1
|
Schwerdtfeger LA, Montini F, Lanser TB, Ekwudo MN, Zurawski J, Tauhid S, Glanz BI, Chu R, Bakshi R, Chitnis T, Cox LM, Weiner HL. Gut microbiota and metabolites are linked to disease progression in multiple sclerosis. Cell Rep Med 2025; 6:102055. [PMID: 40185103 PMCID: PMC12047500 DOI: 10.1016/j.xcrm.2025.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/02/2024] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Progressive multiple sclerosis (MS) is a neurological disease with limited understanding of the biology associated with transition from relapsing to progressive disease. Intestinal microbes and metabolites are altered in MS, but relation to disease progression is largely unknown. We investigate microbiota and metabolites in subjects with stable MS, those who worsened, and in those with relapsing MS who became progressive over 2 years. We find that Eubacterium hallii, Butyricoccaceae, Blautia, and other short-chain fatty-acid-producing microbes have beneficial associations with worsening of disability, 3T magnetic resonance imaging (MRI) measures, cognition, and quality of life, while Alistipes is detrimentally associated. Global metabolomics identified serum and stool metabolites that are altered in progressive MS and in relapsing subjects who transitioned to progressive disease. Most fecal metabolites associated with disease progression are decreased, suggesting a deficiency of protective factors in the gut. Using a unique MS cohort, our findings identify gut microbiome and metabolite pathways influencing progressive MS.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Federico Montini
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Toby B Lanser
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Millicent N Ekwudo
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan Zurawski
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shahamat Tauhid
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bonnie I Glanz
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Renxin Chu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Rohit Bakshi
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Boyanova L, Gergova R, Markovska R. Coculture systems to study interactions between anaerobic bacteria and intestinal epithelium. Anaerobe 2025; 92:102949. [PMID: 40010487 DOI: 10.1016/j.anaerobe.2025.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Coculture systems (CCSs) are experimental tools used to study the interactions of anaerobic bacteria among themselves and the gut epithelial cells under conditions simulating the human gut, unlike those in animal models. Although the studies on animal models are useful in determining the relationship between the causative agents of infections and human infections, they have disadvantages, such as ethical issues, in addition to the differences in the microbiota of the animal and humans. Therefore, the results obtained using animal models cannot be directly extrapolated to humans. CCSs can more completely reflect in vivo gut homeostasis and contribute to better understanding of the interplay between the intestinal cells and anaerobes, prevalent among the gut bacteria. Moreover, they provide new insights on the pathogenesis of infections and aid in assessing the usefulness of new probiotics and antibacterials. Therefore, CCSs, including the gut-on-a-chip models, can significantly improve microbiota-based therapy. Moreover, they can also be used to detect microbiota-derived metabolites such as those with mutagenic properties. The aim of this review was to explore selected CCS models of anaerobes with intestinal epithelium and their application in investigating intestinal homeostasis. The focus was to highlight the application of different CCSs and important data obtained from their implementation.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria.
| | - Raina Gergova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| |
Collapse
|
3
|
Xie S, Ma J, Lu Z. Bacteroides thetaiotaomicron enhances oxidative stress tolerance through rhamnose-dependent mechanisms. Front Microbiol 2024; 15:1505218. [PMID: 39723138 PMCID: PMC11669328 DOI: 10.3389/fmicb.2024.1505218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
This study probes into the unique metabolic responses of Bacteroides thetaiotaomicron (B. thetaiotaomicron), a key player in the gut microbiota, when it metabolizes rhamnose rather than typical carbohydrates. Known for its predominant role in the Bacteroidetes phylum, B. thetaiotaomicron efficiently breaks down poly- and mono-saccharides into beneficial short-chain fatty acids (SCFAs), crucial for both host health and microbial ecology balance. Our research focused on how this bacterium's SCFA production differ when utilizing various monosaccharides, with an emphasis on the oxidative stress responses triggered by rhamnose consumption. Notably, rhamnose use results in unique metabolic byproducts, including substantial quantities of 1,2-propanediol, which differs significantly from those produced during glucose metabolism. Our research reveals that rhamnose consumption is associated with a reduction in reactive oxygen species (ROS), signifying improved resistance to oxidative stress compared to other sugars. This effect is attributed to specific gene expressions within the rhamnose metabolic pathway. Notably, overexpression of the rhamnose metabolism regulator RhaR in B. thetaiotaomicron enhances its survival in oxygen-rich conditions by reducing hydrogen peroxide production. This reduction is linked to decreased expression of pyruvate:ferredoxin oxidoreductase (PFOR). In contrast, experiments with a rhaR-deficient strain demonstrated that the absence of RhaR causes B. thetaiotaomicron cells growing on rhamnose to produce ROS at rates comparable to cells grown on glucose, therefore, losing their advantage in oxidative resistance. Concurrently, the expression of PFOR is no longer suppressed. These results indicate that when B. thetaiotaomicron is cultured in a rhamnose-based medium, RhaR can restrain the expression of PFOR. Although PFOR is not a primary contributor to intracellular ROS production, its sufficient inhibition does reduce ROS levels to certain extent, consequently improving the bacterium's resistance to oxidative stress. It highlights the metabolic flexibility and robustness of microbes in handling diverse metabolic challenges and oxidative stress in gut niches through the consumption of alternative carbohydrates.
