1
|
Al-Maweri SA, Al-Mashraqi AA, Al-Qadhi G, Al-Hebshi N, Ba-Hattab R. The association between the oral microbiome and hypertension: a systematic review. J Oral Microbiol 2025; 17:2459919. [PMID: 39902217 PMCID: PMC11789219 DOI: 10.1080/20002297.2025.2459919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 02/05/2025] Open
Abstract
Background This study systematically reviewed the available evidence regarding the potential association between oral microbiota and hypertension. Methods A comprehensive search of online databases was conducted by two independent investigators for all relevant articles. All observational studies that assessed the association between oral microbiota and hypertension were included. Quality appraisal was conducted using the NOS tool. Results A total of 17 studies comprising 6007 subjects were included. The studies varied with respect to sample type and microbial analysis method. All studies, except one, found significant differences in microbial composition between hypertensive and normotensive subjects. However, there were substantial inconsistencies regarding the specific differences identified. Still, a few taxa were repeatedly found enriched in hypertension including Aggregatibacter, Kingella, Lautropia, and Leptotrachia besides the red complex periodontal pathogens. When considering only studies that controlled for false discovery rates and confounders, Atopobium, Prevotella, and Veillonella were identified as consistently associated with hypertension. Conclusion There are significant differences in the oral microbiome between hypertensive and normotensive subjects. Despite the heterogeneity between the included studies, a subset of microbial taxa seems to be consistently enriched in hypertension. Further studies are highly recommended to explore this association. Registration PROSPERO database (ID: CRD42023495005).
Collapse
Affiliation(s)
| | | | - Gamilah Al-Qadhi
- Department of Basic Dental Sciences, Faculty of Dentistry, University of Science and Technology, Aden, Yemen
| | - Nezar Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Raidan Ba-Hattab
- College of Dental Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Mondal R, Ritu RB, Kitaoka K, Azahar NM, Moniruzzaman M, Ogata S, Kiyoshige E, Tohara H, Kobayashi Y, Kashihara N, Naito T, Nakashima N, Tamura K, Nishimura K, Viera AJ, Yano Y. Oral microbiome alpha diversity and all-cause, cardiovascular, and non-cardiovascular mortality in US adults: Evidence from the NHANES 2009-2019. Atherosclerosis 2025; 401:119074. [PMID: 39644613 DOI: 10.1016/j.atherosclerosis.2024.119074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND AND AIMS Knowledge about the association between oral microbiome diversity within individuals and cardiovascular disease (CVD) and non-CVD mortality is scarce. Besides, variation by sex and racial and ethnic groups, and the potential mediators of these associations remain unclear. We aimed to investigate the associations of oral microbiome alpha diversity with all-cause, CVD, and non-CVD mortality, and the interaction effects of sex and racial and ethnic groups and potential mediators in the associations. METHODS The National Health and Nutrition Examination Survey (NHANES) is a population-based observational study, conducted periodically in Mexican American, Other Hispanic, Non-Hispanic (NH) White, NH Black, and other racial/ethnic participants. We linked 2009-12 survey data of 8199 adults to the mortality data until 2019. By analyzing RNA gene sequences from oral rinse samples, microbiome alpha diversity within individuals was assessed using operational taxonomic unit (OTU) richness. Potential mediators included obesity, diabetes mellitus, dyslipidemia, hypertension, and periodontitis. Multivariable Cox proportional hazards regression and causal mediation analysis were used. RESULTS Baseline mean ± standard deviation (SD) age was 42.1 ± 15.1 years. Over a median follow-up of 9.1 years, 405 all-cause mortality occurred (CVD, 105; non-CVD, 300). Each 1-SD increment in OTU richness was inversely associated with all-cause mortality (hazard ratio [HR] 0.92, 95 % confidence interval [CI] 0.90-0.95), CVD mortality (HR, 0.92; 95 % CI, 0.90-0.95), and non-CVD mortality (HR, 0.92; 95 % CI, 0.90-0.95). With evidence of significant racial and ethnic groups-interaction (p <0.05), these associations were evident in Mexican American, NH White, and others racial/ethnic participants. None of the potential mediators significantly mediated the associations of OTU richness with all-cause, CVD, and non-CVD mortality. CONCLUSIONS Lower oral microbiome alpha diversity is associated with higher risk for all-cause, CVD, and non-CVD mortality, and the associations are varied by racial and ethnic groups.
Collapse
Affiliation(s)
- Rajib Mondal
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan; Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Rani Baroi Ritu
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Kaori Kitaoka
- Department of Advanced Epidemiology, NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Nazar Mohd Azahar
- NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan; Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, Pulau Pinang, Malaysia
| | - Mohammad Moniruzzaman
- NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan; Socio-Spatial Determinants of Health (SSDH) Laboratory, Population and Community Health Sciences Branch, Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Eri Kiyoshige
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Haruka Tohara
- Department of Dysphagia Rehabilitation, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Yusuke Kobayashi
- YCU Co-Creation Innovation Center, Yokohama City University, Yokohama, Japan
| | | | - Toshio Naito
- Department of General Medicine, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Naoki Nakashima
- Medical Information Center, Kyushu University Hospital, Japan
| | - Kosuke Tamura
- Socio-Spatial Determinants of Health (SSDH) Laboratory, Population and Community Health Sciences Branch, Division of Intramural Research, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Anthony J Viera
- Department of Family Medicine and Community Health, Duke University, NC, USA
| | - Yuichiro Yano
- Department of General Medicine, Faculty of Medicine, Juntendo University, Tokyo, Japan; Department of Family Medicine and Community Health, Duke University, NC, USA.
| |
Collapse
|
3
|
Gribsholt SB, Szépligeti SK, Sørensen HT, Mueller NT, Karagas MR, Ehrenstein V. Prenatal and Early-Life Anti-Infectives and Obesity at Age 7 Years. Pharmacoepidemiol Drug Saf 2024; 33:e70055. [PMID: 39533505 DOI: 10.1002/pds.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To examine associations of prenatal and early-life anti-infective exposures with obesity at 7 years. METHODS In this nationwide, registry-based, prevalence study, we included all children with an anthropometric assessment at age 7 years from the Children's Database and linked their data with Danish population-based registries from 2001 to 2018. We defined exposure to anti-infectives (anti-bacterials, anti-virals, and anti-fungals) by outpatient dispensings or by infection diagnoses at hospital encounters. The earliest date defined the exposure timing category: prenatal (-9 months- < 0 months), infancy (0- < 2 years), and early childhood (2- < 5 years). We computed prevalence ratios (aPRs) for associations of anti-infective exposure with obesity prevalence at 7 years of age, adjusting for maternal and perinatal factors. RESULTS We included 460 363 children (51% boys). Prevalence of obesity at 7 years of age was 38% higher (aPR = 1.38, 95% confidence interval (CI): 1.27-1.49) among children exposed to any anti-infective, 21% higher (aPR = 1.21, 95% CI: 1.12-1.31) among children exposed to anti-infectives in infancy, and 14% higher (aPR = 1.14, 95% CI: 1.03-1.26) among children exposed to anti-infectives in early childhood. Exposure to anti-bacterials was associated with obesity in a similar time-dependent pattern [prenatal: aPR = 1.39 (95% CI: 1.29-1.50), infancy: aPR = 1.21 (95% CI: 1.12-1.30), and early childhood: aPR = 1.14 (95% CI: 1.03-1.25)]. For anti-virals and anti-fungals, exposure during infancy and early childhood was associated with larger aPRs than prenatal exposure. Furthermore, obesity prevalence increased monotonically with number of the anti-infective prescriptions. CONCLUSION These findings suggest that prenatal and early-life exposure to anti-infectives increases the risk of childhood obesity and that the magnitude of the associations depends on anti-infective type, timing, and dose.
Collapse
Affiliation(s)
- Sigrid Bjerge Gribsholt
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Noel T Mueller
- Department Pediatrics Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Colorado School of Public Health, Aurora, Colorado, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Vera Ehrenstein
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
- Center for Population Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Wang XH, Yang YN, Li YH, Cheng JL, Yan L, Liang Y, Zeng Q, Zhan T, Wang DW, Yu RH, Wu CM. Oral bacteriome and mycobiome of patients with idiopathic membranous nephropathy with different tongue coatings treated with a Chinese herbal formula. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118233. [PMID: 38685365 DOI: 10.1016/j.jep.2024.118233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 02/25/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moshen Fuyuan Formula (MSFY) is one of the representative Chinese medicine compound for Idiopathic membranous nephropathy (IMN), that originate from Fang Ji Huang Qi decoction in the Han dynasty. IMN is usually accompanied by different tongue coatings in traditional Chinese medicine (TCM), and tongue microorganisms are important factors affecting the formation of the tongue coating. Recently, oral microbiomes, including bacteria and fungi, have been identified as pivotal factors that contribute to disease development. However, the regulation of oral microbiomes by MSFY has not been defined. AIM OF THE STUDY In this work, we explore the characteristics of oral bacteria and fungi in IMN patients with different tongue coatings, and clarify the therapeutic effect of MSFY based on oral microbiome. MATERIALS AND METHODS We enrolled 24 patients with IMN, including 11 with white tongue (IMN-W) and 13 with yellow tongue (IMN-Y), and recruited an additional 10 healthy individuals. Patients with IMN were treated with the MSFY. The oral bacteriome and fungi before and after treatment were detected using full-length 16S rRNA and internal transcribed spacer gene sequencing. RESULTS The therapeutic effect of MSFY on patients with yellow tongue coating was more significant than that on patients with white tongue coating. In terms of oral bacteriome, Campylobacter bacteria were enriched in patients with yellow tongue and could be a promising biomarker for yellow coating. Enrichment of Veillonella parvula_A may partially account for the therapeutic effect of MSFY. As for oral fungi, Malassezia globosa was enhanced in patients with IMN-W and reduced in patients with IMN-Y. Notably, it was reduced by MSFY. We also found that mycobiome-bacteriome interactions were highly complex and dynamic in patients with IMN. CONCLUSION The regulation of the dynamic balance between oral fungi and bacteria by MSFY contributes to the treatment of IMN. This study determined the oral bacteriome and mycobiome of patients with IMN with different tongue coatings before and after MSFY treatment, which aids in promoting personalized treatment in clinical TCM and provides direction for investigating the mechanism of Chinese herbal medicines.
