Curitiba, PR, 80035-050, Brazil.
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540-Cabral, Curitiba, PR, 80035-050, Brazil.
| | - Antonio Ostrensky
- Grupo Integrado de Aquicultura E Estudos Ambientais (GIA),, Departamento de Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540 -Cabral, Curitiba, PR, 80035-050, Brazil
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540-Cabral, Curitiba, PR, 80035-050, Brazil
| | - Helen Sadauskas-Henrique
- Laboratório de Ecofisiologia E Bioquímica de Organismos Aquáticos, Universidade Santa Cecília, Rua Oswaldo Cruz, N. 277-Boqueirão, Santos, SP, 11045-907, Brazil
| | - Gisela Geraldine Castilho-Westphal
- Grupo Integrado de Aquicultura E Estudos Ambientais (GIA),, Departamento de Zootecnia, Universidade Federal Do Paraná, Rua Dos Funcionários, n. 1540 -Cabral, Curitiba, PR, 80035-050, Brazil
- Universidade Positivo-Programa de Pós-Graduação Em Gestão Ambiental, Rua Prof. Pedro Viriato Parigot de Souza, N. 5300-Ecoville, Curitiba, PR, 81280-330, Brazil
| | - Rafael Garrett Dolatto
- Grupo de Química Ambiental, Centro Politécnico, Universidade Federal Do Paraná, Rua Francisco H. Dos Santos, N. 100-Jardim das Américas, Curitiba, PR, 81531-980, Brazil
| | - Marco Tadeu Grassi
- Grupo de Química Ambiental, Centro Politécnico, Universidade Federal Do Paraná, Rua Francisco H. Dos Santos, N. 100-Jardim das Américas, Curitiba, PR, 81531-980, Brazil
| | - Luciana Rodrigues de Souza-Bastos
- Laboratório de Toxicologia E Avaliação Ambiental, Instituto de Tecnologia para o Desenvolvimento-LACTEC, Rodovia BR-116, Km 98, N. 8813-Jardim das Américas, Curitiba, PR, 81531-980, Brazil
| |
Collapse
|
3
|
Elsheref M, Cao X, Tarr MA. Time dependence of aldehyde and ketone oxocarboxylic acid photoproduct generation from crude oil-seawater systems under solar irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134427. [PMID: 38696957 DOI: 10.1016/j.jhazmat.2024.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 04/24/2024] [Indexed: 05/04/2024]
Abstract
Aldehyde and ketone oxocarboxylic acid photoproducts were semi-quantitated in the aqueous phase after subjecting Macondo (MC252) crude oil-seawater systems to simulated solar irradiation. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was applied after derivatizing the samples with 2,4-dinitrophenylhydrazine (DNPH). Oil-seawater was irradiated at 27.0 °C using a solar simulator for 1 to 18 h. Following irradiation, the aqueous phase was treated with DNPH to generate aldehyde-DNPH and ketone-DNPH derivatives. Solid-phase extraction enriched the samples before analyzing them using (-) ESI-MS/MS. Precursor and product ion spectra were used to select carboxylic acid-containing aldehydes and ketones and provide semi-quantitation using surrogate standards and an internal standard. Loss of m/z 44 (CO2) in the product ion spectra further confirmed the carboxylic acid character. Near-linear increases in photoproduct concentration in the aqueous phase were observed over the 18 h irradiation period. Among the aldehyde and ketone oxocarboxylic acid photoproducts studied, photoproduction rates ranged from 0.6 - 69 µmol/h·m2 of oil surface. Despite some fluctuations, a general trend of lower production rate with higher molecular weight was observed. These results demonstrate the near-linear dependence of photoproduction on irradiance and provide ranges of rates that can be applied to modeling aldehyde and ketone oxocarboxylic acid photoproduction in ocean spills. STATEMENT OF ENVIRONMENTAL IMPACT: Crude oil on seawater degrades when exposed to sunlight. Oxygenated molecules are produced, including carboxylic acid-containing aldehydes and ketones. The formation of these photoproducts from oil films behaves linearly with solar exposure time. These photoproducts are more soluble than the original oil molecules, allowing them to have increased bioavailability and potentially increased toxicity. The rate of formation of these species when oil is exposed to sunlight determines their environmental impact.
Collapse
Affiliation(s)
| | - Xian Cao
- Department of Chemistry, University of New Orleans, USA
| | - Matthew A Tarr
- Department of Chemistry, University of New Orleans, USA.
| |
Collapse
|
4
|
Filatova TS, Kuzmin VS, Dzhumaniiazova I, Pustovit OB, Abramochkin DV, Shiels HA. 3-Methyl-phenanthrene (3-MP) disrupts the electrical and contractile activity of the heart of the polar fish, navaga cod (Eleginus nawaga). CHEMOSPHERE 2024; 357:142089. [PMID: 38643846 DOI: 10.1016/j.chemosphere.2024.142089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Alkylated polycyclic aromatic hydrocarbons are abundant in crude oil and are enriched during petroleum refinement but knowledge of their cardiotoxicity remains limited. Polycyclic aromatic hydrocarbons (PAHs) are considered the main hazardous components in crude oil and the tricyclic PAH phenanthrene has been singled out for its direct effects on cardiac tissue in mammals and fish. Here we test the impact of the monomethylated phenanthrene, 3-methylphenanthrene (3-MP), on the contractile and electrical function of the atrium and ventricle of a polar fish, the navaga cod (Eleginus nawaga). Using patch-clamp electrophysiology in atrial and ventricular cardiomyocytes we show that 3-MP is a potent inhibitor of the delayed rectifier current IKr (IC50 = 0.25 μM) and prolongs ventricular action potential duration. Unlike the parent compound phenanthrene, 3-MP did not reduce the amplitude of the L-type Ca2+ current (ICa) but it accelerated current inactivation thus reducing charge transfer across the myocyte membrane and compromising pressure development of the whole heart. 3-MP was a potent inhibitor (IC50 = 4.7 μM) of the sodium current (INa), slowing the upstroke of the action potential in isolated cells, slowing conduction velocity across the atrium measured with optical mapping, and increasing atrio-ventricular delay in a working whole heart preparation. Together, these findings reveal the strong cardiotoxic potential of this phenanthrene derivative on the fish heart. As 3-MP and other alkylated phenanthrenes comprise a large fraction of the PAHs in crude oil mixtures, these findings are worrisome for Arctic species facing increasing incidence of spills and leaks from the petroleum industry. 3-MP is also a major component of polluted air but is not routinely measured. This is also of concern if the hearts of humans and other terrestrial animals respond to this PAH in a similar manner to fish.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Oksana B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
5
|
Sørhus E, Nakken CL, Donald CE, Ripley DM, Shiels HA, Meier S. Cardiac toxicity of phenanthrene depends on developmental stage in Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163484. [PMID: 37068678 DOI: 10.1016/j.scitotenv.2023.163484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Complex mixtures like crude oil, and single components such as Phenanthrene (Phe), induce cardiotoxicity by interfering with excitation-contraction coupling. However, recent work has demonstrated that the timing of pollutant exposure during embryogenesis greatly impacts the degree of cardiac dysfunction caused. Here, we aimed to clarify the temporal dependence of Phe toxicity and the downstream effects of cardiac dysfunction using Atlantic cod (Gadus morhua). Phe (nominal concentration, 1.12 μmol/L), or the L-type‑calcium channel blocker Nicardipine (Nic) (nominal concentration, 2 and 4 μmol/L), were individually applied to cod embryos either during cardiogenesis (early) or after the onset of cardiac function (late). Phe toxicity was highly dependent on the timing of exposure. Exposure after the onset of cardiac function (i.e. late) caused more severe cardiac and extracardiac abnormalities at 3 days post hatching (dph) than early exposure. Late Phe exposure resulted in a smaller ventricle, eliminated ventricular contraction, and reduced atrial contraction. In contrast, early Phe exposure did not have an effect on cardiac development and function. This temporal difference was not as evident in the Nic treatment. Early Nic exposure created similar morphological phenotypes to the late Phe exposure. The two treatments (early Nic and late Phe) also shared a cardiofunctional phenotype, comprised of eliminated ventricular, and reduced atrial, contraction. These data suggest that extracardiac abnormalities, such as the craniofacial deformities seen after late embryonic exposure to cardiotoxic oil components and mixtures, are mostly downstream effects of cardiac dysfunction.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway.
