1
|
Zhang J, Li L, Bai X, Zhang Z, Yuan L. DNA quality and STR success rate in different formalin-fixed tissues. Int J Legal Med 2025; 139:995-1003. [PMID: 39656232 DOI: 10.1007/s00414-024-03391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/01/2024] [Indexed: 04/17/2025]
Abstract
Formalin-fixed tissues possess irreplaceable value as a source of DNA for identification, especially when fresh samples are unavailable. Nonetheless, extracting and amplifying DNA from these tissues is challenging, primarily due to formaldehyde-induced cross-linking and nucleic acid fragmentation. In this study, two pre-extraction treatments, gradual dehydration using ethanol and pre-digestion heat treatments, and three DNA extraction methods, the Chelex-100 method, TIANamp FFPE DNA Kit, and ML Ultra-micro DNA extraction kit, were utilized to optimize DNA extraction from different tissues, which were fixed in 4% unbuffered formalin for different durations. The tissues include the heart, liver, spleen, lung, kidney, muscle, and brain. DNA quality was assessed, and quantification was conducted using Spectrophotometer and Quantifiler® Trio DNA Quantification Kits, while the GSTAR™ 25 kit was employed for STR detection. The results indicated that the two pre-extraction treatments exhibited no significant effect on the STR success rate. On day 9, allelic dropout was observed in the heart, liver, spleen, lung, and kidney tissues. Furthermore, allelic dropout was observed in muscle and brain at 12 days and 15 days, respectively. In conclusion, the results underscore the feasibility of effectively extracting DNA from formalin-fixed tissues within 9 days for subsequent STR analysis.
Collapse
Affiliation(s)
- Jinpei Zhang
- Engineering Research Center of Crime Scene Evidence Examination, Beijing, 100038, PR China
- Collaborative Innovation Center of Judicial Civilization, Beijing, 100088, PR China
- Key Laboratory of Evidence Science, China University of Political Science and Law), Ministry of Education, Beijing, 100088, PR China
| | - Lu Li
- Key Laboratory of Evidence Science, China University of Political Science and Law), Ministry of Education, Beijing, 100088, PR China
| | - Xue Bai
- Engineering Research Center of Crime Scene Evidence Examination, Beijing, 100038, PR China
| | - Zhe Zhang
- Engineering Research Center of Crime Scene Evidence Examination, Beijing, 100038, PR China
| | - Li Yuan
- Engineering Research Center of Crime Scene Evidence Examination, Beijing, 100038, PR China.
- Collaborative Innovation Center of Judicial Civilization, Beijing, 100088, PR China.
- Key Laboratory of Evidence Science, China University of Political Science and Law), Ministry of Education, Beijing, 100088, PR China.
| |
Collapse
|
2
|
Hoque M, D'Mello V, Husain S, Soteropoulos P. Extraction, Purification, and Next-Generation Sequencing (NGS) Analysis of DNA and RNA from Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue. Methods Mol Biol 2025; 2866:207-227. [PMID: 39546205 DOI: 10.1007/978-1-0716-4192-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Formalin fixed paraffin embedded (FFPE) tissues have long been used for immunohistological analyses. FFPE tissues can be stored at room temperature for several years enabling analyses to be performed later. Ease of storage and transport makes these tissues an attractive source of biological material. However, formalin fixation results in chemical modifications of proteins and nucleic acids that poses a major challenge to any type of analysis. Recovery of nucleic acids for quantitative assays is rendered difficult due to degradation resulting from fixation and long-term storage, producing low usable yields. Extensive efforts in the last 20 years have led to significant improvements in use of FFPE tissues for DNA and RNA analyses and resulted in development of sensitive assays for a wide range of applications, including next-generation sequencing. In this chapter, we describe the optimization of methods for sequential extraction of DNA and RNA from FFPE tissue and subsequent preparation of DNA-seq and RNA-seq libraries for use with the Illumina platform using commercially available reagents/kits.
Collapse
Affiliation(s)
- Mainul Hoque
- Genomics Center, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Veera D'Mello
- Genomics Center, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Seema Husain
- Genomics Center, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Patricia Soteropoulos
- Genomics Center, Rutgers New Jersey Medical School, Newark, NJ, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
3
|
Gürel İ, Aşıcıoğlu F, Ersoy G, Bülbül Ö, Öztürk T, Filoğlu G. InDEL instability in two different tumoral tissues and its forensic significance. Forensic Sci Med Pathol 2024; 20:1241-1250. [PMID: 38568352 PMCID: PMC11790770 DOI: 10.1007/s12024-024-00808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 02/04/2025]
Abstract
There may be cases where malignant tumor samples can be used for forensic DNA profiling studies. STRs are the first systems preferred in forensic science laboratories for identification purposes. However, genetic instability in tumoral tissues causes STR polymorphism to change, leading to erroneous results. On the other hand, insertion/deletion polymorphism (InDels) are used as genetic markers in forensic science, as they have features that make both STR and SNPs preferable. Although previous studies approved that STR instability is observed in many different tumors, there are only a few studies that have displayed the instability of InDels in tumoral tissues before. In this study, it was aimed to determine whether instability is observed in formalin-fixed paraffin-embedded breast and thyroid tumoral tissues at 36plex InDel Panel. A total of 47 cases, 26 of which were diagnosed as breast cancer and 21 as thyroid cancer, were included in the study. In 21 of 26 (80.76%) breast cancers mutational changes were observed, however only 6 of 21 (28.57%) thyroid carcinoma cases displayed instability.Moreover, in these six cases, mutations were detected at only 1 or 2 loci. The most common change in both tissues was loss of heterozygosity. These findings suggest that paraffin embedded tissues of thyroid tumor can be used in cases of forensic genetic identification, however paraffin embedded breast cancer tissues should be examined with care. In conclusion, low InDel mutation rates compared to STR instability, make InDel analysis from paraffin blocks suitable for forensic genetic identification. However, researchers should keep in mind that there may be differences between the profiles of the tumoral tissues taken as reference and the actual case. In addition, by incorporating additional markers such as SNPs and microhaplotypes with low mutation rates into the study alongside Indels, researchers can significantly enhance the discrimination power in identification processes.
Collapse
Affiliation(s)
- İpek Gürel
- Department of Science, Institute of Forensic Sciences and Legal Medicine, İstanbul University- Cerrahpaşa, İstanbul, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, İstanbul, Türkiye
| | - Faruk Aşıcıoğlu
- Department of Medical Sciences, Institute of Forensic Sciences and Legal Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye.
| | - Gökhan Ersoy
- Department of Medical Sciences, Institute of Forensic Sciences and Legal Medicine, İstanbul University-Cerrahpaşa, İstanbul, Türkiye
| | - Özlem Bülbül
- Department of Science, Institute of Forensic Sciences and Legal Medicine, İstanbul University- Cerrahpaşa, İstanbul, Türkiye
| | - Tülin Öztürk
- Department of Medical Pathology, Cerrahpaşa Faculty of Medicine, İstanbul University- Cerrahpaşa, İstanbul, Türkiye
| | - Gönül Filoğlu
- Department of Science, Institute of Forensic Sciences and Legal Medicine, İstanbul University- Cerrahpaşa, İstanbul, Türkiye
| |
Collapse
|
4
|
Jansson L, Aili Fagerholm S, Börkén E, Hedén Gynnå A, Sidstedt M, Forsberg C, Ansell R, Hedman J, Tillmar A. Assessment of DNA quality for whole genome library preparation. Anal Biochem 2024; 695:115636. [PMID: 39111682 DOI: 10.1016/j.ab.2024.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/26/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024]
Abstract
In recent years, more sophisticated DNA technologies for genotyping have enabled considerable progress in various fields such as clinical genetics, archaeogenetics and forensic genetics. DNA samples previously rejected as too challenging to analyze due to low amounts of degraded DNA can now provide useful information. To increase the chances of success with the new methodologies, it is crucial to know the fragment size of the template DNA molecules, and whether the DNA in a sample is mostly single or double stranded. With this knowledge, an appropriate library preparation method can be chosen, and the DNA shearing parameters of the protocol can be adjusted to the DNA fragment size in the sample. In this study, we first developed and evaluated a user-friendly fluorometry-based protocol for estimation of DNA strandedness. We also evaluated different capillary electrophoresis methods for estimation of DNA fragmentation levels. Next, we applied the developed methodologies to a broad variety of DNA samples processed with different DNA extraction protocols. Our findings show that both the applied DNA extraction method and the sample type affect the DNA strandedness and fragmentation. The established protocols and the gained knowledge will be applicable for future sequencing-based high-density SNP genotyping in various fields.
Collapse
Affiliation(s)
- Linda Jansson
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | | | - Emelie Börkén
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Arvid Hedén Gynnå
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden
| | - Maja Sidstedt
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden
| | | | - Ricky Ansell
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Department of Physics, Chemistry and Biology, IFM, Linköping University, Linköping, Sweden
| | - Johannes Hedman
- National Forensic Centre, Swedish Police Authority, Linköping, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Andreas Tillmar
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
5
|
Shim SM, Lee M, Jeon JP. Assessment of the Impact of Preanalytical DNA Integrity on the Genome Data Quality. Biopreserv Biobank 2024; 22:517-527. [PMID: 38563611 DOI: 10.1089/bio.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Many molecular approaches have been employed for the quality control (QC) of biobanked DNA samples. Since 2003, the National Biobank of Korea (NBK) has provided various studies with over half a million quality-controlled genomic DNA samples using conventional agarose gel electrophoresis and spectrophotometry. We assessed the postanalytical genomic data quality of DNA samples (n = 41) with a different range of the DNA quality index such as genomic quality number (GQN) for developing an evidence-based best practice for DNA quality criteria. We examined the quality indices of three different platforms, including single nucleotide polymorphism arrays, methylation arrays, and next-generation sequencing, using the same DNA samples (n = 41) of different quality, ranging from 4.0 to 10.0 values of the GQN. Our data analysis revealed that higher GQN value and/or double-stranded DNA concentration resulted in higher quality genomic data. In addition, all the analyzed DNA samples successfully generated good-quality genomic data. This study provides a guide for the QC of biobanked DNA samples for genomic analysis platforms.
Collapse
Affiliation(s)
- Sung-Mi Shim
- Division of Biobank, Department of Precision Medicine, Korea National Institute of Health, Cheongju-si, Republic of Korea
| | - Meehee Lee
- Division of Biobank, Department of Precision Medicine, Korea National Institute of Health, Cheongju-si, Republic of Korea
| | - Jae-Pil Jeon
- Division of Biobank, Department of Precision Medicine, Korea National Institute of Health, Cheongju-si, Republic of Korea
| |
Collapse
|
6
|
Liu T, Ho CL, Chen YJ, Chen PJ, Chen WL, Lee CT, Chow NH, Huang W, Chen YL. A pilot study on the detection of microsatellite instability using long mononucleotide repeats in solid tumors. Oncol Lett 2024; 28:445. [PMID: 39099584 PMCID: PMC11294907 DOI: 10.3892/ol.2024.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Microsatellite instability (MSI) status is a prognostic biomarker for immunotherapy in certain types of cancers, such as colorectal cancers (CRCs) and endometrial cancers (ECs). Tumors that are categorized as having high MSI (MSI-H) express high levels of neoantigens for immune recognition. The typical MSI test measures the length of short mononucleotide repeats (SMR) poly(A) 21-27; however, a limitation of this test is the difficulty in determining the shift size, particularly in endometrial cancer. To investigate an MSI detection assay with improved performance, the present study analyzed the use of poly(A) 40-44 mononucleotide repeats to detect the MSI status of 100 patients with either CRC (n=50) or EC (n=50). Capillary electrophoresis was used to evaluate five long mononucleotide repeat (LMR) markers, including poly(A) 40-A, 40-B, 40-C, 40-D and 44. The concordance rate of the LMR-MSI assay compared with an immunohistochemistry MSI detection assay was 96.0 and 95.1% for CRCs and ECs respectively, with the detection limit of the LMR-MSI assay demonstrated to be 2.5% MSI-H in HCT116 colorectal carcinoma cell lines. The LMR-MSI assay yielded a 95.1% concordance rate in ECs compared with that in the SMR-MSI test (87.8%). The LMR-MSI test identified a significantly higher mean shift size (13 bp) in MSI-H tumors compared with the SMR-MSI test (10 bp), in both EC and CRC tissue samples. Together, the present study suggested that the LMR-MSI test could potentially be a sensitive and practical technology for molecular laboratory testing, particularly in the use of immunotherapy for patients with CRCs and ECs.
