1
|
Gil-Avilés MDR, Díaz-Camacho SP, Osuna-Martínez U, López-Angulo G, Delgado-Vargas F. Immune Response Activation and Hepatoprotective Activity of Randia echinocarpa Soluble Melanins in Murine Models. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5888390. [PMID: 40259921 PMCID: PMC12011467 DOI: 10.1155/ijfo/5888390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025]
Abstract
This research demonstrates the in vivo immunomodulatory and hepatoprotective activities of the soluble melanins of the Randia echinocarpa fruit (PSM). The splenocyte cellular metabolic activity and lymphocyte T γδ expression in mesenteric lymph nodes (MLNs) and Peyer patches (PPs) were measured in the mice model. The PSM hepatoprotective activity was evaluated in the CCl4-induced acute hepatotoxic injury (AHTI) in the rat model. Compared with the controls, the PSM treatment induced higher splenocyte cellular metabolic activity (in vitro, 24.1%-57.25%; in vivo, 28.8%-47.7%), activation of lymphocytes T γδ in MLN but suppression in PP. Related to in vivo hepatoprotective activity, PSM treatment reduces CCl4-induced damage; animals showed lower levels of serum ALT (218.85-67.02 U/L) and ALP (453.37-355.47 U/L), higher levels of serum GSH (127.96-252.15 ng/mg of tissue), lower levels of hepatic MDA (10.25-7.85 nmol/mL), and less severe damage in the hepatic histopathology. These results suggest the nutraceutical and therapeutic potential of PSM.
Collapse
Affiliation(s)
| | - Sylvia Paz Díaz-Camacho
- Research Unit in Biomedical Biotechnology, Autonomous University of Occident, Culiacan, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Gabriela López-Angulo
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| | - Francisco Delgado-Vargas
- School of Chemical and Biological Sciences, Autonomous University of Sinaloa, Culiacan, Sinaloa, Mexico
| |
Collapse
|
2
|
Wang Y, Chen G, Liu C, Liao Y, Wei L, Wang H, Luo J, Sun J, Xi Q, Zhang Y, Chen T. Preliminary study on the effects of dry powder and water extract of Neolamarckia cadamba on growth performance, immunity, and intestinal health of yellow-feathered broilers. BMC Vet Res 2025; 21:233. [PMID: 40170033 PMCID: PMC11963628 DOI: 10.1186/s12917-025-04481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/07/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND In recent years, the livestock industry has shown increasing concern regarding the need to find effective alternatives to antibiotic products while also striving to produce high-quality livestock and poultry products. Woody feed sources exhibit wide distribution and variety, containing a variety of bioactive substances such as flavonoids and alkaloids. Among these woody plants, Neolamarckia cadamba (Nc) has the characteristics of high leaf yield, fast growth rate, and rich nutritional value, which has great development potential. However, whether Nc supplementation can improve growth performance, immunity, and gut health of yellow-feathered broilers remains to be explored. In the present study, we aimed to investigate the effects of diet supplemented with dry powder or water extract of Nc on the growth performance, immunity, and intestinal health of yellow-feathered broilers. RESULTS The results showed that, (1) There was no significant difference in Body weight (BW), Average daily gain (ADG), Average daily feed intake (ADFI), and Feed conversion ratio (FCR) between the Nc experimental groups and the control group (P > 0.05); (2) Compared to the control group, the thymus index at 63 days was significantly increased in the 1% Nc dry powder group (P < 0.05). Conversely, the bursa index of Fabricius was significantly decreased (P < 0.05) in the same group; (3) Compared to the control group and antibiotic group, there were no significant differences in the serum levels of albumin (ALB), globulin (GLB), total protein (TP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and triglycerides (TG) in each experimental group (P > 0.05); (4) Compared to the control group, serum IgG levels were significantly increased in both the 1% Nc dry powder group and the 0.05% water extract group (P < 0.05); (5) Compared to the control group, 0.05% Nc water extract could significantly increase the mRNA expression levels of ZO-1 and TGF-β4 in the jejunum, as well as claudin-1, ZO-1, and TGF-β4 mRNA in the ileum(P < 0.05). Furthermore, the use of 1% Nc dry powder also resulted in a significant increase in the mRNA expression levels of TGF-β4 in the jejunum and ZO-1 mRNA in the ileum (P < 0.05). CONCLUSIONS These results suggest that the dietary supplementation with Nc can enhance immune function, improve small intestinal barrier integrity, and reduce intestinal inflammation to a certain extent. Among the four doses (1% dry powder, 2% dry powder, 0.05% water extract and 0.1% water extract), 1% dry powder and 0.05% water extract were more effective. These findings underscore the importance of exploring alternative feed additives in livestock production, as they may offer a viable strategy for promoting animal health and performance in the absence of traditional antibiotics.
Collapse
Affiliation(s)
- Yuxuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Guoping Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Changsong Liu
- Zhangzhou Yiyuan Bio-technology Co., Ltd., Longhai, Fujian, 363100, China
| | - Yunxin Liao
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Limin Wei
- Hainan Key Laboratory of Tropical Animal Breeding and Epidemic Research, Institute of Animal Husbandry and Veterinary Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, Hainan, China
| | - Hailong Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junyi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
3
|
Fan Y, Gao L, Huang Y, Zhao L, Zhao Y, Wang X, Mo D, Lu H, Wang D. Effects and Significance of Dicliptera chinensis Polysaccharide on the Expression of Transforming Growth Factor β1/Connective Tissue Growth Factor Pathway in the Masseter and Head and Neck Skin of Rats With Radiation-Induced Fibrosis. Int Dent J 2025; 75:784-796. [PMID: 38991877 PMCID: PMC11976479 DOI: 10.1016/j.identj.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE To investigate whether Dicliptera chinensis polysaccharide (DCP) can alleviate radiation-induced fibrosis of masseter and head and neck skin. METHODS SD rats were divided into the control, the irradiation (IR), the IR + low dose DCP (200 mg/kg), and the IR + high dose DCP (400 mg/kg) groups. The head and neck of rats in the last 3 groups received a single dose of 18 Gy X-ray. At 1st, 2nd, 4th week (w) after radiation, haematoxylin and eosin staining were performed on masseter and skin to observe the histopathological changes; immunohistochemistry staining was performed to observe the pathological changes of the skin; Masson staining was performed on masseter and skin to observe the collagen deposition; western blot analysis was used on masseter to calculate the relative transforming growth factor β1 (TGF-β1), connective tissue growth factor (CTGF) expressions; ELISA was used to detect the contents of TGF-β1 and CTGF in skin and the contents of type I and type III collagens in masseter and skin. RESULTS In terms of skin, compared to the IR group, the IR + high-dose DCP group exhibited relatively smaller changes in skin structure, lower levels of TGF-β1 and CTGF; thinner skin thickness was observed at the 4th w after radiation; and the positive rates of collagen fibre and the optical densities of type I and type III collagens were lower at the 2nd and 4th w. For the masseter, compared to the IR group, the morphological changes were improved and the expression levels of TGF-β1 and CTGF proteins decreased in the 2 DCP dose groups at 2nd and 4th w. CONCLUSION DCP can reduce the formation and accumulation of type I and type III collagens after IR and ameliorate radiation-induced fibrosis of masseter and skin by down-regulating the expressions of TGF-β1 and CTGF.