Collapse
Affiliation(s)
- Shuo Xie
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Junze Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Zheng Lu
- Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, School of Life and Health Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
4
|
Alnakhli LA, Goldrick M, Lord E, Roberts IS. The PrfA regulon of Listeria monocytogenes is induced by growth in low-oxygen microaerophilic conditions. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001516. [PMID: 39560979 PMCID: PMC11575702 DOI: 10.1099/mic.0.001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Listeria monocytogenes is a food-borne pathogen that must adapt to several environments both inside and outside the host. One such environment is the microaerophilic conditions encountered in the host intestine proximal to the mucosal surface. The aim of this study was to investigate the expression of the PrfA regulon in response to microaerophilic growth conditions in the presence of either glucose or glycerol as a carbon source using four transcriptional (Phly, PactA, P/prfA and P/plcA) gene fusions. Further, RNAseq analysis was used to identify global changes in gene expression during growth in microaerophilic conditions. Following microaerophilic growth, there was a PrfA-dependent increase in transcription from the Phly, PactA and P/plcA promoters, indicating that microaerophilic growth induces the PrfA regulon regardless of the carbon source with increased expression of the PrfA, LLO and ActA proteins. A sigB mutation had no effect on the induction of the PrfA regulon under microaerophilic conditions when glucose was used as a carbon source. In contrast, when glycerol was the carbon source, a sigB mutation increased expression from the Phly and PactA promoters regardless of the level of oxygen. The RNAseq analysis showed that 273 genes were specifically regulated by microaerophilic conditions either up or down including the PrfA regulon virulence factors. Overall, these data indicated that L. monocytogenes PrfA regulon is highly responsive to the low-oxygen conditions likely to be encountered in the small intestine and that SigB has an input into the regulation of the PrfA regulon when glycerol is the sole carbon source.
Collapse
Affiliation(s)
- Lamis A. Alnakhli
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Ian S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
5
|
Wang T, Wang RX, Colgan SP. Physiologic hypoxia in the intestinal mucosa: a central role for short-chain fatty acids. Am J Physiol Cell Physiol 2024; 327:C1087-C1093. [PMID: 39159391 PMCID: PMC11482044 DOI: 10.1152/ajpcell.00472.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
The intestinal mucosa is a dynamic surface that facilitates interactions between the host and an outside world that includes trillions of microbes, collectively termed the microbiota. This fine balance is regulated by an energetically demanding physical and biochemical barrier that is formed by the intestinal epithelial cells. In addition, this homeostasis exists at an interface between the anaerobic colonic lumen and a highly oxygenated, vascularized lamina propria. The resultant oxygen gradient within the intestine establishes "physiologic hypoxia" as a central metabolic feature of the mucosa. Although oxygen is vital for energy production to meet cellular metabolism needs, the availability of oxygen has far-reaching influences beyond just energy provision. Recent studies have shown that the intestinal mucosa has purposefully adapted to use differential oxygen levels largely through the presence of short-chain fatty acids (SCFAs), particularly butyrate (BA). Intestinal epithelial cells use butyrate for a multitude of functions that promote mucosal homeostasis. In this review, we explore how the physiologic hypoxia profile interfaces with SCFAs to benefit host mucosal tissues.
Collapse
Affiliation(s)
- Timothy Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Healthcare Studies, University of Texas Dallas, Richardson, Texas, United States
| | - Ruth X Wang
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Dermatology, University of California San Diego, San Diego, California, United States
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| |
Collapse
|
6
|
Brasino DSK, Speese SD, Schilling K, Schutt CE, Barton MC. A Linkable, Polycarbonate Gut Microbiome-Distal Tumor Chip Platform for Interrogating Cancer Promoting Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309220. [PMID: 39023197 PMCID: PMC11425222 DOI: 10.1002/advs.202309220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiome composition is tied to diseases ranging from arthritis to cancer to depression. However, mechanisms of action are poorly understood, limiting development of relevant therapeutics. Organ-on-chip platforms, which model minimal functional units of tissues and can tightly control communication between them, are ideal platforms to study these relationships. Many gut microbiome models are published to date but devices are typically fabricated using oxygen permeable polydimethylsiloxane, requiring interventions to support anaerobic bacteria. To address this challenge, a platform is developed where the chips are fabricated entirely from gas-impermeable polycarbonate without tapes or gaskets. These chips replicate polarized villus-like structures of the native tissue. Further, they enable co-cultures of commensal anaerobic bacteria Blautia coccoides on the surface of gut epithelia for two days within a standard incubator. Another complication of commonly used materials in organ-on-chip devices is high ad-/absorption, limiting applications in high-resolution microscopy and biomolecule interaction studies. For future communication studies between gut microbiota and distal tumors, an additional polycarbonate chip design is developed to support hydrogel-embedded tissue culture. These chips enable high-resolution microscopy with all relevant processing done on-chip. Designed for facile linking, this platform will make a variety of mechanistic studies possible.
Collapse
Affiliation(s)
- Danielle S K Brasino
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Sean D Speese
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Kevin Schilling
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Carolyn E Schutt
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Michelle C Barton
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
7
|
Beneke V, Grieger KM, Hartwig C, Müller J, Sohn K, Blaudszun AR, Hilger N, Schaudien D, Fricke S, Braun A, Sewald K, Hesse C. Homeostatic T helper 17 cell responses triggered by complex microbiota are maintained in ex vivo intestinal tissue slices. Eur J Immunol 2024; 54:e2350946. [PMID: 38763899 DOI: 10.1002/eji.202350946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
Segmented filamentous bacteria (SFB) are members of the commensal intestinal microbiome. They are known to contribute to the postnatal maturation of the gut immune system, but also to augment inflammatory conditions in chronic diseases such as Crohn's disease. Living primary tissue slices are ultrathin multicellular sections of the intestine and provide a unique opportunity to analyze tissue-specific immune responses ex vivo. This study aimed to investigate whether supplementation of the gut flora with SFB promotes T helper 17 (Th17) cell responses in primary intestinal tissue slices ex vivo. Primary tissue slices were prepared from the small intestine of healthy Taconic mice with SFB-positive and SFB-negative microbiomes and stimulated with anti-CD3/CD28 or Concanavalin A. SFB-positive and -negative mice exhibited distinct microbiome compositions and Th17 cell frequencies in the intestine and complex microbiota including SFB induced up to 15-fold increase in Th17 cell-associated mediators, serum amyloid A (SAA), and immunoglobulin A (IgA) responses ex vivo. This phenotype could be transmitted by co-housing of mice. Our findings highlight that changes in the gut microbiome can be observed in primary intestinal tissue slices ex vivo. This makes the system very attractive for disease modeling and assessment of new therapies.
