1
|
Jiang W, Huang C, Muyldermans S, Jia L. Small but Mighty: Nanobodies in the Fight Against Infectious Diseases. Biomolecules 2025; 15:610. [PMID: 40427503 DOI: 10.3390/biom15050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Infectious diseases, caused by pathogenic microorganisms and capable of spreading, pose a significant threat to global public health. Developing efficient and cost-effective techniques for treating infectious diseases is crucial in curbing their progression and reducing patients' morbidity and mortality. Nanobodies (Nbs), a novel class of affinity reagents derived from unique heavy chain-only antibodies in camelids, represent the smallest intact and fully functional antigen-binding fragments. Compared with conventional antibodies and their antigen binding fragments, Nbs offer numerous advantages, including high affinity, exceptional target specificity, cost-effective production, easy accessibility, and robust stability, demonstrating immense potential in infectious disease treatment. This review introduces Nbs and focuses on discussing their mechanisms and intervention strategies in the treatment of viral and bacterial infections.
Collapse
Affiliation(s)
- Wenning Jiang
- Department of Public Security Administration, Liaoning Police College, Dalian 116036, China
| | - Chundong Huang
- Dalian Kangyuan Medical Technology Co., Ltd., Dalian 116014, China
| | - Serge Muyldermans
- Dalian Kangyuan Medical Technology Co., Ltd., Dalian 116014, China
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Lingyun Jia
- The School of Bioengineering, Dalian University of Technology, Dalian 116036, China
| |
Collapse
|
2
|
Cheung S, Loutet SA, Zaytsoff S, Van Petegem F, Tran LH, Abnousi H. PirA- or PirB-binding nanobodies can protect whiteleg shrimp from the acute hepatopancreatic necrosis disease toxin. DISEASES OF AQUATIC ORGANISMS 2024; 160:7-12. [PMID: 39387475 DOI: 10.3354/dao03817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a devastating shrimp disease caused by a binary toxin, PirAB, produced by Vibrio parahaemolyticus and other closely related bacteria. To address AHPND, over 300 unique single-domain antibodies (also known as nanobodies) derived from the VHH domains of Lama glama heavy-chain-only antibodies were raised against either PirA or PirB and characterized. Nanobodies were shortlisted based on their affinities for either PirA or PirB, their relative stability in intestinal fluids, and their ability to reduce PirAB-induced death in brine shrimp Artemia salina. From these data, a subset of nanobodies was tested for their ability to reduce AHPND in whiteleg shrimp Penaeus vannamei, and nanobodies targeting either PirA or PirB provided significant disease protection to whiteleg shrimp. These results show that nanobodies can be a new option for shrimp farmers to reduce or eliminate the impact of AHPND on their operations.
Collapse
Affiliation(s)
- Sylvia Cheung
- NovoBind Livestock Therapeutics, Vancouver, BC V6E 0C3, Canada
| | - Slade A Loutet
- NovoBind Livestock Therapeutics, Vancouver, BC V6E 0C3, Canada
| | - Sarah Zaytsoff
- NovoBind Livestock Therapeutics, Vancouver, BC V6E 0C3, Canada
| | - Filip Van Petegem
- University of British Columbia, Department of Biochemistry and Molecular Biology, Vancouver, BC V6T 1Z3, Canada
| | - Loc H Tran
- ShrimpVet Laboratory, Nong Lam University, Ho Chi Minh City 720371, Vietnam
| | - Hamlet Abnousi
- NovoBind Livestock Therapeutics, Vancouver, BC V6E 0C3, Canada
| |
Collapse
|
3
|
Rizk SS, Moustafa DM, ElBanna SA, Nour El-Din HT, Attia AS. Nanobodies in the fight against infectious diseases: repurposing nature's tiny weapons. World J Microbiol Biotechnol 2024; 40:209. [PMID: 38771414 PMCID: PMC11108896 DOI: 10.1007/s11274-024-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.