| | | | - Carey E Donald
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway
| | - Daniel M Ripley
- University of Manchester, Division of Cardiovascular Sciences, United Kingdom of Great Britain and Northern Ireland
| | - Holly A Shiels
- University of Manchester, Division of Cardiovascular Sciences, United Kingdom of Great Britain and Northern Ireland
| | - Sonnich Meier
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway
| |
Collapse
|
6
|
Scovil AM, Boloori T, de Jourdan BP, Speers-Roesch B. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). MARINE POLLUTION BULLETIN 2023; 191:114976. [PMID: 37137253 DOI: 10.1016/j.marpolbul.2023.114976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Despite their potential vulnerability to oil spills, little is known about the physiological effects of petroleum exposure and spill responses in cold-water marine animal larvae. We investigated the effects of physically dispersed (water-accommodated fraction, WAF) and chemically dispersed (chemically enhanced WAF, CEWAF; using Slickgone EW) conventional heavy crude oil on the routine metabolic rate and heart rate of stage I larval American lobster (Homarus americanus). We found no effects of 24-h exposure to sublethal concentrations of crude oil WAF or CEWAF at 12 °C. We then investigated the effect of sublethal concentrations of WAFs at three environmentally relevant temperatures (9, 12, 15 °C). The highest WAF concentration increased metabolic rate at 9 °C, whereas it decreased heart rate and increased mortality at 15 °C. Overall, metabolic and cardiac function of American lobster larvae is relatively resilient to conventional heavy crude oil and Slickgone EW exposure, but responses to WAF may be temperature-dependent.
Collapse
Affiliation(s)
- Allie M Scovil
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada
| | - Tahereh Boloori
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Benjamin P de Jourdan
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, New Brunswick E5B 2L7, Canada
| | - Ben Speers-Roesch
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada.
| |
Collapse
|
7
|
DeMiguel-Jiménez L, Bilbao D, Prieto A, Reinardy HC, Lekube X, Izagirre U, Marigómez I. The influence of temperature in sea urchin embryo toxicity of crude and bunker oils alone and mixed with dispersant. MARINE POLLUTION BULLETIN 2023; 189:114786. [PMID: 36893648 DOI: 10.1016/j.marpolbul.2023.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
This investigation deals with how temperature influences oil toxicity, alone or combined with dispersant (D). Larval lengthening, abnormalities, developmental disruption, and genotoxicity were determined in sea urchin embryos for assessing toxicity of low-energy water accommodated fractions (LEWAF) of three oils (NNA crude oil, marine gas oil -MGO-, and IFO 180 fuel oil) produced at 5-25 °C. PAH levels were similar amongst LEWAFs but PAH profiles varied with oil and production temperature. The sum of PAHs was higher in oil-dispersant LEWAFs than in oil LEWAFs, most remarkably at low production temperatures in the cases of NNA and MGO. Genotoxicity, enhanced after dispersant application, varied depending on the LEWAF production temperature in a different way for each oil. Impaired lengthening, abnormalities and developmental disruption were recorded, the severity of the effects varying with oil, dispersant application and LEWAF production temperature. Toxicity, only partially attributed to individual PAHs, was higher at lower LEWAF production temperatures.
Collapse
Affiliation(s)
- Laura DeMiguel-Jiménez
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Dennis Bilbao
- IBeA Research Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Ailette Prieto
- IBeA Research Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Helena C Reinardy
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Dunbeg, Oban, Argyll, PA37 1QA Scotland, United Kingdom; Department of Arctic Technology, The University Centre in Svalbard (UNIS), PO Box 156, N-9171 Longyearbyen, Svalbard, Norway
| | - Xabier Lekube
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Urtzi Izagirre
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain
| | - Ionan Marigómez
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena z/g, E-48940 Leioa, Bizkaia (Basque Country), Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia, Bizkaia (Basque Country), Spain.
| |
Collapse
|
8
|
Sørhus E, Donald CE, Nakken CL, Perrichon P, Durif CMF, Shema S, Browman HI, Skiftesvik AB, Lie KK, Rasinger JD, Müller MHB, Meier S. Co-exposure to UV radiation and crude oil increases acute embryotoxicity and sublethal malformations in the early life stages of Atlantic haddock (Melanogrammus aeglefinus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160080. [PMID: 36375555 DOI: 10.1016/j.scitotenv.2022.160080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Crude oil causes severe abnormalities in developing fish. Photomodification of constituents in crude oil increases its toxicity several fold. We report on the effect of crude oil, in combination with ultraviolet (UV) radiation, on Atlantic haddock (Melanogrammus aeglefinus) embryos. Accumulation of crude oil on the eggshell makes haddock embryos particularly susceptible to exposure. At high latitudes, they can be exposed to UV radiation many hours a day. Haddock embryos were exposed to crude oil (5-300 μg oil/L nominal loading concentrations) for three days in the presence and absence of UV radiation (290-400 nm). UV radiation partly degraded the eggs' outer membrane resulting in less accumulation of oil droplets in the treatment with highest oil concentration (300 μg oil/L). The co-exposure treatments resulted in acute toxicity, manifested by massive tissue necrosis and subsequent mortality, reducing LC50 at hatching stage by 60 % to 0.24 μg totPAH/L compared to 0.62 μg totPAH/L in crude oil only. In the treatment with nominal low oil concentrations (5-30 μg oil/L), only co-exposure to UV led to sublethal morphological heart defects. Including phototoxicity as a parameter in risk assessments of accidental oil spills is recommended.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway.