Collapse
Affiliation(s)
- Xin-Hui Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ya-Nan Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yi-Han Li
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Jia-Le Cheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Lei Yan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Ying Liang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Qin Zeng
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Tian Zhan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Dian-Wen Wang
- Guang'anmen Hospital South Campus of China Academy of Chinese Medical Sciences, Beijing, 102611, China.
| | - Ren-Huan Yu
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Chong-Ming Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
5
|
Ray AK, Shukla A, Yadav A, Kaur U, Singh AK, Mago P, Bhavesh NS, Chaturvedi R, Tandon R, Shalimar, Kumar A, Malik MZ. A Comprehensive Pilot Study to Elucidate the Distinct Gut Microbial Composition and Its Functional Significance in Cardio-Metabolic Disease. Biochem Genet 2024:10.1007/s10528-024-10847-w. [PMID: 38839647 DOI: 10.1007/s10528-024-10847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cardio-metabolic disease is a significant global health challenge with increasing prevalence. Recent research underscores the disruption of gut microbial balance as a key factor in disease susceptibility. We aimed to characterize the gut microbiota composition and function in cardio-metabolic disease and healthy controls. For this purpose, we collected stool samples of 18 subjects (12 diseased, 6 healthy) and we performed metagenomics analysis and functional prediction using QIIME2 and PICRUSt. Furthermore, we carried out assessments of microbe-gene interactions, gene ontology, and microbe-disease associations. Our findings revealed distinct microbial patterns in the diseased group, particularly evident in lower taxonomic levels with significant variations in 14 microbial features. The diseased cohort exhibited an enrichment of Lachnospiraceae family, correlating with obesity, insulin resistance, and metabolic disturbances. Conversely, reduced levels of Clostridium, Gemmiger, and Ruminococcus genera indicated a potential inflammatory state, linked to compromised butyrate production and gut permeability. Functional analyses highlighted dysregulated pathways in amino acid metabolism and energy equilibrium, with perturbations correlating with elevated branch-chain amino acid levels-a known contributor to insulin resistance and type 2 diabetes. These findings were consistent across biomarker assessments, microbe-gene associations, and gene ontology analyses, emphasizing the intricate interplay between gut microbial dysbiosis and cardio-metabolic disease progression. In conclusion, our study unveils significant shifts in gut microbial composition and function in cardio-metabolic disease, emphasizing the broader implications of microbial dysregulation. Addressing gut microbial balance emerges as a crucial therapeutic target in managing cardio-metabolic disease burden.
Collapse
Affiliation(s)
- Ashwini Kumar Ray
- Department of Environmental Studies, University of Delhi, New Delhi, India.
| | - Avaneesh Shukla
- Department of Environmental Studies, University of Delhi, New Delhi, India
| | - Alka Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Urvinder Kaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alok Kumar Singh
- Department of Zoology, Ramjas College, University of Delhi, New Delhi, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
- Campus of Open Learning, University of Delhi, New Delhi, India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Institute of Bioinformatics, International Technology Park, Whitefield, Bangalore, India
| | - Md Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait.
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
6
|
Jiang R, Cong Z, Zheng L, Zhang L, Guan Q, Wang S, Fang J, Chen J, Liu M. Global research trends in regulating gut microbiome to improve type 2 diabetes mellitus: bibliometrics and visual analysis. Front Endocrinol (Lausanne) 2024; 15:1401070. [PMID: 38887274 PMCID: PMC11181692 DOI: 10.3389/fendo.2024.1401070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Background Gut microbiome (GM) and type 2 diabetes mellitus (T2DM) have two-way effects. Improving T2DM by modulating GM in various ways, such as diet, exercise, and medication, is gradually becoming popular, and related studies have yielded positive results. However, there is still a lack of high-quality bibliometric analyses of research in this area. This study aims to systematize and comprehensively summarize the knowledge structure, research tropics, and research trends of GM and T2DM through bibliometric analysis. Methods Publications related to GM and T2DM before January 9, 2024, in the Web of Science Core Collection (WOSCC) were searched in this study. Microsoft Excel 2019 was used to analyze publishing trends and CiteSpace (v.6.1.R6 Advanced) was used to analyze institutions, cited journals, references, and keywords.SCImago Graphica (v.1.0.39) was used to analyze countries/regions, institutions' collaborations, cited authors, and published journals. Results We finally included 1004 articles published from 2008 to 2023. The number of published articles showed an upward trend and reached its peak in 2022. China is the country with the largest number of articles, Univ Copenhagen is the institution with the largest number of articles, Fukui, Michiaki, Hamaguchi, Masahide are the scholars with the largest number of articles, and Cani and Patrice D. are the scholars with the largest number of citations. NUTRIENTS(Q1/5.9) published the most publications, while Nature (Q1/64.8; Cited 804 times) is the most frequently cited journal. Gut microbiota, Obesity, and insulin resistance are the most frequently used keywords. This study found that current researches focus on the effects of diet, exercise, and pharmacological modification of GM to improve T2DM and explores specific mechanisms. Future researches will focus on three areas: complications of T2DM and specific physiological processes, methods and measures to regulate GM, and new experimental techniques and assays. Conclusion The current researches confirmed the effects and specific mechanisms of modulating GM to improve T2DM. Further exploration of the effects of modulating GM on T2DM complications and specific physiologic processes is a future trend of research. Exploring specific methods for regulating GM and developing new experimental techniques and assays are important for future research.
Collapse
Affiliation(s)
- Rongsheng Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Zhengri Cong
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Likun Zheng
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Long Zhang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Qifan Guan
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Sixian Wang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jinxu Fang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiahao Chen
- College of Medical Information, Changchun University of Chinese Medicine, Changchun, China
| | - Mingjun Liu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
7
|
DeClercq V, Wright RJ, Nearing JT, Langille MGI. Oral microbial signatures associated with age and frailty in Canadian adults. Sci Rep 2024; 14:9685. [PMID: 38678061 PMCID: PMC11055859 DOI: 10.1038/s41598-024-60409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/23/2024] [Indexed: 04/29/2024] Open
Abstract
This study aimed to assess the association between the oral microbiome, age, and frailty. Data and saliva samples were obtained from male and female participants aged 35-70 years (n = 1357). Saliva samples were analysed by 16S rRNA gene sequencing and differences in microbial diversity and community compositions were examined in relation to chronological age and the frailty index (FI). Most alpha diversity measures (Richness, Shannon Diversity, Faith's Phylogenetic Diversity) showed an inverse association with frailty, whereas a positive association was observed with age and Shannon Diversity and Evenness. A further sex-stratified analysis revealed differences in measures of microbial diversity and composition. Multiple genera were detected as significantly differentially abundant with increasing frailty and age by at least two methods. With age, the relative abundance of Veillonella was reduced in both males and females, whereas increases in Corynebacterium appeared specific to males and Aggregatibacter, Fusobacterium, Neisseria, Stomatobaculum, and Porphyromonas specific to females. Beta diversity was significantly associated with multiple mental health components of the FI. This study shows age and frailty are differentially associated with measures of microbial diversity and composition, suggesting the oral microbiome may be a useful indicator of increased risk of frailty or a potential target for improving health in ageing adults.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Robyn J Wright
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Morgan G I Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Balvers M, de Goffau M, van Riel N, van den Born BJ, Galenkamp H, Zwinderman K, Nieuwdorp M, Levin E. Ethnic variations in metabolic syndrome components and their associations with the gut microbiota: the HELIUS study. Genome Med 2024; 16:41. [PMID: 38509598 PMCID: PMC10953122 DOI: 10.1186/s13073-024-01295-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The occurrence of metabolic syndrome (MetS) and the gut microbiota composition are known to differ across ethnicities yet how these three factors are interwoven is unknown. Also, it is unknown what the relative contribution of the gut microbiota composition is to each MetS component and whether this differs between ethnicities. We therefore determined the occurrence of MetS and its components in the multi-ethnic HELIUS cohort and tested the overall and ethnic-specific associations with the gut microbiota composition. METHODS We included 16,209 treatment naïve participants of the HELIUS study, which were of Dutch, African Surinamese, South-Asian Surinamese, Ghanaian, Turkish, and Moroccan descent to analyze MetS and its components across ethnicities. In a subset (n = 3443), the gut microbiota composition (16S) was associated with MetS outcomes using linear and logistic regression models. RESULTS A differential, often sex-dependent, prevalence of MetS components and their combinations were observed across ethnicities. Increased blood pressure was commonly seen especially in Ghanaians, while South-Asian Surinamese and Turkish had higher MetS rates in general and were characterized by worse lipid-related measures. Regarding the gut microbiota, when ethnic-independent associations were assumed, a higher α-diversity, higher abundance of several ASVs (mostly for waist and triglyceride-related outcomes) and a trophic network of ASVs of Ruminococcaceae, Christensenellaceae, and Methanobrevibacter (RCM) bacteria were associated with better MetS outcomes. Statistically significant ethnic-specific associations were however noticed for α-diversity and the RCM trophic network. Associations were significant in the Dutch but not always in all other ethnicities. In Ghanaians, a higher α-diversity and RCM network abundance showed an aberrant positive association with high blood pressure measures compared to the other ethnicities. Even though adjustment for socioeconomic status-, lifestyle-, and diet-related variables often attenuated the effect size and/or the statistical significance of the ethnic-specific associations, an overall similar pattern across outcomes and ethnicities remained. CONCLUSIONS The occurrence of MetS characteristics among ethnicities is heterogeneous. Both ethnic-independent and ethnic-specific associations were identified between the gut microbiota and MetS outcomes. Across multiple ethnicities, a one-size-fits-all approach may thus be reconsidered in regard to both the definition and/or treatment of MetS and its relation to the gut microbiota.