Collapse
Affiliation(s)
- Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chung-Liang Ho
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Yan-Jhen Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Pin-Jun Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
| | - Wan-Li Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
| | - Chung-Ta Lee
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Nan-Haw Chow
- Department of Laboratory Medicine, Center for Precision Medicine, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Wenya Huang
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Yi-Lin Chen
- Molecular Diagnosis Laboratory, Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Molecular Medicine Core Laboratory, Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan, R.O.C
- Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
7
|
Violon F, Bouys L, Vaduva P, Chansavang A, Vaquier L, Letourneur F, Izac B, Giannone G, De Murat D, Gaillard M, Berthon A, Ragazzon B, Pasmant E, Sibony M, Bertherat J. Somatic Molecular Heterogeneity in Bilateral Macronodular Adrenocortical Disease (BMAD) Differs Among the Pathological Subgroups. Endocr Pathol 2024; 35:194-206. [PMID: 39180662 DOI: 10.1007/s12022-024-09824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Bilateral macronodular adrenocortical disease (BMAD) is an uncommon cause of Cushing's syndrome leading to bilateral macronodules. Isolated BMAD has been classified into three molecular groups: patients with ARMC5 alteration, KDM1A alteration, and patients without known genetic cause. The aim of this study was to identify by NGS, in a cohort of 26 patients with BMAD, the somatic alterations acquired in different nodules after macrodissection from patients with germline ARMC5 or KDM1A alterations and to analyze potential somatic alterations in a panel of five other genes involved in adrenal pathology (GNAS, PDE8B, PDE11A, PRKAR1A, and PRKACA). Twenty-three patients (7 ARMC5, 3 KDM1A, and 13 BMAD with unknown genetic cause) were analyzable. Somatic ARMC5 or KDM1A events were exclusively observed in patients with germline ARMC5 and KDM1A alterations, respectively. Six out of 7 ARMC5 patients have a high heterogeneity in identified somatic events, whereas one ARMC5 and all KDM1A patients show a loss of heterozygosity (LOH) in all nodules. Except for passenger alterations of GNAS, no genetic alteration susceptible to causing the disease was detected in the BMAD with unknown genetic cause. Our study reinforces our knowledge of the somatic genetic heterogeneity of ARMC5 and the somatic homogeneity of KDM1A. It reveals the absence of purely somatic events in these two genes and provides a new tool for detecting KDM1A alterations by FISH 1p36/1q25.
Collapse
Affiliation(s)
- Florian Violon
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Pathology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Lucas Bouys
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Patricia Vaduva
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Albain Chansavang
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Genomic Medicine of Tumors and Cancers, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Louis Vaquier
- Department of Pathology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Franck Letourneur
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Genom'IC Platform, Cochin Institute, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Brigitte Izac
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Genom'IC Platform, Cochin Institute, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Gaëtan Giannone
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Daniel De Murat
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Martin Gaillard
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Digestive, Hepatobiliary and Endocrine Surgery, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Annabel Berthon
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Bruno Ragazzon
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Eric Pasmant
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Genomic Medicine of Tumors and Cancers, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Mathilde Sibony
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Pathology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Jérôme Bertherat
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.
| |
Collapse
|
8
|
Salgkamis D, Sifakis EG, Agartz S, Wirta V, Hartman J, Bergh J, Foukakis T, Matikas A, Zerdes I. Systematic review and feasibility study on pre-analytical factors and genomic analyses on archival formalin-fixed paraffin-embedded breast cancer tissue. Sci Rep 2024; 14:18275. [PMID: 39107471 PMCID: PMC11303707 DOI: 10.1038/s41598-024-69285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue represents a valuable source for translational cancer research. However, the widespread application of various downstream methods remains challenging. Here, we aimed to assess the feasibility of a genomic and gene expression analysis workflow using FFPE breast cancer (BC) tissue. We conducted a systematic literature review for the assessment of concordance between FFPE and fresh-frozen matched tissue samples derived from patients with BC for DNA and RNA downstream applications. The analytical performance of three different nucleic acid extraction kits on FFPE BC clinical samples was compared. We also applied a newly developed targeted DNA Next-Generation Sequencing (NGS) 370-gene panel and the nCounter BC360® platform on simultaneously extracted DNA and RNA, respectively, using FFPE tissue from a phase II clinical trial. Of the 3701 initial search results, 40 articles were included in the systematic review. High degree of concordance was observed in various downstream application platforms. Moreover, the performance of simultaneous DNA/RNA extraction kit was demonstrated with targeted DNA NGS and gene expression profiling. Exclusion of variants below 5% variant allele frequency was essential to overcome FFPE-induced artefacts. Targeted genomic analyses were feasible in simultaneously extracted DNA/RNA from FFPE material, providing insights for their implementation in clinical trials/cohorts.
Collapse
Affiliation(s)
| | | | - Susanne Agartz
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Valtteri Wirta
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Morin GM, Zerbib L, Kaltenbach S, Fraissenon A, Balducci E, Asnafi V, Canaud G. PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. Annu Rev Genomics Hum Genet 2024; 25:211-237. [PMID: 38316164 DOI: 10.1146/annurev-genom-121222-114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the PIK3CA gene are also detected in malformation mosaic diseases categorized as PIK3CA-related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding PIK3CA and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.
Collapse
Affiliation(s)
- Gabriel M Morin
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lola Zerbib
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sophie Kaltenbach
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Antoine Fraissenon
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- CREATIS, CNRS UMR 5220, Villeurbanne, France
- Service de Radiologie Mère-Enfant, Hôpital Nord, Saint Etienne, France
- Service d'Imagerie Pédiatrique, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Estelle Balducci
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vahid Asnafi
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Laboratoire d'Oncohématologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Guillaume Canaud
- INSERM U1151, Institut Necker-Enfants Malades, Paris, France;
- UFR de Médecine, Site Necker, Université Paris Cité, Paris, France
- Unité de Médecine Translationnelle et Thérapies Ciblées, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
10
|
Chavanel B, Virard F, Cahais V, Renard C, Sirand C, Smits KM, Schouten LJ, Fervers B, Charbotel B, Abedi-Ardekani B, Korenjak M, Zavadil J. Genome-scale mutational signature analysis in archived fixed tissues. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108512. [PMID: 39216514 DOI: 10.1016/j.mrrev.2024.108512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Mutation spectra and mutational signatures in cancerous and non-cancerous tissues can be identified by various established techniques of massively parallel sequencing (or next-generation sequencing) including whole-exome or whole-genome sequencing, and more recently by error-corrected/duplex sequencing. One rather underexplored area has been the genome-scale analysis of mutational signatures as markers of mutagenic exposures, and their impact on cancer driver events applied to formalin-fixed or alcohol-fixed paraffin embedded archived biospecimens. This review showcases successful applications of the next-generation sequencing methodologies in archived fixed tissues, including the delineation of the specific tissue fixation-related DNA damage manifesting as artifactual signatures, distinguishable from the true signatures that arise from biological mutagenic processes. Overall, we discuss and demonstrate how next-generation sequencing techniques applied to archived fixed biospecimens can enhance our understanding of cancer causes including mutagenic effects of extrinsic cancer risk agents, and the implications for prevention efforts aimed at reducing avoidable cancer-causing exposures.
Collapse
Affiliation(s)
- Bérénice Chavanel
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - François Virard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France; University Claude Bernard Lyon 1 INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Vincent Cahais
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Claire Renard
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Cécilia Sirand
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Kim M Smits
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Pathology, Maastricht, the Netherlands
| | - Leo J Schouten
- Maastricht University, Research Institute for Oncology and Reproduction, Department of Epidemiology, Maastricht, the Netherlands
| | - Béatrice Fervers
- Centre Léon Bérard, Department Cancer and Environment, Lyon, France
| | - Barbara Charbotel
- University Claude Bernard Lyon 1, UMRESTTE, Epidemiological Research and Surveillance Unit in Transport, Occupation and Environment, Lyon, France
| | | | - Michael Korenjak
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer, Epigenomics and Mechanisms Branch, Lyon, France.
| |
Collapse
|
11
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
12
|
Yu SC, Chan TH, Jou R. Granulomatous lymphadenitis in Taiwan: Unraveling infantile peak and Bacillus Calmette-Guérin lymphadenitis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00084-7. [PMID: 38816320 DOI: 10.1016/j.jmii.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/14/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Granulomatous lymphadenitis, a histopathological diagnosis, often indicates infections, such as those caused by mycobacterial and fungal agents. METHODS We conducted an analysis of 1098 granulomatous lymphadenitis cases, examining age distribution, lymph node locations, and laterality. Molecular detection of Bacillus Calmette-Guérin (BCG) was performed on archived formalin-fixed paraffin-embedded tissue specimens. RESULTS Our analysis revealed a bimodal age distribution, notably with a minor peak in infants. These infantile cases predominantly featured axillary involvement, frequently occurring on the left side. Positive rates of BCG identification decreased with age: <1 year, 71%; 1-2 year, 33%; 2-3 year, 13%; 3-4 year, 0%. Remarkably, only one of the 14 cases with molecularly confirmed BCG lymphadenitis had comments regarding BCG in the pathological report. Compared with patients born after 2016 (BCG at 5-8 months), those born before 2016 (BCG at birth) developed BCG lymphadenitis at a wider age range with right skewness (before 2016, 13 ± 11 months [range, 3-33 months] vs. after 2016, 10 ± 2 months [range, 8-13 months]). Four of the 14 BCG-positive cases had congenital heart disease. Seven patients received anti-tuberculosis drugs following surgical excision. No surgical complications were reported. CONCLUSIONS BCG lymphadenitis constitutes a distinctive minor peak within the spectrum of granulomatous lymphadenitis in Taiwan. Pathologists should consider the possibility of BCG infection, especially in cases of infantile axillary, supraclavicular, neck lymphadenopathies on the left side. Moreover, BCG administration at 5-8 months may reduce delayed-onset BCG lymphadenitis.
Collapse
Affiliation(s)
- Shan-Chi Yu
- Department of Pathology and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Tai-Hua Chan
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Taipei, Taiwan, ROC; Reference Laboratory of Mycobacteriology, Taiwan Centers for Disease Control, Taipei, Taiwan, ROC
| | - Ruwen Jou
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Taipei, Taiwan, ROC; Reference Laboratory of Mycobacteriology, Taiwan Centers for Disease Control, Taipei, Taiwan, ROC.
| |
Collapse
|
13
|
Youssef O, Loukola A, Zidi-Mouaffak YHS, Tamlander M, Ruotsalainen S, Kilpeläinen E, Mars N, Ripatti S, Palotie A, Donner K, Carpén O. High-Resolution Genotyping of Formalin-Fixed Tissue Accurately Estimates Polygenic Risk Scores in Human Diseases. J Transl Med 2024; 104:100325. [PMID: 38220043 DOI: 10.1016/j.labinv.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.
Collapse
Affiliation(s)
- Omar Youssef
- Department of Pathology, University of Helsinki, Helsinki, Finland; Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Anu Loukola
- Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Yossra H S Zidi-Mouaffak
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| | - Max Tamlander
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sanni Ruotsalainen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elina Kilpeläinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nina Mars
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Analytic and Translational Genetics Unit, Department of Medicine, and the Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kati Donner
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olli Carpén
- Department of Pathology, University of Helsinki, Helsinki, Finland; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Biobank, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
14
|
Grbavac L, Šikić A, Kostešić P, Šoštarić-Zuckermann IC, Mojčec Perko V, Boras J, Bata I, Musulin A, Kostanjšak T, Živičnjak T. Comprehensive Diagnosis, Treatment, and Outcome of Taenia crassiceps Cysticercosis in a Ring-Tailed Lemur ( Lemur catta) from a Croatian Zoo: No Longer Unusual? Pathogens 2024; 13:283. [PMID: 38668238 PMCID: PMC11055053 DOI: 10.3390/pathogens13040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
Taenia crassiceps is a zoonotic tapeworm of the genus Taenia that is distributed throughout the Northern Hemisphere. Wild and domestic carnivores are final hosts, while rodents and rabbits are primarily intermediate hosts, although many other mammals may harbour the larval stage, Cysticercus longicollis. This case report aims to describe C. longicollis infection in a lemur and molecularly characterise the isolated parasite. The excised lesion was subjected to morphological and histopathological examination, which revealed cysticerci of the tapeworm. Formalin-fixed and paraffin-embedded block (FFPEB), as well as the cysticerci fixed with formalin stored for one year, were subjected to molecular analysis, which aimed at detecting the partial mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of Taenia sp. Based on the morphological characteristics, the parasite was identified as a metacestode of T. crassiceps. The presence of the cox1 gene was detected using polymerase chain reaction (PCR) in all samples. A randomly selected PCR product was sequenced and compared with other sequences from the GenBank database, confirming that the detected parasite was T. crassiceps. This article reports the first case of T. crassiceps cysticercosis in a lemur (Lemur catta) in Croatia and emphasises the potential risk of transmission from wild carnivores.