| | - Carey E Donald
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Charlotte L Nakken
- University of Bergen, Department of Chemistry, Allégaten 41, 5020 Bergen, Norway
| | - Prescilla Perrichon
- Institute of Marine Research, Reproduction and Developmental Biology, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Caroline M F Durif
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Steven Shema
- Grótti ehf, Melabraut 22, 220 Hafnarfirði, Iceland
| | - Howard I Browman
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Kai K Lie
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Josef D Rasinger
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Mette H B Müller
- Norwegian University of Life Sciences, Section for Experimental Biomedicine, Universitetstunet 3, 1433 Ås, Norway
| | - Sonnich Meier
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| |
Collapse
|
9
|
Schlenker LS, Stieglitz JD, Greer JB, Faillettaz R, Lam CH, Hoenig RH, Heuer RM, McGuigan CJ, Pasparakis C, Esch EB, Ménard GM, Jaroszewski AL, Paris CB, Schlenk D, Benetti DD, Grosell M. Brief Oil Exposure Reduces Fitness in Wild Gulf of Mexico Mahi-Mahi ( Coryphaena hippurus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13019-13028. [PMID: 36053064 DOI: 10.1021/acs.est.2c01783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Deepwater Horizon (DWH) disaster released 3.19 million barrels of crude oil into the Gulf of Mexico (GOM) in 2010, overlapping the habitat of pelagic fish populations. Using mahi-mahi (Coryphaena hippurus)─a highly migratory marine teleost present in the GOM during the spill─as a model species, laboratory experiments demonstrate injuries to physiology and behavior following oil exposure. However, more than a decade postspill, impacts on wild populations remain unknown. To address this gap, we exposed wild mahi-mahi to crude oil or control conditions onboard a research vessel, collected fin clip samples, and tagged them with electronic tags prior to release into the GOM. We demonstrate profound effects on survival and reproduction in the wild. In addition to significant changes in gene expression profiles and predation mortality, we documented altered acceleration and habitat use in the first 8 days oil-exposed individuals were at liberty as well as a cessation of apparent spawning activity for at least 37 days. These data reveal that even a brief and low-dose exposure to crude oil impairs fitness in wild mahi-mahi. These findings offer new perspectives on the lasting impacts of the DWH blowout and provide insight about the impacts of future deep-sea oil spills.
Collapse
Affiliation(s)
- Lela S Schlenker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE65th Street, Seattle, Washington 98115, United States
| | - Robin Faillettaz
- Department of Ocean Sciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Chi Hin Lam
- Large Pelagics Research Center, P.O. Box 3188, Gloucester, Massachusetts 01931, United States
| | - Ronald H Hoenig
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Rachael M Heuer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Charles J McGuigan
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Emma B Esch
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Gabrielle M Ménard
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Alexandra L Jaroszewski
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Claire B Paris
- Department of Ocean Sciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Daniel D Benetti
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, United States
| |
Collapse
|
10
|
Gebreab KY, Benetti D, Grosell M, Stieglitz JD, Berry JP. Toxicity of perfluoroalkyl substances (PFAS) toward embryonic stages of mahi-mahi (Coryphaena hippurus). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1057-1067. [PMID: 35982347 DOI: 10.1007/s10646-022-02576-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl substances (PFAS) are highly persistent organic pollutants that have been detected in a wide array of environmental matrices and, in turn, diverse biota including humans and wildlife wherein they have been associated with a multitude of toxic, and otherwise adverse effects, including ecosystem impacts. In the present study, we developed a toxicity assay for embryonic stages of mahi-mahi (Coryphaena hippurus), as an environmentally relevant pelagic fish species, and applied this assay to the evaluation of the toxicity of "legacy" and "next-generation" PFAS including, respectively, perfluorooctanoic acid (PFOA) and several perfluoroethercarboxylic acids (PFECA). Acute embryotoxicity, in the form of lethality, was measured for all five PFAS toward mahi-mahi embryos with median lethal concentrations (LC50) in the micromolar range. Consistent with studies in other similar model systems, and specifically the zebrafish, embryotoxicity in mahi-mahi generally (1) correlated with fluoroalkyl/fluoroether chain length and hydrophobicity, i.e., log P, of PFAS, and thus, aligned with a role of uptake in the relative toxicity; and (2) increased with continuous exposure, suggesting a possible role of development stage specifically including a contribution of hatching (and loss of protective chorion) and/or differentiation of target systems (e.g., liver). Compared to prior studies in the zebrafish embryo model, mahi-mahi was significantly more sensitive to PFAS which may be related to differences in either exposure conditions (e.g., salinity) and uptake, or possibly differential susceptibility of relevant targets, for the two species. Moreover, when considered in the context of the previously reported concentration of PFAS within upper sea surface layers, and co-localization of buoyant eggs (i.e., embryos) and other early development stages (i.e., larvae, juveniles) of pelagic fish species to the sea surface, the observed toxicity potentially aligns with environmentally relevant concentrations in these marine systems. Thus, impacts on ecosystems including, in particular, population recruitment are a possibility. The present study is the first to demonstrate embryotoxicity of PFAS in a pelagic marine fish species, and suggests that mahi-mahi represents a potentially informative, and moreover, environmentally relevant, ecotoxicological model for PFAS in marine systems.
Collapse
Affiliation(s)
- Kiflom Y Gebreab
- Department of Chemistry and Biochemistry, Institute of Environment, Florida International University, North Miami, FL, USA
| | - Daniel Benetti
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - J P Berry
- Department of Chemistry and Biochemistry, Institute of Environment, Florida International University, North Miami, FL, USA.
| |
Collapse
|
11
|
Khursigara AJ, Ackerly KL, Esbaugh AJ. Pyrene drives reduced brain size during early life exposure in an estuarine fish, the red drum (Sciaenops ocellatus). Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109397. [PMID: 35753645 DOI: 10.1016/j.cbpc.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
Crude oil and the constituent polycyclic aromatic hydrocarbons (PAHs) induce a consistent suite of sub-lethal effects in early life stage fishes. It has been suggested that 3-ring PAHs drive cardiotoxicity and that all other impacts are downstream consequences of these cardiac effects. However, recent studies have documented behavioral alterations that may not be linked to cardiotoxicity. This raises the question of whether the 3-ring PAHs that drive cardiotoxicity are also responsible for the observed neurological impairments. To explore this question, we exposed embryonic red drum (Sciaenops ocellatus) - a species that exhibits greater sensitivity to craniofacial malformations than cardiotoxicity - to individual 2-ring, 3-ring, and 4-ring PAHs for 48 h after which they were assessed for sub-lethal developmental malformations. No effects were observed following exposure to naphthalene, anthracene, dibenzothiophene, phenanthrene and fluorene at doses equivalent to the ΣPAH50 effective concentration 50 for craniofacial malformation in red drum. Conversely, pyrene caused complete lethality at the original dose, and a 5× diluted dose resulted in significantly reduced brain size and spine length. Similar sub-lethal effects were also observed in chrysene at the 1× dose. These results indicate that 4-ring PAHs are driving malformations in developing red drum and suggest oil induced impairments in this species are not a downstream consequence of 3-ring PAH induced cardiac malformations.