Collapse
Affiliation(s)
- Manon Balvers
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marcus de Goffau
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, The Netherlands
| | - Natal van Riel
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Bert-Jan van den Born
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Koos Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- HORAIZON Technology BV, Marshallaan 2, Delft, 2625 GZ, The Netherlands.
| |
Collapse
|
9
|
Hogue T, Hampton‐Marcell J, Carroll IM, Purdom T, Colleran H, Exford TJ, Brown M, Cook MD. Gut microbiota are differentially correlated with blood pressure status in African American collegiate athletes: A pilot study. Physiol Rep 2024; 12:e15982. [PMID: 38514894 PMCID: PMC10957718 DOI: 10.14814/phy2.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Hypertension (HTN) is common among athletes and the most recent epidemiologic data reports that cardiovascular (CV) sudden death is significantly greater in African Americans (AAs). Gut microbial dysbiosis (a poorly diverse stool microbial profile) has been associated with HTN in sedentary people but microbial characteristics of athletes with HTN are unknown. Our purpose was to differentiate microbiome characteristics associated with BP status in AA collegiate athletes. Thirty AA collegiate athletes were stratified by normal BP (systolic BP (SBP) ≤130 mmHg; n = 15) and HTN (SBP ≥130 mmHg; n = 15). 16S rRNA gene sequencing was performed on stool samples to identify microbes at the genus level. We did not observe any significant differences in alpha diversity, but beta diversity was different between groups. Principal coordinate analysis was significantly different (PERMANOVA, p < 0.05, R = 0.235) between groups. Spearman rank correlations showed a significant (p < 0.05) correlation between systolic BP and abundances for Adlercreutzia (R = 0.64), Coprococcus (R = 0.49), Granulicatella (R = 0.63), and Veillonella (R = 0.41). Gut microbial characteristics were associated with differentially abundant microbial genus' and BP status. These results will direct future studies to define the functions of these microbes associated with BP in athletes.
Collapse
Affiliation(s)
- Taylor Hogue
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | | | - Ian M. Carroll
- Department of NutritionUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Troy Purdom
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | - Heather Colleran
- Department of NutritionNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
| | - T. J. Exford
- Education & Research DepartmentDayton VA Medical CenterDaytonOhioUSA
| | - Michael Brown
- Department of KinesiologyUniversity of MarylandCollege ParkMarylandUSA
| | - Marc D. Cook
- Department of KinesiologyNorth Carolina Agriculture and Technical State UniversityGreensboroNorth CarolinaUSA
- Center for Integrative Health Disparity & Equity Research (CIHDER)North Carolina Agricultural and Technical State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
10
|
Luo S, Mao R, Li Y. Mendelian Randomization Highlights Gut Microbiota of Short-chain Fatty Acids' Producer as Protective Factor of Cerebrovascular Disease. Curr Neurovasc Res 2024; 21:32-40. [PMID: 38551043 DOI: 10.2174/0115672026299307240321090030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Recent research advancements have indicated a potential association between gut microbiota and cerebrovascular diseases, although the precise causative pathways and the directionality of this association remain to be fully elucidated. OBJECTIVE This study utilized a bidirectional two-sample Mendelian Randomization (MR) methodology to explore the causal impact of gut microbiota compositions on the risk of cerebrovascular disease. METHODS Genome-wide Association Study (GWAS) data pertaining to gut microbiota were obtained from the MiBioGen consortium. For Ischemic Stroke (IS), Transient Ischemic Attack (TIA), Vascular Dementia (VD), and Subarachnoid Hemorrhage (SAH), GWAS summary data were sourced from the FinnGen consortium, the IEU Open GWAS project, and the GWAS catalog, respectively. RESULTS Our MR analyses identified that specific bacterial strains, notably those involved in the production of Short-chain Fatty Acids (SCFAs), including Barnesiella, Ruminococcus torques group, and Coprobacter, serve as protective factors against IS, TIA, and SAH. Linkage Disequilibrium Score Regression (LDSC) analysis corroborated a significant genetic correlation between these gut microbiota strains and various forms of cerebrovascular disease. In contrast, reverse MR analysis failed to establish a bidirectional causal relationship between genetically inferred gut microbiota profiles and these cerebrovascular conditions. CONCLUSION This investigation has pinpointed particular strains of gut microbiota that play protective or detrimental roles in cerebrovascular disease pathogenesis. These findings offer valuable insights that could be pivotal for the clinical management, prevention, and treatment of cerebrovascular diseases.
Collapse
Affiliation(s)
- Shihang Luo
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Radiology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, Sichuan Province, China
| |
Collapse
|
11
|
Ecklu-Mensah G, Choo-Kang C, Maseng MG, Donato S, Bovet P, Viswanathan B, Bedu-Addo K, Plange-Rhule J, Oti Boateng P, Forrester TE, Williams M, Lambert EV, Rae D, Sinyanya N, Luke A, Layden BT, O'Keefe S, Gilbert JA, Dugas LR. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nat Commun 2023; 14:5160. [PMID: 37620311 PMCID: PMC10449869 DOI: 10.1038/s41467-023-40874-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The relationship between microbiota, short chain fatty acids (SCFAs), and obesity remains enigmatic. We employ amplicon sequencing and targeted metabolomics in a large (n = 1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Microbiota diversity and fecal SCFAs are greatest in Ghanaians, and lowest in Americans, representing each end of the urbanization spectrum. Obesity is significantly associated with a reduction in SCFA concentration, microbial diversity, and SCFA synthesizing bacteria, with country of origin being the strongest explanatory factor. Diabetes, glucose state, hypertension, obesity, and sex can be accurately predicted from the global microbiota, but when analyzed at the level of country, predictive accuracy is only universally maintained for sex. Diabetes, glucose, and hypertension are only predictive in certain low-income countries. Our findings suggest that adiposity-related microbiota differences differ between low-to-middle-income compared to high-income countries. Further investigation is needed to determine the factors driving this association.
Collapse
Affiliation(s)
- Gertrude Ecklu-Mensah
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Candice Choo-Kang
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Sonya Donato
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Pascal Bovet
- University Center for Primary Care and Public Health (Unisanté), Lausanne University Hospital, Lausanne, Switzerland
- Ministry of Health, Victoria, Republic of Seychelles
| | | | - Kweku Bedu-Addo
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jacob Plange-Rhule
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Oti Boateng
- Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Terrence E Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Marie Williams
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Dale Rae
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Nandipha Sinyanya
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Amy Luke
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Brian T Layden
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Stephen O'Keefe
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jack A Gilbert
- Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| | - Lara R Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA.
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
12
|
Gilbert J, Ecklu-Mensah G, Maseng MG, Donato S, Coo-Kang C, Dugas L, Bovet P, Bedu-Addo K, Plange-Rhule J, Forrester T, Lambert E, Rae D, Luke A, Layden B, O'Keefe S. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: The METS-Microbiome Study. RESEARCH SQUARE 2023:rs.3.rs-2791107. [PMID: 37090540 PMCID: PMC10120767 DOI: 10.21203/rs.3.rs-2791107/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The relationship between gut microbiota, short chain fatty acid (SCFA) metabolism, and obesity is still not well understood. Here we investigated these associations in a large (n=1904) African origin cohort from Ghana, South Africa, Jamaica, Seychelles, and the US. Fecal microbiota diversity and SCFA concentration were greatest in Ghanaians, and lowest in the US population, representing the lowest and highest end of the epidemiologic transition spectrum, respectively. Obesity was significantly associated with a reduction in SCFA concentration, microbial diversity and SCFA synthesizing bacteria. Country of origin could be accurately predicted from the fecal microbiota (AUC=0.97), while the predictive accuracy for obesity was inversely correlated to the epidemiological transition, being greatest in Ghana (AUC = 0.57). The findings suggest that the microbiota differences between obesity and non-obesity may be larger in low-to-middle-income countries compared to high-income countries. Further investigation is needed to determine the factors driving this association.