Collapse
Affiliation(s)
- Lea Grbavac
- Parasitology and Invasive Diseases Unit, Faculty of Veterinary Medicine, Heinzelova 55, 10 000 Zagreb, Croatia; (A.Š.); (T.Ž.)
| | - Ana Šikić
- Parasitology and Invasive Diseases Unit, Faculty of Veterinary Medicine, Heinzelova 55, 10 000 Zagreb, Croatia; (A.Š.); (T.Ž.)
| | - Petar Kostešić
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, Heinzelova 55, 10 000 Zagreb, Croatia; (P.K.); (A.M.)
| | | | - Vesna Mojčec Perko
- Microbiology and Infectious Diseases Unit, Faculty of Veterinary Medicine, Heinzelova 55, 10 000 Zagreb, Croatia;
| | - Jadranko Boras
- Zagreb Zoo, Fakultetsko dobro Street 1, 10 000 Zagreb, Croatia; (J.B.); (I.B.)
| | - Ingeborg Bata
- Zagreb Zoo, Fakultetsko dobro Street 1, 10 000 Zagreb, Croatia; (J.B.); (I.B.)
| | - Andrija Musulin
- Clinic for Surgery, Orthopaedics and Ophthalmology, Faculty of Veterinary Medicine, Heinzelova 55, 10 000 Zagreb, Croatia; (P.K.); (A.M.)
| | - Tara Kostanjšak
- Fitzpatrick Referrals, Halfway Lane, Eashing, Godalming GU7 2QQ, UK;
| | - Tatjana Živičnjak
- Parasitology and Invasive Diseases Unit, Faculty of Veterinary Medicine, Heinzelova 55, 10 000 Zagreb, Croatia; (A.Š.); (T.Ž.)
| |
Collapse
|
15
|
Kourta D, Camboni A, Saussoy P, Kanbar M, Poels J, Wyns C. Evaluating testicular tissue for future autotransplantation: focus on cancer cell contamination and presence of spermatogonia in tissue cryobanked for boys diagnosed with a hematological malignancy. Hum Reprod 2024; 39:486-495. [PMID: 38227814 DOI: 10.1093/humrep/dead271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/21/2023] [Indexed: 01/18/2024] Open
Abstract
STUDY QUESTION What is the contamination rate by cancer cells and spermatogonia numbers in immature testicular tissue (ITT) harvested before the start of gonadotoxic therapy in boys with a hematological malignancy? SUMMARY ANSWER Among our cohort of boys diagnosed with acute lymphoblastic leukemia (ALL) and lymphomas, 39% (n = 11/28) had cancer cells identified in their tissues at the time of diagnosis and all patients appeared to have reduced spermatogonia numbers compared to healthy reference cohorts. WHAT IS KNOWN ALREADY Young boys affected by a hematological cancer are at risk of contamination of their testes by cancer cells but histological examination is unable to detect the presence of only a few cancer cells, which would preclude autotransplantation of cryobanked ITT for fertility restoration, and more sensitive detection techniques are thus required. Reduced numbers of spermatogonia in ITT in hematological cancer patients have been suggested based on results in a limited number of patients. STUDY DESIGN, SIZE, DURATION This retrospective cohort study included 54 pre- and peri-pubertal boys who were diagnosed with a hematological malignancy and who underwent a testicular biopsy for fertility preservation at the time of diagnosis before any gonadotoxic therapy between 2005 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS Among the 54 patients eligible in our database, formalin-fixed paraffin-embedded (FFPE) testicular tissue was available for 28 boys diagnosed either with ALL (n = 14) or lymphoma (n = 14) and was used to evaluate malignant cell contamination. Hematoxylin and eosin (H&E) staining was performed for each patient to search for cancer cells in the tissue. Markers specific to each patient's disease were identified at the time of diagnosis on the biopsy of the primary tumor or bone marrow aspiration and an immunohistochemistry (IHC) was performed on the FFPE ITT for each patient to evidence his disease markers. PCR analyses on the FFPE tissue were also conducted when a specific gene rearrangement was available. MAIN RESULTS AND THE ROLE OF CHANCE The mean age at diagnosis and ITT biopsy of the 28 boys was 7.5 years (age range: 19 months-16 years old). Examination of ITT of the 28 boys on H&E stained sections did not detect malignant cells. Using IHC, we found contamination by cancerous cells using markers specific to the patient's disease in 10 of 28 boys, with a higher rate in patients diagnosed with ALL (57%, n = 8/14) compared with lymphoma (14%, n = 2/14) (P-value < 0.05). PCR showed contamination in three of 15 patients who had specific rearrangements identified on their bone marrow at the time of diagnosis; one of these patients had negative results from the IHC. Compared to age-related reference values of the number of spermatogonia per ST (seminiferous tubule) (Spg/ST) throughout prepuberty of healthy patients from a simulated control cohort, mean spermatogonial numbers appeared to be decreased in all age groups (0-4 years: 1.49 ± 0.54, 4-7 years: 1.08 ± 0.43, 7-11 years: 1.56 ± 0.65, 11-14 years: 3.37, 14-16 years: 5.44 ± 3.14). However, using a cohort independent method based on the Z-score, a decrease in spermatogonia numbers was not confirmed. LIMITATIONS, REASONS FOR CAUTION The results obtained from the biopsy fragments that were evaluated for contamination by cancer cells may not be representative of the entire cryostored ITT and tumor foci may still be present outside of the biopsy range. WIDER IMPLICATIONS OF THE FINDINGS ITT from boys diagnosed with a hematological malignancy could bear the risk for cancer cell reseeding in case of autotransplantation of the tissue. Such a high level of cancer cell contamination opens the debate of harvesting the tissue after one or two rounds of chemotherapy. However, as the safety of germ cells can be compromised by gonadotoxic treatments, this strategy warrants for the development of adapted fertility restoration protocols. Finally, the impact of the hematological cancer on spermatogonia numbers should be further explored. STUDY FUNDING/COMPETING INTEREST(S) The project was funded by a grant from the FNRS-Télévie (grant n°. 7.4533.20) and Fondation Contre le Cancer/Foundation Against Cancer (2020-121) for the research project on fertility restoration with testicular tissue from hemato-oncological boys. The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Dhoha Kourta
- Laboratoire d'andrologie, Pôle de recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Alessandra Camboni
- Pathology Department, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Pascale Saussoy
- Department of Clinical Biology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Marc Kanbar
- Laboratoire d'andrologie, Pôle de recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jonathan Poels
- Laboratoire d'andrologie, Pôle de recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Christine Wyns
- Laboratoire d'andrologie, Pôle de recherche en Physiologie de la Reproduction, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
16
|
Woodis KM, Garlisi Torales LD, Wolf A, Britt A, Sheppard SE. Updates in Genetic Testing for Head and Neck Vascular Anomalies. Oral Maxillofac Surg Clin North Am 2024; 36:1-17. [PMID: 37867039 PMCID: PMC11092895 DOI: 10.1016/j.coms.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Vascular anomalies include benign or malignant tumors or benign malformations of the arteries, veins, capillaries, or lymphatic vasculature. The genetic etiology of the lesion is essential to define the lesion and can help navigate choice of therapy. . In the United States, about 1.2% of the population has a vascular anomaly, which may be underestimating the true prevalence as genetic testing for these conditions continues to evolve.
Collapse
Affiliation(s)
- Kristina M Woodis
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Luciana Daniela Garlisi Torales
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA
| | - Alejandro Wolf
- Department of Pathology and ARUP Laboratories, University of Utah, 2000 Circle of Hope, Room 3100, Salt Lake City, UT 84112, USA
| | - Allison Britt
- Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Unit on Vascular Malformations, Division of Intramural Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, 10 Center Drive, MSC 1103, Bethesda, MD 20892-1103, USA.
| |
Collapse
|
17
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. A High-Throughput PIXUL-Matrix-Based Toolbox to Profile Frozen and Formalin-Fixed Paraffin-Embedded Tissues Multiomes. J Transl Med 2024; 104:100282. [PMID: 37924947 PMCID: PMC10872585 DOI: 10.1016/j.labinv.2023.100282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Large-scale high-dimensional multiomics studies are essential to unravel molecular complexity in health and disease. We developed an integrated system for tissue sampling (CryoGrid), analytes preparation (PIXUL), and downstream multiomic analysis in a 96-well plate format (Matrix), MultiomicsTracks96, which we used to interrogate matched frozen and formalin-fixed paraffin-embedded (FFPE) mouse organs. Using this system, we generated 8-dimensional omics data sets encompassing 4 molecular layers of intracellular organization: epigenome (H3K27Ac, H3K4m3, RNA polymerase II, and 5mC levels), transcriptome (messenger RNA levels), epitranscriptome (m6A levels), and proteome (protein levels) in brain, heart, kidney, and liver. There was a high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles confirmed known organ-specific superenhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic profiles, known to be poorly correlated with transcriptomic data, can be more accurately predicted by the full suite of multiomics data, compared with using epigenomic, transcriptomic, or epitranscriptomic measurements individually.
Collapse
Affiliation(s)
- Daniel Mar
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Ilona M Babenko
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Ran Zhang
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Oleg Denisenko
- UW Medicine South Lake Union, University of Washington, Seattle, Washington
| | - Tomas Vaisar
- Diabetes Institute, University of Washington, Seattle, Washington
| | - Karol Bomsztyk
- UW Medicine South Lake Union, University of Washington, Seattle, Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington; Matchstick Technologies, Inc, Kirkland, Washington.
| |
Collapse
|
18
|
Grassi S, Pinchi V, Campuzano O, Oliva A, Brugada R. Editorial: Genetics of sudden unexplained death in children and young adults: state of the art, testing and implications for translational research, public health and forensic pathology. Front Med (Lausanne) 2023; 10:1309179. [PMID: 37964890 PMCID: PMC10641374 DOI: 10.3389/fmed.2023.1309179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Simone Grassi
- Department of Health Sciences, Section of Forensic Medical Sciences, University of Florence, Florence, Italy
| | - Vilma Pinchi
- Department of Health Sciences, Section of Forensic Medical Sciences, University of Florence, Florence, Italy
| | - Oscar Campuzano
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Oliva
- Department of Health Surveillance and Bioethics, Section of Legal Medicine, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IDIBGI, Girona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
19
|
Sasaki Y, Ishikawa K, Hatanaka KC, Oyamada Y, Sakuhara Y, Shimizu T, Saito T, Murao N, Onodera T, Miura T, Maeda T, Funayama E, Hatanaka Y, Yamamoto Y, Sasaki S. Targeted next-generation sequencing for detection of PIK3CA mutations in archival tissues from patients with Klippel-Trenaunay syndrome in an Asian population : List the full names and institutional addresses for all authors. Orphanet J Rare Dis 2023; 18:270. [PMID: 37667289 PMCID: PMC10478188 DOI: 10.1186/s13023-023-02893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Klippel-Trenaunay syndrome (KTS) is a rare slow-flow combined vascular malformation with limb hypertrophy. KTS is thought to lie on the PIK3CA-related overgrowth spectrum, but reports are limited. PIK3CA encodes p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K) that plays an essential role in the PI3K/AKT/mammalian target of rapamycin (mTOR) signaling pathway. We aimed to demonstrate the clinical utility of targeted next-generation sequencing (NGS) in identifying PIK3CA mosaicism in archival formalin-fixed paraffin-embedded (FFPE) tissues from patients with KTS. RESULTS Participants were 9 female and 5 male patients with KTS diagnosed as capillaro-venous malformation (CVM) or capillaro-lymphatico-venous malformation (CLVM). Median age at resection was 14 years (range, 5-57 years). Median archival period before DNA extraction from FFPE tissues was 5.4 years (range, 3-7 years). NGS-based sequencing of PIK3CA achieved an amplicon mean coverage of 119,000x. PIK3CA missense mutations were found in 12 of 14 patients (85.7%; 6/8 CVM and 6/6 CLVM), with 8 patients showing the hotspot variants E542K, E545K, H1047R, and H1047L. The non-hotspot PIK3CA variants C420R, Q546K, and Q546R were identified in 4 patients. Overall, the mean variant allele frequency for identified PIK3CA variants was 6.9% (range, 1.6-17.4%). All patients with geographic capillary malformation, histopathological lymphatic malformation or macrodactyly of the foot had PIK3CA variants. No genotype-phenotype association between hotspot and non-hotspot PIK3CA variants was found. Histologically, the vessels and adipose tissues of the lesions showed phosphorylation of the proteins in the PI3K/AKT/mTOR signaling pathway, including p-AKT, p-mTOR, and p-4EBP1. CONCLUSIONS The PI3K/AKT/mTOR pathway in mesenchymal tissues was activated in patients with KTS. Amplicon-based targeted NGS could identify low-level mosaicism from low-input DNA extracted from FFPE tissues, potentially providing a diagnostic option for personalized medicine with inhibitors of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| | - Kosuke Ishikawa
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan.
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan.
