1
|
Zhang C, Yuan M, Rong W, Du H, Li X, Ji T, Li J, Dai B, Ma Z, Qi H, Zhang N, Yang J, Duan X, Bi Y. Synergistic effects of Lianhuaqingwen in combination with Oseltamivir and Baloxavir against seasonal influenza virus: In vitro and in vivo assessment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119091. [PMID: 39528119 DOI: 10.1016/j.jep.2024.119091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lianhuaqingwen (LH), a traditional Chinese medicine, presents a broad-spectrum antiviral effect and has been widely used to treat influenza. Given the potential rise of drug-resistant influenza viruses, it is necessary to develop new antiviral drugs and explore combination therapies involving LH in tandem with existing antivirals such as Oseltamivir acid (Osel) or Baloxavir (Bal). These multidrug combinations could help effectively control the seasonal influenza epidemics and reduce the disease burden. AIM OF THE STUDY This study aimed to evaluate the antiviral effects of LH, alone and in combination with Osel or Bal, against human seasonal influenza viruses in vitro and in vivo models. MATERIALS AND METHODS The antiviral efficacy of LH alone and LH in combination with Osel/Bal against seasonal influenza A viruses (IAVs) (H1N1 and H3N2 subtypes) and influenza B viruses (IBVs) (BV- and BY-lineages) was assessed in vitro using MDCK cells. The median effective concentration (EC50) was determined, and the drug synergies were analyzed. Additionally, the antiviral activity of LH monotherapy and LH + Osel/Bal combination therapy were evaluated in vivo using an H1N1-infected BABL/c mouse model by monitoring changes in body weight, survival rate, lung viral titer, pathological damage, and inflammatory reaction. RESULTS In vitro, LH alone and in combination with Osel/Bal exhibited antiviral activity against both IAVs and IBVs. The addition of LH to Osel/Bal improved the therapeutic efficacy compared to Osel/Bal alone. In vivo, LH monotherapy reduced body weight loss and increased the survival rates of H1N1-infected mice. LH in combination with Osel/Bal resulted in lower virus titers, more effective relief of pathological damage, and comparable low expression of inflammatory factors in the lungs of H1N1-infected mice compared to the use of Osel/Bal alone. Transcriptomic analysis of the lungs revealed that LH + Osel/Bal significantly increased the expression of genes associated with antiviral and anti-inflammatory effects. CONCLUSIONS This study evaluated the antiviral effects of LH monotherapy and combination therapy with Osel/Bal against human seasonal influenza viruses in vitro and in vivo models. The results suggest that combining LH with Osel or Bal could enhance the antiviral efficiency for influenza viruses compared to the monotherapy using any of these three drugs.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Manhua Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenwan Rong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Du
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Xuanxuan Li
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Tiannan Ji
- Department of Emergency, Department of Radiotherapy, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jianxiong Li
- Department of Emergency, Department of Radiotherapy, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Bo Dai
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Ning Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Han J, Yang C, Xiao Y, Li J, Jin N, Li Y. Influenza B virus: Target and acting mechanism of antiviral drugs. Microb Pathog 2024; 197:107051. [PMID: 39442816 DOI: 10.1016/j.micpath.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The influenza B virus is one of the causes of seasonal influenza, which has a long history of existence in various populations. Adolescents, children, pregnant women, the elderly, as well as patients with major diseases such as high blood pressure, diabetes, and cancer, and those with low immunity are more susceptible to infection by the influenza virus. During the influenza seasons, the influenza B virus can cause significant harm and economic burden. At present, neuraminidase inhibitors, hemagglutinin inhibitors and RNA polymerase inhibitors are the main antiviral drugs that are used in the clinical treatment of influenza B. Due to the repeated use of antiviral drugs in recent years, the emergence of resistant strains of the influenza virus exacerbated. By combining anti-viral drugs with different mechanisms of action or using a combination of traditional Chinese medicine and chemical drugs, the problem of reduced drug sensitivity can be improved. This article introduces the drug targets of the influenza B virus and the mechanism of virus resistance. It also emphasizes the clinically used antiviral drugs and their mechanisms of action, thereby providing a reference basis for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Jicheng Han
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Chunhui Yang
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yan Xiao
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China.
| | - Jingjing Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China.