.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pascal Bovet
- University Center for Primary Care and Public Health
| | | | | | | | | | | | - Amy Luke
- Loyola University School of Medicine
| | | | | |
Collapse
|
13
|
Ecklu-Mensah G, Choo-Kang C, Gjerstad Maseng M, Donato S, Bovet P, Bedu-Addo K, Plange-Rhule J, Forrester TE, Lambert EV, Rae D, Luke A, Layden BT, O’Keefe S, Gilbert JA, Dugas LR. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: The METS-Microbiome Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533195. [PMID: 36993742 PMCID: PMC10055249 DOI: 10.1101/2023.03.21.533195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The relationship between the gut microbiota, short chain fatty acid (SCFA) metabolism, and obesity remains unclear due to conflicting reports from studies with limited statistical power. Additionally, this association has rarely been explored in large scale diverse populations. Here, we investigated associations between fecal microbial composition, predicted metabolic potential, SCFA concentrations, and obesity in a large ( N = 1,934) adult cohort of African-origin spanning the epidemiologic transition, from Ghana, South Africa, Jamaica, Seychelles, and the United States (US). The greatest gut microbiota diversity and total fecal SCFA concentration was found in the Ghanaian population, while the lowest levels were found in the US population, respectively representing the lowest and the highest end of the epidemiologic transition spectrum. Country-specific bacterial taxa and predicted-functional pathways were observed, including an increased prevalence of Prevotella , Butyrivibrio , Weisella and Romboutsia in Ghana and South Africa, while Bacteroides and Parabacteroides were enriched in Jamaican and the US populations. Importantly, 'VANISH' taxa, including Butyricicoccus and Succinivibrio , were significantly enriched in the Ghanaian cohort, reflecting the participants' traditional lifestyles. Obesity was significantly associated with lower SCFA concentrations, a decrease in microbial richness, and dissimilarities in community composition, and reduction in the proportion of SCFA synthesizing bacteria including Oscillospira , Christensenella , Eubacterium , Alistipes , Clostridium and Odoribacter . Further, the predicted proportions of genes in the lipopolysaccharide (LPS) synthesis pathway were enriched in obese individuals, while genes associated with butyrate synthesis via the dominant pyruvate pathway were significantly reduced in obese individuals. Using machine learning, we identified features predictive of metabolic state and country of origin. Country of origin could accurately be predicted by the fecal microbiota (AUC = 0.97), whereas obesity could not be predicted as accurately (AUC = 0.65). Participant sex (AUC = 0.75), diabetes status (AUC = 0.63), hypertensive status (AUC = 0.65), and glucose status (AUC = 0.66) could all be predicted with different success. Interestingly, within country, the predictive accuracy of the microbiota for obesity was inversely correlated to the epidemiological transition, being greatest in Ghana (AUC = 0.57). Collectively, our findings reveal profound variation in the gut microbiota, inferred functional pathways, and SCFA synthesis as a function of country of origin. While obesity could be predicted accurately from the microbiota, the variation in accuracy in parallel with the epidemiological transition suggests that differences in the microbiota between obesity and non-obesity may be larger in low-to-middle countries compared to high-income countries. Further examination of independent study populations using multi-omic approaches will be necessary to determine the factors that drive this association.
Collapse
Affiliation(s)
| | - Candice Choo-Kang
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Sonya Donato
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Pascal Bovet
- University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland& Ministry of Health, Republic of Seychelles Department of Physiology, SMS
| | - Kweku Bedu-Addo
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Terrence E. Forrester
- Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica
| | - Estelle V. Lambert
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Dale Rae
- Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Amy Luke
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
| | - Brian T. Layden
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | | | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Lara R. Dugas
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Hernández-Ruiz P, Amezcua-Guerra LM, López-Vidal Y, González-Pacheco H, Pinto-Cardoso S, Amedei A, Aguirre-García MM. Comparative characterization of inflammatory profile and oral microbiome according to an inflammation-based risk score in ST-segment elevation myocardial infarction. Front Cell Infect Microbiol 2023; 13:1095380. [PMID: 36860987 PMCID: PMC9968971 DOI: 10.3389/fcimb.2023.1095380] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Ischemic heart disease considers the myocardial infarction (MI), either non-ST-segment elevation (non-STEMI) or ST-segment elevation myocardial infarction (STEMI); this represents the main cause of mortality in Mexican population. Regarding to the inflammatory state, this is reported to be a major prognostic factor of mortality for patients with MI. One of the conditions capable of producing systemic inflammation is periodontal disease. It has been proposed that the oral microbiota is translocated through the bloodstream to the liver and intestine, generating intestinal dysbiosis. The aim of this protocol is to assess oral microbiota diversity and circulating inflammatory profile in STEMI patients stratified according to an inflammation-based risk scoring system. We found that Bacteriodetes phylum was the most abundant in STEMI patients, and Prevotella was the most abundant genus, with a higher proportion in periodontitis patients. In fact, Prevotella genus was found to correlate positively and significantly with elevated IL-6 concentration. Our study defined a non-causal association inferred between the cardiovascular risk of STEMI patients, determined by changes in the oral microbiota that influence the development of periodontal disease and its relationship with the exacerbation of the systemic inflammatory response.
Collapse
Affiliation(s)
- Paulina Hernández-Ruiz
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México. Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Luis M. Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Héctor González-Pacheco
- Unidad de Cuidados Coronarios, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Sandra Pinto-Cardoso
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Centro de Investigación en Enfermedades Infecciosas, Ciudad de Mexico, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| | - María Magdalena Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México. Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| |
Collapse
|
15
|
Poulsen CS, Nygaard N, Constancias F, Stankevic E, Kern T, Witte DR, Vistisen D, Grarup N, Pedersen OB, Belstrøm D, Hansen T. Association of general health and lifestyle factors with the salivary microbiota - Lessons learned from the ADDITION-PRO cohort. Front Cell Infect Microbiol 2022; 12:1055117. [PMID: 36467723 PMCID: PMC9709502 DOI: 10.3389/fcimb.2022.1055117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION Previous research indicates that the salivary microbiota may be a biomarker of oral as well as systemic disease. However, clarifying the potential bias from general health status and lifestyle-associated factors is a prerequisite of using the salivary microbiota for screening. MATERIALS & METHODS ADDDITION-PRO is a nationwide Danish cohort, nested within the Danish arm of the Anglo-Danish-Dutch Study of Intensive treatment in People with Screen-Detected Diabetes in Primary Care. Saliva samples from n=746 individuals from the ADDITION-PRO cohort were characterized using 16s rRNA sequencing. Alpha- and beta diversity as well as relative abundance of genera was examined in relation to general health and lifestyle-associated variables. Permutational multivariate analysis of variance (PERMANOVA) was performed on individual variables and all variables together. Classification models were created using sparse partial-least squares discriminant analysis (sPLSDA) for variables that showed statistically significant differences based on PERMANOVA analysis (p < 0.05). RESULTS Glycemic status, hemoglobin-A1c (HbA1c) level, sex, smoking and weekly alcohol intake were found to be significantly associated with salivary microbial composition (individual variables PERMANOVA, p < 0.05). Collectively, these variables were associated with approximately 5.8% of the observed differences in the composition of the salivary microbiota. Smoking status was associated with 3.3% of observed difference, and smoking could be detected with good accuracy based on salivary microbial composition (AUC 0.95, correct classification rate 79.6%). CONCLUSIONS Glycemic status, HbA1c level, sex, smoking and weekly alcohol intake were significantly associated with the composition of the salivary microbiota. Despite smoking only being associated with 3.3% of the difference in overall salivary microbial composition, it was possible to create a model for detection of smoking status with a high correct classification rate. However, the lack of information on the oral health status of participants serves as a limitation in the present study. Further studies in other cohorts are needed to validate the external validity of these findings.
Collapse
Affiliation(s)
- Casper Sahl Poulsen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nikoline Nygaard
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Institute of Odontology, Section of Oral Microbiology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Florentin Constancias
- Swiss Federal Institute of Technology in Zürich, Department of Health Sciences and Technology, Zürich, Switzerland
| | - Evelina Stankevic
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Timo Kern
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Daniel R. Witte
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus, Denmark
| | - Dorte Vistisen
- Steno Diabetes Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Oluf Borbye Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Herlev-Gentofte Hospital, Gentofte, Denmark
| | - Daniel Belstrøm
- Institute of Odontology, Section of Oral Microbiology, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
16
|
Francisco AJ. Helicobacter Pylori Infection Induces Intestinal Dysbiosis That Could Be Related to the Onset of Atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9943158. [PMID: 36317116 PMCID: PMC9617700 DOI: 10.1155/2022/9943158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Cardiovascular diseases represent one of the first causes of death around the world, and atherosclerosis is one of the first steps in the development of them. Although these problems occur mainly in elderly, the incidence in younger people is being reported, and an undetermined portion of patients without the classic risk factors develop subclinical atherosclerosis at earlier stages of life. Recently, both the H. pylori infection and the intestinal microbiota have been linked to atherosclerosis. The mechanisms behind those associations are poorly understood, but some of the proposed explanations are (a) the effect of the chronic systemic inflammation induced by H. pylori, (b) a direct action over the endothelial cells by the cytotoxin associated gene A protein, and (c) alterations of the lipid metabolism and endothelial dysfunction induced by H. pylori infection. Regarding the microbiota, several studies show that induction of atherosclerosis is related to high levels of Trimethylamine N-oxide. In this review, we present the information published about the effects of H. pylori over the intestinal microbiota and their relationship with atherosclerosis and propose a hypothesis to explain the nature of these associations. If H. pylori contributes to atherosclerosis, then interventions for eradication and restoration of the gut microbiota at early stages could represent a way to prevent disease progression.