Collapse
Affiliation(s)
- Yiyang Fan
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China; Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Linjing Gao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yude Huang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Lixiang Zhao
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Yanfei Zhao
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Xian Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Dongqin Mo
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Haoyu Lu
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China
| | - Daiyou Wang
- College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning, China; Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, China.
| |
Collapse
|
4
|
Yang K, Liu YJ, Zhang JN, Chen YJ, Yang J, Xiao JP, Lin HB, Yang HJ. Advances in the structural characterization and pharmacological activity of Salvia miltiorrhiza polysaccharides. Front Chem 2025; 13:1492533. [PMID: 40161004 PMCID: PMC11949878 DOI: 10.3389/fchem.2025.1492533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Background Salvia miltiorrhiza Bunge is the dried root and rhizome of Salvia miltiorrhiza Bunge, a labiatae plant. Salvia miltiorrhiza polysaccharide (SMP) is the main active component of Salvia miltiorrhiza Bunge. The extraction methods of SMP mainly include water extraction, ultrasonic extraction, enzyme extraction, microwave-assisted extraction and acid-base extraction. It is mainly composed of glucose, arabinose, rhamnose, galactose and other monosaccharides. SMP has a variety of biological activities, including immune regulation, anti-tum, anti-oxidation, myocardial protection, liver protection and so on. Purpose Salvia miltiorrhiza polysaccharide is widely used in nutraceuticals and pharmaceuticals, and has high research value. Natural polysaccharides are non-toxic, soluble in water, and have a wide range of biological activities, so they have broad research prospects. Methods The data was collected using different online resources including PubMed, Google Scholar, and Web of Science using keywords given below. Results In the past decades, various reports have shown that the pharmacological activities of Salvia miltiorrhiza polysaccharides have good effects, and the side effects are small. Conclusion This paper summarizes the extraction and purification methods, molecular weight, monosaccharide composition, glycosidic linkage, pharmacological activity, toxicity, product development, clinical research and other contents of Salvia miltiorrhiza polysaccharides in recent years, providing a theoretical basis for further study of Salvia miltiorrhiza polysaccharides.
Collapse
Affiliation(s)
- Ke Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-Jun Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jia-Ning Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Ya-Jing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, China
| | - Jun-Ping Xiao
- Jiangxi Prozin Pharmaceutical Co., Ltd., Ji’an City, Jiangxi, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Zhongke Zhongshan Pharmaceutical Innovation Research Institute (SIMM CAS), Zhongshan, Guangdong, China
| | - Hong-Jun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Xiong S, Li N, Shi S, Zhao Y, Chen J, Ruan M, Xu Y, Liu R, Wang S, Wang H. Structural characterization of a polysaccharide from Scutellaria baicalensis Georgi and its immune-enhancing properties on RAW264.7 cells. Int J Biol Macromol 2024; 283:137890. [PMID: 39571863 DOI: 10.1016/j.ijbiomac.2024.137890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
A novel polysaccharide SPS01-2 (87.5 kDa) was isolated from the roots of Scutellaria baicalensis Georgi. Monosaccharide composition revealed that SPS01-2 consists of rhamnose, arabinose, galactose, galacturonic acid, and glucuronic acid in ratio of 4.4: 67.1: 22.2: 6.3: 1.2. Further investigations using methylation, NMR, and mass spectrometry indicated that SPS01-2 is classified as a type II arabinogalactan (AG-II) with a minor presence of type I rhamnogalacturonan (RG-I). The core structure alternates between 1,2/1,2,4-α-L-Rhap and 1,4-α-D-GalpA, with branches including 1,3,6-β-D-Galp, 1,3-β-D-Galp, T-β-D-Galp, and T-α-L-Rhap. The RG-I regions are linked to 1,6-β-D-Galp, and 1,3,6-β-D-Galp units. Numerous arabinan branches, featuring multiple branching points, are attached to the O-3 position of galactose. Additionally, T-β-D-Galp, 1,6-β-D-Galp, and T-β-D-4-OMe-GlcpA are also linked to galactose in the backbone. Furthermore, SPS01-2 demonstrated potential immune-enhancing properties by dose-dependently increasing proliferation, phagocytosis, and the production of nitric oxide and cytokines (TNF-α, IL-6, and IL-1β) in RAW264.7 cells. It also enhanced the expression of CD80, CD86, and MHC-II at concentrations ranging from 5 to 200 μg/mL. Moreover, the immunostimulatory activity of SPS01-2 was significantly reduced when branch linkages were removed through partial acid hydrolysis. Our findings indicate that SPS01-2 could serve as a natural immunostimulant in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Si Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Min Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Yongbin Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ruimin Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
6
|
Wang Y, Chen B, Zhang J, Wang D, Ruan Y. Preclinical Evidence of Mulberry Leaf Polysaccharides on Diabetic Kidney Disease: a Systematic Review and Meta-Analysis. PLANTA MEDICA 2024; 90:1100-1114. [PMID: 39357843 PMCID: PMC11617037 DOI: 10.1055/a-2432-2732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Mulberry leaf polysaccharides (MLPs) have a variety of biological activities. Preliminary scattered evidence of preclinical studies have reported their potenzial effects on diabetic kidney disease (DKD). Here, we intended to assess the preclinical evidence of MLPs and explore their potenzial mechanisms on DKD, offering a scientific reference for the therapeutic use of MLPs. The study has been registered under the CRD42022309117 registration number at PROSPERO. Comprehensive search was conducted across eight databases from their establishment till January 2024, and eight studies with 270 animals were included in the meta-analysis. The primary outcome measurements in the MLP group, including serum creatinine (Scr) (P = 0.0005), blood urea nitrogen (BUN) (P = 0.02), 24-hour urinary protein (UP) (P = 0.001), and urinary microalbumin (UAlb) (P < 0.0001), were significantly reduced compared to the control group. Additionally, MLP treatment was significantly correlated with fasting blood glucose (FBG), total cholesterol (TC), protein expression of TGF-β1, CTGF mRNA, and the kidney index (all P values < 0.05) and delayed the progression of local pathological changes in the kidney. Subgroup analysis revealed significant species differences in the efficacy of MLPs. Also, it showed that the dosage of streptozotocin potenzially affected the Scr and UAlb results, while the duration of MLP treatment influenced UAlb results. MLPs may exert potenzial renal protection by delaying renal fibrosis, inhibiting inflammatory reactions, suppressing the growth hormone-insulin-like growth factor-insulin-like growth factor binding protein axis, and regulating the insulin receptor pathway. In summary, MLPs have multifaceted renal protective effects, suggesting their potenzial for treating DKD.