| |
Collapse
|
3
|
Shahriar I, Kamra M, Kanduluru AK, Campbell CL, Nguyen TH, Srinivasarao M, Low PS. Targeted recruitment of immune effector cells for rapid eradication of influenza virus infections. Proc Natl Acad Sci U S A 2024; 121:e2408469121. [PMID: 39348541 PMCID: PMC11474073 DOI: 10.1073/pnas.2408469121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
Despite much research, considerable data suggest that influenza virus remains a serious health problem because i) the effectiveness of current vaccines ranges only from 19% to 60%, ii) available therapies remain ineffective in advanced stages of disease, iii) death rates vary between 25,000 and 72,000/year in the United States, and iv) avian influenza strains are now being transmitted to dairy cattle that in turn are infecting humans. To address these concerns, we have developed zanDR, a bispecific small molecule that binds and inhibits viral neuraminidase expressed on both free virus and virus-infected cells and recruits naturally occurring anti-rhamnose and anti-dinitrophenyl (DNP) antibodies with rhamnose and DNP haptens. Because the neuraminidase inhibition replicates the chemotherapeutic mechanism of zanamivir and oseltamivir, while rhamnose and DNP recruit endogenous antibodies much like an anti-influenza vaccine, zanDR reproduces most of the functions of current methods of protection against influenza virus infections. Importantly, studies on cells in culture demonstrate that both of the above protective mechanisms remain highly functional in the zanDR conjugate, while studies in lethally infected mice with advanced-stage disease establish that a single intranasal dose of zanDR not only yields 100% protection but also reduces lung viral loads faster and ~1,000× more thoroughly than current antiviral therapies. Since zanDR also lowers secretion of proinflammatory cytokines and protects against virus-induced damage to the lungs better than current therapies, we suggest that combining an immunotherapy with a chemotherapy in single pharmacological agent constitutes a promising approach for treating the more challenging forms of influenza.
Collapse
Affiliation(s)
- Imrul Shahriar
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Mohini Kamra
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Ananda Kumar Kanduluru
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Charity Lynn Campbell
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Thanh Hiep Nguyen
- Department of Biological Sciences, Purdue University, West Lafayette, IN47907
| | - Madduri Srinivasarao
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
- Eradivir Inc., West Lafayette, IN47906
| | - Philip S. Low
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
4
|
Manuel J, Barot KS, Mayow AH, Modi D, Tariq M, Hussain J, Waheed MD, Kutiyana S. Comparison of Efficacy and Safety of Baloxavir and Oseltamivir in Children With Influenza: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e71289. [PMID: 39529764 PMCID: PMC11551791 DOI: 10.7759/cureus.71289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
This systematic review and meta-analysis compared the efficacy and safety of baloxavir marboxil and oseltamivir in treating influenza in children. A comprehensive literature search was conducted across multiple databases, identifying five studies (four observational and one randomized controlled trial) with a pooled sample size of 2,261 patients. The analysis revealed that baloxavir marboxil significantly reduced the duration of fever compared to oseltamivir (mean difference: -13.49 hours, 95% CI: -23.75 to -3.24). However, there was no significant difference in the time to resolution of overall influenza symptoms between the two treatments (mean difference: -4.55 hours, 95% CI: -19.48 to 10.37). Safety analysis, though limited by available data, suggested a lower incidence of nausea and vomiting with baloxavir marboxil compared to oseltamivir. Both drugs demonstrated comparable safety profiles for other adverse events. These findings indicate that while both medications remain viable options for managing pediatric influenza, baloxavir marboxil may offer advantages in terms of rapid fever reduction and potentially fewer gastrointestinal side effects. However, the study highlights the need for more robust, large-scale randomized controlled trials focusing exclusively on pediatric populations to strengthen the evidence base. Clinicians should consider individual patient factors, local resistance patterns, and current guidelines when making treatment decisions. Future research should explore combination therapies and their potential to manage severe influenza cases in children and conduct more comprehensive safety assessments in pediatric populations.