Collapse
Affiliation(s)
- Avilés-Jiménez Francisco
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría. Centro Médico Nacional Siglo XXI. IMSS, Ciudad de México, Mexico
| |
Collapse
|
17
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
18
|
Palmnäs-Bédard MSA, Costabile G, Vetrani C, Åberg S, Hjalmarsson Y, Dicksved J, Riccardi G, Landberg R. The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr 2022; 116:862-874. [PMID: 36026526 PMCID: PMC9535511 DOI: 10.1093/ajcn/nqac217] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023] Open
Abstract
The gut microbiota plays a fundamental role in human nutrition and metabolism and may have direct implications for type 2 diabetes and associated preconditions. An improved understanding of relations between human gut microbiota and glucose metabolism could lead to novel opportunities for type 2 diabetes prevention, but human observational studies reporting on such findings have not been extensively reviewed. Here, we review the literature on associations between gut microbiota and markers and stages of glucose dysregulation and insulin resistance in healthy adults and in adults with metabolic disease and risk factors. We present the current evidence for identified key bacteria and their potential roles in glucose metabolism independent of overweight, obesity, and metabolic drugs. We provide support for SCFAs mediating such effects and discuss the role of diet, as well as metabolites derived from diet and gut microbiota interactions. From 5983 initially identified PubMed records, 45 original studies were eligible and reviewed. α Diversity and 45 bacterial taxa were associated with selected outcomes. Six taxa were most frequently associated with glucose metabolism: Akkermansia muciniphila, Bifidobacterium longum, Clostridium leptum group, Faecalibacterium prausnitzii, and Faecalibacterium (inversely associated) and Dorea (directly associated). For Dorea and A. muciniphila, associations were independent of metabolic drugs and body measures. For A. muciniphila and F. prausnitzii, limited evidence supported SCFA mediation of potential effects on glucose metabolism. We conclude that observational studies applying metagenomics sequencing to identify species-level relations are warranted, as are studies accounting for confounding factors and investigating SCFA and postprandial glucose metabolism. Such advances in the field will, together with mechanistic and prospective studies and investigations into diet-gut microbiota interactions, have the potential to bring critical insight into roles of gut microbiota and microbial metabolites in human glucose metabolism and to contribute toward the development of novel prevention strategies for type 2 diabetes, including precision nutrition.
Collapse
Affiliation(s)
- Marie S A Palmnäs-Bédard
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sebastian Åberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Yommine Hjalmarsson
- Department of Communication and Learning in Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Pluta R, Jabłoński M, Januszewski S, Czuczwar SJ. Crosstalk between the aging intestinal microflora and the brain in ischemic stroke. Front Aging Neurosci 2022; 14:998049. [PMID: 36275012 PMCID: PMC9582537 DOI: 10.3389/fnagi.2022.998049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
Aging is an inevitable phenomenon experienced by animals and humans, and its intensity varies from one individual to another. Aging has been identified as a risk factor for neurodegenerative disorders by influencing the composition of the gut microbiota, microglia activity and cognitive performance. The microbiota-gut-brain axis is a two-way communication path between the gut microbes and the host brain. The aging intestinal microbiota communicates with the brain through secreted metabolites (neurotransmitters), and this phenomenon leads to the destruction of neuronal cells. Numerous external factors, such as living conditions and internal factors related to the age of the host, affect the condition of the intestinal microflora in the form of dysbiosis. Dysbiosis is defined as changes in the composition and function of the gut microflora that affect the pathogenesis, progress, and response to treatment of a disease entity. Dysbiosis occurs when changes in the composition and function of the microbiota exceed the ability of the microflora and its host to restore equilibrium. Dysbiosis leading to dysfunction of the microbiota-gut-brain axis regulates the development and functioning of the host’s nervous, immune, and metabolic systems. Dysbiosis, which causes disturbances in the microbiota-gut-brain axis, is seen with age and with the onset of stroke, and is closely related to the development of risk factors for stroke. The review presents and summarizes the basic elements of the microbiota-gut-brain axis to better understand age-related changes in signaling along the microbiota-gut-brain axis and its dysfunction after stroke. We focused on the relationship between the microbiota-gut-brain axis and aging, emphasizing that all elements of the microbiota-gut-brain axis are subject to age-related changes. We also discuss the interaction between microbiota, microglia and neurons in the aged individuals in the brain after ischemic stroke. Finally, we presented preclinical and clinical studies on the role of the aged microbiota-gut-brain axis in the development of risk factors for stroke and changes in the post-stroke microflora.
Collapse
Affiliation(s)
- Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Ryszard Pluta,
| | - Mirosław Jabłoński
- Department of Rehabilitation and Orthopedics, Medical University of Lublin, Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
20
|
Lakshmanan AP, Murugesan S, Al Khodor S, Terranegra A. The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Lab Invest 2022; 20:430. [PMID: 36153618 PMCID: PMC9509630 DOI: 10.1186/s12967-022-03631-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death worldwide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN management/regulation, which could be beneficial in identifying the drug target for the management of HTN.
Collapse
|
21
|
Possible metabolic interplay between quality of life and fecal microbiota in a presenior population-Preliminary results. Nutrition 2022; 103-104:111841. [PMID: 36183483 DOI: 10.1016/j.nut.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The number of people aged ≥60 y is increasing worldwide, so establishing a relationship between lifestyle and health-associated factors, such as gut microbiota in an older population, is important. This study aimed to characterize the gut microbiota of a presenior population, and analyze the association between some bacteria and quality of life with the Short Form (SF) 36 questionnaire. METHODS Participants were adult men and women ages 50 to 80 y (n = 74). In addition to the SF-36 questionnaire, fecal samples were collected in cryotubes, and 16S RNA gene sequencing was performed to characterize microbial features. Participants were classified into two groups according to SF-36 punctuation. Linear and logistic regression models were performed to assess the possible association between any bacterial bowl and SF-36 score. Receiver operating characteristics curves were fitted to define the relative diagnostic strength of different bacterial taxa for the correct determination of quality of life. RESULTS A positive relationship was established between SF-36 score and Actinobacteria (P = 0.0310; R = 0.2510) compared with Peptostreptococcaceae (P = 0.0259; R = -0.2589), which increased with decreasing quality of life. Logistic regressions models and receiver operating characteristics curves showed that the relative abundance of Actinobacteria and Peptostreptococcaceae may be useful to predict quality of life in a presenior population (area under the curve: 0.71). CONCLUSIONS Quality of life may be associated with the relative abundance of certain bacteria, especially Actinobacteria and Peptostreptococcaceae, which may have a specific effect on certain markers and health care, which is important to improve quality of life in older populations.
Collapse
|
22
|
Ørsted M, Yashiro E, Hoffmann AA, Kristensen TN. Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness. PLoS Genet 2022; 18:e1010206. [PMID: 35604942 PMCID: PMC9166449 DOI: 10.1371/journal.pgen.1010206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/03/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
It is becoming increasingly clear that microbial symbionts influence key aspects of their host’s fitness, and vice versa. This may fundamentally change our thinking about how microbes and hosts interact in influencing fitness and adaptation to changing environments. Here we explore how reductions in population size commonly experienced by threatened species influence microbiome diversity. Consequences of such reductions are normally interpreted in terms of a loss of genetic variation, increased inbreeding and associated inbreeding depression. However, fitness effects of population bottlenecks might also be mediated through microbiome diversity, such as through loss of functionally important microbes. Here we utilise 50 Drosophila melanogaster lines with different histories of population bottlenecks to explore these questions. The lines were phenotyped for egg-to-adult viability and their genomes sequenced to estimate genetic variation. The bacterial 16S rRNA gene was amplified in these lines to investigate microbial diversity. We found that 1) host population bottlenecks constrained microbiome richness and diversity, 2) core microbiomes of hosts with low genetic variation were constituted from subsets of microbiomes found in flies with higher genetic variation, 3) both microbiome diversity and host genetic variation contributed to host population fitness, 4) connectivity and robustness of bacterial networks was low in the inbred lines regardless of host genetic variation, 5) reduced microbial diversity was associated with weaker evolutionary responses of hosts in stressful environments, and 6) these effects were unrelated to Wolbachia density. These findings suggest that population bottlenecks reduce hologenomic variation (combined host and microbial genetic variation). Thus, while the current biodiversity crisis focuses on population sizes and genetic variation of eukaryotes, an additional focal point should be the microbial diversity carried by the eukaryotes, which in turn may influence host fitness and adaptability with consequences for the persistence of populations. It is becoming increasingly clear that organisms and the microbes that live on or in them–their microbiome–affect each other in profound ways that we are just beginning to understand. For instance, a diverse microbiome can help maintain metabolic functions or fight pathogens causing diseases. A disrupted microbiome may be especially critical for animals and plants that occur in low numbers because of threats from e.g. human exploitation or climate change, as they may already suffer from genetic challenges such as inbreeding and reduced evolutionary potential. The importance of such a reduction in population size, called a bottleneck, on the microbial diversity and the potential interactive effects on host health remains unexplored. Here we experimentally test these associations by investigating the microbiomes of 50 inbred or non-inbred populations of vinegar flies. We found that restricting the population size constrain the host’s genetic variation and simultaneously decreases the diversity of the microbiome that they harbor, and that both effects were detrimental to host fitness. The microbial communities in inbred host populations were less robust than in their non-inbred counterparts, suggesting that we should increasingly consider the microbiome diversity, which may ultimately influence the health and persistence of threatened species.