Collapse
Affiliation(s)
- Yisu Wang
- Department of Endocrinology, Zhejiang Hospital, Hangzhou, China
| | - Baifan Chen
- Department of Endocrinology, The First Peopleʼs Hospital of Pinghu, Pinghu, China
| | - Jinghong Zhang
- Department of Endocrinology, Zhejiang Hospital, Hangzhou, China
| | - Dan Wang
- Department of Endocrinology, Zhejiang Hospital, Hangzhou, China
| | - Yuan Ruan
- Department of Endocrinology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
7
|
Hu Y, Zhang Y, Cui X, Wang D, Hu Y, Wang C. Structure-function relationship and biological activity of polysaccharides from mulberry leaves: A review. Int J Biol Macromol 2024; 268:131701. [PMID: 38643920 DOI: 10.1016/j.ijbiomac.2024.131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Mulberry (Latin name "Morus alba L.") is a perennial deciduous tree in the family of Moraceae, widely distributed around the world. In China, mulberry is mainly distributed in the south and the Yangtze River basin. Its leaves can be harvested 3-6 times a year, which has a great resource advantage. Mulberry leaves are regarded as the homology of medicine and food traditional Chinese medicine (TCM). Polysaccharides, as its main active ingredients, have various effects, such as antioxidant, hypoglycemic, hepatoprotective, and immunomodulatory. This review summarizes the research progress in the extraction, purification, structural characterization, and structure-function relationship of polysaccharides from mulberry leaves in the last decade, hoping to provide a reference for the subsequent development and market application of polysaccharides from mulberry leaves.
Collapse
Affiliation(s)
- Yexian Hu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yan Zhang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Xiaoao Cui
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Dongsheng Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yong Hu
- Agricultural Products Processing Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Chuyan Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, PR China.
| |
Collapse
|
8
|
Wang H, Huang G. Extraction, purification, structural modification, activities and application of polysaccharides from different parts of mulberry. Food Funct 2024; 15:3939-3958. [PMID: 38536669 DOI: 10.1039/d3fo05747j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The mulberry plant is a member of the Moraceae family and belongs to the Morus genus. Its entire body is a treasure, with mulberries, mulberry leaves, and mulberry branches all suitable for medicinal use. The main active ingredient in mulberries is mulberry polysaccharide. Studies have shown that polysaccharides from different parts of mulberry exhibit antioxidant, antidiabetic, antibacterial, anti-inflammatory, and blood pressure-lowering properties. There are more studies on the biological activities, extraction methods, and structural characterization of polysaccharides from different parts of mulberry. However, the structural characterization of mulberry polysaccharides is mostly confined to the types and proportions of monosaccharides and the molecular weights of polysaccharides, and there are fewer systematic studies on polysaccharides from different parts of mulberry. In order to better understand the bioactive structure of mulberry polysaccharides, this article discusses the recent research progress in the extraction, separation, purification, bioactivity, structural modification, and application of polysaccharides from different parts of mulberry (mulberry leaves, mulberry fruits, and mulberry branches). It also delves into the pharmacological mechanisms of action of mulberry polysaccharides to provide a theoretical basis for further research on mulberry polysaccharides with a view to their deeper application in the fields of feed and nutraceuticals.
Collapse
Affiliation(s)
- Huilin Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
9
|
Chen R, Zhou X, Deng Q, Yang M, Li S, Zhang Q, Sun Y, Chen H. Extraction, structural characterization and biological activities of polysaccharides from mulberry leaves: A review. Int J Biol Macromol 2024; 257:128669. [PMID: 38092124 DOI: 10.1016/j.ijbiomac.2023.128669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
In recent years, plant polysaccharides have garnered attention for their impressive biological activity. Mulberry leaves have a long history of medicinal and edible use in China, polysaccharide is one of the main active components of mulberry leaves, mainly consist of xylose, arabinose, fructose, galactose, glucose and mannose, etc. The extraction methods of mulberry leaves polysaccharides (MLPs) mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, enzyme-assisted extraction, and co-extraction. The separation and purification of MLPs involve core steps such as decolorization, protein removal, and chromatographic separation. In terms of pharmacological effects, MLPs exhibit excellent activity in reducing blood glucose, anti-oxidation, immune regulation, anti-tumor, antibacterial, anti-coagulation, and regulation of gut microbiota. Currently, there is a considerable amount of research on MLPs, however, there is a lack of systematic summarization. This review summarizes the research progress on the extraction, structural characterization, and pharmacological activities of MLPs, and points out existing shortcomings and suggests reference solutions, aiming to provide a basis for further research and development of MLPs.
Collapse
Affiliation(s)
- Ruhai Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qingfang Deng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Maohui Yang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Siyu Li
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Qiurong Zhang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Yu Sun
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China
| | - Huaguo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China; Guizhou Engineering Laboratory for Quality Control&Evaluation Technology of Medicine, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
10
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Wang M, Wu L, Guo Y, Sun J, Deng M, Liu G, Li Y, Sun B. Effects of fermented herbal tea residue on meat quality, rumen fermentation parameters and microbes of black goats. AMB Express 2023; 13:106. [PMID: 37787860 PMCID: PMC10547668 DOI: 10.1186/s13568-023-01610-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Herbal tea residue (HTR) is generally considered to be a reusable resource which has still retains considerable proportion of nutrients and active substances. This study aimed to investigate the effects of substitution of whole corn silage with fermented herbal tea residue (FHTR) on meat quality, serum indices, rumen fermentation, and microbes in Chuanzhong black goats. Twenty-two female Chuanzhong black goats (4 months old) with similar weight (9.55 ± 0.95 kg) were selected and randomly divided into two groups. FHTR was used to replace 0% (CON group) and 30% (FHTR group) of whole corn silage in the diets and fed as a total mixed ration (TMR) for Chuanzhong black goats. The adaptation feeding period was 7 days, and the experimental period was 35 days. Results illustrated that the FHTR group had higher value of a* and concentrations of DM and CP and lower rate of water loss (P < 0.05) than the CON group. For the serum indices, goats fed with 30% FHTR had higher (P < 0.05) concentration of CR on day 35. For rumen fermentation, the pH and ratio of acetic acid/propionic acid (AA/PA) in the FHTR group were significantly lower than those in the CON group (P < 0.05). In addition, we studied the goats's rumen microbial community composition and found that the dominant phyla were Firmicutes, Bacteroidetes,and Tenericutes; and the dominant genera were Quinella, Candidatus_Saccharimonas, and Saccharofermentans. There was a significant difference in the beta diversity of the rumen microbiota between groups (P < 0.05). To sum up, the addition of FHTR can affect the meat quality, serum indices, improved rumen fermentation by adjusted the diversity and function of the rumen microbiota.