Collapse
Affiliation(s)
- Jay Manuel
- Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | | | - Abshiro H Mayow
- Medicine, St. George's University School of Medicine, St. George's, GRD
| | - Dhruvi Modi
- Internal Medicine, Gujarat Adani Institute of Medical Sciences, Bhuj, IND
| | - Muhammad Tariq
- Pediatrics, Children Hospital Pakistan Institute of Medical Sciences, Islamabad, PAK
| | | | | | | |
Collapse
|
5
|
Jiang Y, Wen J, Sun J, Shu Y. Evaluating the Public Health and Health Economic Impacts of Baloxavir Marboxil and Oseltamivir for Influenza Pandemic Control in China: A Cost-Effectiveness Analysis Using a Linked Dynamic Transmission-Economic Evaluation Model. PHARMACOECONOMICS 2024; 42:1111-1125. [PMID: 38958667 DOI: 10.1007/s40273-024-01412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Pandemic influenza poses a recurring threat to public health. Antiviral drugs are vital in combating influenza pandemics. Baloxavir marboxil (BXM) is a novel agent that provides clinical and public health benefits in influenza treatment. METHODS We constructed a linked dynamic transmission-economic evaluation model combining a modified susceptible-exposed-infected-recovered (SEIR) model and a decision tree model to evaluate the cost-effectiveness of adding BXM to oseltamivir in China's influenza pandemic scenario. The cost-effectiveness was evaluated for the general population from the Chinese healthcare system perspective, although the users of BXM and oseltamivir were influenza-infected persons. The SEIR model simulated the transmission dynamics, dividing the population into four compartments: susceptible, exposed, infected, and recovered, while the decision tree model assessed disease severity and costs. We utilized data from clinical trials and observational studies in the literature to parameterize the models. Costs were based on 2021 CN¥ and not discounted due to a short time-frame of one year in the model. One-way, two-way, and probabilistic sensitivity analyses were also conducted. RESULTS The integrated model demonstrated that adding BXM to treatment choices reduced the cumulative incidence of infection from 49.49% to 43.26% and increased quality-adjusted life years (QALYs) by 0.00021 per person compared with oseltamivir alone in the base-case scenario. The intervention also amounted to a positive net monetary benefit of CN¥77.85 per person at the willingness to pay of CN¥80,976 per QALY. Sensitivity analysis confirmed the robustness of these findings, with consistent results across varied key parameters and assumptions. CONCLUSIONS Adding BXM to treatment choices instead of only treating with oseltamivir for influenza pandemic control in China appears to be cost-effective compared with oseltamivir alone. The dual-agent strategy not only enhances population health outcomes and conserves resources, but also mitigates influenza transmission and alleviates healthcare burden.
Collapse
Affiliation(s)
- Yawen Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, 66 Gongchang Rd, Guangming District, Shenzhen, Guangdong, China.
| | - Jiaxin Wen
- Gusu District Center for Disease Control and Prevention, Suzhou, Jiangsu, China
| | - Jiatong Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, 66 Gongchang Rd, Guangming District, Shenzhen, Guangdong, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, 66 Gongchang Rd, Guangming District, Shenzhen, Guangdong, China.
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Shiraishi C, Kato H, Hagihara M, Asai N, Iwamoto T, Mikamo H. Comparison of clinical efficacy and safety of baloxavir marboxil versus oseltamivir as the treatment for influenza virus infections: A systematic review and meta-analysis. J Infect Chemother 2024; 30:242-249. [PMID: 37866622 DOI: 10.1016/j.jiac.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
INTRODUCTION Baloxavir marboxil (BXM), a newly developed cap-dependent endonuclease inhibitor, is widely used to treat influenza virus infections in inpatients and outpatients. A previous meta-analysis included only outpatients and patients suspected of having an influenza virus infection based on clinical symptoms. However, whether BXM or oseltamivir is safer and more effective for inpatients remains controversial. Therefore, we conducted a systematic review and meta-analysis validating the effectiveness and safety of BXM versus oseltamivir in inpatients with influenza virus. METHODS The Scopus, EMBASE, PubMed, Ichushi, and CINAHL databases were systematically searched for articles published until January 2023. The outcomes were mortality, hospitalization period, incidence of BXM- or oseltamivir-related adverse events, illness duration, and changes of virus titers and viral RNA load in patients with influenza virus infections. RESULTS Two randomized controlled trials with 1624 outpatients and two retrospective studies with 874 inpatients were enrolled. No deaths occurred in outpatients treated with BXM or oseltamivir. Among inpatients, BXM reduced mortality (p = 0.06) and significantly shortened hospitalization period (p = 0.01) compared to oseltamivir. In outpatients, BXM had a significantly lower incidence of adverse events (p = 0.03), reductions in influenza virus titers (p < 0.001) and viral RNA loads (p < 0.001), and a tendency to be a shorter illness duration compared with that of oseltamivir (p = 0.27). CONCLUSIONS Our meta-analysis showed that BXM was safer and more effective in patients than oseltamivir; thus, supporting the use of BXM for the initial treatment of patients with proven influenza virus infection.