Collapse
Affiliation(s)
- Michael Ørsted
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- * E-mail:
| | - Erika Yashiro
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute for Plant Sciences, Department of Biology, University of Cologne, Cologne, Germany
| | - Ary A. Hoffmann
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Torsten Nygaard Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
23
|
Gutiérrez-Repiso C, Garrido-Sánchez L, Alcaide-Torres J, Cornejo-Pareja I, Ocaña-Wilhelmi L, García-Fuentes E, Moreno-Indias I, Tinahones FJ. Predictive Role of Gut Microbiota in Weight Loss Achievement after Bariatric Surgery. J Am Coll Surg 2022; 234:861-871. [PMID: 35426398 DOI: 10.1097/xcs.0000000000000145] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Bariatric surgery induces changes in gut microbiota that have been suggested to contribute to weight loss and metabolic improvement. However, whether preoperative gut microbiota composition could predict response to bariatric surgery has not yet been elucidated. STUDY DESIGN Seventy-six patients who underwent sleeve gastrectomy were classified according to the percentage of excess weight loss (%EWL) 1 year after surgery in the responder group: >50%EWL (n=50) and the nonresponder group: <50%EWL (n=26). Patients were evaluated before surgery, and 3 months and 1 year after surgery. Gut microbiota composition was analyzed before surgery (n=76) and 3 months after bariatric surgery (n=40). RESULTS Diversity analysis did not show differences between groups before surgery or 3 months after surgery. Before surgery, there were differences in the abundance of members belonging to Bacteroidetes and Firmicutes phyla (nonresponder group: enriched in Bacteroidaceae, Bacteroides, Bacteroides uniformis, Alistipes finegoldii, Alistipes alistipes, Dorea formicigenerans, and Ruminococcus gnavus. Responder group: enriched in Peptostreptococcaceae, Gemmiger, Gemiger formicilis, Barnesiella, Prevotellaceae, and Prevotella; linear discriminant analysis >2; p < 0.05). Prevotella-to-Bacteroides ratio was significantly lower in the nonresponder group compared to the responder group (p = 0.048). After surgery, the responder group showed an enrichment in taxa that have been shown to have beneficial effects on host metabolism. Before surgery, PICRUSt analysis showed an enrichment in pathways involved in the biosynthesis components of the O-antigen polysaccharideunits in lipopolysaccharides in the nonresponder group. CONCLUSIONS Preoperative gut microbiota could have an impact on bariatric surgery outcomes. Prevotella-to-Bacteroides ratio could be used as a predictive tool for weight loss trajectory. Early after surgery, patients who experienced successful weight loss showed an enrichment in taxa related to beneficial effects on host metabolism.
Collapse
Affiliation(s)
- Carolina Gutiérrez-Repiso
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Lourdes Garrido-Sánchez
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Alcaide-Torres
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Cornejo-Pareja
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Ocaña-Wilhelmi
- Unidad de Gestión Clínica de Cirugía General y del Aparato Digestivo (Ocaña-Wilhelmi), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología (Ocaña-Wilhelmi), Universidad de Málaga, Málaga, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo (García-Fuentes), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) (García-Fuentes), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- From the Unidad de Gestión Clínica de Endocrinología y Nutrición (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn) (Gutiérrez-Repiso, Garrido-Sánchez, Alcaide-Torres, Cornejo-Pareja, Moreno-Indias, Tinahones), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Medicina y Dermatología (Tinahones), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
24
|
Yeo LF, Lee SC, Palanisamy UD, Khalid BAK, Ayub Q, Lim SY, Lim YAL, Phipps ME. The Oral, Gut Microbiota and Cardiometabolic Health of Indigenous Orang Asli Communities. Front Cell Infect Microbiol 2022; 12:812345. [PMID: 35531342 PMCID: PMC9074829 DOI: 10.3389/fcimb.2022.812345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
The Orang Asli (OA) of Malaysia have been relatively understudied where little is known about their oral and gut microbiomes. As human health is closely intertwined with the human microbiome, this study first assessed the cardiometabolic health in four OA communities ranging from urban, rural to semi-nomadic hunter-gatherers. The urban Temuan suffered from poorer cardiometabolic health while rural OA communities were undergoing epidemiological transition. The oral microbiota of the OA were characterised by sequencing the V4 region of the 16S rRNA gene. The OA oral microbiota were unexpectedly homogenous, with comparably low alpha diversity across all four communities. The rural Jehai and Temiar PP oral microbiota were enriched for uncharacterised bacteria, exhibiting potential for discoveries. This finding also highlights the importance of including under-represented populations in large cohort studies. The Temuan oral microbiota were also elevated in opportunistic pathogens such as Corynebacterium, Prevotella, and Mogibacterium, suggesting possible oral dysbiosis in these urban settlers. The semi-nomadic Jehai gut microbiota had the highest alpha diversity, while urban Temuan exhibited the lowest. Rural OA gut microbiota were distinct from urban-like microbiota and were elevated in bacteria genera such as Prevotella 2, Prevotella 9, Lachnospiraceae ND3007, and Solobacterium. Urban Temuan microbiota were enriched in Odoribacter, Blautia, Parabacetroides, Bacteroides and Ruminococcacecae UCG-013. This study brings to light the current health trend of these indigenous people who have minimal access to healthcare and lays the groundwork for future, in-depth studies in these populations.
Collapse
Affiliation(s)
- Li-Fang Yeo
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Maude Elvira Phipps, ; Li-Fang Yeo,
| | - Soo Ching Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - BAK. Khalid
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Qasim Ayub
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- Monash University Malaysia Genomics Facility, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Shu Yong Lim
- Monash University Malaysia Genomics Facility, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yvonne AL. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Maude Elvira Phipps
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Maude Elvira Phipps, ; Li-Fang Yeo,
| |
Collapse
|
25
|
Abstract
The microbiota-gut-brain-axis (MGBA) is a bidirectional communication network between gut microbes and their host. Many environmental and host-related factors affect the gut microbiota. Dysbiosis is defined as compositional and functional alterations of the gut microbiota that contribute to the pathogenesis, progression and treatment responses to disease. Dysbiosis occurs when perturbations of microbiota composition and function exceed the ability of microbiota and its host to restore a symbiotic state. Dysbiosis leads to dysfunctional signaling of the MGBA, which regulates the development and the function of the host's immune, metabolic, and nervous systems. Dysbiosis-induced dysfunction of the MGBA is seen with aging and stroke, and is linked to the development of common stroke risk factors such as obesity, diabetes, and atherosclerosis. Changes in the gut microbiota are also seen in response to stroke, and may impair recovery after injury. This review will begin with an overview of the tools used to study the MGBA with a discussion on limitations and potential experimental confounders. Relevant MGBA components are introduced and summarized for a better understanding of age-related changes in MGBA signaling and its dysfunction after stroke. We will then focus on the relationship between the MGBA and aging, highlighting that all components of the MGBA undergo age-related alterations that can be influenced by or even driven by the gut microbiota. In the final section, the current clinical and preclinical evidence for the role of MGBA signaling in the development of stroke risk factors such as obesity, diabetes, hypertension, and frailty are summarized, as well as microbiota changes with stroke in experimental and clinical populations. We conclude by describing the current understanding of microbiota-based therapies for stroke including the use of pre-/pro-biotics and supplementations with bacterial metabolites. Ongoing progress in this new frontier of biomedical sciences will lead to an improved understanding of the MGBA's impact on human health and disease.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (R.M.B.)
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| |
Collapse
|
26
|
Pinart M, Dötsch A, Schlicht K, Laudes M, Bouwman J, Forslund SK, Pischon T, Nimptsch K. Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients 2021; 14:nu14010012. [PMID: 35010887 PMCID: PMC8746372 DOI: 10.3390/nu14010012] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Whether the gut microbiome in obesity is characterized by lower diversity and altered composition at the phylum or genus level may be more accurately investigated using high-throughput sequencing technologies. We conducted a systematic review in PubMed and Embase including 32 cross-sectional studies assessing the gut microbiome composition by high-throughput sequencing in obese and non-obese adults. A significantly lower alpha diversity (Shannon index) in obese versus non-obese adults was observed in nine out of 22 studies, and meta-analysis of seven studies revealed a non-significant mean difference (−0.06, 95% CI −0.24, 0.12, I2 = 81%). At the phylum level, significantly more Firmicutes and fewer Bacteroidetes in obese versus non-obese adults were observed in six out of seventeen, and in four out of eighteen studies, respectively. Meta-analyses of six studies revealed significantly higher Firmicutes (5.50, 95% 0.27, 10.73, I2 = 81%) and non-significantly lower Bacteroidetes (−4.79, 95% CI −10.77, 1.20, I2 = 86%). At the genus level, lower relative proportions of Bifidobacterium and Eggerthella and higher Acidaminococcus, Anaerococcus, Catenibacterium, Dialister, Dorea, Escherichia-Shigella, Eubacterium, Fusobacterium, Megasphera, Prevotella, Roseburia, Streptococcus, and Sutterella were found in obese versus non-obese adults. Although a proportion of studies found lower diversity and differences in gut microbiome composition in obese versus non-obese adults, the observed heterogeneity across studies precludes clear answers.