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Hokkaido, Japan
| | - Yumiko Oyamada
- Department of Diagnostic Pathology, Tonan Hospital, Hokkaido, Japan
| | - Yusuke Sakuhara
- Department of Diagnostic and Interventional Radiology, Tonan Hospital, Hokkaido, Japan
| | - Tadashi Shimizu
- Department of Diagnostic and Interventional Radiology, Tonan Hospital, Hokkaido, Japan
| | - Tatsuro Saito
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Hokkaido, Japan
- Riken Genesis Co., Ltd, Tokyo, Japan
| | - Naoki Murao
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Takahiro Miura
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Maeda
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Emi Funayama
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Hokkaido, Japan
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Hokkaido, Japan
| | - Yuhei Yamamoto
- Department of Plastic and Reconstructive Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoru Sasaki
- Center for Vascular Anomalies, Department of Plastic and Reconstructive Surgery, Tonan Hospital, Hokkaido, Japan
| |
Collapse
|
20
|
Powell CL, Saddoughi SA, Wigle DA. Progress in genome-inspired treatment decisions for multifocal lung adenocarcinoma. Expert Rev Respir Med 2023; 17:1009-1021. [PMID: 37982734 DOI: 10.1080/17476348.2023.2286277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Multifocal lung adenocarcinoma (MFLA) is becoming increasingly recognized as a distinct subset of lung cancer, with unique biology, disease course, and treatment outcomes. While definitions remain controversial, MFLA is characterized by the development and concurrent presence of multiple independent (non-metastatic) lesions on the lung adenocarcinoma spectrum. Disease progression typically follows an indolent course measured in years, with a lower propensity for nodal and distant metastases than other more common forms of non-small cell lung cancer. AREAS COVERED Traditional imaging and histopathological analyses of tumor biopsies are frequently unable to fully characterize the disease, prompting interest in molecular diagnosis. We highlight some of the key questions in the field, including accurate definitions to identify and stage MLFA, molecular tests to stratify patients and treatment decisions, and the lack of clinical trial data to delineate best management for this poorly understood subset of lung cancer patients. We review the existing literature and progress toward a genomic diagnosis for this unique disease entity. EXPERT OPINION Multifocal lung adenocarcinoma behaves differently than other forms of non-small cell lung cancer. Progress in molecular diagnosis may enhance potential for accurate definition, diagnosis, and optimizing treatment approach.
Collapse
Affiliation(s)
- Chelsea L Powell
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Sahar A Saddoughi
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dennis A Wigle
- Division of Thoracic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Bieler J, Kubik S, Macheret M, Pozzorini C, Willig A, Xu Z. Benefits of applying molecular barcoding systems are not uniform across different genomic applications. J Transl Med 2023; 21:305. [PMID: 37147717 PMCID: PMC10163729 DOI: 10.1186/s12967-023-04160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite the wide variety of Next Generation Sequencing (NGS)-based methods, it remains challenging to detect mutations present at very low frequencies. This problem is particularly relevant in oncology, where the limiting amount of input material, and its low quality, often limit the performance of the assays. Unique Molecular Identifiers (UMIs) are a molecular barcoding system often coupled with computational methods of noise suppression to improve the reliability of detection of rare variants. Although widely adopted, UMI inclusion imposes additional technical complexity and sequencing cost. Currently, there are no guidelines on UMI usage nor a comprehensive evaluation of their advantage across different applications. METHODS We used DNA sequencing data generated by molecular barcoding and hybridization-based enrichment, from various types and quantities of input material (fresh frozen, formaldehyde-treated and cell-free DNA), to evaluate the performance of variant calling in different clinically relevant contexts. RESULTS Noise suppression achieved by read grouping based on fragment mapping positions ensures reliable variant calling for many experimental designs even without exogenous UMIs. Exogenous barcodes significantly improve performance only when mapping position collisions occur, which is common in cell-free DNA. CONCLUSIONS We demonstrate that UMI usage is not universally beneficial across experimental designs and that it is worthwhile to critically consider the comparative advantage of UMI usage for a given NGS application prior to experimental design.
Collapse
Affiliation(s)
- Jonathan Bieler
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Slawomir Kubik
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Morgane Macheret
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Christian Pozzorini
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Adrian Willig
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Zhenyu Xu
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland.
| |
Collapse
|
22
|
Trecourt A, Rabodonirina M, Mauduit C, Traverse-Glehen A, Devouassoux-Shisheboran M, Meyronet D, Dijoud F, Ginevra C, Chapey-Picq E, Josse E, Martins-Simoes P, Bentaher A, Dupont D, Miossec C, Persat F, Wallon M, Ferry T, Pham F, Simon B, Menotti J. Fungal Integrated Histomolecular Diagnosis Using Targeted Next-Generation Sequencing on Formalin-Fixed Paraffin-Embedded Tissues. J Clin Microbiol 2023; 61:e0152022. [PMID: 36809009 PMCID: PMC10035294 DOI: 10.1128/jcm.01520-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Histopathology is the gold standard for fungal infection (FI) diagnosis, but it does not provide a genus and/or species identification. The objective of the present study was to develop targeted next-generation sequencing (NGS) on formalin-fixed tissue samples (FTs) to achieve a fungal integrated histomolecular diagnosis. Nucleic acid extraction was optimized on a first group of 30 FTs with Aspergillus fumigatus or Mucorales infection by macrodissecting the microscopically identified fungal-rich area and comparing Qiagen and Promega extraction methods through DNA amplification by A. fumigatus and Mucorales primers. Targeted NGS was developed on a second group of 74 FTs using three primer pairs (ITS-3/ITS-4, MITS-2A/MITS-2B, and 28S-12-F/28S-13-R) and two databases (UNITE and RefSeq). A prior fungal identification of this group was established on fresh tissues. Targeted NGS and Sanger sequencing results on FTs were compared. To be valid, the molecular identifications had to be compatible with the histopathological analysis. In the first group, the Qiagen method yielded a better extraction efficiency than the Promega method (100% and 86.7% of positive PCRs, respectively). In the second group, targeted NGS allowed fungal identification in 82.4% (61/74) of FTs using all primer pairs, in 73% (54/74) using ITS-3/ITS-4, in 68.9% (51/74) using MITS-2A/MITS-2B, and in 23% (17/74) using 28S-12-F/28S-13-R. The sensitivity varied according to the database used (81% [60/74] using UNITE compared to 50% [37/74] using RefSeq [P = 0.000002]). The sensitivity of targeted NGS (82.4%) was higher than that of Sanger sequencing (45.9%; P < 0.00001). To conclude, fungal integrated histomolecular diagnosis using targeted NGS is suitable on FTs and improves fungal detection and identification.
Collapse
Affiliation(s)
- Alexis Trecourt
- Service de Pathologie Multi-Site—Site Sud, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
- Faculté de Médecine Lyon-Sud Charles Mérieux, UR 3738–CICLY–Equipe Inflammation et Immunité de L’épithélium Respiratoire, Université Claude Bernard Lyon 1, Lyon, France
| | - Meja Rabodonirina
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Faculté de Médecine Lyon Sud Charles Mérieux, Université Claude Bernard Lyon 1, Lyon, France
| | - Claire Mauduit
- Service de Pathologie Multi-Site—Site Sud, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
- Faculté de Médecine Lyon Sud Charles Mérieux, Université Claude Bernard Lyon 1, Lyon, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), Unité 1065, Institut National de la Santé et de la Recherche Médicale, Nice, France
| | - Alexandra Traverse-Glehen
- Service de Pathologie Multi-Site—Site Sud, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
- Faculté de Médecine Lyon Sud Charles Mérieux, Université Claude Bernard Lyon 1, Lyon, France
- Faculté de Médecine Lyon Sud Charles Mérieux, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Mojgan Devouassoux-Shisheboran
- Service de Pathologie Multi-Site—Site Sud, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | - David Meyronet
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
- Service de Pathologie Multi-site—Site Est, Hospices Civils de Lyon, Centre Hospitalier Lyon Est, Lyon, France
| | - Frédérique Dijoud
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
- Service de Pathologie Multi-site—Site Est, Hospices Civils de Lyon, Centre Hospitalier Lyon Est, Lyon, France
| | - Christophe Ginevra
- Institut des Agents Infectieux, Génomique Épidémiologique des Maladies Infectieuses (GENEPII), Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Institut des Agents Infectieux, Centre National de Référence des Légionelles, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
| | - Emmanuelle Chapey-Picq
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Faculté de Médecine Lyon Sud Charles Mérieux, Université Claude Bernard Lyon 1, Lyon, France
| | - Emilie Josse
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
| | - Patricia Martins-Simoes
- Institut des Agents Infectieux, Génomique Épidémiologique des Maladies Infectieuses (GENEPII), Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Institut des Agents Infectieux, Centre National de Référence des Staphyloccoques, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
| | - Abderrazzak Bentaher
- Faculté de Médecine Lyon-Sud Charles Mérieux, UR 3738–CICLY–Equipe Inflammation et Immunité de L’épithélium Respiratoire, Université Claude Bernard Lyon 1, Lyon, France
- Faculté de Médecine Lyon Sud Charles Mérieux, Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Dupont
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Charline Miossec
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
| | - Florence Persat
- Faculté de Médecine Lyon-Sud Charles Mérieux, UR 3738–CICLY–Equipe Inflammation et Immunité de L’épithélium Respiratoire, Université Claude Bernard Lyon 1, Lyon, France
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Martine Wallon
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Faculté de Médecine Lyon Sud Charles Mérieux, Université Claude Bernard Lyon 1, Lyon, France
| | - Tristan Ferry
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
- Service de Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
| | - Félix Pham
- Service de Dermatologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Bruno Simon
- Institut des Agents Infectieux, Génomique Épidémiologique des Maladies Infectieuses (GENEPII), Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Institut des Agents Infectieux, Service de Virologie, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
| | - Jean Menotti
- Faculté de Médecine Lyon-Sud Charles Mérieux, UR 3738–CICLY–Equipe Inflammation et Immunité de L’épithélium Respiratoire, Université Claude Bernard Lyon 1, Lyon, France
- Institut des Agents Infectieux, Service de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
- Institut des Agents Infectieux, Génomique Épidémiologique des Maladies Infectieuses (GENEPII), Hospices Civils de Lyon, Hôpital Croix-Rousse, Lyon, France
| |
Collapse
|
23
|
Mar D, Babenko IM, Zhang R, Noble WS, Denisenko O, Vaisar T, Bomsztyk K. MultiomicsTracks96: A high throughput PIXUL-Matrix-based toolbox to profile frozen and FFPE tissues multiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.533031. [PMID: 36993219 PMCID: PMC10055122 DOI: 10.1101/2023.03.16.533031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The multiome is an integrated assembly of distinct classes of molecules and molecular properties, or "omes," measured in the same biospecimen. Freezing and formalin-fixed paraffin-embedding (FFPE) are two common ways to store tissues, and these practices have generated vast biospecimen repositories. However, these biospecimens have been underutilized for multi-omic analysis due to the low throughput of current analytical technologies that impede large-scale studies. Methods Tissue sampling, preparation, and downstream analysis were integrated into a 96-well format multi-omics workflow, MultiomicsTracks96. Frozen mouse organs were sampled using the CryoGrid system, and matched FFPE samples were processed using a microtome. The 96-well format sonicator, PIXUL, was adapted to extract DNA, RNA, chromatin, and protein from tissues. The 96-well format analytical platform, Matrix, was used for chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), methylated RNA immunoprecipitation (MeRIP), and RNA reverse transcription (RT) assays followed by qPCR and sequencing. LC-MS/MS was used for protein analysis. The Segway genome segmentation algorithm was used to identify functional genomic regions, and linear regressors based on the multi-omics data were trained to predict protein expression. Results MultiomicsTracks96 was used to generate 8-dimensional datasets including RNA-seq measurements of mRNA expression; MeRIP-seq measurements of m6A and m5C; ChIP-seq measurements of H3K27Ac, H3K4m3, and Pol II; MeDIP-seq measurements of 5mC; and LC-MS/MS measurements of proteins. We observed high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles (ChIP-seq: H3K27Ac, H3K4m3, Pol II; MeDIP-seq: 5mC) was able to recapitulate and predict organ-specific super-enhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic expression profiles can be more accurately predicted by the full suite of multi-omics data, compared to using epigenomic, transcriptomic, or epitranscriptomic measurements individually. Conclusions The MultiomicsTracks96 workflow is well suited for high dimensional multi-omics studies - for instance, multiorgan animal models of disease, drug toxicities, environmental exposure, and aging as well as large-scale clinical investigations involving the use of biospecimens from existing tissue repositories.