Collapse
Affiliation(s)
- Alexis J Khursigara
- Marine Science Department, The University of Texas at Austin Marine Science Institute, 750 Channel View Dr, Port Aransas, TX 78373, United States of America; Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, 1155 Union Cir, Denton, TX 76203, United States of America.
| | - Kerri Lynn Ackerly
- Marine Science Department, The University of Texas at Austin Marine Science Institute, 750 Channel View Dr, Port Aransas, TX 78373, United States of America. https://twitter.com/KerriAckerlyPhD
| | - Andrew J Esbaugh
- Marine Science Department, The University of Texas at Austin Marine Science Institute, 750 Channel View Dr, Port Aransas, TX 78373, United States of America
| |
Collapse
|
12
|
Vazquez Roman KN, Burggren WW. Metabolic responses to crude oil during early life stages reveal critical developmental windows in the zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109274. [PMID: 35051628 DOI: 10.1016/j.cbpc.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022]
Abstract
Morphological effects of crude oil exposure on early development in fishes have been well documented, but crude oil's metabolic effects and when in early development these effects might be most prominent remains unclear. We hypothesized that zebrafish (Danio rerio) exposed to crude oil as a high energy water accommodated fraction (HEWAF) would show increased routine oxygen consumption (ṀO2) and critical oxygen tension (PCrit) and this effect would be dependent upon day of HEWAF exposure, revealing critical windows of development for exposure effects. Zebrafish were exposed to 0%, 10%, 25%, 50% or 100% HEWAF for 24 h during one of the first six days post-fertilization (dpf). Survival rate, body mass, routine ṀO2, and PCrit were then measured at 7 dpf. Survival rate and especially body mass were both decreased based on both exposure concentration and day of crude oil exposure, with the largest decrease when HEWAF exposure occurred at 3 dpf. HEWAF effects on routine ṀO2 also differed depending upon exposure day. The largest effect occurred at 3 dpf, when ṀO2 increased significantly by ~60% from 10.1 ± 0.8 μmol O2/g/h compared to control group value of 6.3 ± 0.4 μmol O2/g/h. No significant effects of HEWAF exposure on any day were evident for PCrit (85 ± 4 mmHg in the control population). Overall, the main effects on body mass and ṀO2 measured at 7 dpf occurred when HEWAF exposures occurred at ~3 dpf. This critical window for metabolism in zebrafish larvae coincides with time of hatching, which may represent an especially vulnerable period in development.
Collapse
Affiliation(s)
- Karem N Vazquez Roman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
13
|
Córdova-de la Cruz SE, Martínez-Bautista G, Peña-Marín ES, Martínez-García R, Núñez-Nogueira G, Adams RH, Burggren WW, Alvarez-González CA. Morphological and cardiac alterations after crude oil exposure in the early-life stages of the tropical gar (Atractosteus tropicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22281-22292. [PMID: 34783950 DOI: 10.1007/s11356-021-17208-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Fish development can be affected by environmental pollutants such as crude oil (anthropogenic or natural sources), causing alterations especially in cardiac function and morphology. Most such studies have focused on saltwater species, whereas studies in freshwater fishes are scant. The objective of the current study was to evaluate the effects of crude oil exposure (as 0, 5, 10, 15, or 20% high-energy water accommodated fractions, HEWAF) on cardiac function and edema formation during two early periods of development (embryo and eleuteroembryo, 48 h each) individually using the tropical gar Atractosteus tropicus as a model. Embryos did not exhibit alterations in body mass, total length, condition factor, and cardiac function as a function of oil. In contrast, eleuteroembryos proved to be more sensitive and exhibited increased body mass, total length, and condition factor, decreased heart rate and phenotypic alterations such as cardiac dysmorphia (tubular hearts) and spine curvature at high concentrations of HEWAF. Moreover, edema formation was observed in both stages This study shows different functional responses of A. tropicus after crude oil exposure and provides useful information of the developmental impacts of these compounds on the early life stages of freshwater tropical fishes.
Collapse
Affiliation(s)
- Simrith E Córdova-de la Cruz
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Gil Martínez-Bautista
- Developmental Integrative Biology Group, Department of Biology, University of North, Texas, Denton, TX, USA
| | - Emyr S Peña-Marín
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
- Cátedra CONACYT-UJAT, CDMX, Mexico
| | - Rafael Martínez-García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Gabriel Núñez-Nogueira
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Randy H Adams
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Warren W Burggren
- Developmental Integrative Biology Group, Department of Biology, University of North, Texas, Denton, TX, USA
| | | |
Collapse
|
14
|
Aranguren-Abadía L, Yadetie F, Donald CE, Sørhus E, Myklatun LE, Zhang X, Lie KK, Perrichon P, Nakken CL, Durif C, Shema S, Browman HI, Skiftesvik AB, Goksøyr A, Meier S, Karlsen OA. Photo-enhanced toxicity of crude oil on early developmental stages of Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150697. [PMID: 34610396 DOI: 10.1016/j.scitotenv.2021.150697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Photo-enhanced toxicity of crude oil is produced by exposure to ultraviolet (UV) radiation. Atlantic cod (Gadus morhua) embryos were exposed to crude oil with and without UV radiation (290-400 nm) from 3 days post fertilization (dpf) until 6 dpf. Embryos from the co-exposure experiment were continually exposed to UV radiation until hatching at 11 dpf. Differences in body burden levels and cyp1a expression in cod embryos were observed between the exposure regimes. High doses of crude oil produced increased mortality in cod co-exposed embryos, as well as craniofacial malformations and heart deformities in larvae from both experiments. A higher number of differentially expressed genes (DEGs) and pathways were revealed in the co-exposure experiment, indicating a photo-enhanced effect of crude oil toxicity. Our results provide mechanistic insights into crude oil and photo-enhanced crude oil toxicity, suggesting that UV radiation increases the toxicity of crude oil in early life stages of Atlantic cod.
Collapse
Affiliation(s)
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | | | - Xiaokang Zhang
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
| | - Kai K Lie
- Institute of Marine Research, Bergen, Norway
| | | | | | - Caroline Durif
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Steven Shema
- Grótti ehf., Grundarstíg 4, 101 Reykjavík, Iceland
| | - Howard I Browman
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
15
|
Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Benetti
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333 Leiden, the Netherlands.
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA; Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
16
|
Linnehan BK, Gomez FM, Huston SM, Hsu A, Takeshita R, Colegrove KM, Harms CA, Barratclough A, Deming AC, Rowles TK, Musser WB, Zolman ES, Wells RS, Jensen ED, Schwacke LH, Smith CR. Cardiac assessments of bottlenose dolphins (Tursiops truncatus) in the Northern Gulf of Mexico following exposure to Deepwater Horizon oil. PLoS One 2021; 16:e0261112. [PMID: 34905585 PMCID: PMC8670661 DOI: 10.1371/journal.pone.0261112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
The Deepwater Horizon (DWH) oil spill profoundly impacted the health of bottlenose dolphins (Tursiops truncatus) in Barataria Bay, LA (BB). To comprehensively assess the cardiac health of dolphins living within the DWH oil spill footprint, techniques for in-water cardiac evaluation were refined with dolphins cared for by the U.S. Navy Marine Mammal Program in 2018 and applied to free-ranging bottlenose dolphins in BB (n = 34) and Sarasota Bay, Florida (SB) (n = 19), a non-oiled reference population. Cardiac auscultation detected systolic murmurs in the majority of dolphins from both sites (88% BB, 89% SB) and echocardiography showed most of the murmurs were innocent flow murmurs attributed to elevated blood flow velocity [1]. Telemetric six-lead electrocardiography detected arrhythmias in BB dolphins (43%) and SB dolphins (31%), all of which were considered low to moderate risk for adverse cardiac events. Echocardiography showed BB dolphins had thinner left ventricular walls, with significant differences in intraventricular septum thickness at the end of diastole (p = 0.002), and left ventricular posterior wall thickness at the end of diastole (p = 0.033). BB dolphins also had smaller left atrial size (p = 0.004), higher prevalence of tricuspid valve prolapse (p = 0.003), higher prevalence of tricuspid valve thickening (p = 0.033), and higher prevalence of aortic valve thickening (p = 0.008). Two dolphins in BB were diagnosed with pulmonary arterial hypertension based on Doppler echocardiography-derived estimates and supporting echocardiographic findings. Histopathology of dolphins who stranded within the DWH oil spill footprint showed a significantly higher prevalence of myocardial fibrosis (p = 0.003), regardless of age, compared to dolphins outside the oil spill footprint. In conclusion, there were substantial cardiac abnormalities identified in BB dolphins which may be related to DWH oil exposure, however, future work is needed to rule out other hypotheses and further elucidate the connection between oil exposure, pulmonary disease, and the observed cardiac abnormalities.