Collapse
Affiliation(s)
- Chihiro Shiraishi
- Department of Pharmacy, Mie University Hospital, Mie, Japan; Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Mie, Japan
| | - Hideo Kato
- Department of Pharmacy, Mie University Hospital, Mie, Japan; Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Mie, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Mao Hagihara
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan; Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University Hospital, Aichi, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| | - Takuya Iwamoto
- Department of Pharmacy, Mie University Hospital, Mie, Japan; Department of Clinical Pharmaceutics, Division of Clinical Medical Science, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan.
| |
Collapse
|
7
|
Kirk NM, Liang Y, Ly H. Comparative Pathology of Animal Models for Influenza A Virus Infection. Pathogens 2023; 13:35. [PMID: 38251342 PMCID: PMC10820042 DOI: 10.3390/pathogens13010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.
Collapse
Affiliation(s)
| | | | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN 55108, USA; (N.M.K.); (Y.L.)
| |
Collapse
|
8
|
Sheikhi N, Bahraminejad M, Saeedi M, Mirfazli SS. A review: FDA-approved fluorine-containing small molecules from 2015 to 2022. Eur J Med Chem 2023; 260:115758. [PMID: 37657268 DOI: 10.1016/j.ejmech.2023.115758] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fluorine-containing small molecules have occupied a special position in drug discovery research. The successful clinical use of fluorinated corticosteroids in the 1950s and fluoroquinolones in the 1980s led to an ever-increasing number of approved fluorinated compounds over the last 50 years. They have shown various biological properties such as antitumor, antimicrobial, and anti-inflammatory activities. Fluoro-pharmaceuticals have been considered a strong and practical tool in the rational drug design approach due to their benefits from potency and ADME (absorption, distribution, metabolism, and excretion) points of view. Herein, approved fluorinated drugs from 2015 to 2022 were reviewed.
Collapse
Affiliation(s)
- Negar Sheikhi
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Bahraminejad
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lieber CM, Aggarwal M, Yoon JJ, Cox RM, Kang HJ, Sourimant J, Toots M, Johnson SK, Jones CA, Sticher ZM, Kolykhalov AA, Saindane MT, Tompkins SM, Planz O, Painter GR, Natchus MG, Sakamoto K, Plemper RK. 4'-Fluorouridine mitigates lethal infection with pandemic human and highly pathogenic avian influenza viruses. PLoS Pathog 2023; 19:e1011342. [PMID: 37068076 PMCID: PMC10138230 DOI: 10.1371/journal.ppat.1011342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/27/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023] Open
Abstract
Influenza outbreaks are associated with substantial morbidity, mortality and economic burden. Next generation antivirals are needed to treat seasonal infections and prepare against zoonotic spillover of avian influenza viruses with pandemic potential. Having previously identified oral efficacy of the nucleoside analog 4'-Fluorouridine (4'-FlU, EIDD-2749) against SARS-CoV-2 and respiratory syncytial virus (RSV), we explored activity of the compound against seasonal and highly pathogenic influenza (HPAI) viruses in cell culture, human airway epithelium (HAE) models, and/or two animal models, ferrets and mice, that assess IAV transmission and lethal viral pneumonia, respectively. 4'-FlU inhibited a panel of relevant influenza A and B viruses with nanomolar to sub-micromolar potency in HAE cells. In vitro polymerase assays revealed immediate chain termination of IAV polymerase after 4'-FlU incorporation, in contrast to delayed chain termination of SARS-CoV-2 and RSV polymerase. Once-daily oral treatment of ferrets with 2 mg/kg 4'-FlU initiated 12 hours after infection rapidly stopped virus shedding and prevented transmission to untreated sentinels. Treatment of mice infected with a lethal inoculum of pandemic A/CA/07/2009 (H1N1)pdm09 (pdmCa09) with 4'-FlU alleviated pneumonia. Three doses mediated complete survival when treatment was initiated up to 60 hours after infection, indicating a broad time window for effective intervention. Therapeutic oral 4'-FlU ensured survival of animals infected with HPAI A/VN/12/2003 (H5N1) and of immunocompromised mice infected with pdmCa09. Recoverees were protected against homologous reinfection. This study defines the mechanistic foundation for high sensitivity of influenza viruses to 4'-FlU and supports 4'-FlU as developmental candidate for the treatment of seasonal and pandemic influenza.