Collapse
Affiliation(s)
- Mariona Pinart
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)—Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine 1, Kiel University, 24118 Kiel, Germany
| | - Jildau Bouwman
- Microbiology and Systems Biology Group, Toegepast Natuurwetenschappelijk Onderzoek (TNO), Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- Host-Microbiome Factors in Cardiovascular Disease Lab, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Biobank Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Correspondence: ; Tel.: +49-30-9046-4573
| |
Collapse
|
27
|
Allali I, Abotsi RE, Tow LA, Thabane L, Zar HJ, Mulder NM, Nicol MP. Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research. MICROBIOME 2021; 9:241. [PMID: 34911583 PMCID: PMC8672519 DOI: 10.1186/s40168-021-01195-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/14/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND The role of the human microbiome in health and disease is an emerging and important area of research; however, there is a concern that African populations are under-represented in human microbiome studies. We, therefore, conducted a systematic survey of African human microbiome studies to provide an overview and identify research gaps. Our secondary objectives were: (i) to determine the number of peer-reviewed publications; (ii) to identify the extent to which the researches focused on diseases identified by the World Health Organization [WHO] State of Health in the African Region Report as being the leading causes of morbidity and mortality in 2018; (iii) to describe the extent and pattern of collaborations between researchers in Africa and the rest of the world; and (iv) to identify leadership and funders of the studies. METHODOLOGY We systematically searched Medline via PubMed, Scopus, CINAHL, Academic Search Premier, Africa-Wide Information through EBSCOhost, and Web of Science from inception through to 1st April 2020. We included studies that characterized samples from African populations using next-generation sequencing approaches. Two reviewers independently conducted the literature search, title and abstract, and full-text screening, as well as data extraction. RESULTS We included 168 studies out of 5515 records retrieved. Most studies were published in PLoS One (13%; 22/168), and samples were collected from 33 of the 54 African countries. The country where most studies were conducted was South Africa (27/168), followed by Kenya (23/168) and Uganda (18/168). 26.8% (45/168) focused on diseases of significant public health concern in Africa. Collaboration between scientists from the United States of America and Africa was most common (96/168). The first and/or last authors of 79.8% of studies were not affiliated with institutions in Africa. Major funders were the United States of America National Institutes of Health (45.2%; 76/168), Bill and Melinda Gates Foundation (17.8%; 30/168), and the European Union (11.9%; 20/168). CONCLUSIONS There are significant gaps in microbiome research in Africa, especially those focusing on diseases of public health importance. There is a need for local leadership, capacity building, intra-continental collaboration, and national government investment in microbiome research within Africa. Video Abstract.
Collapse
Affiliation(s)
- Imane Allali
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Centre of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Regina E Abotsi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Lemese Ah Tow
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Biostatistics Unit, Father Sean O'Sullivan Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Departments of Paediatrics and Anaesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicine, St Joseph's Healthcare, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Centre for Evidence-based Health Care, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Nicola M Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mark P Nicol
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- School of Biomedical Sciences, University of Western Australia, M504, Perth, WA, 6009, Australia.
| |
Collapse
|
28
|
Ganesan SM, Vazana S, Stuhr S. Waistline to the gumline: Relationship between obesity and periodontal disease-biological and management considerations. Periodontol 2000 2021; 87:299-314. [PMID: 34463987 DOI: 10.1111/prd.12390] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obesity is a pandemic and periodontitis is the sixth most prevalent disease in the world. These two noncommunicable diseases share several risk determinants. Epidemiologic evidence from the last 2 decades has established an increase in periodontitis prevalence in obese and overweight individuals. Biologic mechanisms potentially linking obesity and periodontal disease are adiposity-associated hyperinflammation, microbial dysbiosis, altered immune response, specific genetic polymorphisms, and increased stress. However, because of the lack of longitudinal interventional studies and randomized clinical trials, there is insufficient evidence to determine the cause-effect relationship between these two diseases. Despite this, the negative impact of obesity on oral health is well established. Several logistic and physiologic complications are associated with treating obese patients in a dental setting, and it requires an interprofessional team approach. Oral health care professionals need to be aware of the specific management considerations while rendering for this cohort, including modified practice facility and equipment, tailored supportive periodontal therapy, and heightened precaution during conscious sedation and surgical procedures.
Collapse
Affiliation(s)
- Sukirth M Ganesan
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - Stephanie Vazana
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| | - Sandra Stuhr
- Department of Periodontics, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, USA
| |
Collapse
|
29
|
Schaan AP, Sarquis D, Cavalcante GC, Magalhães L, Sacuena ERP, Costa J, Fonseca D, Mello VJ, Guerreiro JF, Ribeiro-Dos-Santos Â. The structure of Brazilian Amazonian gut microbiomes in the process of urbanisation. NPJ Biofilms Microbiomes 2021; 7:65. [PMID: 34354062 PMCID: PMC8342711 DOI: 10.1038/s41522-021-00237-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Shifts in subsistence strategy among Native American people of the Amazon may be the cause of typically western diseases previously linked to modifications of gut microbial communities. Here, we used 16S ribosomal RNA sequencing to characterise the gut microbiome of 114 rural individuals, namely Xikrin, Suruí and Tupaiú, and urban individuals from Belém city, in the Brazilian Amazon. Our findings show the degree of potential urbanisation occurring in the gut microbiome of rural Amazonian communities characterised by the gradual loss and substitution of taxa associated with rural lifestyles, such as Treponema. Comparisons to worldwide populations indicated that Native American groups are similar to South American agricultural societies and urban groups are comparable to African urban and semi-urban populations. The transitioning profile observed among traditional populations is concerning in light of increasingly urban lifestyles. Lastly, we propose the term “tropical urban” to classify the microbiome of urban populations living in tropical zones.
Collapse
Affiliation(s)
- Ana Paula Schaan
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Dionison Sarquis
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Giovanna C Cavalcante
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Leandro Magalhães
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Eliene R P Sacuena
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - John Costa
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Dennyson Fonseca
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Vanessa J Mello
- Laboratório de Análises Clínicas, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - João F Guerreiro
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Programa de Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém, Brazil. .,Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.
| |
Collapse
|
30
|
Lakshmanan AP, Shatat IF, Zaidan S, Jacob S, Bangarusamy DK, Al-Abduljabbar S, Al-Khalaf F, Petroviski G, Terranegra A. Bifidobacterium reduction is associated with high blood pressure in children with type 1 diabetes mellitus. Biomed Pharmacother 2021; 140:111736. [PMID: 34034069 DOI: 10.1016/j.biopha.2021.111736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Children with Type 1 diabetes mellitus (T1DM) have an elevated risk of abnormal blood pressure (BP) measurements and patterns. Both hypertension and T1DM are well-known risk factors for cardiovascular disease and kidney failure. The human microbiome has been linked to both diabetes and hypertension, but the relationship between the gut microbiome and BP in children with T1DM is not well-understood. In this cross-sectional study, we examined the relationship between resting office BP and gut microbiota composition, diversity, and richness in children with T1DM and healthy controls. We recruited 29 pediatric subjects and divided them into three groups: healthy controls (HC, n = 5), T1DM with normal BP (T1DM-Normo, n = 17), and T1DM with elevated BP (T1DM-HBP, n = 7). We measured the BP, dietary and clinical parameters for each subject. We collected fecal samples to perform the 16s rDNA sequencing and to measure the short-chain fatty acids (SCFAs) level. The microbiome downstream analysis included the relative abundance of microbiota, alpha and beta diversity, microbial markers using Linear Discriminant effect size analysis (LEfSe), potential gut microbial metabolic pathways using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and metabolic pathways validation using Statistical Inference of Associations between Microbial Communities And host phenotype (SIAMCAT) machine learning toolbox. Our study results showed that T1DM-HBP group had distinct gut microbial composition (at multiple taxonomic levels) and reduced diversity (richness and abundance) compared with T1DM-Normo and HC groups. Children with T1DM-HBP showed a significant reduction of Bifidobacterium levels (especially B. adolescentis, B. bifidum, and B. longum) compared to the T1DM-Normo group. We also observed unique gut-microbial metabolic pathways, such as elevated lipopolysaccharide synthesis and glutathione metabolism in children with T1DM-HBP compared to T1DM-Normo children. We can conclude that the reduction in the abundance of genus Bifidobacterium could play a significant role in elevating the BP in pediatric T1DM subjects. More studies are needed to corroborate our findings and further explore the potential contributing mechanisms we describe.
Collapse
Affiliation(s)
| | - Ibrahim F Shatat
- Pediatric Nephrology and Hypertension, Sidra Medicine, HB. 7A. 106A, P.O. Box 26999, Doha, Qatar; Weill Cornell College of Medicine-Qatar, Ar-Rayyan, Doha, Qatar; Medical University of South Carolina, Charleston, SC, USA
| | - Sara Zaidan
- Research Department, Sidra Medicine, OPC, P.O. Box 26999, Doha, Qatar
| | - Shana Jacob
- Research Department, Sidra Medicine, OPC, P.O. Box 26999, Doha, Qatar
| | | | | | - Fawziya Al-Khalaf
- Pediatric Endocrinology, Sidra Medicine, OPC, P.O. Box 26999, Doha, Qatar
| | - Goran Petroviski
- Pediatric Endocrinology, Sidra Medicine, OPC, P.O. Box 26999, Doha, Qatar
| | | |
Collapse
|
31
|
Jahnke JR, Roach J, Azcarate-Peril MA, Thompson AL. Maternal precarity and HPA axis functioning shape infant gut microbiota and HPA axis development in humans. PLoS One 2021; 16:e0251782. [PMID: 34015045 PMCID: PMC8136730 DOI: 10.1371/journal.pone.0251782] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Early life exposure to adverse environments, and maternal stress in particular, has been shown to increase risk for metabolic diseases and neurobehavioral disorders. While many studies have examined the hypothalamic-pituitary-adrenal axis (HPA axis) as the primary mechanism behind these relationships, emerging research on the brain-gut axis suggests that the microbiome may play a role. In this study, we tested the relationships among maternal precarity and HPA axis dysregulation during the peripartum period, infant gut microbiome composition, and infant HPA axis functioning. METHODS Data come from 25 mother-infant dyads in the Galápagos, Ecuador. Women completed surveys on precarity measures (food insecurity, low social support, depression, and stress) and gave salivary cortisol samples during and after pregnancy. Infant salivary cortisol and stool were collected in the postpartum. Statistical significance of differences in microbial diversity and relative abundance were assessed with respect to adjusted linear regression models. RESULTS Maternal precarity was associated with lower diversity and higher relative abundance of Enterobacteriaceae and Streptococcaceae and a lower relative abundance of Bifidobacterium and Lachnospiraceae. These patterns of colonization for Enterobacteriaceae and Bifidobacterium mirrored those found in infants with HPA axis dysregulation. Maternal HPA axis dysregulation during pregnancy was also associated with a greater relative abundance of Veillonella. CONCLUSIONS Overall, exposures to precarity and HPA axis dysregulation were associated with an increase in groups that include potentially pathogenic bacteria, including Enterobacteriaceae, Streptococcaceae, and Veillonella, and a decrease in potentially protective bacteria, including Bifidobacterium and Lachnospiraceae, as well as a decrease in overall diversity.