Collapse
Affiliation(s)
- Barbara K. Linnehan
- National Marine Mammal Foundation, San Diego, California, United States of America
- * E-mail:
| | - Forrest M. Gomez
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Sharon M. Huston
- San Diego Veterinary Cardiology, San Diego, California, United States of America
| | - Adonia Hsu
- San Diego Veterinary Cardiology, San Diego, California, United States of America
| | - Ryan Takeshita
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Kathleen M. Colegrove
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, Illinois, United States of America
| | - Craig A. Harms
- North Carolina State University, Center for Marine Sciences and Technology, Morehead City, North Carolina, United States of America
| | - Ashley Barratclough
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Alissa C. Deming
- Dauphin Island Sea Lab, Dauphin Island, Alabama, United States of America
| | - Teri K. Rowles
- National Oceanic and Atmospheric Administration, Office of Protected Resources, Silver Spring, Maryland, United States of America
| | - Whitney B. Musser
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Eric S. Zolman
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Randall S. Wells
- Chicago Zoological Society’s Sarasota Dolphin Research Program, c/o Mote Marine Laboratory, Sarasota, Florida, United States of America
| | - Eric D. Jensen
- U.S. Navy Marine Mammal Program, Naval Information Warfare Center Pacific, San Diego, California, United States of America
| | - Lori H. Schwacke
- National Marine Mammal Foundation, San Diego, California, United States of America
| | - Cynthia R. Smith
- National Marine Mammal Foundation, San Diego, California, United States of America
| |
Collapse
|
17
|
Greer JB, Magnuson JT, McGruer V, Qian L, Dasgupta S, Volz DC, Schlenk D. miR133b Microinjection during Early Development Targets Transcripts of Cardiomyocyte Ion Channels and Induces Oil-like Cardiotoxicity in Zebrafish ( Danio rerio) Embryos. Chem Res Toxicol 2021; 34:2209-2215. [PMID: 34558284 DOI: 10.1021/acs.chemrestox.1c00238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies have shown that altered expression of a family of small noncoding RNAs (microRNAs, or miRs) regulates the expression of downstream mRNAs and is associated with diseases and developmental disorders. miR133b is highly expressed in mammalian cardiac and skeletal muscle, and aberrant expression is associated with cardiac disorders and electrophysiological changes in cardiomyocytes. Similarly, cardiac dysfunction has been observed in early life-stage mahi-mahi (Coryphaena hippurus) exposed to crude oil, a phenotype that has been associated with an upregulation of miR133b as well as subsequent downregulation of a delayed rectifier potassium channel (IKr) and calcium signaling genes that are important for proper heart development during embryogenesis. To examine the potential role of miR133b in oil-induced early life-stage cardiotoxicity in fish, cleavage-stage zebrafish (Danio rerio) embryos were either (1) microinjected with ∼3 nL of negative control miR (75 μM) or miR133b (75 μM) or (2) exposed to a treatment solution containing 5 μM benzo(a)pyrene (BaP), a model polycyclic aromatic hydrocarbon, as a positive control. At 72 h post fertilization (hpf), miR133b-injected fish exhibited BaP-like cardiovascular malformations, including a significantly increased pericardial area relative to negative control miR-injected embryos, as well as a significantly reduced eye area. qPCR revealed that miR133b microinjection decreased the abundance of cardiac-specific IKr kcnh6 at 5 hpf, which may contribute to action potential elongation in oil-exposed cardiomyocytes. Additionally, ryanodine receptor 2, a crucial calcium receptor in the sarcoplasmic reticulum, was also downregulated by miR133b. These results indicate that an oil-induced increase in miR133b may contribute to cardiac abnormalities in oil-exposed fish by targeting cardiac-specific genes essential for proper heart development.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington 98115, United States
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Victoria McGruer
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Le Qian
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,College of Sciences, China Agricultural University, Beijing 100083, China
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.,Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Gan N, Martin L, Xu W. Impact of Polycyclic Aromatic Hydrocarbon Accumulation on Oyster Health. Front Physiol 2021; 12:734463. [PMID: 34566698 PMCID: PMC8461069 DOI: 10.3389/fphys.2021.734463] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHs via photooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.
Collapse
Affiliation(s)
- Nin Gan
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
19
|
Wang Y, Pasparakis C, Grosell M. Role of the cardiovascular system in ammonia excretion in early life stages of zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2021; 321:R377-R384. [PMID: 34318705 DOI: 10.1152/ajpregu.00284.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate if the cardiovascular system is important for ammonia excretion in the early life stages of zebrafish. Morpholino knockdowns of cardiac troponin T (TNNT2) or vascular endothelial growth factor A (VEGFA) provided morphants with nonfunctional circulation. At the embryonic stage [30-36 h postfertilization (hpf)], ammonia excretion was not constrained by a lack of cardiovascular function. At 2 days postfertilization (dpf) and 4 dpf, morpholino knockdowns of TNNT2 or VEGFA significantly reduced ammonia excretion in all morphants. Expression of rhag, rhbg, and rhcgb showed no significant changes but the mRNA levels of the urea transporter (ut) were upregulated in the 4 dpf morphants. Taken together, rhag, rhbg, rhcgb, and ut gene expression and an unchanged tissue ammonia concentration but an increased tissue urea concentration, suggest that impaired ammonia excretion led to increased urea synthesis. However, in larvae anesthetized with tricaine or clove oil, ammonia excretion was not reduced in the 4 dpf morphants compared with controls. Furthermore, oxygen consumption was reduced in morphants regardless of anesthesia. These results suggest that cardiovascular function is not directly involved in ammonia excretion, but rather reduced activity and external convection may explain reduced ammonia excretion and compensatory urea accumulation in morphants with reduced cardiovascular function.
Collapse
Affiliation(s)
- Y Wang
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - C Pasparakis
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| | - M Grosell
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| |
Collapse
|
20
|
Bender ML, Giebichenstein J, Teisrud RN, Laurent J, Frantzen M, Meador JP, Sørensen L, Hansen BH, Reinardy HC, Laurel B, Nahrgang J. Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish. Sci Rep 2021; 11:8410. [PMID: 33863955 PMCID: PMC8052424 DOI: 10.1038/s41598-021-87932-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Climate change, along with environmental pollution, can act synergistically on an organism to amplify adverse effects of exposure. The Arctic is undergoing profound climatic change and an increase in human activity, resulting in a heightened risk of accidental oil spills. Embryos and larvae of polar cod (Boreogadus saida), a key Arctic forage fish species, were exposed to low levels of crude oil concurrently with a 2.3 °C increase in water temperature. Here we show synergistic adverse effects of increased temperature and crude oil exposure on early life stages documented by an increased prevalence of malformations and mortality in exposed larvae. The combined effects of these stressors were most prevalent in the first feeding larval stages despite embryonic exposure, highlighting potential long-term consequences of exposure for survival, growth, and reproduction. Our findings suggest that a warmer Arctic with greater human activity will adversely impact early life stages of this circumpolar forage fish.