Collapse
Affiliation(s)
- Valerie Beneke
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
| | - Klaudia M Grieger
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
| | - Christina Hartwig
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Jan Müller
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
- Center of Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Member of the Vienna Biocenter PhD Program, University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Kai Sohn
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of In-vitro Diagnostics, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - André-René Blaudszun
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Nadja Hilger
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dirk Schaudien
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Stephan Fricke
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Department of Cell and Gene Therapy Development, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Armin Braun
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
- Institute for Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
| | - Christina Hesse
- Division of Preclinical Pharmacology and Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network, Hannover, Germany
- Member of the Fraunhofer Excellence Cluster of Immune Mediated Diseases (CIMD), Germany
| |
Collapse
|
8
|
Ermann Lundberg L, Pallabi Mishra P, Liu P, Forsberg MM, Sverremark-Ekström E, Grompone G, Håkansson S, Linninge C, Roos S. Bifidobacterium longum subsp. longum BG-L47 boosts growth and activity of Limosilactobacillus reuteri DSM 17938 and its extracellular membrane vesicles. Appl Environ Microbiol 2024; 90:e0024724. [PMID: 38888338 PMCID: PMC11267924 DOI: 10.1128/aem.00247-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The aim of this study was to identify a Bifidobacterium strain that improves the performance of Limosilactobacillus reuteri DSM 17938. Initial tests showed that Bifidobacterium longum subsp. longum strains boosted the growth of DSM 17938 during in vivo-like conditions. Further characterization revealed that one of the strains, BG-L47, had better bile and acid tolerance compared to BG-L48, as well as mucus adhesion compared to both BG-L48 and the control strain BB536. BG-L47 also had the capacity to metabolize a broad range of carbohydrates and sugar alcohols. Mapping of glycoside hydrolase (GH) genes of BG-L47 and BB536 revealed many GHs associated with plant-fiber utilization. However, BG-L47 had a broader phenotypic fiber utilization capacity. In addition, B. longum subsp. longum cells boosted the bioactivity of extracellular membrane vesicles (MV) produced by L. reuteri DSM 17938 during co-cultivation. Secreted 5'-nucleotidase (5'NT), an enzyme that converts AMP into the signal molecule adenosine, was increased in MV boosted by BG-L47. The MV exerted an improved antagonistic effect on the pain receptor transient receptor potential vanilloid 1 (TRPV1) and increased the expression of the immune development markers IL-6 and IL-1ß in a peripheral blood mononuclear cell (PBMC) model. Finally, the safety of BG-L47 was evaluated both by genome safety assessment and in a human safety study. Microbiota analysis showed that the treatment did not induce significant changes in the composition. In conclusion, B. longum subsp. longum BG-L47 has favorable physiological properties, can boost the in vitro activity of L. reuteri DSM 17938, and is safe for consumption, making it a candidate for further evaluation in probiotic studies. IMPORTANCE By using probiotics that contain a combination of strains with synergistic properties, the likelihood of achieving beneficial interactions with the host can increase. In this study, we first performed a broad screening of Bifidobacterium longum subsp. longum strains in terms of synergistic potential and physiological properties. We identified a superior strain, BG-L47, with favorable characteristics and potential to boost the activity of the known probiotic strain Limosilactobacillus reuteri DSM 17938. Furthermore, we demonstrated that BG-L47 is safe for consumption in a human randomized clinical study and by performing a genome safety assessment. This work illustrates that bacteria-bacteria interactions differ at the strain level and further provides a strategy for finding and selecting companion strains of probiotics.
Collapse
Affiliation(s)
- Ludwig Ermann Lundberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, Stockholm, Sweden
| | - Punya Pallabi Mishra
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Manuel Mata Forsberg
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eva Sverremark-Ekström
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Sebastian Håkansson
- BioGaia, Stockholm, Sweden
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Caroline Linninge
- BioGaia, Stockholm, Sweden
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, Stockholm, Sweden
| |
Collapse
|
9
|
Dmytriv TR, Storey KB, Lushchak VI. Intestinal barrier permeability: the influence of gut microbiota, nutrition, and exercise. Front Physiol 2024; 15:1380713. [PMID: 39040079 PMCID: PMC11260943 DOI: 10.3389/fphys.2024.1380713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
The intestinal wall is a selectively permeable barrier between the content of the intestinal lumen and the internal environment of the body. Disturbances of intestinal wall permeability can potentially lead to unwanted activation of the enteric immune system due to excessive contact with gut microbiota and its components, and the development of endotoxemia, when the level of bacterial lipopolysaccharides increases in the blood, causing chronic low-intensity inflammation. In this review, the following aspects are covered: the structure of the intestinal wall barrier; the influence of the gut microbiota on the permeability of the intestinal wall via the regulation of functioning of tight junction proteins, synthesis/degradation of mucus and antioxidant effects; the molecular mechanisms of activation of the pro-inflammatory response caused by bacterial invasion through the TLR4-induced TIRAP/MyD88 and TRAM/TRIF signaling cascades; the influence of nutrition on intestinal permeability, and the influence of exercise with an emphasis on exercise-induced heat stress and hypoxia. Overall, this review provides some insight into how to prevent excessive intestinal barrier permeability and the associated inflammatory processes involved in many if not most pathologies. Some diets and physical exercise are supposed to be non-pharmacological approaches to maintain the integrity of intestinal barrier function and provide its efficient operation. However, at an early age, the increased intestinal permeability has a hormetic effect and contributes to the development of the immune system.