Collapse
Affiliation(s)
- Soha S Rizk
- Microbiology and Immunology Postgraduate Program, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Dina M Moustafa
- Department of Medical Sciences, Faculty of Dentistry, The British University in Egypt, El Sherouk City, Cairo, 11837, Egypt
| | - Shahira A ElBanna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
4
|
Liu ML, Liang XM, Jin MY, Huang HW, Luo L, Wang H, Shen X, Xu ZL. Food-Borne Biotoxin Neutralization in Vivo by Nanobodies: Current Status and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10753-10771. [PMID: 38706131 DOI: 10.1021/acs.jafc.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Food-borne biotoxins from microbes, plants, or animals contaminate unclean, spoiled, and rotten foods, posing significant health risks. Neutralizing such toxins is vital for human health, especially after food poisoning. Nanobodies (Nbs), a type of single-domain antibodies derived from the genetic cloning of a variable domain of heavy chain antibodies (VHHs) in camels, offer unique advantages in toxin neutralization. Their small size, high stability, and precise binding enable effective neutralization. The use of Nbs in neutralizing food-borne biotoxins offers numerous benefits, and their genetic malleability allows tailored optimization for diverse toxins. As nanotechnology continues to evolve and improve, Nbs are poised to become increasingly efficient and safer tools for toxin neutralization, playing a pivotal role in safeguarding human health and environmental safety. This review not only highlights the efficacy of these agents in neutralizing toxins but also proposes innovative solutions to address their current challenges. It lays a solid foundation for their further development in this crucial field and propels their commercial application, thereby contributing significantly to advancements in this domain.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Min Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ming-Yu Jin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
- School of Life and Health Technology, Dongguan, University of Technology, Dongguan 523808, China
| | - Hui-Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Dhehibi A, Terrak M, Seddik MM, Hammadi M, Salhi I. Development of a bispecific Nanobody anti-F17 fimbria as a potential therapeutic tool. Protein Expr Purif 2024; 215:106411. [PMID: 38056514 DOI: 10.1016/j.pep.2023.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Pathogenic strains of Escherichia coli F17+ are associated with various intestinal and extra-intestinal pathologies, including diarrhea, and result in significant animal mortality. These infections rely on the expression of virulence factors, such as F17 fimbriae, for adhesion. F17 fimbriae form a protective layer on the surface of E. coli bacteria, consisting of a major structural subunit, F17A, and a minor functional subunit, F17G. Because of the evolution of bacterial resistance, conventional antibiotic treatments have limited efficacy. Therefore, there is a pressing need to develop novel therapeutic tools. In this study, we cloned and produced the F17G protein. We then immunized a camel with the purified F17G protein and constructed a VHH library consisting of 2 × 109 clones. The library was then screened against F17G protein using phage display technology. Through this process, we identified an anti-F17G nanobody that was subsequently linked, via a linker, to an anti-F17A nanobody, resulting in the creation of an effective bispecific nanobody. Comprehensive characterization of this bispecific nanobody demonstrated excellent production, specific binding capacity to both recombinant forms of the two F17 antigens and the E. coli F17+ strain, remarkable stability in camel serum, and superior resistance to pepsin protease. The successful generation of this bispecific nanobody with excellent production, specific binding capacity and stability highlights its potential as a valuable tool for fighting infections caused by pathogenic E. coli F17+ strain.
Collapse
Affiliation(s)
- Asma Dhehibi
- Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine, 4119, Tunisia.
| | - Mohammed Terrak
- InBioS-Centre for Protein Engineering, University of Liege, B-4000, Liege, Belgium
| | - Mabrouk-Mouldi Seddik
- Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine, 4119, Tunisia
| | - Mohamed Hammadi
- Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine, 4119, Tunisia
| | - Imed Salhi
- Livestock and Wildlife Laboratory (LR16IRA04), Arid Lands Institute (I.R.A), University of Gabès, Médenine, 4119, Tunisia
| |
Collapse
|
6
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
7
|
Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes 2024; 16:2337312. [PMID: 38591915 PMCID: PMC11005816 DOI: 10.1080/19490976.2024.2337312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.
Collapse
Affiliation(s)
- Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Abida Zahirović
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maruša Bizjak
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska 1, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Borut Štrukelj
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Berlec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
8
|
Kim DY, Kandalaft H, Lowden MJ, Yang Q, Rossotti MA, Robotham A, Kelly JF, Hussack G, Schrag JD, Henry KA, Tanha J. Sequence tolerance of immunoglobulin variable domain framework regions to noncanonical intradomain disulfide linkages. J Biol Chem 2023; 299:105278. [PMID: 37742917 PMCID: PMC10641266 DOI: 10.1016/j.jbc.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-β-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring β-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-β-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-β-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.