Collapse
Affiliation(s)
- Morgan Lizabeth Bender
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway.
| | - Julia Giebichenstein
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ragnar N Teisrud
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Jennifer Laurent
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | | | - James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, Washington, 98112, USA
| | - Lisbet Sørensen
- SINTEF Ocean, Environment and New Resources, 7465, Trondheim, Norway
| | | | - Helena C Reinardy
- Scottish Association for Marine Science, Oban, PA37 1QA, UK
- Department of Arctic Technology, The University Centre in Svalbard, Longyearbyen, Svalbard, Norway
| | - Benjamin Laurel
- Fisheries Behavioral Ecology Program, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA, Hatfield Marine Science Center, Newport, OR, 97365, USA
| | - Jasmine Nahrgang
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
21
|
Bautista NM, do Amaral-Silva L, Dzialowski E, Burggren WW. Dietary Exposure to Low Levels of Crude Oil Affects Physiological and Morphological Phenotype in Adults and Their Eggs and Hatchlings of the King Quail ( Coturnix chinensis). Front Physiol 2021; 12:661943. [PMID: 33897469 PMCID: PMC8063051 DOI: 10.3389/fphys.2021.661943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Despite the current knowledge of the devastating effects of external exposure to crude oil on animal mortality, the study of developmental, transgenerational effects of such exposure has received little attention. We used the king quail as an animal model to determine if chronic dietary exposure to crude oil in a parental population would affect morpho-physiological phenotypic variables in their immediate offspring generation. Adult quail were separated into three groups: (1) Control, and two experimental groups dietarily exposed for at least 3 weeks to (2) Low (800 PAH ng/g food), or (3) High (2,400 PAH ng/g food) levels of crude oil. To determine the parental influence on their offspring, we measured metabolic and respiratory physiology in exposed parents and in their non-exposed eggs and hatchlings. Body mass and numerous metabolic (e.g., O2 consumption, CO2 production) and respiratory (e.g., ventilation frequency and volume) variables did not vary between control and oil exposed parental groups. In contrast, blood PO2, PCO2, and SO2 varied among parental groups. Notably, water loss though the eggshell was increased in eggs from High oil level exposed parents. Respiratory variables of hatchlings did not vary between populations, but hatchlings obtained from High oil-exposed parents exhibited lower capacities to maintain body temperature while exposed to a cooling protocol in comparison to hatchlings from Low- and Control-derived parents. The present study demonstrates that parental exposure to crude oil via diet impacts some aspects of physiological performance of the subsequent first (F1) generation.
Collapse
Affiliation(s)
- Naim M Bautista
- Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.,Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Lara do Amaral-Silva
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States.,Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, São Paulo, Brazil
| | - Edward Dzialowski
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
22
|
Li X, Wang C, Li N, Gao Y, Ju Z, Liao G, Xiong D. Combined Effects of Elevated Temperature and Crude Oil Pollution on Oxidative Stress and Apoptosis in Sea Cucumber ( Apostichopus japonicus, Selenka). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020801. [PMID: 33477823 PMCID: PMC7832845 DOI: 10.3390/ijerph18020801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/15/2023]
Abstract
Currently, global climate change and oil pollution are two main environmental concerns for sea cucumber (Apostichopus japonicus) aquaculture. However, no study has been conducted on the combined effects of elevated temperature and oil pollution on sea cucumber. Therefore, in the present study, we treated sea cucumber with elevated temperature (26 °C) alone, water-accommodated fractions (WAF) of Oman crude oil at an optimal temperature of 16 °C, and Oman crude oil WAF at an elevated temperature of 26 °C for 24 h. Results showed that reactive oxygen species (ROS) level and total antioxidant capacity in WAF at 26 °C treatment were higher than that in WAF at 16 °C treatment, as evidenced by 6.03- and 1.31-fold-higher values, respectively. Oxidative damage assessments manifested that WAF at 26 °C treatment caused much severer oxidative damage of the biomacromolecules (including DNA, proteins, and lipids) than 26 °C or WAF at 16 °C treatments did. Moreover, compared to 26 °C or WAF at 16 °C treatments, WAF at 26 °C treatment induced a significant increase in cellular apoptosis by detecting the caspase-3 activity. Our results revealed that co-exposure to elevated temperature and crude oil could simulate higher ROS levels and subsequently cause much severer oxidative damage and cellular apoptosis than crude oil alone on sea cucumber.
Collapse
Affiliation(s)
- Xishan Li
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Nan Li
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Yali Gao
- School of Marine Engineering, Jimei University, Xiamen 361021, China;
| | - Zhonglei Ju
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| | - Guoxiang Liao
- National Marine Environmental Monitoring Center, Dalian 116023, China; (X.L.); (N.L.); (Z.J.)
- State Environmental Protection Key Laboratory of Coastal Ecosystem, Dalian 116023, China
- Correspondence: ; Tel.: +86-0411-8478-3810
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (C.W.); (D.X.)
| |
Collapse
|
23
|
Abstract
Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| | - Christina Pasparakis
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| |
Collapse
|
24
|
Nordborg FM, Jones RJ, Oelgemöller M, Negri AP. The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137486. [PMID: 32325569 DOI: 10.1016/j.scitotenv.2020.137486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
Oil pollution remains a significant local threat to shallow tropical coral reef environments, but the environmental conditions typical of coral reefs are rarely considered in oil toxicity testing and risk assessments. Here we review the effects of three environmental co-factors on petroleum oil toxicity towards coral reef organisms, and show that the impacts of oil pollution on coral reef taxa can be exacerbated by environmental conditions commonly encountered in tropical reef environments. Shallow reefs are routinely exposed to high levels of ultraviolet radiation (UVR), which can substantially increase the toxicity of some oil components through phototoxicity. Exposure to UVR represents the most likely and harmful environmental co-factor reviewed here, leading to an average toxicity increase of 7.2-fold across all tests reviewed. The clear relevance of UVR co-exposure and its strong influence on tropical reef oil toxicity highlights the need to account for UVR as a standard practice in future oil toxicity studies. Indeed, quantifying the influence of UVR on toxic thresholds of oil to coral reef species is essential to develop credible oil spill risk models required for oil extraction developments, shipping management and spill responses in the tropics. The few studies available indicate that co-exposure to elevated temperature and low pH, both within the range of current daily and seasonal fluctuations and/or projected under continued climate change, can increase oil toxicity on average by 3.0- and 1.3-fold, respectively. While all three of the reviewed environmental co-factors have the potential to substantially increase the impacts of oil pollution in shallow reef environments, their simultaneous effects have not been investigated. Assessments of the combined effects of oil pollution, UVR, temperature and low pH will become increasingly important to identify realistic hazard thresholds suitable for future risk assessments over the coming century.