Collapse
Affiliation(s)
- Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Megha Aggarwal
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Robert M Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Hae-Ji Kang
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Julien Sourimant
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Mart Toots
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| | - Scott K Johnson
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Cheryl A Jones
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Zachary M Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Alexander A Kolykhalov
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Manohar T Saindane
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Stephen M Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Ueda H, Osaki H, Miyano T. Baloxavir Marboxil Shows Anomalous Conversion of Crystal Forms from Stable to Metastable through Formation of Specific Solvate Form. J Pharm Sci 2023; 112:158-165. [PMID: 35835185 DOI: 10.1016/j.xphs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Baloxavir marboxil is a novel cap-dependent endonuclease inhibitor of influenza. This study aimed to identify its polymorphs and their relationship with crystal engineering. Polymorph screening by evaporation gave forms I-III and solvate forms IV and V. Heating enabled the conversion of form III to form II, but did not enable that of forms I and II. The solvent-mediated transformation of the forms I-III by magnetic stirring in various solvents resulted in the formation of form I. These results indicate that form I is the stable form. However, all crystal forms transformed to form II after magnetic stirring in a 50% acetonitrile aqueous solution, which was not obtained from water or acetonitrile. The suspension in a 50% acetonitrile aqueous solution exhibited a novel X-ray diffraction pattern as shown in form VI. The measurement of the suspension by solid-state 13C-nuclear magnetic resonance revealed that the spectra of forms II and VI were similar. From these results, we conclude that the drug forms a solvate with both water and acetonitrile and spontaneously transforms to form II upon rapid desolvation under ambient conditions. This study elucidates the mechanism of unexpected convergence to a metastable form in a specific solvent and contributes to the crystal engineering of baloxavir marboxil.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Physical Chemistry, Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka, 561-0825, Japan.
| | - Hiromi Osaki
- Bioanalysis, Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| | - Tetsuya Miyano
- Physical Chemistry, Laboratory for Medicinal Chemistry Research, Shionogi & Co., Ltd., Osaka, 561-0825, Japan
| |
Collapse
|
11
|
Caceres CJ, Seibert B, Cargnin Faccin F, Cardenas‐Garcia S, Rajao DS, Perez DR. Influenza antivirals and animal models. FEBS Open Bio 2022; 12:1142-1165. [PMID: 35451200 PMCID: PMC9157400 DOI: 10.1002/2211-5463.13416] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A and B viruses are among the most prominent human respiratory pathogens. About 3-5 million severe cases of influenza are associated with 300 000-650 000 deaths per year globally. Antivirals effective at reducing morbidity and mortality are part of the first line of defense against influenza. FDA-approved antiviral drugs currently include adamantanes (rimantadine and amantadine), neuraminidase inhibitors (NAI; peramivir, zanamivir, and oseltamivir), and the PA endonuclease inhibitor (baloxavir). Mutations associated with antiviral resistance are common and highlight the need for further improvement and development of novel anti-influenza drugs. A summary is provided for the current knowledge of the approved influenza antivirals and antivirals strategies under evaluation in clinical trials. Preclinical evaluations of novel compounds effective against influenza in different animal models are also discussed.
Collapse
Affiliation(s)
- C. Joaquin Caceres
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Brittany Seibert
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Flavio Cargnin Faccin
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Daniela S. Rajao
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | - Daniel R. Perez
- Department of Population HealthCollege of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
12
|
Estimation of optimal antiviral stockpile for a novel influenza pandemic. J Infect Public Health 2022; 15:720-725. [DOI: 10.1016/j.jiph.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022] Open
|
13
|
Targeted inhibition of the endonuclease activity of influenza polymerase acidic proteins. Future Med Chem 2022; 14:571-586. [PMID: 35213253 DOI: 10.4155/fmc-2021-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Influenza is a type of acute respiratory virus infection caused by the influenza virus that occurs in epidemics worldwide every year. Due to the increasing incidence of influenza virus resistance to existing drugs, researchers are looking for novel antiviral drugs with new mechanisms. The endonuclease activity of polymerase acidic protein is essential in the process of influenza virus reproduction, and inhibiting it could prevent the virus from replicating. There are relatively few drugs that act on this protein, and only baloxavir marboxil has been approved for clinical use. In this article, the structure and function of influenza virus polymerase acidic protein endonuclease, mechanism of action of polymerase acidic endonuclease inhibitors and the research progress of inhibitors are reviewed.