Collapse
Affiliation(s)
- Dae Young Kim
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Hiba Kandalaft
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Michael J Lowden
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Qingling Yang
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Martin A Rossotti
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John F Kelly
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Hussack
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Joseph D Schrag
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Kevin A Henry
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamshid Tanha
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
Raeisi H, Azimirad M, Asadzadeh Aghdaei H, Zarnani AH, Abdolalizadeh J, Yadegar A, Zali MR. Development and characterization of phage display-derived anti-toxin antibodies neutralizing TcdA and TcdB of Clostridioides difficile. Microbiol Spectr 2023; 11:e0531022. [PMID: 37668373 PMCID: PMC10580902 DOI: 10.1128/spectrum.05310-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/08/2023] [Indexed: 09/06/2023] Open
Abstract
TcdA and TcdB are known as the major virulence attributes of Clostridioides difficile. Hence, neutralizing the TcdA and TcdB activities can be considered as an efficient therapeutic approach against C. difficile infection (CDI). In this work, we utilized phage display technique to select single-chain fragment variable (scFv) fragments as recombinant antibodies displayed on the surface of phages, which specifically target native TcdA, or TcdB (nTcdA and nTcdB), and their recombinant C-terminal combined repetitive oligopeptide (CROP) domains (rTcdA and rTcdB). After three rounds of biopanning, abundance of phage clones displaying high reactivity with TcdA or TcdB was quantified through enzyme-linked immunosorbent assay (ELISA). Furthermore, selected scFvs were characterized by cell viability and neutralization assays. The gene expression of immunological markers, IL-8 and TNF-α, was examined in treated Caco-2 cells by RT-qPCR. The epitopes of neutralizing scFvs were also identified by molecular docking. Totally, 18 scFv antibodies (seven for TcdA and 11 for TcdB) were identified by ELISA. Among selected scFvs, two clones for TcdA (rA-C2, A-C9) and three clones for TcdB (rB-B4, B-F5, B-F11) exhibited the highest neutralizing activity in Caco-2 and Vero cells. Moreover, the cocktail of anti-TcdA and anti-TcdB antibodies notably decreased the mRNA expression of TNF-α and IL-8 in Caco-2 cells. Molecular docking revealed that the interaction between scFv and toxin was mostly restricted to CROP domain of TcdA or TcdB. Our results collectively provided more insights for the development of neutralizing scFvs against C. difficile toxins using phage display. Further research is needed to meticulously evaluate the potential of scFvs as an alternative treatment for CDI using animal models and clinical trials.IMPORTANCETargeting the major toxins of Clostridioides difficile by neutralizing antibodies is a novel therapeutic approach for CDI. Here, we report a panel of new anti-TcdA (rA-C2, A-C9) and anti-TcdB (rB-B4, B-F5, and B-F11) recombinant antibody fragments (scFvs) isolated from Tomlinson I and J libraries using phage display technique. These scFv antibodies were capable of neutralizing their respective toxin and showed promise as potential therapeutics against TcdA and TcdB of C. difficile in different in vitro models. In addition, in silico analysis showed that at least two neutralization mechanisms, including inhibiting cell surface binding of toxins and inhibiting toxin internalization can be proposed for the isolated scFvs in this work. These findings provide more insights for the applicability of specific scFvs toward C. difficile toxins at in vitro level. However, further research is required to evaluate the potential application of these scFvs as therapeutic agents for CDI treatment in clinical setting.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Abdolalizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Thran M, Pönisch M, Danz H, Horscroft N, Ichtchenko K, Tzipori S, Shoemaker CB. Co-administration of an effector antibody enhances the half-life and therapeutic potential of RNA-encoded nanobodies. Sci Rep 2023; 13:14632. [PMID: 37670025 PMCID: PMC10480410 DOI: 10.1038/s41598-023-41092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
The incidence of Clostridioides difficile infection (CDI) and associated mortality have increased rapidly worldwide in recent years. Therefore, it is critical to develop new therapies for CDI. Here we report on the development of mRNA-LNPs encoding camelid-derived VHH-based neutralizing agents (VNAs) targeting toxins A and/or B of C. difficile. In preclinical models, intravenous administration of the mRNA-LNPs provided serum VNA levels sufficient to confer protection of mice against severe disease progression following toxin challenge. Furthermore, we employed an mRNA-LNP encoded effector antibody, a molecular tool designed to specifically bind an epitopic tag linked to the VNAs, to prolong VNA serum half-life. Co-administration of VNA-encoding mRNA-LNPs and an effector antibody, either provided as recombinant protein or encoded by mRNA-LNP, increased serum VNA half-life in mice and in gnotobiotic piglets. Prolonged serum half-life was associated with higher concentrations of serum VNA and enhanced prophylactic protection of mice in challenge models.