Collapse
Affiliation(s)
- F Mikaela Nordborg
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia.
| | - Ross J Jones
- Australian Institute of Marine Science, Crawley 6009, Western Australia, Australia
| | - Michael Oelgemöller
- James Cook University, College of Science & Engineering, Townsville, Queensland 4810, Australia
| | - Andrew P Negri
- AIMS@JCU, Division of Research & Innovation, James Cook University and Australian Institute of Marine Science, Townsville 4810, Queensland, Australia; Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
25
|
Wang Y, Pasparakis C, Stieglitz JD, Benetti DD, Grosell M. The effects of Deepwater Horizon crude oil on ammonia and urea handling in mahi-mahi (Coryphaena hippurus) early life stages. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105294. [PMID: 31585273 DOI: 10.1016/j.aquatox.2019.105294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Many ecologically important fishes, including mahi-mahi (Coryphaena hippurus), and their offspring were directly exposed to crude oil following the Deepwater Horizon (DWH) oil spill. Early life stage fish are especially vulnerable to the toxicity of crude oil-derived polycyclic aromatic hydrocarbons (PAHs). In teleosts, yolk sac proteins are the main energy source during development and are usually catabolized into ammonia or urea among other byproducts. Although excretion of these waste products is sensitive to oil exposure, we know little about the underlying mechanisms of this process. In this study, we examined the effects of crude oil on ammonia and urea handling in the early life stages of mahi. Mahi embryos exposed to 30-32 μg L-1 ∑PAH exhibited increased urea excretion rates and greater accumulation of urea in the tissues before hatch suggesting that ammonia, which is highly toxic, was converted into less-toxic urea. Oil-exposed embryos (6.3-32 μg L-1 ∑PAH) displayed significantly increased tissue ammonia levels at 42 hpf and upregulated mRNA levels of ammonia transporters (Rhag, Rhbg and Rhcg1) from 30 to 54 hpf. However, despite increased accumulation and higher expression of ammonia transporters, the larvae exposed to higher ∑PAH (30 μg L-1 ∑PAH) showed reduced ammonia excretion rates after hatch. Together, the increased production of nitrogenous waste reinforces previous work that increased energy demand in oil-exposed embryos is fueled, at least in part, by protein metabolism and that urea synthesis plays a role in ammonia detoxification in oil-exposed mahi embryos. To our knowledge, this study is the first to combine physiological and molecular approaches to assess the impact of crude-oil on both nitrogenous waste excretion and accumulation in the early life stages of any teleosts.
Collapse
Affiliation(s)
- Y Wang
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States.
| | - C Pasparakis
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - J D Stieglitz
- Department of Marine Ecosystems and Society, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - D D Benetti
- Department of Marine Ecosystems and Society, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| | - M Grosell
- Department of Marine Biology and Ecology, RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, United States
| |
Collapse
|
26
|
Pasparakis C, Esbaugh AJ, Burggren W, Grosell M. Impacts of deepwater horizon oil on fish. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108558. [PMID: 31202903 DOI: 10.1016/j.cbpc.2019.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/17/2022]
Abstract
An explosion on the Deepwater Horizon (DWH) oil rig in 2010 lead to the largest marine oil spill to occur in US history, resulting in significant impacts to the ecosystems and organisms in the Northern Gulf of Mexico (GoM). The present review sought to summarize and discuss findings from the 50+ peer-reviewed publications reporting effects of DWH oil exposure on teleost fish, and concludes that oil toxicity is a multi-target, multi-organ syndrome with substantial species-specific sensitivity differences. Of the 15 species tested with characterized exposures, 20% show effects at concentrations <1 μg l-1 while 50% display effects at <8.6 μg l-1 ΣPAH50, concentrations well within the range of reported environmental levels during the spill. Cardiotoxic effects are among the most frequently reported endpoints in DWH oil exposure studies and are thought to have significant downstream effects on fitness and survival. However, additional and possibly cardio-toxic independent impacts on sensory function and behavior are reported at very low exposure concentrations (< 1 μg l-1 ∑PAH50) and are clearly deserving of further study. Available information about modes of action leading to different categories of effects are summarized in the present review. An overview of the literature illustrates that early life stages (ELS) are approximately 1-order of magnitude more sensitive than corresponding later life stages, but also illustrates that adults can be impacted at concentrations as low as 4 μg l-1 ΣPAH50. The majority of studies exploring DWH oil toxicity in fish are performed using acute exposures (1-2 days), mid-range test temperatures (26-28 °C) and measure effects at the molecular to organismal levels, leaving a pressing need for more long-term exposures, exposures at the upper and lower levels of GoM relevant temperatures, and studies investigating population level impacts.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA.
| | - Andrew J Esbaugh
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Fl, USA
| |
Collapse
|
27
|
Mearns AJ, Bissell M, Morrison AM, Rempel-Hester MA, Arthur C, Rutherford N. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1229-1252. [PMID: 31513312 DOI: 10.1002/wer.1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This review covers selected 2018 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appear in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Mathew Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| |
Collapse
|
28
|
Vehniäinen ER, Haverinen J, Vornanen M. Polycyclic Aromatic Hydrocarbons Phenanthrene and Retene Modify the Action Potential via Multiple Ion Currents in Rainbow Trout Oncorhynchus mykiss Cardiac Myocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2145-2153. [PMID: 31237719 DOI: 10.1002/etc.4530] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in aqueous environments. They affect cardiovascular development and function in fishes. The 3-ring PAH phenanthrene has recently been shown to impair cardiac excitation-contraction coupling by inhibiting Ca2+ and K+ currents in marine warm-water scombrid fishes. To see if similar events take place in a boreal freshwater fish, we studied whether the PAHs phenanthrene and retene (an alkylated phenanthrene) modify the action potential (AP) via effects on Na+ (INa ), Ca2+ (ICaL ), or K+ (IKr , IK1 ) currents in the ventricular myocytes of the rainbow trout (Oncorhynchus mykiss) heart. Electrophysiological characteristics of myocytes were measured using whole-cell patch clamp. Micromolar concentrations of phenanthrene and retene modified the shape of the ventricular AP, and retene profoundly shortened the AP at low micromolar concentrations. Both PAHs increased INa and reduced ICaL and IKr , but retene was more potent. Neither of the PAHs had an effect on IK1 . Our results show that phenanthrene and retene affect cardiac function in rainbow trout by a mechanism that involves multiple cardiac ion channels, and the final outcome of these changes (shortening of AP) is opposite to that observed in scombrid fishes (prolongation of AP). The results also show that retene and aryl hydrocarbon receptor (AhR) agonist have an additional mechanism of toxicity besides the previously known AhR-mediated, transcription-dependent one. Environ Toxicol Chem 2019;38:2145-2153. © 2019 SETAC.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
29
|
Ho DH, Burggren WW. Blood-brain barrier function, cell viability, and gene expression of tight junction-associated proteins in the mouse are disrupted by crude oil, benzo[a]pyrene, and the dispersant COREXIT. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:96-105. [PMID: 31128282 DOI: 10.1016/j.cbpc.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/25/2019] [Accepted: 05/10/2019] [Indexed: 12/27/2022]
Abstract
Exposure to crude oil, its components, and oil dispersants during a major crude oil spill, such as the Deepwater Horizon Oil Spill, can elicit behavioral changes in animals and humans. However, the underlying mechanisms by which oil spill-related compounds alters behavior remains largely unknown. A major cause of behavioral changes generally is dysfunction of the blood-brain barrier (BBB). We investigated the impact of a crude oil high energy water accommodated fraction (HEWAF), benzo[a] pyrene (BaP; a major component of crude oil), and the oil dispersant COREXIT, on BBB function. BBB function was assessed by measuring transendothelial electrical resistance (TEER) of mouse brain microvascular endothelial cells (BMECs). Within 3 h after treatment, TEER was significantly reduced by exposure to high concentrations of all test compounds. TEER remained reduced in response to COREXIT after 48 h, but this effect waned in BMECs treated with HEWAF and BaP, with low-mid range concentrations inducing increased TEER compared to vehicle controls. At 48 h of treatment, BMEC viability was significantly reduced in response to 2% HEWAF, but was increased in response to BaP (25 and 50 μM). BMEC viability was increased with 80 ppm COREXIT, but was reduced with 160 ppm. Gene expression of tight junction-associated proteins (claudin-5 and tight junction protein-1), and cell adhesion receptor (vascular cell adhesion molecule-1) was reduced in response to HEWAF and COREXIT, but not BaP. Taken together, these data suggest that oil spill-related compounds markedly affect BBB function, and that these changes may underlie the observed behavioral changes due to crude oil exposure.