Collapse
|
24
|
Fink JL, Jaradi B, Stone N, Anderson L, Leo PJ, Marshall M, Ellis J, Waring PM, O'Byrne K. Minimizing Sample Failure Rates for Challenging Clinical Tumor Samples. J Mol Diagn 2023; 25:263-273. [PMID: 36773702 DOI: 10.1016/j.jmoldx.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Identification of somatic variants in cancer by high-throughput sequencing has become common clinical practice, largely because many of these variants may be predictive biomarkers for targeted therapies. However, there can be high sample quality control (QC) failure rates for some tests that prevent the return of results. Stem-loop inhibition mediated amplification (SLIMamp) is a patented technology that has been incorporated into commercially available cancer next-generation sequencing testing kits. The claimed advantage is that these kits can interrogate challenging formalin-fixed, paraffin-embedded tissue samples with low tumor purity, poor-quality DNA, and/or low-input DNA, resulting in a high sample QC pass rate. The study aimed to substantiate that claim using Pillar Biosciences oncoReveal Solid Tumor Panel. Forty-eight samples that had failed one or more preanalytical QC sample parameters for whole-exome sequencing from the Australian Translational Genomics Center's ISO15189-accredited diagnostic genomics laboratory were acquired. XING Genomic Services performed an exploratory data analysis to characterize the samples and then tested the samples in their ISO15189-accredited laboratory. Clinical reports could be generated for 37 (77%) samples, of which 29 (60%) contained clinically actionable or significant variants that would not otherwise have been identified. Eleven samples were deemed unreportable, and the sequencing data were likely dominated by artifacts. A novel postsequencing QC metric was developed that can discriminate between clinically reportable and unreportable samples.
Collapse
Affiliation(s)
- J Lynn Fink
- XING Genomic Services, Sinnamon Park, Queensland, Australia; Australian Translational Genomics Centre, Queensland University of Technology, Woolloongabba, Queensland, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia.
| | - Binny Jaradi
- XING Genomic Services, Sinnamon Park, Queensland, Australia
| | - Nathan Stone
- XING Genomic Services, Sinnamon Park, Queensland, Australia
| | - Lisa Anderson
- Australian Translational Genomics Centre, Queensland University of Technology, Woolloongabba, Queensland, Australia; Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paul J Leo
- Australian Translational Genomics Centre, Queensland University of Technology, Woolloongabba, Queensland, Australia; Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Mhairi Marshall
- Australian Translational Genomics Centre, Queensland University of Technology, Woolloongabba, Queensland, Australia; Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Jonathan Ellis
- Australian Translational Genomics Centre, Queensland University of Technology, Woolloongabba, Queensland, Australia; Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paul M Waring
- XING Genomic Services, Sinnamon Park, Queensland, Australia
| | - Kenneth O'Byrne
- Australian Translational Genomics Centre, Queensland University of Technology, Woolloongabba, Queensland, Australia; The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, Queensland, Australia; Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
25
|
Thorsen ASF, Riber LPS, Rasmussen LM, Overgaard M. A targeted multiplex mass spectrometry method for quantitation of abundant matrix and cellular proteins in formalin-fixed paraffin embedded arterial tissue. J Proteomics 2023; 272:104775. [PMID: 36414230 DOI: 10.1016/j.jprot.2022.104775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
Assessment of proteins in formalin-fixed paraffin-embedded (FFPE) tissue traditionally hinges on immunohistochemistry and immunoblotting. These methods are far from optimal for quantitative studies and not suitable for large-scale testing of multiple protein panels. In this study, we developed and optimised a novel targeted isotope dilution mass spectrometry (MS)-based method for FFPE samples, designed to quantitate 17 matrix and cytosolic proteins abundantly present in arterial tissue. Our new method was developed on FFPE human tissue samples of the internal thoracic artery obtained from coronary artery bypass graft (CABG) operations. The workflow has a limit of 60 samples per day. Assay precision improved by normalisation to both beta-actin and smooth muscle actin with inter-assay coefficients of variation (CV) ranging from 5.3% to 31.9%. To demonstrate clinical utility of the assay we analysed 40 FFPE artery specimens from two groups of patients with or without type 2 diabetes. We observed increased levels of collagen type IV α1 and α2 in patients with diabetes. The assay is scalable for larger cohorts and advantageous for pathophysiological studies in diabetes and the method is easily convertible to analysis of other proteins in FFPE artery samples. SIGNIFICANCE: This article presents a novel robust and precise targeted mass spectrometry assay for relative quantitation of a panel of abundant matrix and cellular arterial proteins in archived formalin-fixed paraffin-embedded arterial samples. We demonstrate its utility in pathophysiological studies of cardiovascular disease in diabetes.
Collapse
Affiliation(s)
- Anne-Sofie Faarvang Thorsen
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Steno Diabetes Center Odense (SDCO), Odense, Denmark
| | - Lars Peter Schødt Riber
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin Overgaard
- Department of Clinical Biochemistry and Center for Individualised Medicine in Arterial Diseases (CIMA), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
26
|
Kanda M, Terashima M, Kinoshita T, Yabusaki H, Tokunaga M, Kodera Y. A multi-institutional study to evaluate the feasibility of next-generation sequencing and genomic analysis using formalin-fixed, paraffin-embedded biopsies of gastric cancer. Gastric Cancer 2023; 26:108-115. [PMID: 36369312 DOI: 10.1007/s10120-022-01351-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded (FFPE) samples acquired and preserved adequately are expected to faithfully maintain tumor characteristics. Endoscopic biopsy tissues represent an attractive resource for identifying predictive biomarkers to evaluate pretreatment responses of patients with advanced gastric cancer (GC). However, whether genomic profiles obtained through next-generation sequencing (NGS) using biopsy samples match well with those gained from surgical FFPE samples remains a concern. METHODS We collected 50 FFPE samples (26 biopsies and 24 surgical samples) from patients with GC who participated in phase III clinical trial JCOG1509. The quality and quantity of FFPE samples were determined for deep sequencing using NGS. We queried a 435-gene panel CANCERPLEX-JP to generate comprehensive genomic profiling data including the tumor mutation burden (TMB). RESULTS The median DNA yields and NGS success rates of biopsy samples compared with surgical samples were 879 ng and 80.8% vs 8523 ng and 100%, respectively. Epstein-Barr virus and microsatellite instability-high were detected in 9.5% of biopsy samples. Comparing the genomic profiles of 18 paired samples for which NGS data were available, we detected identical somatic mutations in paired biopsy and surgical samples (kappa coefficient, 0.8692). TMB positively correlated between paired biopsy and surgical samples (correlation coefficient, 0.6911). CONCLUSIONS NGS is applicable to the analysis of FFPE samples of GC acquired by the endoscopic biopsy, and the data were highly concordant with those obtained from surgical specimens of the same patients.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | | | - Takahiro Kinoshita
- Department of Gastric Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroshi Yabusaki
- Department of Gastroenterological Surgery, Niigata Cancer Center Hospital, Niigata, Japan
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
27
|
Adolfsson E, Kling D, Gunnarsson C, Jonasson J, Gréen H, Gréen A. Whole exome sequencing of FFPE samples—expanding the horizon of forensic molecular autopsies. Int J Legal Med 2022:10.1007/s00414-022-02906-x. [PMID: 36346469 PMCID: PMC10247852 DOI: 10.1007/s00414-022-02906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Forensic molecular autopsies have emerged as a tool for medical examiners to establish the cause of death. It is particularly useful in sudden unexplained deaths where the cause of death cannot be determined with a regular medical autopsy. We provide the first study of exome data from formalin-fixed paraffin-embedded samples (FFPE) paired with data from high-quality blood samples in forensic applications. The approach allows exploration of the potential to use FFPE samples for molecular autopsies and identify variants in extensive exome data. We leverage the high uniformity of the hybridization capture approach provided by Twist Bioscience to target the complete exome and sequence the libraries on a NextSeq 550. Our findings suggest that exome sequencing is feasible for 24 out of a total of 35 included FFPE samples. When successful, the coverage across the exome is comparatively high (> 90% covered to 20X) and uniform (fold80 below 1.5). Detailed variant comparisons for matched FFPE and blood samples show high concordance with few false variants (positive predictive value of 0.98 and a sensitivity of 0.97) with no distinct FFPE artefacts. Ultimately, we apply carefully constructed forensic gene panels in a stepwise manner to find genetic variants associated with the clinical phenotype and with relevance to the sudden unexplained death.
Collapse
|
28
|
Bapat PR, Epari S, Joshi PV, Dhanavade DS, Rumde RH, Gurav MY, Shetty OA, Desai SB. Comparative Assessment of DNA Extraction Techniques From Formalin-Fixed, Paraffin-Embedded Tumor Specimens and Their Impact on Downstream Analysis. Am J Clin Pathol 2022; 158:739-749. [PMID: 36197908 DOI: 10.1093/ajcp/aqac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Good-quality nucleic acid extraction from formalin-fixed, paraffin-embedded (FFPE) specimens remains a challenge in molecular-oncopathology practice. This study evaluates the efficacy of an in-house developed FFPE extraction buffer compared with other commercially available kits. METHODS Eighty FFPE specimens processed in different surgical pathology laboratories formed the study sample. DNA extraction was performed using three commercial kits and the in-house developed FFPE extraction buffer. DNA yield was quantified by a NanoDrop spectrophotometer and Qubit Fluorometer, and its purity was measured by the 260/280-nm ratio. A fragment analyzer system was used for accurate sizing of DNA fragments of FFPE DNA. The downstream effects of all extraction methods were evaluated by polymerase chain reaction (PCR) and Sanger sequencing. RESULTS In comparison with the commercial kits, the in-house buffer yielded higher DNA quantity and quality number (P < .0001). In addition, DNA integrity and fragment size were preserved in a significantly greater number of samples isolated with the in-house buffer (P < .05). The target PCR amplification rate with the in-house buffer extracted samples was also significantly higher, with 98% of the samples showing interpretable sequencing results. CONCLUSIONS The in-house developed FFPE extraction buffer performed superior to other methods in terms of suitability for downstream applications, time, cost-efficiency, and ease of performance.
Collapse
Affiliation(s)
- Prachi R Bapat
- Molecular Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- Molecular Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Pradnya V Joshi
- Molecular Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Dipika S Dhanavade
- Molecular Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Rachna H Rumde
- Molecular Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Mamta Y Gurav
- Molecular Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Omshree A Shetty
- Molecular Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Sangeeta B Desai
- Molecular Pathology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
29
|
Nienhold R, Mensah N, Frank A, Graber A, Koike J, Schwab N, Hernach C, Zsikla V, Willi N, Cathomas G, Hamelin B, Graf S, Junt T, Mertz KD. Unbiased screen for pathogens in human paraffin-embedded tissue samples by whole genome sequencing and metagenomics. Front Cell Infect Microbiol 2022; 12:968135. [PMID: 36204644 PMCID: PMC9530700 DOI: 10.3389/fcimb.2022.968135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Identification of bacterial pathogens in formalin fixed, paraffin embedded (FFPE) tissue samples is limited to targeted and resource-intensive methods such as sequential PCR analyses. To enable unbiased screening for pathogens in FFPE tissue samples, we established a whole genome sequencing (WGS) method that combines shotgun sequencing and metagenomics for taxonomic identification of bacterial pathogens after subtraction of human genomic reads. To validate the assay, we analyzed more than 100 samples of known composition as well as FFPE lung autopsy tissues with and without histological signs of infections. Metagenomics analysis confirmed the pathogenic species that were previously identified by species-specific PCR in 62% of samples, showing that metagenomics is less sensitive than species-specific PCR. On the other hand, metagenomics analysis identified pathogens in samples, which had been tested negative for multiple common microorganisms and showed histological signs of infection. This highlights the ability of this assay to screen for unknown pathogens and detect multi-microbial infections which is not possible by histomorphology and species-specific PCR alone.
Collapse
Affiliation(s)
- Ronny Nienhold
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Nadine Mensah
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Angela Frank
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Anne Graber
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Jacqueline Koike
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Nathalie Schwab
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Claudia Hernach
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Veronika Zsikla
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Niels Willi
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Gieri Cathomas
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Baptiste Hamelin
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Susanne Graf
- Central Laboratory, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Tobias Junt
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Kirsten D Mertz
- Institute of Pathology, Cantonal Hospital Baselland, Liestal, Switzerland
| |
Collapse
|
30
|
Learn to Estimate Genetic Mutation and Microsatellite Instability with Histopathology H&E Slides in Colon Carcinoma. Cancers (Basel) 2022; 14:cancers14174144. [PMID: 36077681 PMCID: PMC9454509 DOI: 10.3390/cancers14174144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer is one of the most common malignancies and the third leading cause of cancer-related mortality worldwide. Identifying KRAS, NRAS, and BRAF mutations and estimating MSI status is closely related to the individualized therapeutic judgment and oncologic prognosis of CRC patients. In this study, we introduce a cascaded network framework with an average voting ensemble strategy to sequentially identify the tumor regions and predict gene mutations & MSI status from whole-slide H&E images. Experiments on a colorectal cancer dataset indicate that the proposed method can achieve higher fidelity in both gene mutation prediction and MSI status estimation. In the testing set, our method achieves 0.792, 0.886, 0.897, and 0.764 AUCs for KRAS, NRAS, BRAF, and MSI, respectively. The results suggest that the deep convolutional networks have the potential to provide diagnostic insight and clinical guidance directly from pathological H&E slides.