Collapse
Affiliation(s)
- Tetiana R. Dmytriv
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| | | | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
10
|
Wang H, Kim R, Wang Y, Furtado KL, Sims CE, Tamayo R, Allbritton NL. In vitro co-culture of Clostridium scindens with primary human colonic epithelium protects the epithelium against Staphylococcus aureus. Front Bioeng Biotechnol 2024; 12:1382389. [PMID: 38681959 PMCID: PMC11045926 DOI: 10.3389/fbioe.2024.1382389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
A complex and dynamic network of interactions exists between human gastrointestinal epithelium and intestinal microbiota. Therefore, comprehending intestinal microbe-epithelial cell interactions is critical for the understanding and treatment of intestinal diseases. Primary human colonic epithelial cells derived from a healthy human donor were co-cultured with Clostridium scindens (C. scindens), a probiotic obligate anaerobe; Staphylococcus aureus (S. aureus), a facultative anaerobe and intestinal pathogen; or both bacterial species in tandem. The co-culture hanging basket platform used for these experiments possessed walls of controlled oxygen (O2) permeability to support the formation of an O2 gradient across the intestinal epithelium using cellular O2 consumption, resulting in an anaerobic luminal and aerobic basal compartment. Both the colonic epithelial cells and C. scindens remained viable over 48 h during co-culture. In contrast, co-culture with S. aureus elicited significant damage to colonic epithelial cells within 24 h. To explore the influence of the intestinal pathogen on the epithelium in the presence of the probiotic bacteria, colonic epithelial cells were inoculated sequentially with the two bacterial species. Under these conditions, C. scindens was capable of repressing the production of S. aureus enterotoxin. Surprisingly, although C. scindens converted cholic acid to secondary bile acids in the luminal medium, the growth of S. aureus was not significantly inhibited. Nevertheless, this combination of probiotic and pathogenic bacteria was found to benefit the survival of the colonic epithelial cells compared with co-culture of the epithelial cells with S. aureus alone. This platform thus provides an easy-to-use and low-cost tool to study the interaction between intestinal bacteria and colonic cells in vitro to better understand the interplay of intestinal microbiota with human colonic epithelium.
Collapse
Affiliation(s)
- Hao Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Raehyun Kim
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Kathleen L. Furtado
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Christopher E. Sims
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Department of Medicine/Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Patlin B, Schwerdtfeger L, Tobet S. Neuropeptide stimulation of physiological and immunological responses in precision-cut lung slices. Physiol Rep 2023; 11:e15873. [PMID: 37994278 PMCID: PMC10665790 DOI: 10.14814/phy2.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/24/2023] Open
Abstract
Organotypic lung slices, sometimes known as precision-cut lung slices (PCLS), provide an environment in which numerous cell types and interactions can be maintained outside the body (ex vivo). PCLS were maintained ex vivo for up to a week and demonstrated health via the presence of neurons, maintenance of tissue morphology, synthesis of mucopolysaccharides, and minimal cell death. Multiple phenotypes of neuronal fibers were present in lung slices with varied size, caliber, and neurotransmitter immunoreactivity. Of the neuropeptides present in fibers, calcitonin gene-related peptide (CGRP) was the most prevalent. Exposing PCLS to recombinant CGRP resulted in the proliferation and dispersion of CD19+ B cells in slices taken selectively from females. The number of granules containing immunoreactive (ir) surfactant protein C (SPC), which are representative of alveolar type 2 cells, increased in slices from females within 24 h of exposure to CGRP. Additionally, ir-SPC granule size increased in slices from males and females across 48 h of exposure to CGRP. Exposure of PCLS to exogenous CGRP did not alter the number of solitary pulmonary neuroendocrine cells (PNEC) but did result in neuroendocrine bodies that had significantly more cells. Neuronal fiber numbers were unchanged based on ir-peripherin; however, ir-CGRP became non-detectable in fibers while unchanged in PNECs. The effects of exogenous CGRP provide insight into innate immune and neuroendocrine responses in the lungs that may be partially regulated by neural fibers. The sex-dependent nature of these changes may point to the basis for sex-selective outcomes among respiratory diseases.
Collapse
Affiliation(s)
- B. Patlin
- Department of Biochemistry and Molecular BiologyColorado State UniversityFort CollinsColoradoUSA
| | - L. Schwerdtfeger
- Department of NeurologyHarvard Medical School and Ann Romney Center for Neurologic Diseases, Brigham and Women's HospitalBostonMassachusettsUSA
| | - S. Tobet
- School of Biomedical Engineering and Department of Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
13
|
Cherwin AE, Templeton HN, Ehrlich AT, Patlin BH, Henry CS, Tobet SA. Microfluidic organotypic device to test intestinal mucosal barrier permeability ex vivo. LAB ON A CHIP 2023; 23:4126-4133. [PMID: 37655621 PMCID: PMC10498942 DOI: 10.1039/d3lc00615h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
To protect the body from external pathogens, the intestines have sophisticated epithelial and mucosal barriers. Disruptions to barrier integrity are associated with a variety of disorders such as irritable bowel disease, Crohn's disease, and celiac disease. One critical component of all barriers are collagens in the extracellular matrix. While the importance of the intestinal barrier is established, current models lack the ability to represent the complex biology that occurs at these barriers. For the current study a microfluidic device model was modified to determine the effectiveness of collagen breakdown to cause barrier disruption. Bacterial collagenase was added for 48 h to the luminal channel of a dual flow microfluidic device to examine changes in intestinal barrier integrity. Tissues exhibited dose-dependent alterations in immunoreactive collagen-1 and claudin-1, and coincident disruption of the epithelial monolayer barrier as indicated by goblet cell morphologies. This ex vivo model system offers promise for further studies exploring factors that affect gut barrier integrity and potential downstream consequences that cannot be studied in current models.
Collapse
Affiliation(s)
- Amanda E Cherwin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.
| | - Hayley N Templeton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Alexis T Ehrlich
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brielle H Patlin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.
| | - Stuart A Tobet
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
14
|
Siwczak F, Hiller C, Pfannkuche H, Schneider MR. Culture of vibrating microtome tissue slices as a 3D model in biomedical research. J Biol Eng 2023; 17:36. [PMID: 37264444 DOI: 10.1186/s13036-023-00357-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023] Open
Abstract
The basic idea behind the use of 3-dimensional (3D) tools in biomedical research is the assumption that the structures under study will perform at the best in vitro if cultivated in an environment that is as similar as possible to their natural in vivo embedding. Tissue slicing fulfills this premise optimally: it is an accessible, unexpensive, imaging-friendly, and technically rather simple procedure which largely preserves the extracellular matrix and includes all or at least most supportive cell types in the correct tissue architecture with little cellular damage. Vibrating microtomes (vibratomes) can further improve the quality of the generated slices because of the lateral, saw-like movement of the blade, which significantly reduces tissue pulling or tearing compared to a straight cut. In spite of its obvious advantages, vibrating microtome slices are rather underrepresented in the current discussion on 3D tools, which is dominated by methods as organoids, organ-on-chip and bioprinting. Here, we review the development of vibrating microtome tissue slices, the major technical features underlying its application, as well as its current use and potential advances, such as a combination with novel microfluidic culture chambers. Once fully integrated into the 3D toolbox, tissue slices may significantly contribute to decrease the use of laboratory animals and is likely to have a strong impact on basic and translational research as well as drug screening.