Collapse
Affiliation(s)
- Mingyue Wang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Longfei Wu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajie Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Zhang Y, Miao R, Ma K, Zhang Y, Fang X, Wei J, Yin R, Zhao J, Tian J. Effects and Mechanistic Role of Mulberry Leaves in Treating Diabetes and its Complications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1711-1749. [PMID: 37646143 DOI: 10.1142/s0192415x23500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jingxue Zhao
- Development Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
13
|
Zhao RH, Yang FX, Bai YC, Zhao JY, Hu M, Zhang XY, Dou TF, Jia JJ. Research progress on the mechanisms underlying poultry immune regulation by plant polysaccharides. Front Vet Sci 2023; 10:1175848. [PMID: 37138926 PMCID: PMC10149757 DOI: 10.3389/fvets.2023.1175848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of poultry industry and the highly intensive production management, there are an increasing number of stress factors in poultry production. Excessive stress will affect their growth and development, immune function, and induce immunosuppression, susceptibility to a variety of diseases, and even death. In recent years, increasing interest has focused on natural components extracted from plants, among which plant polysaccharides have been highlighted because of their various biological activities. Plant polysaccharides are natural immunomodulators that can promote the growth of immune organs, activate immune cells and the complement system, and release cytokines. As a green feed additive, plant polysaccharides can not only relieve stress and enhance the immunity and disease resistance of poultry, but also regulate the balance of intestinal microorganisms and effectively alleviate all kinds of stress faced by poultry. This paper reviews the immunomodulatory effects and molecular mechanisms of different plant polysaccharides (Atractylodes macrocephala Koidz polysaccharide, Astragalus polysaccharides, Taishan Pinus massoniana pollen polysaccharide, and alfalfa polysaccharide) in poultry. Current research results reveal that plant polysaccharides have potential uses as therapeutic agents for poultry immune abnormalities and related diseases.
Collapse
Affiliation(s)
- Ruo-Han Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fang-Xiao Yang
- College of Animal Science and Veterinary Medicine, Yunnan Vocational and Technical College of Agriculture, Kunming, Yunnan, China
| | - Yi-Cheng Bai
- Kunming CHIA TAI Co., Ltd., Kunming, Yunnan, China
| | - Jing-Ying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mei Hu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xin-Yan Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Teng-Fei Dou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Teng-Fei Dou
| | - Jun-Jing Jia
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- *Correspondence: Jun-Jing Jia
| |
Collapse
|
14
|
Protective Application of Morus and Its Extracts in Animal Production. Animals (Basel) 2022; 12:ani12243541. [PMID: 36552461 PMCID: PMC9774465 DOI: 10.3390/ani12243541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Different components of the mulberry tree (fruits, leaves, twigs, and roots) are rich in active compounds, and have been reported to possess potent beneficial properties, including antioxidative, anti-inflammatory, antimicrobial, anticancer, anti-allergenic, antihypertensive, and neuroprotective. The mulberry and its extracts can effectively improve the growth performance and fitness of animals. They not only possess the properties of being safe and purely natural, but also they are not prone to drug resistance. According to the literature, the supplemental level of the mulberry and its extracts in animal diets varies with different species, physiological status, age, and the purpose of the addition. It has been observed that the mulberry and its extracts enhanced the growth performance, the quality of animal products (meat, egg, and milk), the antioxidant and the anti-inflammatory responses of animals. Furthermore, the mulberry and its extracts have antibacterial properties and can effectively moderate the relative abundance of the microbial populations in the rumen and intestines, thus improving the immunity function of animals and reducing the enteric methane (CH4) production in ruminants. Furthermore, the mulberry and its extracts have the potential to depurate tissues of heavy metals. Collectively, this review summarizes the nutrients, active compounds, and biological functions of mulberry tree products, as well as the application in livestock production with an aim to provide a reference for the utilization of the mulberry and its extracts in animal production.
Collapse
|
15
|
So-In C, Sunthamala N. The effects of mulberry ( Morus alba Linn.) leaf supplementation on growth performance, blood parameter, and antioxidant status of broiler chickens under high stocking density. Vet World 2022; 15:2715-2724. [PMID: 36590133 PMCID: PMC9798068 DOI: 10.14202/vetworld.2022.2715-2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Aim A stocking density system in boilers is well known for increasing productivity. However, this system increases stress and affects the growth performance of broilers. Mulberry is a valuable plant with therapeutic applications in traditional medicine; moreover, it reduces free radicals and improves growth performance in broilers. This study was conducted to investigate the effects of mulberry on the blood biochemistry parameters and the antioxidant status of broilers exposed to various raising systems. Materials and Methods Two hundred and seventy-six 3-week-old male broilers were randomly assigned to nine categories composed of three growing systems: Semi-intensive, low stocking density, and high stocking density. Each group was fed with a control diet mixed with and without 10% mulberry leaf extract; the positive control group was provided with vitamin C. During the study, phytochemical screening of mulberry leaf extract, growth performances, hematological parameters, and antioxidant profiles were measured over the 4 weeks of the treatment. Results In the high stocking density group, lipid peroxidation gradually increased while antioxidant activities decreased; however, the level of lipid peroxidation was reduced, whereas catalase and superoxide dismutase activities were significantly increased. The growth performance and blood biochemistry were improved after being fed with 10% mulberry leaf extract. Conclusion This finding indicates that mulberry leaf extract reduced oxidative stress, activated antioxidant enzyme activities, and enhanced broilers' growth performance when raised under stress conditions.
Collapse
Affiliation(s)
- Charinya So-In
- Department of Veterinary Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand,Corresponding author: Nuchsupha Sunthamala, e-mail: Co-author: CS:
| |
Collapse
|
16
|
The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs. Animals (Basel) 2022; 12:ani12202743. [PMID: 36290129 PMCID: PMC9597806 DOI: 10.3390/ani12202743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
This research was conducted to study the effects of dietary inclusion of mulberry leaf powder (MLP) on growth performance, meat quality, antioxidant activity, and carcass traits of Tibetan pigs. Eighteen Tibetan pigs (33.8 ± 1.1 kg) were assigned to two treatment groups randomly and received either the control diet (CON) or a basal diet containing 8% MLP (MLP) for two months. After the two-month feeding trial, the MLP group showed lower backfat thickness while a higher lean percentage. Compared with CON pigs, MLP pigs had higher serum CAT activity. In addition, dietary MLP supplementation significantly decreased the muscle shear force. Muscle fiber morphology analysis showed that MLP pigs had larger muscle fiber density while smaller muscle fiber cross-sectional area. Up-regulated gene expression of myosin heavy chain (MyHC)IIa was also observed in MLP pigs. These results indicate that the enhanced antioxidant activity and altered muscle fiber type and morphology appeared to contribute to the improvement of meat quality in Tibetan pigs fed diets containing MLP.