Collapse
|
14
|
Cho WK, Ma JY. Antiviral activity of Epimedium koreanum Nakai water extract against influenza viruses. Biomed Pharmacother 2022; 146:112581. [PMID: 34965505 DOI: 10.1016/j.biopha.2021.112581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022] Open
Abstract
Epimedium koreanum Nakai (EKN) is a popular plant in Korean and Chinese medicine for treating a variety of ailments. The aqueous extract of EKN has a significant inhibitory impact on influenza A virus (IAV) infection by directly blocking viral attachment and having a virucidal effect, according to this study. Using fluorescent microscopy and fluorescence-activated cell sorting (FACS) with a green fluorescent protein (GFP)-tagged Influenza A/PR/8/34 virus, we examined the effect of EKN on viral infection. By viral infection, EKN strongly suppresses GFP expression, and at a dosage of 100 µg/mL, EKN decreased GFP expression by up to 90% of the untreated infected control. Immunofluorescence and Western blot analyses against influenza viral proteins revealed that EKN decreased influenza viral protein expression in a dose-dependent manner. EKN inhibited the H1N1 influenza virus's hemagglutinin (HA) and neuraminidase (NA), preventing viral attachment to cells. Furthermore, EKN had a virucidal impact and inhibited the cytopathic effects of H1N1, H3N2 and influenza B virus infection. Finally, our findings show that EKN has the potential to be developed as a natural viral inhibitor against influenza virus infection.
Collapse
Affiliation(s)
- Won-Kyung Cho
- KM Application Center, Korea Institute of Oriental Medicine, 70 Chemdanro, Dong-gu, Daegu 41062, Republic of Korea
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine, 70 Chemdanro, Dong-gu, Daegu 41062, Republic of Korea.
| |
Collapse
|
15
|
Taniguchi K, Ando Y, Kobayashi M, Toba S, Nobori H, Sanaki T, Noshi T, Kawai M, Yoshida R, Sato A, Shishido T, Naito A, Matsuno K, Okamatsu M, Sakoda Y, Kida H. Characterization of the In Vitro and In Vivo Efficacy of Baloxavir Marboxil against H5 Highly Pathogenic Avian Influenza Virus Infection. Viruses 2022; 14:v14010111. [PMID: 35062315 PMCID: PMC8777714 DOI: 10.3390/v14010111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Human infections caused by the H5 highly pathogenic avian influenza virus (HPAIV) sporadically threaten public health. The susceptibility of HPAIVs to baloxavir acid (BXA), a new class of inhibitors for the influenza virus cap-dependent endonuclease, has been confirmed in vitro, but it has not yet been fully characterized. Here, the efficacy of BXA against HPAIVs, including recent H5N8 variants, was assessed in vitro. The antiviral efficacy of baloxavir marboxil (BXM) in H5N1 virus-infected mice was also investigated. BXA exhibited similar in vitro activities against H5N1, H5N6, and H5N8 variants tested in comparison with seasonal and other zoonotic strains. Compared with oseltamivir phosphate (OSP), BXM monotherapy in mice infected with the H5N1 HPAIV clinical isolate, the A/Hong Kong/483/1997 strain, also caused a significant reduction in viral titers in the lungs, brains, and kidneys, thereby preventing acute lung inflammation and reducing mortality. Furthermore, compared with BXM or OSP monotherapy, combination treatments with BXM and OSP using a 48-h delayed treatment model showed a more potent effect on viral replication in the organs, accompanied by improved survival. In conclusion, BXM has a potent antiviral efficacy against H5 HPAIV infections.