Collapse
Affiliation(s)
- Fatina Siwczak
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany
| | - Charlotte Hiller
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany
| | - Helga Pfannkuche
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany
| | - Marlon R Schneider
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany.
| |
Collapse
|
15
|
Athanasopoulou K, Adamopoulos PG, Scorilas A. Unveiling the Human Gastrointestinal Tract Microbiome: The Past, Present, and Future of Metagenomics. Biomedicines 2023; 11:biomedicines11030827. [PMID: 36979806 PMCID: PMC10045138 DOI: 10.3390/biomedicines11030827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Over 1014 symbiotic microorganisms are present in a healthy human body and are responsible for the synthesis of vital vitamins and amino acids, mediating cellular pathways and supporting immunity. However, the deregulation of microbial dynamics can provoke diverse human diseases such as diabetes, human cancers, cardiovascular diseases, and neurological disorders. The human gastrointestinal tract constitutes a hospitable environment in which a plethora of microbes, including diverse species of archaea, bacteria, fungi, and microeukaryotes as well as viruses, inhabit. In particular, the gut microbiome is the largest microbiome community in the human body and has drawn for decades the attention of scientists for its significance in medical microbiology. Revolutions in sequencing techniques, including 16S rRNA and ITS amplicon sequencing and whole genome sequencing, facilitate the detection of microbiomes and have opened new vistas in the study of human microbiota. Especially, the flourishing fields of metagenomics and metatranscriptomics aim to detect all genomes and transcriptomes that are retrieved from environmental and human samples. The present review highlights the complexity of the gastrointestinal tract microbiome and deciphers its implication not only in cellular homeostasis but also in human diseases. Finally, a thorough description of the widely used microbiome detection methods is discussed.
Collapse
Affiliation(s)
- Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
16
|
Kim J, Cheong YE, Yu S, Jin YS, Kim KH. Strain engineering and metabolic flux analysis of a probiotic yeast Saccharomyces boulardii for metabolizing L-fucose, a mammalian mucin component. Microb Cell Fact 2022; 21:204. [PMID: 36207743 PMCID: PMC9541068 DOI: 10.1186/s12934-022-01926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background Saccharomyces boulardii is a probiotic yeast that exhibits antimicrobial and anti-toxin activities. Although S. boulardii has been clinically used for decades to treat gastrointestinal disorders, several studies have reported weak or no beneficial effects of S. boulardii administration in some cases. These conflicting results of S. boulardii efficacity may be due to nutrient deficiencies in the intestine that make it difficult for S. boulardii to maintain its metabolic activity. Results To enable S. boulardii to overcome any nutritional deficiencies in the intestine, we constructed a S. boulardii strain that could metabolize l-fucose, a major component of mucin in the gut epithelium. The fucU, fucI, fucK, and fucA from Escherichia coli and HXT4 from S. cerevisiae were overexpressed in S. boulardii. The engineered S. boulardii metabolized l-fucose and produced 1,2-propanediol under aerobic and anaerobic conditions. It also produced large amounts of 1,2-propanediol under strict anaerobic conditions. An in silico genome-scale metabolic model analysis was performed to simulate the growth of S. boulardii on l-fucose, and elementary flux modes were calculated to identify critical metabolic reactions for assimilating l-fucose. As a result, we found that the engineered S. boulardii consumes l-fucose via (S)-lactaldehyde-(S)-lactate-pyruvate pathway, which is highly oxygen dependent. Conclusion To the best of our knowledge, this is the first study in which S. cerevisiae and S. boulardii strains capable of metabolizing l-fucose have been constructed. This strategy could be used to enhance the metabolic activity of S. boulardii and other probiotic microorganisms in the gut. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01926-x.
Collapse
Affiliation(s)
- Jungyeon Kim
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Eun Cheong
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea. .,Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
17
|
Rudolph SE, Longo BN, Tse MW, Houchin MR, Shokoufandeh MM, Chen Y, Kaplan DL. Crypt-Villus Scaffold Architecture for Bioengineering Functional Human Intestinal Epithelium. ACS Biomater Sci Eng 2022; 8:4942-4955. [PMID: 36191009 PMCID: PMC10379436 DOI: 10.1021/acsbiomaterials.2c00851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crypt-villus architecture in the small intestine is crucial for the structural integrity of the intestinal epithelium and maintenance of gut homeostasis. We utilized three-dimensional (3D) printing and inverse molding techniques to form three-dimensional (3D) spongy scaffold systems that resemble the intestinal crypt-villus microarchitecture. The scaffolds consist of silk fibroin protein with curved lumens with rows of protruding villi with invaginating crypts to generate the architecture. Intestinal cell (Caco-2, HT29-MTX) attachment and growth, as well as long-term culture support were demonstrated with cell polarization and tissue barrier properties compared to two-dimensional (2D) Transwell culture controls. Further, physiologically relevant oxygen gradients were generated in the 3D system. The various advantages of this system may be ascribed to the more physiologically relevant 3D environment, offering a system for the exploration of disease pathogenesis, host-microbiome interactions, and therapeutic discovery.