Collapse
|
17
|
Ning L, Liu S, Gao L, Zhou W, Chen X, Li Y, Pan Q. Influence of dietary fermented Folium mori on growing performance, lipometabolism and disease resistance of golden pompano Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:398-404. [PMID: 35970508 DOI: 10.1016/j.fsi.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Folium mori, as a plant unconventional feedstuff, are comparatively available due to cost-effectiveness, whereas their usage as aquafeed in pure form is restricted owing to the great fibre and antinutritional factors (ANFs) levels. Thereof, several methods of processing are introduced to remove antinutrient factors from the plant products, leading to improvement of bioactivity and digestibility. The assay was completed to evaluate the method of fermentation and the role of dietary fermented Folium mori (FFM) in golden pompano. Each of 5 diets with FFM at contents of 0.0%, 2.0%, 4.0%, 6.0% and 8.0% (D0.0, D2.0, D4.0, D6.0 and D8.0) was fed to the fishes with original body weight of 9.02g in triplicate sea cages for 56 days. The outcomes revealed that FFM in D4.0 and D6.0 elevated the growing performance of the fishes and the growing performance of D4.0 was remarkably improved in contrast to D0.0 and D2.0(P < 0.05). Whole body lipidic levels were obviously elevated when the diet FFM contents were below 8.0% (P < 0.05), whereas the contents of muscular moisture were generally reduced. In addition, FFM significantly increased serum high density lipoprotein (HDL) and remarkably reduced overall triglyceride (TG) in D2.0 to D6.0(P < 0.05). Moreover, FFM remarkably elevated the activities of lipase of stomach and hepatopancreas in contrast to D0.0 (P < 0.05) as well as intestinal tryptic enzyme in the entire FFM groups (P < 0.05). Eventually, FFM remarkably ameliorated disease-resistant characters of golden pompano to Vibrio harveyi in D4.0 and D6.0 (P < 0.05) and the RPS in D4.0 was optimal. To sum up, the present research displayed favorable role of FFM in growing performance, digestion, lipometabolism and disease-resistant characters, and the recommendation as to the supplementation content of diet FFM in compound feed of juvenile golden pompano is 4.0% as per the experiment status herein.
Collapse
Affiliation(s)
- Lijun Ning
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Sha Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Liuling Gao
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Yuanyou Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Qing Pan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
18
|
Zhou H, Dai C, Cui X, Zhang T, Che Y, Duan K, Yi L, Nguyen AD, Li N, De Souza C, Wan X, Wu Y, Li K, Liu Y, Wu Y. Immunomodulatory and antioxidant effects of Glycyrrhiza uralensis polysaccharide in Lohmann Brown chickens. Front Vet Sci 2022; 9:959449. [PMID: 36090181 PMCID: PMC9458957 DOI: 10.3389/fvets.2022.959449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhiza polysaccharide extract 1 (GPS-1) is a bioactive component isolated from Glycyrrhiza uralensis, also known as Chinese licorice. It appears to be pharmacologically active as an antibacterial, antiviral, and anti-tumor agent. GPS-1 has also been shown to buffer liver health and regulate the immune system. Moreover, GPS-1 is low cost and easy to extract. More study was needed to elucidate the biochemical pathways underlying the immunomodulatory and antioxidant benefits observed in Glycyrrhiza polysaccharide extract 1 (GPS-1). in vitro experiments on chicken lymphocytes and dendritic cells (DCs) show that GPS-1 significantly promotes the proliferation of immune cells and is linked to lymphocytes' secretion of IL-12, IFN-γ, and TNF-α by. DC secretion of NO, IL-2, IL-1β, IFN-γ, TNF-α, and IL-12p70 was also increased significantly. Additionally, GPS-1 also displayed a significant antioxidant effect in vitro, able to scavenge DPPH, hydrogen peroxide, ABTS, and other free radicals like superoxide anions. Separately, GPS-1 was tested in vivo in combination with the Newcastle disease virus (NDV) - attenuated vaccine. 120 Lohmann Brown chickens were vaccinated, while another 30 became the unvaccinated blank control (BC) group. For three consecutive days 1 mL of GPS-1 was administered at doses of 19.53 μg/mL, 9.77 μg/mL, or 4.88 μg/mL to the ND-vaccinated birds, except for the vaccine control (VC), where n = 30 per group. In vivo results show that GPS-1 combined with Newcastle disease (ND) vaccine had the best efficacy at significantly increasing chickens' body weight and ND serum antibody titer, enhancing their secretion of IL-2 and IFN- γ, and promoting the development of immune organs. The results also indicate that GPS-1 was able increase the proliferation of in vitro immune cells and elevate their cytokine secretion, which enhances the body's immune response. GPS-1 also clearly has the potential to be used as an immune adjuvant alongside ND vaccination.
Collapse
Affiliation(s)
- Hui Zhou
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuejie Cui
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Lei Yi
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Department of Animal Science, Huaihua Polytechnic College, Huaihua, China
| | - Audrey D. Nguyen
- Department of Biochemistry and Molecular Medicine, Davis Medical Center, University of California, Sacramento, Sacramento, CA, United States
| | - Nannan Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Xin Wan
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhong Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Gong R, Cao W, Huang H, Yu B, Chen H, Tao W, Luorong Q, Luo J, Zhang D. Antitumor Potential and Structure Characterization of Polysaccharides From Lagotis brevituba Maxim in the Tibetan Plateau. Front Nutr 2022; 9:921892. [PMID: 35903443 PMCID: PMC9320327 DOI: 10.3389/fnut.2022.921892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
This study purified two polysaccharides (LBMPs) from Lagotis brevituba Maxim in several steps. The chemical structure of LBMP-2 was determined by HPGPC, FT-IR, IC, 1H and 13C NMR, AFM, SEM, and TEM. The results show that LBMP-2 was mainly composed of GalA, and the Mw of LBMP-2 is 23.799 kDa. In addition, the antioxidant activity, and the antitumor activity in vitro and in vivo were studied. LBMP-2 has excellent antioxidant and antitumor capacity. The inhibition of tumor cell proliferation in vitro may result in the inhibition of aerobic respiration and glycolysis. Tumor growth inhibition in vivo may inhibit the expression of AMPK in tumors and enhance spleen function. Compared with conventional chemotherapy drug cyclophosphamide, LBMP-2 is less harmful to the body and safer. Therefore, LBMP-2 provides a potential source of antitumor drugs.