Collapse
Affiliation(s)
| | | | - Hillary Danz
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA
| | | | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA
| | - Charles B Shoemaker
- Department of Infectious Disease and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, 01536, USA.
| |
Collapse
|
11
|
Yu S, Zhang L, Wang A, Jin Y, Zhou D. Nanobodies: the Potential Application in Bacterial Treatment and Diagnosis. Biochem Pharmacol 2023:115640. [PMID: 37315818 DOI: 10.1016/j.bcp.2023.115640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
An infection caused by bacteria is one of the main factors that poses a threat to human health. A recent report from the World Health Organization (WHO) has highlighted that bacteria that cause blood infections have become increasingly drug-resistant. Therefore, it is crucial to research and develop new techniques for detecting and treating these infections. Since their discovery, nanobodies have exhibited numerous outstanding biological properties. They are easy to express, modify, and have high stability, robust permeability and low immunogenicity, all of which indicate their potential as a substitute. Nanobodies have been utilized in a variety of studies on viruses and cancer. This article primarily focuses on nanobodies and introduces their characteristics and application in the diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Siyuan Yu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China; Department of Animal Engineering, Yangling Vocational&Technical College, Xianyang, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, China.
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
Lei EK, Ryan S, van Faassen H, Foss M, Robotham A, Baltat I, Fulton K, Henry KA, Chen W, Hussack G. Isolation and characterization of a VHH targeting the Acinetobacter baumannii cell surface protein CsuA/B. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12594-1. [PMID: 37284893 DOI: 10.1007/s00253-023-12594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/18/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Acinetobacter baumannii is a Gram-negative bacterial pathogen that exhibits high intrinsic resistance to antimicrobials, with treatment often requiring the use of last-resort antibiotics. Antibiotic-resistant strains have become increasingly prevalent, underscoring a need for new therapeutic interventions. The aim of this study was to use A. baumannii outer membrane vesicles as immunogens to generate single-domain antibodies (VHHs) against bacterial cell surface targets. Llama immunization with the outer membrane vesicle preparations from four A. baumannii strains (ATCC 19606, ATCC 17961, ATCC 17975, and LAC-4) elicited a strong heavy-chain IgG response, and VHHs were selected against cell surface and/or extracellular targets. For one VHH, OMV81, the target antigen was identified using a combination of gel electrophoresis, mass spectrometry, and binding studies. Using these techniques, OMV81 was shown to specifically recognize CsuA/B, a protein subunit of the Csu pilus, with an equilibrium dissociation constant of 17 nM. OMV81 specifically bound to intact A. baumannii cells, highlighting its potential use as a targeting agent. We anticipate the ability to generate antigen-specific antibodies against cell surface A. baumannii targets could provide tools for further study and treatment of this pathogen. KEY POINTS: •Llama immunization with bacterial OMV preparations for VHH generation •A. baumannii CsuA/B, a pilus subunit, identified by mass spectrometry as VHH target •High-affinity and specific VHH binding to CsuA/B and A. baumannii cells.
Collapse
Affiliation(s)
- Eric K Lei
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Mary Foss
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kelly Fulton
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biology, Brock University, St. Catharines, Ontario, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
13
|
Yong Joon Kim J, Sang Z, Xiang Y, Shen Z, Shi Y. Nanobodies: Robust miniprotein binders in biomedicine. Adv Drug Deliv Rev 2023; 195:114726. [PMID: 36754285 PMCID: PMC11725230 DOI: 10.1016/j.addr.2023.114726] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Variable domains of heavy chain-only antibodies (VHH), also known as nanobodies (Nbs), are monomeric antigen-binding domains derived from the camelid heavy chain-only antibodies. Nbs are characterized by small size, high target selectivity, and marked solubility and stability, which collectively facilitate high-quality drug development. In addition, Nbs are readily expressed from various expression systems, including E. coli and yeast cells. For these reasons, Nbs have emerged as preferred antibody fragments for protein engineering, disease diagnosis, and treatment. To date, two Nb-based therapies have been approved by the U.S. Food and Drug Administration (FDA). Numerous candidates spanning a wide spectrum of diseases such as cancer, immune disorders, infectious diseases, and neurodegenerative disorders are under preclinical and clinical investigation. Here, we discuss the structural features of Nbs that allow for specific, versatile, and strong target binding. We also summarize emerging technologies for identification, structural analysis, and humanization of Nbs. Our main focus is to review recent advances in using Nbs as a modular scaffold to facilitate the engineering of multivalent polymers for cutting-edge applications. Finally, we discuss remaining challenges for Nb development and envision new opportunities in Nb-based research.