Collapse
|
31
|
Walsh EM, Halushka MK. A Comparison of Tissue Dissection Techniques for Diagnostic, Prognostic, and Theragnostic Analysis of Human Disease. Pathobiology 2022; 90:199-208. [PMID: 35952628 PMCID: PMC9918608 DOI: 10.1159/000525979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022] Open
Abstract
Histopathology has historically been the critical technique for the diagnosis and treatment of human disease. Today, genomics, transcriptomics, and proteomics from specific cells, rather than bulk tissue, have become key to understanding underlying disease mechanisms and rendering useful diagnostic information. Extraction of desired analytes, i.e., nucleic acids or proteins, from easily accessible formalin-fixed paraffin-embedded tissues allows for clinically relevant activities, such as sequencing biomarker mutations or typing amyloidogenic proteins. Genetic profiling has become routine for cancers as varied as non-small cell lung cancer and prostatic carcinoma. The five main tissue dissection techniques that have been developed thus far include: bulk scraping, manual macrodissection, manual microdissection, laser-capture microdissection, and expression microdissection. In this review, we discuss the importance of tissue dissection in clinical practice and research, the basic methods, applications, as well as some advantages and disadvantages for each modality.
Collapse
Affiliation(s)
- Elise M. Walsh
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Talukdar FR, Abramović I, Cuenin C, Carreira C, Gangane N, Sincic N, Herceg Z. A protocol for good quality genomic DNA isolation from formalin-fixed paraffin-embedded tissues without using commercial kits. Mol Biol Rep 2022; 49:4115-4121. [PMID: 35359238 DOI: 10.1007/s11033-022-07394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND DNA isolation from formalin-fixed paraffin-embedded (FFPE) tissues for molecular analysis has become a frequent procedure in cancer research. However, the yield or quality of the isolated DNA is often compromised, and commercial kits are used to overcome this to some extent. METHODS We developed a new protocol (IARCp) to improve the quality and yield of DNA from FFPE tissues without using any commercial kit. To evaluate the IARCp's performance, we compared the quality and yield of DNA with two commercial kits, namely NucleoSpin® DNA FFPE XS (MN) and QIAamp DNA Micro (QG) isolation kit. RESULTS Total DNA yield for QG ranged from 120.0 to 282.0 ng (mean 216.5 ng), for MN: 213.6-394.2 ng (mean 319.1 ng), and with IARCp the yield was much higher ranging from 775.5 to 1896.9 ng (mean 1517.8 ng). Moreover, IARCp has also performed well in qualitative assessments by spectrophotometer, fluorometer, and real-time PCR assay. CONCLUSION Overall, IARCp represents a novel approach to DNA isolation from FFPE which results in good quality and significant amounts of DNA suitable for many downstream genome-wide and targeted molecular analyses. This protocol does not require the use of any commercial kits or phenol for isolating DNA from FFPE tissues, making it suitable to implement in low-resource settings such as low and middle-income countries.
Collapse
Affiliation(s)
- Fazlur Rahman Talukdar
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008, Lyon Cedex 08, France.
| | - Irena Abramović
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cyrille Cuenin
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008, Lyon Cedex 08, France
| | - Christine Carreira
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008, Lyon Cedex 08, France
| | - Nitin Gangane
- Mahatma Gandhi Institute of Medical Sciences, Sevagram, India
| | - Nino Sincic
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zdenko Herceg
- International Agency for Research on Cancer (IARC), 150 Cours Albert-Thomas, 69008, Lyon Cedex 08, France
| |
Collapse
|
33
|
Mitiushkina NV, Yanus GA, Kuligina ES, Laidus TA, Romanko AA, Kholmatov MM, Ivantsov AO, Aleksakhina SN, Imyanitov EN. Preparation of Duplex Sequencing Libraries for Archival Paraffin-Embedded Tissue Samples Using Single-Strand-Specific Nuclease P1. Int J Mol Sci 2022; 23:4586. [PMID: 35562977 PMCID: PMC9105346 DOI: 10.3390/ijms23094586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
DNA from formalin-fixed paraffin-embedded (FFPE) tissues, which are frequently utilized in cancer research, is significantly affected by chemical degradation. It was suggested that approaches that are based on duplex sequencing can significantly improve the accuracy of mutation detection in FFPE-derived DNA. However, the original duplex sequencing method cannot be utilized for the analysis of formalin-fixed paraffin-embedded (FFPE) tissues, as FFPE DNA contains an excessive number of damaged bases, and these lesions are converted to false double-strand nucleotide substitutions during polymerase-driven DNA end repair process. To resolve this drawback, we replaced DNA polymerase by a single strand-specific nuclease P1. Nuclease P1 was shown to efficiently remove RNA from DNA preparations, to fragment the FFPE-derived DNA and to remove 5'/3'-overhangs. To assess the performance of duplex sequencing-based methods in FFPE-derived DNA, we constructed the Bottleneck Sequencing System (BotSeqS) libraries from five colorectal carcinomas (CRCs) using either DNA polymerase or nuclease P1. As expected, the number of identified mutations was approximately an order of magnitude higher in libraries prepared with DNA polymerase vs. nuclease P1 (626 ± 167/Mb vs. 75 ± 37/Mb, paired t-test p-value 0.003). Furthermore, the use of nuclease P1 but not polymerase-driven DNA end repair allowed a reliable discrimination between CRC tumors with and without hypermutator phenotypes. The utility of newly developed modification was validated in the collection of 17 CRCs and 5 adjacent normal tissues. Nuclease P1 can be recommended for the use in duplex sequencing library preparation from FFPE-derived DNA.
Collapse
Affiliation(s)
- Natalia V. Mitiushkina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Grigory A. Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Ekatherina Sh. Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Tatiana A. Laidus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Alexandr A. Romanko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Maksim M. Kholmatov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Alexandr O. Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
| | - Svetlana N. Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
| | - Evgeny N. Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St.-Petersburg, Russia; (N.V.M.); (G.A.Y.); (E.S.K.); (T.A.L.); (A.A.R.); (M.M.K.); (A.O.I.); (S.N.A.)
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St.-Petersburg, Russia
- Department of Oncology, I.I. Mechnikov North-Western Medical University, 191015 St.-Petersburg, Russia
| |
Collapse
|
34
|
Ottestad AL, Emdal EF, Grønberg BH, Halvorsen TO, Dai HY. Fragmentation assessment of FFPE DNA helps in evaluating NGS library complexity and interpretation of NGS results. Exp Mol Pathol 2022; 126:104771. [DOI: 10.1016/j.yexmp.2022.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 11/04/2022]
|
35
|
Papadakis G, Pantazis AK, Fikas N, Chatziioannidou S, Tsiakalou V, Michaelidou K, Pogka V, Megariti M, Vardaki M, Giarentis K, Heaney J, Nastouli E, Karamitros T, Mentis A, Zafiropoulos A, Sourvinos G, Agelaki S, Gizeli E. Portable real-time colorimetric LAMP-device for rapid quantitative detection of nucleic acids in crude samples. Sci Rep 2022; 12:3775. [PMID: 35260588 PMCID: PMC8904468 DOI: 10.1038/s41598-022-06632-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/27/2022] [Indexed: 02/08/2023] Open
Abstract
Loop-mediated isothermal amplification is known for its high sensitivity, specificity and tolerance to inhibiting-substances. In this work, we developed a device for performing real-time colorimetric LAMP combining the accuracy of lab-based quantitative analysis with the simplicity of point-of-care testing. The device innovation lies on the use of a plastic tube anchored vertically on a hot surface while the side walls are exposed to a mini camera able to take snapshots of the colour change in real time during LAMP amplification. Competitive features are the rapid analysis (< 30 min), quantification over 9 log-units, crude sample-compatibility (saliva, tissue, swabs), low detection limit (< 5 copies/reaction), smartphone-operation, fast prototyping (3D-printing) and ability to select the dye of interest (Phenol red, HNB). The device’s clinical utility is demonstrated in cancer mutations-analysis during the detection of 0.01% of BRAF-V600E-to-wild-type molecules from tissue samples and COVID-19 testing with 97% (Ct < 36.8) and 98% (Ct < 30) sensitivity when using extracted RNA and nasopharyngeal-swabs, respectively. The device high technology-readiness-level makes it a suitable platform for performing any colorimetric LAMP assay; moreover, its simple and inexpensive fabrication holds promise for fast deployment and application in global diagnostics.
Collapse
Affiliation(s)
- G Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece. .,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece.
| | - A K Pantazis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - N Fikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - S Chatziioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece.,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - V Tsiakalou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - K Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - V Pogka
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - M Megariti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - M Vardaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - K Giarentis
- Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - J Heaney
- Advanced Pathogens Diagnostics Unit, University College London Hospitals NHS Trust, London, WC1H 9AX, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - E Nastouli
- Advanced Pathogens Diagnostics Unit, University College London Hospitals NHS Trust, London, WC1H 9AX, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - T Karamitros
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - A Mentis
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - A Zafiropoulos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - G Sourvinos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - S Agelaki
- Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece.,Department of Medical Oncology, University General Hospital, 71110, Heraklion, Greece
| | - E Gizeli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece. .,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece.
| |
Collapse
|
36
|
Mielonen OI, Pratas D, Hedman K, Sajantila A, Perdomo MF. Detection of Low-Copy Human Virus DNA upon Prolonged Formalin Fixation. Viruses 2022; 14:v14010133. [PMID: 35062338 PMCID: PMC8779449 DOI: 10.3390/v14010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Formalin fixation, albeit an outstanding method for morphological and molecular preservation, induces DNA damage and cross-linking, which can hinder nucleic acid screening. This is of particular concern in the detection of low-abundance targets, such as persistent DNA viruses. In the present study, we evaluated the analytical sensitivity of viral detection in lung, liver, and kidney specimens from four deceased individuals. The samples were either frozen or incubated in formalin (±paraffin embedding) for up to 10 days. We tested two DNA extraction protocols for the control of efficient yields and viral detections. We used short-amplicon qPCRs (63–159 nucleotides) to detect 11 DNA viruses, as well as hybridization capture of these plus 27 additional ones, followed by deep sequencing. We observed marginally higher ratios of amplifiable DNA and scantly higher viral genoprevalences in the samples extracted with the FFPE dedicated protocol. Based on the findings in the frozen samples, most viruses were detected regardless of the extended fixation times. False-negative calls, particularly by qPCR, correlated with low levels of viral DNA (<250 copies/million cells) and longer PCR amplicons (>150 base pairs). Our data suggest that low-copy viral DNAs can be satisfactorily investigated from FFPE specimens, and encourages further examination of historical materials.
Collapse
Affiliation(s)
- Outi I. Mielonen
- Department of Virology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland; (O.I.M.); (K.H.)
- Department of Forensic Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Diogo Pratas
- Department of Virology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland; (O.I.M.); (K.H.)
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Klaus Hedman
- Department of Virology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland; (O.I.M.); (K.H.)
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, 00290 Helsinki, Finland;
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Maria F. Perdomo
- Department of Virology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland; (O.I.M.); (K.H.)
- Correspondence:
| |
Collapse
|
37
|
Oba U, Kohashi K, Sangatsuda Y, Oda Y, Sonoda KH, Ohga S, Yoshimoto K, Arai Y, Yachida S, Shibata T, Ito T, Miura F. An efficient procedure for the recovery of DNA from formalin-fixed paraffin-embedded tissue sections. Biol Methods Protoc 2022; 7:bpac014. [PMID: 35937639 PMCID: PMC9351614 DOI: 10.1093/biomethods/bpac014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
With the advent of new molecular diagnostic techniques, retrieving DNA from the formalin-fixed paraffin-embedded (FFPE) tissues has become an essential yet challenging step for efficient downstream processes. Owing to low quality and quantity of DNA retrieved from the FFPE sections, the process is often impractical and needs significant improvements. Here, we established an efficient method for the purification of DNA from FFPE specimens by optimizing incubation temperature, incubation time, and the concentration of a formalin scavenger tris(hydroxymethyl)aminomethane (Tris) for reverse-crosslinking. The optimized method, named "Highly concentrated Tris-mediated DNA extraction" (HiTE), yielded three times the DNA yield per tissue slice compared with a representative DNA extraction kit. Moreover, the use of HiTE-extracted DNA increased the yield of the sequencing library three times and accordingly yielded a log higher and more reproducible sequencing library compared with that obtained using the commonly used commercial kit. The sequencing library prepared from HiTE-extracted FFPE-DNA had longer inserts and produced reads that evenly covered the reference genome. Successful application of HiTE-extracted FFPE-DNA for whole-genome and targeted gene panel sequencing indicates its practical usability.