Collapse
|
20
|
Bai L, Yi W, Chen J, Wang B, Tian Y, Zhang P, Cheng X, Si J, Hou X, Hou J. Two-Stage Targeted Bismuthene-Based Composite Nanosystem for Multimodal Imaging Guided Enhanced Hyperthermia and Inhibition of Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25050-25064. [PMID: 35608833 DOI: 10.1021/acsami.2c01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A key challenge for nanomedicines in clinical application is to reduce the dose while achieving excellent efficacy, which has attracted extensive attention in dose toxicity and potential risks. It is thus necessary to reasonably design nanomedicine with high-efficiency targeting and accumulation. Here, we designed and synthesized a tetragonal bismuthene-based "all-in-one" composite nanosystem (TPP-Bi@PDA@CP) with two-stage targeting, multimodal imaging, photothermal therapy, and immune enhancement functions. Through the elaborate design of its structure, the composite nanosystem possesses multiple properties including (i) two-stage targeting function of hepatoma cells and mitochondria [the aggregation at the tumor site is 2.63-fold higher than that of traditional enhanced permeability and retention (EPR) effect]; (ii) computed tomography (CT) contrast-enhancement efficiency as high as ∼51.8 HU mL mg-1 (3.16-fold that of the clinically available iopromide); (iii) ultrahigh photothermal conversion efficiency (52.3%, 808 nm), promising photothermal therapy (PTT), and high-contrast infrared thermal (IRT)/photoacoustic (PA) imaging of tumor; (iv) benefitting from the two-stage targeting function and excellent photothermal conversion ability, the dose used in this strategy is one of the lowest doses in hyperthermia (the inhibition rate of tumor cells was 50% at a dose of 15 μg mL-1 and 75% at a dose of 25 μg mL-1); (v) the compound polysaccharide (CP) shell with hepatoma cell targeting and immune enhancement functions effectively inhibited the recurrence of tumor. Therefore, our work reduces the dose toxicity and potential risk of nanomedicines and highlights the great potential as an all-in-one theranostic nanoplatform for two-stage targeting, integrated diagnostic imaging, photothermal therapy, and inhibition of tumor recurrence.
Collapse
Affiliation(s)
- Lei Bai
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenhui Yi
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jing Chen
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Bojin Wang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yilong Tian
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xi'an, Shaanxi 712100, China
| | - Xin Cheng
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Si
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xun Hou
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| |
Collapse
|
21
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
22
|
Chang BY, Koo BS, Kim SY. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods 2021; 10:foods10081966. [PMID: 34441742 PMCID: PMC8393821 DOI: 10.3390/foods10081966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Depending on the extraction method, numerous compounds that have specific pharmacological effects can be obtained from M. alba L. There is a growing scientific interest in health problems related to aging. Efforts to develop safe immune-enhancing pharmaceuticals are increasing. This review aims to summarize and critically discuss the immunity enhancement effects and pharmaceutical efficacy of M. alba L. extracts. The scientific database search was conducted using Google Scholar, Web of Science, and PubMed until May 2021. Additional articles were identified and obtained from references in the retrieved articles. Ethanol or methanol extraction of various parts of M. alba L. identified a large amount of phenols and flavonoids, which are effective for immunosuppression, antioxidants, and cardiovascular diseases, and are antibacterial, and anticancer. Water extraction of M. alba L. enhanced the innate immune response based on immune cell activation. A polysaccharide and an alkaloid related to increased macrophage activity were isolated from M. alba L. fruit extracts. M. alba L. fruit water extracts primarily induced the production of pro-inflammatory substances, in model organisms, via TLR4 in immune cells. Water extracts have been shown to be effective in pathogen defense and tumor suppression by enhancing macrophage activity. Based on our literature review on the bioactivity of M. alba L. fruit extracts, particularly in relation to their immunity enhancement activity, we anticipate that M. alba-derived pharmaceuticals will have excellent potential in future medical research.
Collapse
Affiliation(s)
- Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Geumcheon-gu, Seoul 08592, Korea;
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
- Correspondence: ; Tel.: +82-63-850-6806
| |
Collapse
|
23
|
Mulberry leaf-derived polysaccharide modulates the immune response and gut microbiota composition in immunosuppressed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Effects of mulberry (Morus alba L.) Leaf extracts on growth, immune response, and antioxidant functions in nile tilapia (Oreochromis niloticus). ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
This study evaluates how white mulberry (Morus alba L.) leaf extracts affect the growth, antioxidant activity, and immune response in Nile tilapia Oreochromis niloticus. Mulberry leaf extracts were obtained through aqueous extraction (AE) and ethanol extraction (EE). Powder of mulberry leaf (PML) was added directly to feed and compared with the effects of feeds supplemented with the different extracts. Fish were divided into eight groups for an 8-week feeding trial where they were fed the basal diet or supplementation with 10% PML, 10% AE, 20% AE, 40% AE, 10% EE, 20% EE, or 40% EE. The inclusion of mulberry leaf extract obtained with either method showed better effects on fish growth performance, antioxidant activities and acid phosphatase activity (ACP) in serum, immune cytokine expression, and intestinal morphology as compared with controls or fish fed the 10% PML diet. The specific growth rate was significantly higher in the 10% AE, 10% EE, and 20% EE groups compared with all other groups (P<0.05). Catalase activity was significantly greater in most groups fed an extract, and in the 10% PML group, when compared with controls. Similarly, ACP, interleukin (IL)-1, and IL-2 expression was significantly increased in groups fed an extract, and in the 10% PML group, when compared with controls (P<0.05). IL-1, IL-2, IL-10, and Toll-like receptor 2 expression was significantly greater in the 10% EE group than in the 10% PML and 10% AE groups (P<0.05). Villus length in the middle intestine was significantly increased in the 10% AE and 10% EE groups compared with controls and the 10% PML group (P<0.05). Thus, 10% mulberry leaf ethanol extract added to feed is recommended for enhancing the growth rate and health of cultured Nile tilapia.