Collapse
Affiliation(s)
- Jeffrey Yong Joon Kim
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Zhuolun Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA.
| |
Collapse
|
14
|
Hussack G, Rossotti MA, van Faassen H, Murase T, Eugenio L, Schrag JD, Ng KKS, Tanha J. Structure-guided design of a potent Clostridiodes difficile toxin A inhibitor. Front Microbiol 2023; 14:1110541. [PMID: 36778856 PMCID: PMC9909335 DOI: 10.3389/fmicb.2023.1110541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Crystal structures of camelid heavy-chain antibody variable domains (VHHs) bound to fragments of the combined repetitive oligopeptides domain of Clostridiodes difficile toxin A (TcdA) reveal that the C-terminus of VHH A20 was located 30 Å away from the N-terminus of VHH A26. Based on this observation, we generated a biparatopic fusion protein with A20 at the N-terminus, followed by a (GS)6 linker and A26 at the C-terminus. This A20-A26 fusion protein shows an improvement in binding affinity and a dramatic increase in TcdA neutralization potency (>330-fold [IC 50]; ≥2,700-fold [IC 99]) when compared to the unfused A20 and A26 VHHs. A20-A26 also shows much higher binding affinity and neutralization potency when compared to a series of control antibody constructs that include fusions of two A20 VHHs, fusions of two A26 VHHs, a biparatopic fusion with A26 at the N-terminus and A20 at the C-terminus (A26-A20), and actoxumab. In particular, A20-A26 displays a 310-fold (IC 50) to 29,000-fold (IC 99) higher neutralization potency than A26-A20. Size-exclusion chromatography-multiangle light scattering (SEC-MALS) analyses further reveal that A20-A26 binds to TcdA with 1:1 stoichiometry and simultaneous engagement of both A20 and A26 epitopes as expected based on the biparatopic design inspired by the crystal structures of TcdA bound to A20 and A26. In contrast, the control constructs show varied and heterogeneous binding modes. These results highlight the importance of molecular geometric constraints in generating highly potent antibody-based reagents capable of exploiting the simultaneous binding of more than one paratope to an antigen.
Collapse
Affiliation(s)
- Greg Hussack
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Martin A. Rossotti
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Tomohiko Murase
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Luiz Eugenio
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joseph D. Schrag
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Kenneth K.-S. Ng
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada,*Correspondence: Kenneth K.-S. Ng,
| | - Jamshid Tanha
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada,Jamshid Tanha,
| |
Collapse
|
15
|
Rossotti MA, Trempe F, van Faassen H, Hussack G, Arbabi-Ghahroudi M. Isolation and Characterization of Single-Domain Antibodies from Immune Phage Display Libraries. Methods Mol Biol 2023; 2702:107-147. [PMID: 37679618 DOI: 10.1007/978-1-0716-3381-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Naturally occurring heavy chain antibodies (HCAbs) in Camelidae species were a surprise discovery in 1993 by Hamers et al. Since that time, antibody fragments derived from HCAbs have garnered considerable attention by researchers and biotechnology companies. Due to their biophysico-chemical advantages over conventional antibody fragments, camelid single-domain antibodies (sdAbs, VHHs, nanobodies) are being increasingly utilized as viable immunotherapeutic modalities. Currently there are multiple VHH-based therapeutic agents in different phases of clinical trials in various formats such as bi- and multivalent, bi- and multi-specific, CAR-T, and antibody-drug conjugates. The first approved VHH, a bivalent humanized VHH (caplacizumab), was approved for treating rare blood clotting disorders in 2018 by the EMA and the FDA in 2019. This was followed by the approval of an anti-BCMA VHH-based CAR-T cell product in 2022 (ciltacabtagene autoleucel; CARVYKTI™) and more recently a trivalent antitumor necrosis factor alpha-based VHH drug (ozoralizumab; Nanozora®) in Japan for the treatment of rheumatoid arthritis. In this chapter we provide protocols describing the latest developments in isolating antigen-specific VHHs including llama immunization, construction of phage-displayed libraries, phage panning and screening of the soluble VHHs by ELISA, affinity measurements by surface plasmon resonance, functional cell binding by flow cytometry, and additional validation by immunoprecipitation. We present and discuss comprehensive, step-by-step methods for isolating and characterization of antigen-specific VHHs. This includes protocols for expression, biotinylation, purification, and characterization of the isolated VHHs. To demonstrate the feasibility of the entire strategy, we present examples of VHHs previously isolated and characterized in our laboratory.