Collapse
Affiliation(s)
- Johanna R. Jahnke
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey Roach
- Research Computing Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - M. Andrea Azcarate-Peril
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amanda L. Thompson
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
32
|
Huang Y, Wang Z, Ma H, Ji S, Chen Z, Cui Z, Chen J, Tang S. Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Front Cell Infect Microbiol 2021; 11:646348. [PMID: 33816351 PMCID: PMC8017229 DOI: 10.3389/fcimb.2021.646348] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is commonly associated with altered gut bacteria. However, whether the microbial dysbiosis that exists in human diabetic patients with or without retinopathy is different remains largely unknown. Here, we collected clinical information and fecal samples from 75 participants, including 25 diabetic patients without retinopathy (DM), 25 diabetic patients with retinopathy (DR), and 25 healthy controls (HC). The gut microbial composition in the three groups was analyzed using 16S ribosomal RNA (rRNA) gene sequencing. Microbial structure and composition differed in the three groups. The α and β diversities in both the DM and DR groups were reduced compared with those in the HC group. Blautia was the most abundant genus, especially in the DM group. In addition, increased levels of Bifidobacterium and Lactobacillus and decreased levels of Escherichia-Shigella, Faecalibacterium, Eubacterium_hallii_group and Clostridium genera were observed in the DM and DR groups compared with the HC group. Furthermore, a biomarker set of 25 bacterial families, which could distinguish patients in the DR group from those in the DM and HC groups was identified, with the area under the curve values ranging from 0.69 to 0.85. Of note, Pasteurellaceae, which was increased in DM and decreased in DR compared with HC, generated a high AUC (0.74) as an individual predictive biomarker. Moreover, 14 family biomarkers were associated with fasting blood glucose levels or diabetes, with most of them being negatively correlated. In summary, our study establishes compositional alterations of gut microbiota in DM and DR, suggesting the potential use of gut microbiota as a non-invasive biomarker for clinical and differential diagnosis, as well as identifying potential therapeutic targets of diabetic retinopathy.
Collapse
Affiliation(s)
- Yinhua Huang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | - Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China
| | | | | | | | | | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.,Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, China.,Aier Eye Institute, Changsha, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Oduaran OH, Tamburini FB, Sahibdeen V, Brewster R, Gómez-Olivé FX, Kahn K, Norris SA, Tollman SM, Twine R, Wade AN, Wagner RG, Lombard Z, Bhatt AS, Hazelhurst S. Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. BMC Microbiol 2020; 20:330. [PMID: 33129264 PMCID: PMC7603784 DOI: 10.1186/s12866-020-02017-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Comparisons of traditional hunter-gatherers and pre-agricultural communities in Africa with urban and suburban Western North American and European cohorts have clearly shown that diet, lifestyle and environment are associated with gut microbiome composition. Yet, little is known about the gut microbiome composition of most communities in the very diverse African continent. South Africa comprises a richly diverse ethnolinguistic population that is experiencing an ongoing epidemiological transition and concurrent spike in the prevalence of obesity, largely attributed to a shift towards more Westernized diets and increasingly inactive lifestyle practices. To characterize the microbiome of African adults living in more mainstream lifestyle settings and investigate associations between the microbiome and obesity, we conducted a pilot study, designed collaboratively with community leaders, in two South African cohorts representative of urban and transitioning rural populations. As the rate of overweight and obesity is particularly high in women, we collected single time-point stool samples from 170 HIV-negative women (51 at Soweto; 119 at Bushbuckridge), performed 16S rRNA gene sequencing on these samples and compared the data to concurrently collected anthropometric data. RESULTS We found the overall gut microbiome of our cohorts to be reflective of their ongoing epidemiological transition. Specifically, we find that geographical location was more important for sample clustering than lean/obese status and observed a relatively higher abundance of the Melainabacteria, Vampirovibrio, a predatory bacterium, in Bushbuckridge. Also, Prevotella, despite its generally high prevalence in the cohorts, showed an association with obesity. In comparisons with benchmarked datasets representative of non-Western populations, relatively higher abundance values were observed in our dataset for Barnesiella (log2fold change (FC) = 4.5), Alistipes (log2FC = 3.9), Bacteroides (log2FC = 4.2), Parabacteroides (log2FC = 3.1) and Treponema (log2FC = 1.6), with the exception of Prevotella (log2FC = - 4.7). CONCLUSIONS Altogether, this work identifies putative microbial features associated with host health in a historically understudied community undergoing an epidemiological transition. Furthermore, we note the crucial role of community engagement to the success of a study in an African setting, the importance of more population-specific studies to inform targeted interventions as well as present a basic foundation for future research.
Collapse
Affiliation(s)
- O. H. Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - F. B. Tamburini
- Department of Genetics, Stanford University, Stanford, CA USA
| | - V. Sahibdeen
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R. Brewster
- School of Medicine, Stanford University, Stanford, CA USA
| | - F. X. Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, East Legon, Accra, Ghana
| | - K. Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, East Legon, Accra, Ghana
| | - S. A. Norris
- SAMRC Developmental Pathways for Health Research Unit, Department of Paediatrics, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, UK
| | - S. M. Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, East Legon, Accra, Ghana
| | - R. Twine
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A. N. Wade
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R. G. Wagner
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- INDEPTH Network, East Legon, Accra, Ghana
| | - Z. Lombard
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - A. S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA USA
- School of Medicine, Stanford University, Stanford, CA USA
- Department of Medicine (Hematology), Stanford University, Stanford, CA USA
| | - S. Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
34
|
Troll M, Brandmaier S, Reitmeier S, Adam J, Sharma S, Sommer A, Bind MA, Neuhaus K, Clavel T, Adamski J, Haller D, Peters A, Grallert H. Investigation of Adiposity Measures and Operational Taxonomic unit (OTU) Data Transformation Procedures in Stool Samples from a German Cohort Study Using Machine Learning Algorithms. Microorganisms 2020; 8:E547. [PMID: 32290101 PMCID: PMC7232268 DOI: 10.3390/microorganisms8040547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/14/2023] Open
Abstract
The analysis of the gut microbiome with respect to health care prevention and diagnostic purposes is increasingly the focus of current research. We analyzed around 2000 stool samples from the KORA (Cooperative Health Research in the Region of Augsburg) cohort using high-throughput 16S rRNA gene amplicon sequencing representing a total microbial diversity of 2089 operational taxonomic units (OTUs). We evaluated the combination of three different components to assess the reflection of obesity related to microbiota profiles: (i) four prediction methods (i.e., partial least squares (PLS), support vector machine regression (SVMReg), random forest (RF), and M5Rules); (ii) five OTU data transformation approaches (i.e., no transformation, relative abundance without and with log-transformation, as well as centered and isometric log-ratio transformations); and (iii) predictions from nine measurements of obesity (i.e., body mass index, three measures of body shape, and five measures of body composition). Our results showed a substantial impact of all three components. The applications of SVMReg and PLS in combination with logarithmic data transformations resulted in considerably predictive models for waist circumference-related endpoints. These combinations were at best able to explain almost 40% of the variance in obesity measurements based on stool microbiota data (i.e., OTUs) only. A reduced loss in predictive performance was seen after sex-stratification in waist-height ratio compared to other waist-related measurements. Moreover, our analysis showed that the contribution of OTUs less prevalent and abundant is minor concerning the predictive power of our models.
Collapse
Affiliation(s)
- Martina Troll
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.B.); (J.A.); (S.S.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.S.); (A.P.)
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.B.); (J.A.); (S.S.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.S.); (A.P.)
| | - Sandra Reitmeier
- ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (S.R.); (K.N.); (T.C.); (D.H.)
- Chair of Nutrition and Immunology, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Jonathan Adam
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.B.); (J.A.); (S.S.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.S.); (A.P.)
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.B.); (J.A.); (S.S.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.S.); (A.P.)
| | - Alice Sommer
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.S.); (A.P.)
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138-2901, USA;
| | - Marie-Abèle Bind
- Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138-2901, USA;
| | - Klaus Neuhaus
- ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (S.R.); (K.N.); (T.C.); (D.H.)
| | - Thomas Clavel
- ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (S.R.); (K.N.); (T.C.); (D.H.)
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, 52074 Aachen, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Chair of Experimental Genetics, Technical University of Munich, 85350 Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Dirk Haller
- ZIEL Institute for Food & Health, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (S.R.); (K.N.); (T.C.); (D.H.)
- Chair of Nutrition and Immunology, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.S.); (A.P.)
- Chair of Epidemiology, Faculty of Medicine, Ludwig-Maximilians-University München, 81377 Munich, Germany
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (S.B.); (J.A.); (S.S.)
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (A.S.); (A.P.)
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|