Collapse
|
25
|
Meijerink N, de Oliveira JE, van Haarlem DA, Hosotani G, Lamot DM, Stegeman JA, Rutten VPMG, Jansen CA. Glucose Oligosaccharide and Long-Chain Glucomannan Feed Additives Induce Enhanced Activation of Intraepithelial NK Cells and Relative Abundance of Commensal Lactic Acid Bacteria in Broiler Chickens. Vet Sci 2021; 8:110. [PMID: 34204778 PMCID: PMC8231533 DOI: 10.3390/vetsci8060110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | | | - Daphne A. van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | - Guilherme Hosotani
- Cargill R&D Center Europe, B-1800 Vilvoorde, Belgium; (J.E.d.O.); (G.H.)
| | - David M. Lamot
- Cargill Animal Nutrition and Health Innovation Center, 5334 LD Velddriel, The Netherlands;
| | - J. Arjan Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Victor P. M. G. Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| |
Collapse
|
26
|
Ai J, Bao B, Battino M, Giampieri F, Chen C, You L, Cespedes-Acuña CL, Ognyanov M, Tian L, Bai W. Recent advances on bioactive polysaccharides from mulberry. Food Funct 2021; 12:5219-5235. [PMID: 34019048 DOI: 10.1039/d1fo00682g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry (Moraceae family), commonly considered as a folk remedy, has a long history of usage in many regions of the world. Polysaccharides regarded as one of the major components in mulberry plants, and they possess antioxidant, antidiabetic, hepatoprotective, prebiotic, immunomodulatory and antitumor properties, among others. In recent decades, mulberry polysaccharides have been widely studied for their multiple health benefits and potential economic value. However, there are few reviews providing updated information on polysaccharides from mulberry. In this review, recent advances in the study of isolation, purification, structural characterization, biological activity and the structure-activity relationship of mulberry polysaccharides are summarized and discussed. Furthermore, a thorough analysis of the current trends and perspectives on mulberry polysaccharides is also proposed. Hopefully, these findings can provide a useful reference value for the development and application of natural polysaccharides in the field of functional food and medicine in the future.
Collapse
Affiliation(s)
- Jian Ai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang C, Ma Q, Xue Z, Li R, Wang Q, Li N, Zhang M, Panichayupakaranant P, Chen H. Physicochemical properties, α‐amylase and α‐glucosidase inhibitory effects of the polysaccharide from leaves of Morus alba L. under simulated gastro‐intestinal digestion and its fermentation capability in vitro by human gut microbiota. Int J Food Sci Technol 2021; 56:2098-2108. [DOI: 10.1111/ijfs.14759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/02/2020] [Indexed: 02/05/2023]
Abstract
SummaryThe investigation aimed at determining the impact of sequential simulated digestion on the physicochemical properties and digestive enzymes inhibitory effects of the polysaccharides fraction (MLP‐2) of Morus alba L. leaves as well as its in vitro fermentation behaviours. After artificial salivary, gastric and intestinal digestions, the chemical components and microstructure of MLP‐2 were altered with significantly (P < 0.05) decreased molecular weight. The α‐amylase and α‐glucosidase inhibitory activities of MLP‐2 were significantly (P < 0.05) improved throughout simulated digestion. MLP‐2I, the intestinal digested fraction of MLP‐2, could significantly (P < 0.05) decrease the pH value of fermented culture and increase the short‐chain fatty acids (SCFA) concentrations, especially acetic, propionic and butyric acids. In conclusion, MLP‐2 could be gradually degraded under simulated digestion with altered physicochemical properties and enhanced α‐amylase and α‐glucosidase inhibitory effects, and further utilised by human gut microbiota to decrease pH value and promote SCFA production.
Collapse
Affiliation(s)
- Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Qiqi Ma
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| | - Min Zhang
- Tianjin Agricultural University Tianjin 300384 China
- State Key Laboratory of Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center Faculty of Pharmaceutical Sciences Prince of Songkla University Hat‐Yai Songkhla 90112 Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High‐Efficiency School of Pharmaceutical Science and Technology Tianjin University Tianjin 300072 China
| |
Collapse
|
28
|
Jiang L, Zhang G, Li Y, Shi G, Li M. Potential Application of Plant-Based Functional Foods in the Development of Immune Boosters. Front Pharmacol 2021; 12:637782. [PMID: 33959009 PMCID: PMC8096308 DOI: 10.3389/fphar.2021.637782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Immune dysfunction, which is responsible for the development of human diseases including cancer, is caused by a variety of factors. Therefore, regulation of the factors influencing the immune response is a potentially effective strategy to counter diseases. Presently, several immune adjuvants are used in clinical practice to enhance the immune response and host defense ability; however, synthetic drugs can exert negative side effects. Thus, the search for natural products of plant origin as new leads for the development of potent and safe immune boosters is gaining considerable research interest. Plant-based functional foods have been shown to exert several immunomodulatory effects in humans; therefore, the application of new agents to enhance immunological and specific host defenses is a promising approach. In this comprehensive review, we have provided an up-to-date report on the use as well as the known and potential mechanisms of bioactive compounds obtained from plant-based functional foods as natural immune boosters. Plant-based bioactive compounds promote immunity through multiple mechanisms, including influencing the immune organs, cellular immunity, humoral immunity, nonspecific immunity, and immune-related signal transduction pathways. Enhancement of the immune response in a natural manner represents an excellent prospect for disease prevention and treatment and is worthy of further research and development using approaches of modern science and technology.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Guoqing Zhang
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China.,Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ye Li
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| | | | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China.,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, China
| |
Collapse
|
29
|
Liu M, Zhang W, Yao J, Niu J. Production, purification, characterization, and biological properties of Rhodosporidium paludigenum polysaccharide. PLoS One 2021; 16:e0246148. [PMID: 33513164 PMCID: PMC7845956 DOI: 10.1371/journal.pone.0246148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022] Open
Abstract
The yield of marine red yeast polysaccharide (MRYP) obtained from Rhodosporidium paludigenum was increased by optimizing fermentation conditions, and the pure polysaccharide was extracted by column chromatography. The molecular weight of pure MRYP and the ratio of mannose to glucose in components of MRYP were determined. Antioxidant and antibacterial abilities of MRYP were investigated in vitro and in vivo. The optimal fermentation parameters were as follows: Medium 4, pH = 6.72, temperature = 30.18°C, blades speed = 461.36 r/min; the optimized yield reached 4323.90 mg/L, which was 1.31 times the original yield. The sequence of factors that affected the MRYP yield was the blades speed>pH>temperature. The main components of MRYP were MYH-1 and MYH-2. The molecular weights of MYH-1 and MYH-2 were 246.92 kDa and 21.88 kDa, respectively; they accounted for 53.60% and 28.75% of total polysaccharide. In MYH-1 and MYH-2, the proportion of glucose and mannose accounted for 46.94%, 38.46%, and 67.10%, 7.17%, respectively. In vitro, the ability of scavenging DPPH•, •OH, and •O2− radical was 32.26%, 24.34%, and 22.09%; the minimum inhibitory concentration (MIC) of MRYP was 480 μg/mg. In vivo, MRYP improved the lambs’ body weight, antioxidant enzyme activity, and the number of probiotics, but it reduced the feed/gain (F/G) ratio and the number of pathogenic bacteria in 60-days-old lambs.