Collapse
Affiliation(s)
- Utako Oba
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| |
Collapse
|
38
|
Fu J, Li J, Chen J, Li Y, Liu J, Su X, Shi S. Ultra-specific nucleic acid testing by target-activated nucleases. Crit Rev Biotechnol 2021; 42:1061-1078. [PMID: 34706599 DOI: 10.1080/07388551.2021.1983757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Specific and sensitive detection of nucleic acids is essential to clinical diagnostics and biotechnological applications. Currently, amplification steps are necessary for most detection methods due to the low concentration of nucleic acid targets in real samples. Although amplification renders high sensitivity, poor specificity is prevalent because of the lack of highly accurate precise strategies, resulting in significant false positives and false negatives. Nucleases exhibit high catalytic activity for nucleic acid cleavage which is regulated in a programmable manner. This review focuses on the latest progress in nucleic acid testing methods based on the target-activated nucleases. It summarizes the property of enzymes such as CRISPR/Cas, Argonautes, and some gene-editing irrelevant nucleases, which have been leveraged to create highly specific and sensitive nucleic acid testing tools. We elaborate on recent advances in the field of nuclease-mediated DNA recognition techniques for nucleic acid detection, and discuss its future applications and challenges in molecular diagnostics.
Collapse
Affiliation(s)
- Jinyu Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junjie Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jing Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yabei Li
- Department of Neurosurgery, People's Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jiajia Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xin Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
39
|
Cazzato G, Caporusso C, Arezzo F, Cimmino A, Colagrande A, Loizzi V, Cormio G, Lettini T, Maiorano E, Scarcella VS, Tarantino P, Marrone M, Stellacci A, Parente P, Romita P, De Marco A, Venerito V, Foti C, Ingravallo G, Rossi R, Resta L. Formalin-Fixed and Paraffin-Embedded Samples for Next Generation Sequencing: Problems and Solutions. Genes (Basel) 2021; 12:1472. [PMID: 34680867 PMCID: PMC8535326 DOI: 10.3390/genes12101472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
Over the years, increasing information has been asked of the pathologist: we have moved from a purely morphological diagnosis to biomolecular and genetic studies, which have made it possible to implement the use of molecular targeted therapies, such as anti-epidermal growth factor receptor (EGFR) molecules in EGFR-mutated lung cancer, for example. Today, next generation sequencing (NGS) has changed the approach to neoplasms, to the extent that, in a short time, it has gained a place of absolute importance and diagnostic, prognostic and therapeutic utility. In this scenario, formaldehyde-fixed and paraffin-embedded (FFPE) biological tissue samples are a source of clinical and molecular information. However, problems can arise in the genetic material (DNA and RNA) for use in NGS due to fixation, and work is being devoted to possible strategies to reduce its effects. In this paper, we discuss the applications of FFPE tissue samples in the execution of NGS, we focus on the problems arising with the use of this type of material for nucleic acid extraction and, finally, we consider the most useful strategies to prevent and reduce single nucleotide polymorphisms (SNV) and other fixation artifacts.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Concetta Caporusso
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Francesca Arezzo
- Section of Ginecology and Obstetrics, Department of Biomedical Science and Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Antonietta Cimmino
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Anna Colagrande
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Vera Loizzi
- Section of Ginecology and Obstetrics, Department of Biomedical Science and Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Gennaro Cormio
- Section of Ginecology and Obstetrics, Department of Biomedical Science and Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (F.A.); (V.L.); (G.C.)
| | - Teresa Lettini
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Eugenio Maiorano
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Vincenza Sara Scarcella
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Paola Tarantino
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Maricla Marrone
- Section of Legal Medicine, Interdisciplinary Department of Medicine, Bari Policlinico Hospital, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.M.); (A.S.)
| | - Alessandra Stellacci
- Section of Legal Medicine, Interdisciplinary Department of Medicine, Bari Policlinico Hospital, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.M.); (A.S.)
| | - Paola Parente
- UOC di Anatomia Patologica, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Paolo Romita
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (P.R.); (A.D.M.); (C.F.)
| | - Aurora De Marco
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (P.R.); (A.D.M.); (C.F.)
| | - Vincenzo Venerito
- Section of Reumathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy; (P.R.); (A.D.M.); (C.F.)
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Roberta Rossi
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| | - Leonardo Resta
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy; (C.C.); (A.C.); (A.C.); (T.L.); (E.M.); (V.S.S.); (P.T.); (R.R.); (L.R.)
| |
Collapse
|
40
|
Chien TJ. A review of the endocrine resistance in hormone-positive breast cancer. Am J Cancer Res 2021; 11:3813-3831. [PMID: 34522451 PMCID: PMC8414389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023] Open
Abstract
Hormone-positive breast cancer (BC) is a unique heterogeneous disease with a favorable prognosis compared to other types of breast cancer. As tumor biology influences the prognosis and clinical treatment, a deep understanding of how the molecular mechanisms regulate hormone sensitivity or resistance is critical in improving the efficacy and overcoming the endocrine resistance. This article comprehensively reviews the endocrine resistance in hormone-positive BC from a molecular and genetic perspective, encompassing the updated treatment and developing direction. This review includes the mechanisms of hormone resistance, which vary from epigenetic changes, crosstalk between signaling networks, cell cycle aberrance, and even change in the tumor microenvironment (TME) or stem cell. These mechanisms may contribute to treatment resistance. Current targeted therapy for hormone-resistant tumors includes PI3K/AKT/mTOR and cdk4/6 inhibitors. Several relevant pathways, biomarkers, and predictor genes have also been identified. Immunotherapy so far has a relatively less crucial role in hormone-positive than in triple-negative BC. Furthermore, the methodology to identify the PDL1 is not standardized. In a molecule and gene study, next-generation sequencing with circulating tumor DNA (ctDNA) has recently appeared as a sensitive and minimally invasive tool worth investigating.
Collapse
Affiliation(s)
- Tsai-Ju Chien
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Zhong-Zhou, Taipei City HospitalTaipei, Taiwan
- Division of Hemato-Oncology, Department of Internal Medicine, Branch of Jen-Ai, Taipei City HospitalTaipei, Taiwan
- Institute of Traditional Medicine, National Yang-Ming Chiao Tung UniversityTaipei, Taiwan
| |
Collapse
|
41
|
Dimartino P, Mariani V, Marconi C, Minardi R, Bramerio M, Licchetta L, Menghi V, Morandi L, Magini P, Mongelli P, Cardinale F, Seri M, Tinuper P, Tassi L, Pippucci T, Bisulli F. Accurate Detection of Hot-Spot MTOR Somatic Mutations in Archival Surgical Specimens of Focal Cortical Dysplasia by Molecular Inversion Probes. Mol Diagn Ther 2021; 24:571-577. [PMID: 32772316 DOI: 10.1007/s40291-020-00488-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded brain specimens are a potentially rich resource to identify somatic variants, but their DNA is characterised by low yield and extensive degradation, and matched peripheral samples are usually unavailable for analysis. METHODS We designed single-molecule molecular inversion probes to target 18 MTOR somatic mutational hot-spots in unmatched, histologically proven focal cortical dysplasias from formalin-fixed, paraffin-embedded tissues of 50 patients. RESULTS We achieved adequate DNA and sequencing quality in 28 focal cortical dysplasias, mostly extracted within 2 years from fixation, showing a statistically significant effect of time from fixation as a major determinant for successful genetic analysis. We identified and validated seven encompassing hot-spot residues (found in 14% of all patients and in 25% of those sequenced and analysed). The allele fraction had a range of 2-5% and variants were absent in available neighbouring non-focal cortical dysplasia specimens. We computed an alternate allele threshold for calling true variants, based on an experiment-wise mismatch count distribution, well predicting call reliability. CONCLUSIONS Single-molecule molecular inversion probes are experimentally simple, cost effective and scalable, accurately detecting clinically relevant somatic variants in challenging brain formalin-fixed, paraffin-embedded tissues.
Collapse
Affiliation(s)
- Paola Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Valeria Mariani
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Caterina Marconi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | | | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Veronica Menghi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Luca Morandi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy.,Functional MR Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pamela Magini
- Unità Operativa di Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138, Bologna, Italy
| | - Patrizia Mongelli
- Unità Operativa di Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138, Bologna, Italy
| | | | - Marco Seri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.,Unità Operativa di Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Center, Niguarda Hospital, Milan, Italy
| | - Tommaso Pippucci
- Unità Operativa di Genetica Medica, Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138, Bologna, Italy.
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
42
|
Vezzulli L, Martinez-Urtaza J, Stern R. Continuous Plankton Recorder in the omics era: from marine microbiome to global ocean observations. Curr Opin Biotechnol 2021; 73:61-66. [PMID: 34314925 DOI: 10.1016/j.copbio.2021.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
First routinely deployed in 1931 the Continuous Plankton Recorder (CPR) technology has established the most extensive, marine biological sampling programme in the world. With more than 90 years of sampling, over a total of 8 million nautical miles covered and 500 000 curated samples, the CPR survey provides a gold mine of information available to marine researchers. Such information is likely to exponentially increase thanks to new cutting-edge molecular technologies that are beginning to be applied on CPR samples. In this review we aim to address the exciting developments that the genomic revolution is having on CPR applications from the study of marine microbiome to ocean plankton communities leading to a new 'digital era' of the global ocean CPR observation programme.
Collapse
Affiliation(s)
- Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy.
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Facultat de Biociéncies, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Rowena Stern
- The Marine Biological Association the Laboratory, Citadel Hill Plymouth, PL1 2PB Devon, UK
| |
Collapse
|
43
|
Adolfsson E, Qvick A, Gréen H, Kling D, Gunnarsson C, Jonasson J, Gréen A. Technical in-depth comparison of two massive parallel DNA-sequencing methods for formalin-fixed paraffin-embedded tissue from victims of sudden cardiac death. Forensic Sci Int Genet 2021; 53:102522. [PMID: 33945952 DOI: 10.1016/j.fsigen.2021.102522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Sudden cardiac death (SCD) is a tragic and traumatic event. SCD is often associated with hereditary genetic disease and in such cases, sequencing of stored formalin fixed paraffin embedded (FFPE) tissue is often crucial in trying to find a causal genetic variant. This study was designed to compare two massive parallel sequencing assays for differences in sensitivity and precision regarding variants related to SCD in FFPE material. From eight cases of SCD where DNA from blood had been sequenced using HaloPlex, corresponding FFPE samples were collected six years later. DNA from FFPE samples were amplified using HaloPlex HS, sequenced on MiSeq, representing the first method, as well as amplified using modified Twist and sequenced on NextSeq, representing the second method. Molecular barcodes were included to distinguish artefacts from true variants. In both approaches, read coverage, uniformity and variant detection were compared using genomic DNA isolated from blood and corresponding FFPE tissue, respectively. In terms of coverage uniformity, Twist performed better than HaloPlex HS for FFPE samples. Despite higher overall coverage, amplicon-based HaloPlex technologies, both for blood and FFPE tissue, suffered from design and/or performance issues resulting in genes lacking complete coverage. Although Twist had considerably lower overall mean coverage, high uniformity resulted in equal or higher fraction of genes covered at ≥ 20X. By comparing variants found in the matched samples in a pre-defined cardiodiagnostic gene panel, HaloPlex HS for FFPE material resulted in high sensitivity, 98.0% (range 96.6-100%), and high precision, 99.9% (range 99.5-100%) for moderately fragmented samples, but suffered from reduced sensitivity (range 74.2-91.1%) in more severely fragmented samples due to lack of coverage. Twist had high sensitivity, 97.8% (range 96.8-98.7%) and high precision, 99.9% (range 99.3-100%) in all analyzed samples, including the severely fragmented samples.
Collapse
Affiliation(s)
- Emma Adolfsson
- Department of Laboratory Medicine, Örebro University Hospital, Sweden; Faculty of Medicine and Health, Örebro University, Örebro Sweden.
| | - Alvida Qvick
- Department of Laboratory Medicine, Örebro University Hospital, Sweden; Faculty of Medicine and Health, Örebro University, Örebro Sweden
| | - Henrik Gréen
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Daniel Kling
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | - Jon Jonasson
- Department of Laboratory Medicine, Örebro University Hospital, Sweden; Department of Clinical Genetics and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Gréen
- Department of Laboratory Medicine, Örebro University Hospital, Sweden; Faculty of Medicine and Health, Örebro University, Örebro Sweden
| |
Collapse
|
44
|
Overcoming the Challenges of High Quality RNA Extraction from Core Needle Biopsy. Biomolecules 2021; 11:biom11050621. [PMID: 33922016 PMCID: PMC8143498 DOI: 10.3390/biom11050621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
The use of gene expression profiling (GEP) in cancer management is rising, as GEP can be used for disease classification and diagnosis, tailoring treatment to underlying genetic determinants of pharmacological response, monitoring of therapy response, and prognosis. However, the reliability of GEP heavily depends on the input of RNA in sufficient quantity and quality. This highlights the need for standard procedures to ensure best practices for RNA extraction from often small tumor biopsies with variable tissue handling. We optimized an RNA extraction protocol from fresh-frozen (FF) core needle biopsies (CNB) from breast cancer patients and from formalin-fixed paraffin-embedded (FFPE) tissue when FF CNB did not yield sufficient RNA. Methods to avoid ribonucleases andto homogenize or to deparaffinize tissues and the impact of tissue composition on RNA extraction were studied. Additionally, RNA’s compatibility with the nanoString nCounter® technology was studied. This technology platform enables GEP using small RNA fragments. After optimization of the protocol, RNA of high quality and sufficient quantity was obtained from FF CNB in 92% of samples. For the remaining 8% of cases, FFPE material prepared by the pathology department was used for RNA extraction. Both resulting RNA end products are compatible with the nanoString nCounter® technology.