Collapse
Affiliation(s)
- Keiichi Taniguchi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshinori Ando
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Masanori Kobayashi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Shinsuke Toba
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Haruaki Nobori
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takao Sanaki
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Takeshi Noshi
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Makoto Kawai
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Ryu Yoshida
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Akihiko Sato
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
| | - Takao Shishido
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
- Correspondence: ; Tel.: +81-6-6331-7263
| | - Akira Naito
- Shionogi & Co., Ltd., Osaka 561-0825, Japan; (K.T.); (Y.A.); (M.K.); (S.T.); (H.N.); (T.S.); (T.N.); (M.K.); (R.Y.); (A.S.); (A.N.)
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Masatoshi Okamatsu
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
| | - Yoshihiro Sakoda
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan; (M.O.); (Y.S.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Hokkaido 001-0020, Japan; (K.M.); (H.K.)
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 001-0020, Japan
| |
Collapse
|
16
|
Seldeslachts L, Jacobs C, Tielemans B, Vanhoffelen E, Van der Sloten L, Humblet-Baron S, Naesens L, Lagrou K, Verbeken E, Wauters J, Vande Velde G. Overcome Double Trouble: Baloxavir Marboxil Suppresses Influenza Thereby Mitigating Secondary Invasive Pulmonary Aspergillosis. J Fungi (Basel) 2021; 8:1. [PMID: 35049941 PMCID: PMC8777735 DOI: 10.3390/jof8010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) is a global recognized superinfection in critically ill influenza patients. Baloxavir marboxil, a cap-dependent endonuclease inhibitor, is a newly approved anti-influenza therapeutic. Although the benefits as a treatment for influenza are clear, its efficacy against an influenza-A. fumigatus co-infection has yet to be determined. We investigated the therapeutic effect of baloxavir marboxil in a murine model for IAPA. Immunocompetent mice received intranasal instillation of influenza A followed by orotracheal inoculation with Aspergillus fumigatus 4 days later. Administration of baloxavir marboxil or sham was started at day 0, day 2 or day 4. Mice were monitored daily for overall health status, lung pathology with micro-computed tomography (µCT) and fungal burden with bioluminescence imaging (BLI). In vivo imaging was supplemented with virological, mycological and biochemical endpoint investigations. We observed an improved body weight, survival and viral clearance in baloxavir marboxil treated mice. µCT showed less pulmonary lesions and bronchial dilation after influenza and after Aspergillus co-infection in a treatment-dependent pattern. Furthermore, baloxavir marboxil was associated with effective inhibition of fungal invasion. Hence, our results provide evidence that baloxavir marboxil mitigates severe influenza thereby decreasing the susceptibility to a lethal invasive Aspergillus superinfection.
Collapse
Affiliation(s)
- Laura Seldeslachts
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (L.S.); (B.T.); (E.V.)
| | - Cato Jacobs
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (C.J.); (L.V.d.S.); (J.W.)
| | - Birger Tielemans
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (L.S.); (B.T.); (E.V.)
| | - Eliane Vanhoffelen
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (L.S.); (B.T.); (E.V.)
| | - Lauren Van der Sloten
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (C.J.); (L.V.d.S.); (J.W.)
| | - Stephanie Humblet-Baron
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| | - Erik Verbeken
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium;
| | - Joost Wauters
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (C.J.); (L.V.d.S.); (J.W.)
| | - Greetje Vande Velde
- Biomedical MRI Unit/MoSAIC, Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium; (L.S.); (B.T.); (E.V.)
| |
Collapse
|
17
|
Tejus A, Mathur A, Pradhan S, Malik S, Salmani MF. Drug update - Baloxavir marboxil: Latest entrant into the arena of pharmacotherapy of influenza. Med J Armed Forces India 2021; 78:125-130. [PMID: 35463549 PMCID: PMC9023778 DOI: 10.1016/j.mjafi.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Influenza is a frequent cause of clinically significant human disease, with seasonal epidemics and occasional pandemics. Uncomplicated influenza in healthy individuals is managed symptomatically. Vaccination against influenza plays a vital role in the control of infection in humans. The currently available antivirals include adamantanes, neuraminidase inhibitors, and ribavirin. Baloxavir marboxil, the prodrug of baloxavir, is the latest addition to the family of anti-influenza drugs, and it received US-FDA approval on October 24, 2018. Baloxavir acts through a novel mechanism of inhibiting Cap-dependent endonuclease (CEN), the vital step in the transcription of viral RNA, and prevents further spread of the virus.