Collapse
Affiliation(s)
- Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Frederic Trempe
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Henk van Faassen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
16
|
Raeisi H, Azimirad M, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Rapid-format recombinant antibody-based methods for the diagnosis of Clostridioides difficile infection: Recent advances and perspectives. Front Microbiol 2022; 13:1043214. [PMID: 36523835 PMCID: PMC9744969 DOI: 10.3389/fmicb.2022.1043214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 08/30/2023] Open
Abstract
Clostridioides difficile, the most common cause of nosocomial diarrhea, has been continuously reported as a worldwide problem in healthcare settings. Additionally, the emergence of hypervirulent strains of C. difficile has always been a critical concern and led to continuous efforts to develop more accurate diagnostic methods for detection of this recalcitrant pathogen. Currently, the diagnosis of C. difficile infection (CDI) is based on clinical manifestations and laboratory tests for detecting the bacterium and/or its toxins, which exhibit varied sensitivity and specificity. In this regard, development of rapid diagnostic techniques based on antibodies has demonstrated promising results in both research and clinical environments. Recently, application of recombinant antibody (rAb) technologies like phage display has provided a faster and more cost-effective approach for antibody production. The application of rAbs for developing ultrasensitive diagnostic tools ranging from immunoassays to immunosensors, has allowed the researchers to introduce new platforms with high sensitivity and specificity. Additionally, DNA encoding antibodies are directly accessible in these approaches, which enables the application of antibody engineering to increase their sensitivity and specificity. Here, we review the latest studies about the antibody-based ultrasensitive diagnostic platforms for detection of C. difficile bacteria, with an emphasis on rAb technologies.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Qin Q, Liu H, He W, Guo Y, Zhang J, She J, Zheng F, Zhang S, Muyldermans S, Wen Y. Single Domain Antibody application in bacterial infection diagnosis and neutralization. Front Immunol 2022; 13:1014377. [PMID: 36248787 PMCID: PMC9558170 DOI: 10.3389/fimmu.2022.1014377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Increasing antibiotic resistance to bacterial infections causes a serious threat to human health. Efficient detection and treatment strategies are the keys to preventing and reducing bacterial infections. Due to the high affinity and antigen specificity, antibodies have become an important tool for diagnosis and treatment of various human diseases. In addition to conventional antibodies, a unique class of “heavy-chain-only” antibodies (HCAbs) were found in the serum of camelids and sharks. HCAbs binds to the antigen through only one variable domain Referred to as VHH (variable domain of the heavy chain of HCAbs). The recombinant format of the VHH is also called single domain antibody (sdAb) or nanobody (Nb). Sharks might also have an ancestor HCAb from where SdAbs or V-NAR might be engineered. Compared with traditional Abs, Nbs have several outstanding properties such as small size, high stability, strong antigen-binding affinity, high solubility and low immunogenicity. Furthermore, they are expressed at low cost in microorganisms and amenable to engineering. These superior properties make Nbs a highly desired alternative to conventional antibodies, which are extensively employed in structural biology, unravelling biochemical mechanisms, molecular imaging, diagnosis and treatment of diseases. In this review, we summarized recent progress of nanobody-based approaches in diagnosis and neutralization of bacterial infection and further discussed the challenges of Nbs in these fields.
Collapse
Affiliation(s)
- Qian Qin
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Wenbo He
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Guo
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Zhang
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Junjun She
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Sicai Zhang
- Center for Biomedical Research, Institute of Future Agriculture, Northwest A&F University, Yangling, China
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yurong Wen
- Department of General Surgery, Center for Microbiome Research of Med-X Institute, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Raeisi H, Azimirad M, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Application of recombinant antibodies for treatment of Clostridioides difficile infection: Current status and future perspective. Front Immunol 2022; 13:972930. [PMID: 36081500 PMCID: PMC9445313 DOI: 10.3389/fimmu.2022.972930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile), known as the major cause of antibiotic-associated diarrhea, is regarded as one of the most common healthcare-associated bacterial infections worldwide. Due to the emergence of hypervirulent strains, development of new therapeutic methods for C. difficile infection (CDI) has become crucially important. In this context, antibodies have been introduced as valuable tools in the research and clinical environments, as far as the effectiveness of antibody therapy for CDI was reported in several clinical investigations. Hence, production of high-performance antibodies for treatment of CDI would be precious. Traditional approaches of antibody generation are based on hybridoma technology. Today, application of in vitro technologies for generating recombinant antibodies, like phage display, is considered as an appropriate alternative to hybridoma technology. These techniques can circumvent the limitations of the immune system and they can be exploited for production of antibodies against different types of biomolecules in particular active toxins. Additionally, DNA encoding antibodies is directly accessible in in vitro technologies, which enables the application of antibody engineering in order to increase their sensitivity and specificity. Here, we review the application of antibodies for CDI treatment with an emphasis on recombinant fragment antibodies. Also, this review highlights the current and future prospects of the aforementioned approaches for antibody-mediated therapy of CDI.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Chabrol E, Fagnen C, Landron S, Marcheteau E, Stojko J, Guenin SP, Antoine M, Fould B, Ferry G, Boutin JA, Vénien-Bryan C. Biochemistry, structure, and cellular internalization of a four nanobody-bearing Fc dimer. Protein Sci 2021; 30:1946-1957. [PMID: 34117809 DOI: 10.1002/pro.4147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