Collapse
Affiliation(s)
- Mengjian Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - WenJu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
- * E-mail:
| | - Jun Yao
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Junli Niu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
30
|
Neamat-Allah ANF, Mahmoud EA, Mahsoub Y. Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2021; 108:147-156. [PMID: 33301933 DOI: 10.1016/j.fsi.2020.11.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 05/27/2023]
Abstract
The present work was designed to assess the potential hemato-biochemical protective action, immunemodulatory and antioxidant conclusions of varied concentration of white mulberry Morus alba leaves (MAL) extract supplementation on Nile tilapia (Oreochromis .niloticus). A total two hundred and forty of O. niloticus were haphazardly sorted into four groups. The control (CT) group was fed on basal diet. A group MAL1, MAL3 and MAL5 was fed on 1, 3 and 5 g/kg MAL respectively for thirty days. On day thirty one, half of replicates in each group were challenged by 0.5 ml × 108Aeromonas hydrophila where, the residual replicates were kept without challenge. A. hydrophila challenged tilapias revealed anemia that alleviated by supplementation with 5 g/kg MAL also, recovers the shift of leucogram prompted by the challenge. Elevation of alkaline phosphatase, aminotransferases, lactate dehydrogenase and malondialdehyde (ALP, ALT, AST, LDH and MDA) in CT, MAL1 and MAL3 in the challenged replicates respectively where within normal at MAL5. Supplementation with MAL5 showed more potent antioxidant and immune reaction than MAL1 and MAL3. There were a rapid increase of immunoglobulin M, lysozymes, nitric oxide, catalase and superoxide dismutase and their allied genes expression (IgM, CAT and SOD) in MAL groups with contrast in CT challenged groups. Where in challenged groups, there was suppression in genes expression of interleukins (8 and 1 beta) and interferon ɤ (IL8. IL-1β and INFɤ). Tilapias challenged by A. hydrophila unveiled plentiful surge in the percentage of mortality in CT challenged fish (80%), followed by the groups supplemented with MAL1 and MAL3 were (73.33%) where MAL5 was 20%. The mortalities have been halted from the 6th, 13th, 14th and 15th days in, MAL5, MAL3, MAL1, and CT correspondingly. These previous results could be fulfilled that using of MAL 5 g/kg protect tilapias from hemato-biochemical alterations and enhance its immune feedback, antioxidant defense and resistance against A. hydrophila.
Collapse
Affiliation(s)
- Ahmed N F Neamat-Allah
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, 1 Al-Zeraa Street, 44511, Zagazig, Sharkia, Egypt.
| | - Essam A Mahmoud
- Clinical Pathology Department, Faculty of Veterinary Medicine, Zagazig University, 1 Al-Zeraa Street, 44511, Zagazig, Sharkia, Egypt
| | - Y Mahsoub
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
31
|
Chen X, Yang H, Jia J, Chen Y, Wang J, Chen H, Jiang C. Mulberry leaf polysaccharide supplementation contributes to enhancing the respiratory mucosal barrier immune response in Newcastle disease virus-vaccinated chicks. Poult Sci 2020; 100:592-602. [PMID: 33518112 PMCID: PMC7858170 DOI: 10.1016/j.psj.2020.11.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Despite high global vaccination coverage, Newcastle disease (ND) remains a constant threat to poultry producers owing to low antibody levels. Given the respiratory mucosa is the important site for Newcastle disease virus (NDV) vaccination, enhancing respiratory mucosal immunity may help control ND. Our previous study showed that mulberry leaf polysaccharide (MLP) is very promising in delivering a robust balanced immune response, but the effects of it on respiratory immunity in chicks are unknown. In this study, we evaluated the potential of MLP to activate respiratory mucosal immunity and revealed the possible mechanism of MLP as an immunopotentiator for ND vaccines. Chicks were randomly divided into 5 groups: blank control, vaccination control (VC), and low-, middle-, and high-dose MLP (MLP-L, MLP-M, and MLP-H) (n = 30). The serum results of humoral and cell-mediated immune responses showed significant increases in NDV hemagglutination inhibition antibody titer, IgG and IgA antibody levels, and the T-lymphocyte population in the MLP-M group compared with the VC group. Validation of results also indicated remarkable increases in tracheal antibody-mediated immunity and a mucosal immune response in the MLP-M group. Furthermore, the upregulation of TLR7 revealed a possible mechanism. Our findings provided evidence to consider MLP as a potential mucosal vaccine adjuvant candidate against ND in chickens.
Collapse
Affiliation(s)
- Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China.
| | - Haifeng Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Jiping Jia
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Yu Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Jing Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Haifeng Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| | - Chunmao Jiang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu Province 225300, PR China
| |
Collapse
|
32
|
Li D, Ma B, Xu X, Chen G, Li T, He N. MMHub, a database for the mulberry metabolome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5798906. [PMID: 32159764 PMCID: PMC7065671 DOI: 10.1093/database/baaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mulberry is an important economic crop plant and traditional medicine. It contains a huge array of bioactive metabolites such as flavonoids, amino acids, alkaloids and vitamins. Consequently, mulberry has received increasing attention in recent years. MMHub (version 1.0) is the first open public repository of mass spectra of small chemical compounds (<1000 Da) in mulberry leaves. The database contains 936 electrospray ionization tandem mass spectrometry (ESI-MS2) data and lists the specific distribution of compounds in 91 mulberry resources with two biological duplicates. ESI-MS2 data were obtained under non-standardized and independent experimental conditions. In total, 124 metabolites were identified or tentatively annotated and details of 90 metabolites with associated chemical structures have been deposited in the database. Supporting information such as PubChem compound information, molecular formula and metabolite classification are also provided in the MS2 spectral tag library. The MMHub provides important and comprehensive metabolome data for scientists working with mulberry. This information will be useful for the screening of quality resources and specific metabolites of mulberry. Database URL: https://biodb.swu.edu.cn/mmdb/
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaofei Xu
- College of Computer and Information Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Guo Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
33
|
Evaluation of Fruit and Vegetable Containers Made from Mulberry Wood (Morus Alba L.) Waste. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mulberry trees (Morus alba L.) are used as ornamental and shade trees in urban gardening in Spain. These trees must be pruned once a year, and the waste is usually sent to the tip. Current research efforts aim to optimize biomass-based material sources and reduce the pressure on natural and planted forests. The objective of this study was to produce fruit and vegetable containers using particleboards made from mulberry tree pruning waste and to evaluate their properties. Mulberry particleboards were made and their mechanical properties were tested to demonstrate their suitability for industrial uses. Afterwards, the containers made with mulberry particleboards were tested. The strength of the containers was less than 5000 kg to dynamic compressive strength. Deformation by stacking was 3.15 mm, which is less than the maximum allowed of 6.1 mm, and flexural deformation of the base was 2 mm.
Collapse
|