Collapse
Affiliation(s)
- Sara E Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Brooke N Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Megan W Tse
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Megan R Houchin
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Mina M Shokoufandeh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
18
|
Martinez B, Schwerdtfeger LA, Richardson A, Tobet SA, Henry CS. 1H-NMR Profiling of Short-Chain Fatty Acid Content from a Physiologically Accurate Gut-on-a-Chip Device. Anal Chem 2022; 94:9987-9992. [PMID: 35797422 DOI: 10.1021/acs.analchem.1c05146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that short-chain fatty acids (SCFAs) produced by the gut microbiome are of importance to host tissue health; however, measuring such compounds in biological samples is often limited to using hours to days old fecal and blood plasma samples. Organ-on-a-chip models have been created to simplify the complexity but struggle to reproduce the full biology of the gut specifically. We recently reported a tissue-in-a-chip gut model that incorporates gut explanted tissue into a microfluidic device. The system maintains a biologically relevant oxygen gradient and tissue ex vivo for days at a time, but minimal characterization of biological activity was reported. Herein, we use 1H-NMR to analyze the SCFA content of tissue media effluents from gut explants cultured in the recently developed microfluidic organotypic device (MOD). 1H-NMR can identify key SCFAs in the complex samples with minimal sample preparation. Our findings show that maintaining physiologically relevant oxygen conditions, something often missing from many other culture systems, significantly impacts the SCFA profile. Additionally, we noted the changes in SCFAs with culture time and potential variability between SCFA levels in male and female mouse tissue explants cultured in the MOD system based on 1H-NMR spectral profiles.
Collapse
Affiliation(s)
- Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Luke A Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, United States
| | - Alec Richardson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523-1376, United States
| |
Collapse
|
19
|
Zhang Y, Wang ZY, Jing HS, Zhang HD, Yan HX, Fan JX, Zhai B. A pre‑clinical model combining cryopreservation technique with precision‑cut slice culture method to assess the in vitro drug response of hepatocellular carcinoma. Int J Mol Med 2022; 49:51. [PMID: 35179217 PMCID: PMC8904079 DOI: 10.3892/ijmm.2022.5107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/28/2022] [Indexed: 11/22/2022] Open
Abstract
Models considering hepatocellular carcinoma (HCC) complexity cannot be accurately replicated in routine cell lines or animal models. We aimed to evaluate the practicality of tissue slice culture by combining it with a cryopreservation technique. We prepared 0.3-mm-thick tissue slices by a microtome and maintained their cell viability using a cryopreservation technique. Slices were cultured individually in the presence or absence of regorafenib (REG) for 72 h. Alterations in morphology and gene expression were assessed by histological and genetic analysis. Overall viability was also analyzed in tissue slices by CCK-8 quantification assay and fluorescent staining. Tissue morphology and cell viability were evaluated to quantify drug effects. Histological and genetic analyses showed that no significant alterations in morphology and gene expression were induced by the vitrification-based cryopreservation method. The viability of warmed HCC tissues was up to 90% of the fresh tissues. The viability and proliferation could be retained for at least four days in the filter culture system. The positive drug responses in precision-cut slice culture in vitro were evaluated by tissue morphology and cell viability. In summary, the successful application of precision-cut HCC slice culture combined with a cryopreservation technique in a systematic drug screening demonstrates the feasibility and utility of slice culture method for assessing drug response.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Zhen-Yu Wang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hong-Shu Jing
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hong-Dan Zhang
- Shanghai Celliver Biotechnology Co. Ltd., Shanghai 200120, P.R. China
| | - He-Xin Yan
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Jian-Xia Fan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
20
|
Eslami Amirabadi H, Donkers JM, Wierenga E, Ingenhut B, Pieters L, Stevens L, Donkers T, Westerhout J, Masereeuw R, Bobeldijk-Pastorova I, Nooijen I, van de Steeg E. Intestinal explant barrier chip: long-term intestinal absorption screening in a novel microphysiological system using tissue explants. LAB ON A CHIP 2022; 22:326-342. [PMID: 34877953 DOI: 10.1039/d1lc00669j] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The majority of intestinal in vitro screening models use cell lines that do not reflect the complexity of the human intestinal tract and hence often fail to accurately predict intestinal drug absorption. Tissue explants have intact intestinal architecture and cell type diversity, but show short viability in static conditions. Here, we present a medium throughput microphysiological system, Intestinal Explant Barrier Chip (IEBC), that creates a dynamic microfluidic microenvironment and prolongs tissue viability. Using a snap fit mechanism, we successfully incorporated human and porcine colon tissue explants and studied tissue functionality, integrity and viability for 24 hours. With a proper distinction of transcellular over paracellular transport (ratio >2), tissue functionality was good at early and late timepoints. Low leakage of FITC-dextran and preserved intracellular lactate dehydrogenase levels indicate maintained tissue integrity and viability, respectively. From a selection of low to high permeability drugs, 6 out of 7 properly ranked according to their fraction absorbed. In conclusion, the IEBC is a novel screening platform benefitting from the complexity of tissue explants and the flow in microfluidic chips.
Collapse
Affiliation(s)
- Hossein Eslami Amirabadi
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joanne M Donkers
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Esmée Wierenga
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Bastiaan Ingenhut
- Materials solution department, TNO, and Brightlands Materials Centre, Geleen, The Netherlands
| | - Lisanne Pieters
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Lianne Stevens
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
- Department of Surgery, Division of Transplantation, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tim Donkers
- Division of Space systems engineering, TNO, Delft, the Netherlands
| | | | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ivana Bobeldijk-Pastorova
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Irene Nooijen
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| | - Evita van de Steeg
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands.
| |
Collapse
|
21
|
When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol 2021; 19:774-785. [PMID: 34183820 PMCID: PMC9191689 DOI: 10.1038/s41579-021-00583-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The defining trait of obligate anaerobes is that oxygen blocks their growth, yet the underlying mechanisms are unclear. A popular hypothesis was that these microorganisms failed to evolve defences to protect themselves from reactive oxygen species (ROS) such as superoxide and hydrogen peroxide, and that this failure is what prevents their expansion to oxic habitats. However, studies reveal that anaerobes actually wield most of the same defences that aerobes possess, and many of them have the capacity to tolerate substantial levels of oxygen. Therefore, to understand the structures and real-world dynamics of microbial communities, investigators have examined how anaerobes such as Bacteroides, Desulfovibrio, Pyrococcus and Clostridium spp. struggle and cope with oxygen. The hypoxic environments in which these organisms dwell - including the mammalian gut, sulfur vents and deep sediments - experience episodic oxygenation. In this Review, we explore the molecular mechanisms by which oxygen impairs anaerobes and the degree to which bacteria protect their metabolic pathways from it. The emergent view of anaerobiosis is that optimal strategies of anaerobic metabolism depend upon radical chemistry and low-potential metal centres. Such catalytic sites are intrinsically vulnerable to direct poisoning by molecular oxygen and ROS. Observations suggest that anaerobes have evolved tactics that either minimize the extent to which oxygen disrupts their metabolism or restore function shortly after the stress has dissipated.