VHH stands for the variable regions of heavy chain only of camelid IgGs. The VHH family forms a set of interesting proteins derived from antibodies that maintain their capacity to recognize the antigen, despite their relatively small molecular weight (in the 12,000 Da range). Continuing our exploration of the possibilities of those molecules, we chose to design alternative molecules with maintained antigen recognition, but enhanced capacity, by fusing four VHH with one Fc, the fragment crystallizable region of antibodies. In doing so, we aimed at having a molecule with superior quantitative antigen recognition (×4) while maintaining its size below the 110 kDa. In the present paper, we described the building of those molecules that we coined VHH2 -Fc-VHH2 . The structure of VHH2 -Fc-VHH2 in complex with HER2 antigen was determined using electronic microscopy and modeling. The molecule is shown to bind four HER2 proteins at the end of its flexible arms. VHH2 -Fc-VHH2 also shows an internalization capacity via HER2 receptor superior to the reference anti-HER2 monoclonal antibody, Herceptin®, and to a simple fusion of two VHH with one Fc (VHH2 -Fc). This new type of molecules, VHH2 -Fc-VHH2 , could be an interesting addition to the therapeutic arsenal with multiple applications, from diagnostic to therapy.
Collapse
Affiliation(s)
- Eric Chabrol
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.,Lumedix, Palaiseau, France
| | - Charline Fagnen
- Sorbonne Université, UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France.,Université de Caen, Caen, France
| | - Sophie Landron
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Estelle Marcheteau
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Johann Stojko
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sophie-Pénélope Guenin
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Mathias Antoine
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.,Roche Pharma SA, Basel, Switzerland
| | - Benjamin Fould
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Gilles Ferry
- Pole d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales Servier, Suresnes Cedex, France.,PHARMADEV (Pharmacochimie et biologie pour le développement), Université Toulouse 3 Paul Sabatier, Faculté de Pharmacie, Toulouse Cedex 9, France
| | - Catherine Vénien-Bryan
- Sorbonne Université, UMR 7590, CNRS, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| |
Collapse
|
21
|
van Faassen H, Ryan S, Henry KA, Raphael S, Yang Q, Rossotti MA, Brunette E, Jiang S, Haqqani AS, Sulea T, MacKenzie CR, Tanha J, Hussack G. Serum albumin‐binding V
H
Hs with variable pH sensitivities enable tailored half‐life extension of biologics. FASEB J 2020; 34:8155-8171. [DOI: 10.1096/fj.201903231r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Henk van Faassen
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Shannon Ryan
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Kevin A. Henry
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
- Department of Biochemistry, Microbiology & Immunology University of Ottawa Ottawa ON Canada
| | - Shalini Raphael
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Qingling Yang
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Martin A. Rossotti
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Susan Jiang
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Arsalan S. Haqqani
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre National Research Council Canada Montréal QC Canada
| | - C. Roger MacKenzie
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| | - Jamshid Tanha
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
- Department of Biochemistry, Microbiology & Immunology University of Ottawa Ottawa ON Canada
| | - Greg Hussack
- Human Health Therapeutics Research Centre National Research Council Canada Ottawa ON Canada
| |
Collapse
|
22
|
Aubry A, Zou W, Vinogradov E, Williams D, Chen W, Harris G, Zhou H, Schur MJ, Gilbert M, Douce GR, Logan SM. In vitro Production and Immunogenicity of a Clostridium Difficile Spore-Specific BclA3 Glycopeptide Conjugate Vaccine. Vaccines (Basel) 2020; 8:vaccines8010073. [PMID: 32046000 PMCID: PMC7157674 DOI: 10.3390/vaccines8010073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract: The BclA3 glycoprotein is a major component of the exosporangial layer of Clostridium difficile spores and in this study we demonstrate that this glycoprotein is a major spore surface associated antigen. Here, we confirm the role of SgtA glycosyltransferase (SgtA GT) in BclA3 glycosylation and recapitulate this process by expressing and purifying SgtA GT fused to MalE, the maltose binding protein from Escherichia coli. In vitro assays using the recombinant enzyme and BclA3 synthetic peptides demonstrated that SgtA GT was responsible for the addition of β-O-linked GlcNAc to threonine residues of each synthetic peptide. These peptide sequences were selected from the central, collagen repeat region of the BclA3 protein. Following optimization of SgtA GT activity, we generated sufficient glycopeptide (10 mg) to allow conjugation to KLH (keyhole limpet hemocyanin) protein. Glycosylated and unglycosylated versions of these conjugates were then used as antigens to immunize rabbits and mice. Immune responses to each of the conjugates were examined by Enzyme Linked Immunosorbent Assay ELISA. Additionally, the BclA3 conjugated peptide and glycopeptide were used as antigens in an ELISA assay with serum raised against formalin-killed spores. Only the glycopeptide was recognized by anti-spore polyclonal immune serum demonstrating that the glycan moiety is a predominant spore-associated surface antigen. To determine whether antibodies to these peptides could modify persistence of spores within the gut, animals immunized intranasally with either the KLH-glycopeptide or KLH-peptide conjugate in the presence of cholera toxin, were challenged with R20291 spores. Although specific antibodies were raised to both antigens, immunization did not provide any protection against acute or recurrent disease.