Collapse
|
45
|
Grzywa TM, Koppolu AA, Paskal W, Klicka K, Rydzanicz M, Wejman J, Płoski R, Włodarski PK. Higher Mutation Burden in High Proliferation Compartments of Heterogeneous Melanoma Tumors. Int J Mol Sci 2021; 22:3886. [PMID: 33918692 PMCID: PMC8069012 DOI: 10.3390/ijms22083886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma tumors are the most heterogeneous of all tumor types. Tumor heterogeneity results in difficulties in diagnosis and is a frequent cause of failure in treatment. Novel techniques enable accurate examination of the tumor cells, considering their heterogeneity. The study aimed to determine the somatic variations among high and low proliferating compartments of melanoma tumors. In this study, 12 archival formalin-fixed paraffin-embedded samples of previously untreated primary cutaneous melanoma were stained with Ki-67 antibody. High and low proliferating compartments from four melanoma tumors were dissected using laser-capture microdissection. DNA was isolated and analyzed quantitatively and qualitatively. Libraries for amplicon-based next-generation sequencing (NGS) were prepared using NEBNext Direct Cancer HotSpot Panel. NGS detected 206 variants in 42 genes in melanoma samples. Most of them were located within exons (135, 66%) and were predominantly non-synonymous single nucleotide variants (99, 73.3%). The analysis showed significant differences in mutational profiles between high and low proliferation compartments of melanoma tumors. Moreover, a significantly higher percentage of variants were detected only in high proliferation compartments (39%) compared to low proliferation regions (16%, p < 0.05). Our results suggest a significant functional role of genetic heterogeneity in melanoma.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland; (T.M.G.); (W.P.); (K.K.)
- Doctoral School, Medical University of Warsaw, 61 Zwirki and Wigury Str., 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Str., 02-097 Warsaw, Poland
| | - Agnieszka A. Koppolu
- Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Str., 02-106 Warsaw, Poland; (A.A.K.); (M.R.); (R.P.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Wiktor Paskal
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland; (T.M.G.); (W.P.); (K.K.)
| | - Klaudia Klicka
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland; (T.M.G.); (W.P.); (K.K.)
- Doctoral School, Medical University of Warsaw, 61 Zwirki and Wigury Str., 02-091 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Str., 02-106 Warsaw, Poland; (A.A.K.); (M.R.); (R.P.)
| | - Jarosław Wejman
- Department of Pathology, Medical Center of Postgraduate Education, 00-416 Warsaw, Poland;
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 3C Pawinskiego Str., 02-106 Warsaw, Poland; (A.A.K.); (M.R.); (R.P.)
| | - Paweł K. Włodarski
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland; (T.M.G.); (W.P.); (K.K.)
| |
Collapse
|
46
|
Inoue H, Tomida S, Horiguchi S, Kato H, Matsuoka H, Sanehira E, Matsuoka M, Yanai H, Hirasawa A, Toyooka S. Best practices for the extraction of genomic DNA from formalin-fixed paraffin-embedded tumor tissue for cancer genomic profiling tests. Pathol Int 2021; 71:360-364. [PMID: 33657250 DOI: 10.1111/pin.13086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Recently, two cancer genomic profiling tests have been approved in Japan and implemented in routine clinical practice: the FDA-approved FoundationOne CDx test, and the OncoGuide NCC Oncopanel test. The quality and quantity of DNA significantly affects the sequencing results; therefore, preparing a sufficient amount of high-quality DNA for clinical cancer genomic profiling tests is important. We examined the best practices for the extraction of cancer genomic DNA from formalin-fixed paraffin-embedded (FFPE) tumor tissues of pancreatic, lung and colon cancer specimens. We found that the quality of cancer genomic DNA extracted from 10-μm-thick FFPE samples improved significantly, compared with that from 4-μm-thick FFPE samples, suggesting that 10-μm-thick FFPE samples are preferable for clinical cancer genomic profiling tests. For convenience, we created a quick reference table for calculating the required number of FFPE slides.
Collapse
Affiliation(s)
- Hirofumi Inoue
- Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan.,Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Hiromi Matsuoka
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Etsuko Sanehira
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Masashi Matsuoka
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Akira Hirasawa
- Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
47
|
Camus V, Jardin F. Cell-Free DNA for the Management of Classical Hodgkin Lymphoma. Pharmaceuticals (Basel) 2021; 14:ph14030207. [PMID: 33801462 PMCID: PMC7998645 DOI: 10.3390/ph14030207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-free DNA (cfDNA) testing, is an emerging “liquid biopsy” tool for noninvasive lymphoma detection, and an increased amount of data are now available to use this technique with accuracy, especially in classical Hodgkin lymphoma (cHL). The advantages of cfDNA include simplicity of repeated blood sample acquisition over time; dynamic, noninvasive, and quantitative analysis; fast turnover time; reasonable cost; and established consistency with results from tumor genomic DNA. cfDNA analysis offers an easy method for genotyping the overall molecular landscape of pediatric and adult cHL and may help in cases of diagnostic difficulties between cHL and other lymphomas. cfDNA levels are correlated with clinical, prognostic, and metabolic features, and may serve as a therapeutic response evaluation tool and as a minimal residual disease (MRD) biomarker in complement to positron emission tomography (PET). Indeed, cfDNA real-time monitoring by fast high-throughput techniques enables the prompt detection of refractory disease or may help to address PET residual hypermetabolic situations during or at the end of treatment. The major recent works presented and described here demonstrated the clinically meaningful applicability of cfDNA testing in diagnostic and theranostic settings, but also in disease risk assessment, therapeutic molecular response, and monitoring of cHL treatments.
Collapse
Affiliation(s)
- Vincent Camus
- Correspondence: ; Tel.: +33(0)-2-32-08-29-47; Fax: +33-(0)-2-32-08-22-83
| | | |
Collapse
|
48
|
Ohmomo H, Komaki S, Ono K, Sutoh Y, Hachiya T, Arai E, Fujimoto H, Yoshida T, Kanai Y, Sasaki M, Shimizu A. Evaluation of clinical formalin-fixed paraffin-embedded tissue quality for targeted-bisulfite sequencing. Pathol Int 2020; 71:135-140. [PMID: 33333623 PMCID: PMC7898333 DOI: 10.1111/pin.13054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 11/29/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are promising biological resources for genetic research. Recent improvements in DNA extraction from FFPE samples allowed the use of these tissues for multiple sequencing methods. However, fundamental research addressing the application of FFPE-derived DNA for targeted-bisulfite sequencing (TB-seq) is lacking. Here, we evaluated the suitability of FFPE-derived DNA for TB-seq. We conducted TB-seq using FFPE-derived DNA and corresponding fresh frozen (FF) tissues of patients with kidney cancer and compared the quality of DNA, libraries, and TB-seq statistics between the two preservation methods. The approximately 600-bp average fragment size of the FFPE-derived DNA was significantly shorter than that of the FF-derived DNA. The sequencing libraries constructed using FFPE-derived DNA and the mapping ratio were approximately 10 times and 10% lower, respectively, than those constructed using FF-derived DNA. In the mapped data of FFPE-derived DNA, duplicated reads accounted for > 60% of the obtained sequence reads, with lower mean on-target coverage. Therefore, the standard TB-seq protocol is inadequate for obtaining high-quality data for epigenetic analysis from FFPE-derived DNA, and technical improvements are necessary for enabling the use of archived FFPE resources.
Collapse
Affiliation(s)
- Hideki Ohmomo
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Shohei Komaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Kanako Ono
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Yoichi Sutoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Tsuyoshi Hachiya
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Department of Clinical Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan.,Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| |
Collapse
|
49
|
Lee N, Park MJ, Song W, Jeon K, Jeong S. Currently Applied Molecular Assays for Identifying ESR1 Mutations in Patients with Advanced Breast Cancer. Int J Mol Sci 2020; 21:ijms21228807. [PMID: 33233830 PMCID: PMC7699999 DOI: 10.3390/ijms21228807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Approximately 70% of breast cancers, the leading cause of cancer-related mortality worldwide, are positive for the estrogen receptor (ER). Treatment of patients with luminal subtypes is mainly based on endocrine therapy. However, ER positivity is reduced and ESR1 mutations play an important role in resistance to endocrine therapy, leading to advanced breast cancer. Various methodologies for the detection of ESR1 mutations have been developed, and the most commonly used method is next-generation sequencing (NGS)-based assays (50.0%) followed by droplet digital PCR (ddPCR) (45.5%). Regarding the sample type, tissue (50.0%) was more frequently used than plasma (27.3%). However, plasma (46.2%) became the most used method in 2016-2019, in contrast to 2012-2015 (22.2%). In 2016-2019, ddPCR (61.5%), rather than NGS (30.8%), became a more popular method than it was in 2012-2015. The easy accessibility, non-invasiveness, and demonstrated usefulness with high sensitivity of ddPCR using plasma have changed the trends. When using these assays, there should be a comprehensive understanding of the principles, advantages, vulnerability, and precautions for interpretation. In the future, advanced NGS platforms and modified ddPCR will benefit patients by facilitating treatment decisions efficiently based on information regarding ESR1 mutations.
Collapse
Affiliation(s)
- Nuri Lee
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Min-Jeong Park
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Wonkeun Song
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
| | - Kibum Jeon
- Department of Laboratory Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea;
| | - Seri Jeong
- Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Korea; (N.L.); (M.-J.P.); (W.S.)
- Correspondence: ; Tel.: +82-845-5305
| |
Collapse
|
50
|
Alsaleem MA, Ball G, Toss MS, Raafat S, Aleskandarany M, Joseph C, Ogden A, Bhattarai S, Rida PCG, Khani F, Davis M, Elemento O, Aneja R, Ellis IO, Green A, Mongan NP, Rakha E. A novel prognostic two-gene signature for triple negative breast cancer. Mod Pathol 2020; 33:2208-2220. [PMID: 32404959 DOI: 10.1038/s41379-020-0563-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
The absence of a robust risk stratification tool for triple negative breast cancer (TNBC) underlies imprecise and nonselective treatment of these patients with cytotoxic chemotherapy. This study aimed to interrogate transcriptomes of TNBC resected samples using next generation sequencing to identify novel biomarkers associated with disease outcomes. A subset of cases (n = 112) from a large, well-characterized cohort of primary TNBC (n = 333) were subjected to RNA-sequencing. Reads were aligned to the human reference genome (GRCH38.83) using the STAR aligner and gene expression quantified using HTSEQ. We identified genes associated with distant metastasis-free survival and breast cancer-specific survival by applying supervised artificial neural network analysis with gene selection to the RNA-sequencing data. The prognostic ability of these genes was validated using the Breast Cancer Gene-Expression Miner v4. 0 and Genotype 2 outcome datasets. Multivariate Cox regression analysis identified a prognostic gene signature that was independently associated with poor prognosis. Finally, we corroborated our results from the two-gene prognostic signature by their protein expression using immunohistochemistry. Artificial neural network identified two gene panels that strongly predicted distant metastasis-free survival and breast cancer-specific survival. Univariate Cox regression analysis of 21 genes common to both panels revealed that the expression level of eight genes was independently associated with poor prognosis (p < 0.05). Adjusting for clinicopathological factors including patient's age, grade, nodal stage, tumor size, and lymphovascular invasion using multivariate Cox regression analysis yielded a two-gene prognostic signature (ACSM4 and SPDYC), which was associated with poor prognosis (p < 0.05) independent of other prognostic variables. We validated the protein expression of these two genes, and it was significantly associated with patient outcome in both independent and combined manner (p < 0.05). Our study identifies a prognostic gene signature that can predict prognosis in TNBC patients and could potentially be used to guide the clinical management of TNBC patients.
Collapse
Affiliation(s)
- Mansour A Alsaleem
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
- Faculty of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Graham Ball
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sara Raafat
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammed Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
- Faculty of Medicine, Menoufyia University, Shebin El Kom, Egypt
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | | | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Melissa Davis
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Emad Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.
- Faculty of Medicine, Menoufyia University, Shebin El Kom, Egypt.
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK.
| |
Collapse
|