Collapse
|
22
|
Schwerdtfeger LA, Tobet SA. Sex differences in anatomic plasticity of gut neuronal-mast cell interactions. Physiol Rep 2021; 9:e15066. [PMID: 34605201 PMCID: PMC8488573 DOI: 10.14814/phy2.15066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
The gut wall houses mast cells that are anatomically situated near enteric neuronal fibers. Roles of specific neuropeptides in modulating function of immune components like mast cells in response to challenge with bacterial components are relatively unknown. Investigating such interactions requires models that include diverse cellular elements in native anatomic arrangements. Using an organotypic slice model that maintains gut wall cellular diversity ex vivo, the present study compared responses between tissues derived from male and female mice to examine neural-immune signaling in the gut wall after selected treatments. Ileum slices were treated with pharmacological reagents that block neuronal function (e.g., tetrodotoxin) or vasoactive intestinal peptide (VIP) receptors prior to challenge with lipopolysaccharide (LPS) to assess their influence on anatomic plasticity of VIP fibers and activation of mast cells. Sex differences were observed in the number of mucosal mast cells (c-kit/ACK2 immunoreactive) at baseline, regardless of treatment, with female ileum tissue having 46% more ACK2-IR mast cells than males. After challenge with LPS, male mast cell counts rose to female levels. Furthermore, sex differences were observed in the percentage of ACK2-IR cells within 1 µm of a VIP+ neuronal fiber, and mast cell size, a metric previously tied to activation, with females having larger cells at baseline. Male mast cell sizes reached female levels after LPS challenge. This study suggests sex differences in neural-immune plasticity and in mast cell activation both basally and in response to challenge with LPS. These sex differences could potentially impact functional neuroimmune response to pathogens.
Collapse
Affiliation(s)
| | - Stuart A. Tobet
- Department of Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
23
|
Hammel JH, Cook SR, Belanger MC, Munson JM, Pompano RR. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annu Rev Biomed Eng 2021; 23:461-491. [PMID: 33872520 PMCID: PMC8277680 DOI: 10.1146/annurev-bioeng-082420-124920] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.
Collapse
Affiliation(s)
- Jennifer H Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| |
Collapse
|
24
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
25
|
Caioni G, Viscido A, d’Angelo M, Panella G, Castelli V, Merola C, Frieri G, Latella G, Cimini A, Benedetti E. Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARγ. Int J Mol Sci 2021; 22:985. [PMID: 33498177 PMCID: PMC7863964 DOI: 10.3390/ijms22030985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
The pathophysiological processes of inflammatory bowel diseases (IBDs), i.e., Crohn's disease (CD) and ulcerative colitis (UC), are still not completely understood. The exact etiology remains unknown, but it is well established that the pathogenesis of the inflammatory lesions is due to a dysregulation of the gut immune system resulting in over-production of pro-inflammatory cytokines. Increasing evidence underlines the involvement of both environmental and genetic factors. Regarding the environment, the microbiota seems to play a crucial role. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that exert pleiotropic effects on glucose homeostasis, lipid metabolism, inflammatory/immune processes, cell proliferation, and fibrosis. Furthermore, PPARs modulate interactions with several environmental factors, including microbiota. A significantly impaired PPARγ expression was observed in UC patients' colonic epithelial cells, suggesting that the disruption of PPARγ signaling may represent a critical step of the IBD pathogenesis. This paper will focus on the role of PPARγ in the interaction between environmental factors and IBD, and it will analyze the most suitable in vitro and in vivo models available to better study these relationships.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy;
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (G.C.); (A.V.); (M.d.); (G.P.); (V.C.); (G.F.); (G.L.); (A.C.)
| |
Collapse
|
26
|
Hinman SS, Wang Y, Kim R, Allbritton NL. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Nat Protoc 2021; 16:352-382. [PMID: 33299154 PMCID: PMC8420814 DOI: 10.1038/s41596-020-00419-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The large intestine, with its array of crypts lining the epithelium and diverse luminal contents, regulates homeostasis throughout the body. In vitro crypts formed from primary human intestinal epithelial stem cells on a 3D shaped hydrogel scaffold replicate the functional and architectural features of in vivo crypts. Collagen scaffolding assembly methods are provided, along with the microfabrication and soft lithography protocols necessary to shape these hydrogels to match the dimensions and density of in vivo crypts. In addition, stem-cell scale-up protocols are provided so that even ultrasmall primary samples can be used as starting material. Initially, these cells are seeded as a proliferative monolayer over the shaped scaffold and cultured as stem/proliferative cells to expand them and cover the scaffold surface with the crypt-shaped structures. To convert these immature crypts into fully polarized, functional units with a basal stem cell niche and luminal differentiated cell zone, stable, linear gradients of growth factors are formed across the crypts. This platform supports the formation of chemical gradients across the crypts, including those of growth and differentiation factors, inflammatory compounds, bile and food metabolites and bacterial products. All microfabrication and device assembly steps are expected to take 8 d, with the primary cells cultured for 12 d to form mature in vitro crypts.
Collapse
Affiliation(s)
- Samuel S Hinman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Raehyun Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
27
|
Heinzinger LR, Johnson A, Wurster JI, Nilson R, Penumutchu S, Belenky P. Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. iScience 2020; 23:101875. [PMID: 33354661 PMCID: PMC7744946 DOI: 10.1016/j.isci.2020.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbial metabolism is a major determinant of antibiotic susceptibility. Environmental conditions that modify metabolism, notably oxygen availability and redox potential, can directly fine-tune susceptibility to antibiotics. Despite this, relatively few studies have discussed these modifications within the gastrointestinal tract and their implication on in vivo drug activity and the off-target effects of antibiotics in the gut. In this review, we discuss the environmental and biogeographical complexity of the gastrointestinal tract in regard to oxygen availability and redox potential, addressing how the heterogeneity of gut microhabitats may modify antibiotic activity in vivo. We contextualize the current literature surrounding oxygen availability and antibiotic efficacy and discuss empirical treatments. We end by discussing predicted patterns of antibiotic activity in prominent microbiome taxa, given gut heterogeneity, oxygen availability, and polymicrobial interactions. We also propose additional work required to fully elucidate the role of oxygen metabolism on antibiotic susceptibility in the context of the gut.