Collapse
Affiliation(s)
- Annie Aubry
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Wei Zou
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Evguenii Vinogradov
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Dean Williams
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Wangxue Chen
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Greg Harris
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Hongyan Zhou
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Melissa J. Schur
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Michel Gilbert
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
| | - Gillian R. Douce
- Institute of Infection, Immunity, Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, UK;
| | - Susan M. Logan
- Vaccine Program, Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; (A.A.); (W.Z.); (E.V.); (D.W.); (W.C.); (G.H.); (H.Z.); (M.J.S.); (M.G.)
- Correspondence: ; Tel.: +613-990-0839
| |
Collapse
|
23
|
Simplified monomeric VHH-Fc antibodies provide new opportunities for passive immunization. Curr Opin Biotechnol 2019; 61:96-101. [PMID: 31810049 DOI: 10.1016/j.copbio.2019.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
Simplified monomeric monoclonal antibodies consisting of a single-domain VHH, derived from camelid heavy-chain only antibodies, fused with the Fc domain of either IgG (VHH-IgG) or IgA (VHH-IgA) antibodies, are promising therapeutic proteins. These simplified single-gene encoded antibodies are much easier to manufacture and can be produced in plants and in yeast for bulk applications. These merits enable novel passive immunization applications, such as in-feed oral delivery of VHH-IgAs, which have successfully provided protection against a gastrointestinal infection in the piglet model.
Collapse
|
24
|
Godakova SA, Noskov AN, Vinogradova ID, Ugriumova GA, Solovyev AI, Esmagambetov IB, Tukhvatulin AI, Logunov DY, Naroditsky BS, Shcheblyakov DV, Gintsburg AL. Camelid VHHs Fused to Human Fc Fragments Provide Long Term Protection Against Botulinum Neurotoxin A in Mice. Toxins (Basel) 2019; 11:E464. [PMID: 31394847 PMCID: PMC6723419 DOI: 10.3390/toxins11080464] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
The bacterium Clostridium botulinum is the causative agent of botulism-a severe intoxication caused by botulinum neurotoxin (BoNT) and characterized by damage to the nervous system. In an effort to develop novel C. botulinum immunotherapeutics, camelid single-domain antibodies (sdAbs, VHHs, or nanobodies) could be used due to their unique structure and characteristics. In this study, VHHs were produced using phage display technology. A total of 15 different monoclonal VHHs were selected based on their comlementarity-determining region 3 (CDR3) sequences. Different toxin lethal dose (LD50) challenges with each selected phage clone were conducted in vivo to check their neutralizing potency. We demonstrated that modification of neutralizing VHHs with a human immunoglobulin G (IgG)1 Fc (fragment crystallizable) fragment (fusionbody, VHH-Fc) significantly increased the circulation time in the blood (up to 14 days). At the same time, VHH-Fc showed the protective activity 1000 times higher than monomeric form when challenged with 5 LD50. Moreover, VHH-Fcs remained protective even 14 days after antibody administration. These results indicate that this VHH-Fc could be used as an effective long term antitoxin protection against botulinum type A.
Collapse
Affiliation(s)
- Svetlana A Godakova
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Anatoly N Noskov
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Irina D Vinogradova
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Galina A Ugriumova
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Andrey I Solovyev
- Department of Bacteriology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Ilias B Esmagambetov
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Amir I Tukhvatulin
- Department of Medical Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Denis Y Logunov
- Department of Medical Microbiology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Boris S Naroditsky
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| | - Dmitry V Shcheblyakov
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia.
| | - Aleksandr L Gintsburg
- Department of Genetics and Bacteria Molecular Biology, Gamaleya Research Center of Epidemiology and Microbiology, 18 Gamaleya Street, Moscow 123098, Russia
| |
Collapse
|