Collapse
Affiliation(s)
- Dao H Ho
- Tripler Army Medical Center, Honolulu, HI, USA.
| | - Warren W Burggren
- University of North Texas, 1155 Union Circle #305220, Denton, TX, USA.
| |
Collapse
|
30
|
Greer JB, Pasparakis C, Stieglitz JD, Benetti D, Grosell M, Schlenk D. Effects of corexit 9500A and Corexit-crude oil mixtures on transcriptomic pathways and developmental toxicity in early life stage mahi-mahi (Coryphaena hippurus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:233-240. [PMID: 31146055 DOI: 10.1016/j.aquatox.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Crude oil and polycyclic aromatic hydrocarbon (PAH) exposure in early life stage fish has been well-characterized to induce phenotypic malformations such as altered heart development and other morphological impacts. The effects of chemical oil dispersants on toxicity are more controversial. To better understand how chemical dispersion of oil can impact toxicity in pelagic fish, embryos of mahi-mahi (Coryphaena hippurus) were exposed to three concentrations of the chemical dispersant Corexit 9500A, or Corexit 9500A-oil mixtures (chemically enhanced water accommodated fractions: CEWAF) of Deepwater Horizon crude oil for 48 h. RNA sequencing, gene ontology enrichment, and phenotypic measurements were conducted to assess toxicity. Exposure to Corexit 9500A altered expression of less than 50 genes at all concentrations (2.5, 5, and 10 mg/L nominal concentration) and did not induce acute mortality or phenotypic malformations, corroborating other studies showing minimal effects of Corexit 9500A on developing mahi-mahi embryos. CEWAF preparations contained environmentally relevant ∑PAH concentrations ranging from 1.4 to 3.1 μg/L and similarly did not alter larval morphology. Differentially expressed genes and significantly altered pathways related to cardiotoxicity, visual impairments, and Ca2+ homeostasis reinforced previous work that expression of genes associated with the heart and eye are highly sensitive molecular endpoints in oil-exposed early life stage fish. Differential expression and gene ontology pathways were similar across the three CEWAF treatments, indicating that increased chemical dispersion did not alter molecular outcomes within the range tested here. In addition, significant sublethal molecular responses occurred in the absence of observable phenotypic changes to the heart, indicating that effects of oil on early life stage fish may not be completely dependent on cardiac function.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, CA, United States.
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - John D Stieglitz
- Deptartment of Marine Ecosystems and Society, University of Miami, Miami, FL, United States
| | - Daniel Benetti
- Deptartment of Marine Ecosystems and Society, University of Miami, Miami, FL, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, United States; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Perrichon P, Stieglitz JD, Xu EG, Magnuson JT, Pasparakis C, Mager EM, Wang Y, Schlenk D, Benetti DD, Roberts AP, Grosell M, Burggren WW. Mahi-mahi (Coryphaena hippurus) life development: morphological, physiological, behavioral and molecular phenotypes. Dev Dyn 2019; 248:337-350. [PMID: 30884004 PMCID: PMC6593825 DOI: 10.1002/dvdy.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/05/2019] [Accepted: 03/06/2019] [Indexed: 01/16/2023] Open
Abstract
Background Mahi‐mahi (Coryphaena hippurus) is a commercially and ecologically important fish species that is widely distributed in tropical and subtropical waters. Biological attributes and reproductive capacities of mahi‐mahi make it a tractable model for experimental studies. In this study, life development of cultured mahi‐mahi from the zygote stage to adult has been described. Results A comprehensive developmental table has been created reporting development as primarily detailed observations of morphology. Additionally, physiological, behavioral, and molecular landmarks have been described to significantly contribute in the understanding of mahi life development. Conclusion Remarkably, despite the vast difference in adult size, many developmental landmarks of mahi map quite closely onto the development and growth of Zebrafish and other warm‐water, active Teleost fishes. Mahi‐mahi is a tractable model for experimental studies high‐performance pelagic predatory fish species. Biological attributes of mahi are reported in a comprehensive developmental table. Physiological, behavioral and molecular landmarks are described through the life development. Mahi has a rapid growth rate, but the developmental marks are similar to other teleost fishes.
Collapse
Affiliation(s)
| | - John D Stieglitz
- Department of Marine Ecosystems and Society, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Elvis Genbo Xu
- Department of Environmental Sciences, University of California Riverside, California
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, California
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Edward M Mager
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Yadong Wang
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, California
| | - Daniel D Benetti
- Department of Marine Ecosystems and Society, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Aaron P Roberts
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida
| | - Warren W Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
32
|
Burggren WW. Inadequacy of typical physiological experimental protocols for investigating consequences of stochastic weather events emerging from global warming. Am J Physiol Regul Integr Comp Physiol 2019; 316:R318-R322. [PMID: 30698987 DOI: 10.1152/ajpregu.00307.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increasingly variable, extreme, and nonpredictable weather events are predicted to accompany climate change, and such weather events will especially affect temperate, terrestrial environments. Yet, typical protocols in comparative physiology that examine environmental change typically employ simple step-wise changes in the experimental stressor of interest (e.g., temperature, water availability, oxygen, nutrition). Such protocols fall short of mimicking actual natural environments and may be inadequate for fully exploring the physiological effects of stochastic, extreme weather events. Indeed, numerous studies from the field of thermal biology, especially, indicate nonlinear and sometimes counterintuitive findings associated with variable and fluctuating (but rarely truly stochastic) protocols for temperature change. This Perspective article suggests that alternative experimental protocols should be employed that go beyond step-wise protocols and even beyond variable protocols employing circadian rhythms, for example, to those that actually embrace nonpredictable elements. Such protocols, though admittedly more difficult to implement, are more likely to reveal the capabilities (and, importantly, the limitations) of animals experiencing weather, as distinct from climate. While some possible protocols involving stochasticity are described as examples to stimulate additional thought on experimental design, the overall goal of this Perspective article is to encourage comparative physiologists to entertain incorporation of nonpredictable experimental conditions as they design future experimental protocols.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas , Denton, Texas
| |
Collapse
|
33
|
Ruhr I. Crude awakening: larval mahi-mahi can't handle the heat. J Exp Biol 2019. [DOI: 10.1242/jeb.192609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|