Collapse
Affiliation(s)
- Lauren R. Heinzinger
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Angus Johnson
- Department of Biological Science, Binghamton University, Binghamton, NY 13902, USA
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
28
|
Youhanna S, Lauschke VM. The Past, Present and Future of Intestinal In Vitro Cell Systems for Drug Absorption Studies. J Pharm Sci 2020; 110:50-65. [PMID: 32628951 DOI: 10.1016/j.xphs.2020.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022]
Abstract
The intestinal epithelium acts as a selective barrier for the absorption of water, nutrients and orally administered drugs. To evaluate the gastrointestinal permeability of a candidate molecule, scientists and drug developers have a multitude of cell culture models at their disposal. Static transwell cultures constitute the most extensively characterized intestinal in vitro system and can accurately categorize molecules into low, intermediate and high permeability compounds. However, they lack key aspects of intestinal physiology, including the cellular complexity of the intestinal epithelium, flow, mechanical strain, or interactions with intestinal mucus and microbes. To emulate these features, a variety of different culture paradigms, including microfluidic chips, organoids and intestinal slice cultures have been developed. Here, we provide an updated overview of intestinal in vitro cell culture systems and critically review their suitability for drug absorption studies. The available data show that these advanced culture models offer impressive possibilities for emulating intestinal complexity. However, there is a paucity of systematic absorption studies and benchmarking data and it remains unclear whether the increase in model complexity and costs translates into improved drug permeability predictions. In the absence of such data, conventional static transwell cultures remain the current gold-standard paradigm for drug absorption studies.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
29
|
Schwerdtfeger LA, Tobet SA. Vasoactive intestinal peptide regulates ileal goblet cell production in mice. Physiol Rep 2020; 8:e14363. [PMID: 32026594 PMCID: PMC7002535 DOI: 10.14814/phy2.14363] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Innervation of the intestinal mucosa has gained more attention with demonstrations of tuft and enteroendocrine cell innervation. However, the role(s) these fibers play in maintaining the epithelial and mucus barriers are still poorly understood. This study therefore examines the proximity of mouse ileal goblet cells to neuronal fibers, and the regulation of goblet cell production by vasoactive intestinal peptide (VIP). An organotypic intestinal slice model that maintains the cellular diversity of the intestinal wall ex vivo was used. An ex vivo copper-free click-reaction to label glycosaminoglycans was used to identify goblet cells. Pharmacological treatment of slices was used to assess the influence of VIP receptor antagonism on goblet cell production and neuronal fiber proximity. Goblet cells were counted and shown to have at least one peripherin immunoreactive fiber within 3 µm of the cell, 51% of the time. Treatment with a VIP receptor type I and II antagonist (VPACa) resulted in an increase in the percentage of goblet cells with peripherin fibers. Pharmacological treatments altered goblet cell counts in intestinal crypts and villi, with tetrodotoxin and VPACa substantially decreasing goblet cell counts. When cultured with 5-Ethynyl-2'-deoxyuridine (EdU) as an indicator of cell proliferation, colocalization of labeled goblet cells and EdU in ileal crypts was decreased by 77% when treated with VPACa. This study demonstrates a close relationship of intestinal goblet cells to neuronal fibers. By using organotypic slices from mouse ileum, vasoactive intestinal peptide receptor regulation of gut wall goblet cell production was revealed.
Collapse
Affiliation(s)
| | - Stuart A. Tobet
- Department of Biomedical SciencesColorado State UniversityFort CollinsCOUSA
- School of Biomedical EngineeringColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
30
|
Xiao D, Yang G, Wang Z, Khalique A, Zhu Z, Xiong L, Li J, Yuan X, Ni X, Zeng D, Zhang D, Pan K. Efficacy of Bacillus methylotrophicus SY200 strain as feed additive against experimental Salmonella typhimurium infection in mice. Microb Pathog 2020; 141:103978. [PMID: 31953225 DOI: 10.1016/j.micpath.2020.103978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
To investigate the effects of Bacillus methylotrophicus SY200 on Salmonella typhimurium (STM) infection in mice, a total of 36 three-week-old male mice were selected and randomly divided into 3 equal groups (N = 12). Group A and group B were fed with basal diet while group C was fed the basal diet supplemented with 0.1% (w/w) B. methylotrophicus SY200 during the 21 days experimental period. On the 14th day of the experiment, mice of group A were intragastrically administered with 0.5 ml of normal saline, group B and C were orally administered with 0.5 ml of STM suspension. On the first day and seventh day after STM challenge, the number of total white blood cells (WBCs) and neutrophils, relative weight of visceral organs, the number of Salmonella spp., Escherichia coli, Lactobacillus spp. and Bifidobacterium spp. in ileum and cecum, and diversity of cecal microflora were measured. The results showed that: on the first day and seventh day after STM challenge, the number of WBCs and neutrophils in the blood of the mice was the highest in group B, then followed by group C, and group A. On the first day after STM challenge, the relative weight of spleen in group C was significantly higher than that in group B (p < 0.05), moreover, compared with group B, B. methylotrophicus SY200 significantly reduced the number of Salmonella spp. and E. coli (p < 0.05), and increased the number of Lactobacillus spp. and Bifidobacterium spp. (p < 0.05) in the intestines of mice, and improved the Shannon-Wiener diversity (H), Simpson (E) and richness (S) indices of cecal flora of mice (p < 0.05). The results indicated that B. methylotrophicus SY200 could alleviate the inflammatory reaction after STM infection and resist the adverse effects of STM infection on mice intestinal flora.
Collapse
Affiliation(s)
- Dan Xiao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guilin Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhenhua Wang
- Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhanwei Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lvchen Xiong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China; Chengdu Vocational College of Agricultural Science and Technology, Chengdu, 611100, China
| | - Xinru Yuan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|