Collapse
Affiliation(s)
- A. Tejus
- Classified Specialist (Pharmacology), Medical Officer, HQ IMTRAT, C/o 99 APO, India
- Corresponding author.
| | | | - Sapna Pradhan
- Professor (Pharmacology), Army College of Medical Sciences, Delhi Cantt, India
| | - Salma Malik
- Demonstrator (Pharmacology), Army College of Medical Sciences, Delhi Cantt, India
| | - Md Fadil Salmani
- Demonstrator (Pharmacology), Army College of Medical Sciences, Delhi Cantt, India
| |
Collapse
|
18
|
Ison MG, Hayden FG, Hay AJ, Gubareva LV, Govorkova EA, Takashita E, McKimm-Breschkin JL. Influenza polymerase inhibitor resistance: Assessment of the current state of the art - A report of the isirv Antiviral group. Antiviral Res 2021; 194:105158. [PMID: 34363859 PMCID: PMC9012257 DOI: 10.1016/j.antiviral.2021.105158] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.
Collapse
Affiliation(s)
- Michael G Ison
- Divisions of Infectious Diseases and Organ Transplantation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alan J Hay
- The Francis Crick Institute, London, UK.
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Emi Takashita
- National Institute of Infectious Diseases, Tokyo, Japan.
| | - Jennifer L McKimm-Breschkin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
Ando Y, Noshi T, Sato K, Ishibashi T, Yoshida Y, Hasegawa T, Onishi M, Kitano M, Oka R, Kawai M, Yoshida R, Sato A, Shishido T, Naito A. Pharmacokinetic and pharmacodynamic analysis of baloxavir marboxil, a novel cap-dependent endonuclease inhibitor, in a murine model of influenza virus infection. J Antimicrob Chemother 2021; 76:189-198. [PMID: 33035324 PMCID: PMC7729387 DOI: 10.1093/jac/dkaa393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022] Open
Abstract
Background Baloxavir acid, the active form of the orally available prodrug baloxavir marboxil, is a novel cap-dependent endonuclease inhibitor of influenza virus. Baloxavir marboxil has been shown to rapidly reduce virus titres compared with oseltamivir in clinical studies. Objectives We investigated the relationship between pharmacokinetic (PK) parameters and antiviral activity of baloxavir acid based on virus titre reduction in lungs of infected mice. Methods BALB/c mice infected with a sub-lethal dose of influenza A(H1N1), A(H1N1)pdm09, A(H3N2) or type B virus were treated on day 5 with oral baloxavir marboxil (0.5–50 mg/kg q12h), subcutaneous baloxavir acid (0.25–8 mg/kg/day), oseltamivir phosphate (5 or 50 eq mg/kg q12h) or other antivirals for 1 day. Lung virus titres were assessed 24 h after initial antiviral dosing. PK testing was performed at up to 24 h post-dosing of baloxavir marboxil or baloxavir acid in A/WSN/33-infected mice and the PK/pharmacodynamic (PD) relationship was evaluated for baloxavir acid. Results Oral baloxavir marboxil administration showed dose-dependent virus titre reductions in lungs of mice infected with the different types/subtypes of influenza viruses 24 h post-dosing. Baloxavir marboxil at 15 mg/kg q12h resulted in ≥100-fold and ≥10-fold reductions in influenza A and B virus titres, respectively, compared with oseltamivir phosphate. PK/PD analysis showed that the plasma concentration at the end of the dosing interval (Cτ) or the plasma concentration at 24 h after initial dosing (C24) was the PK parameter predicting the virus titres at 24 h post-dosing of baloxavir acid. Conclusions PK/PD analysis of baloxavir acid based on virus titre reduction in this mouse model could be helpful in predicting and maximizing virological outcomes in clinical settings.
Collapse
Affiliation(s)
- Yoshinori Ando
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Takeshi Noshi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kenji Sato
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Toru Ishibashi
- Project Management Department, Shionogi & Co., Ltd, 12F, Hankyu Terminal Bldg, 1-4, Shibata 1-chome, Kita-ku, Osaka 530-0012, Japan
| | - Yuki Yoshida
- Data Science Office, Shionogi & Co., Ltd, 12F, Hankyu Terminal Bldg, 1-4, Shibata 1-chome, Kita-ku, Osaka 530-0012, Japan
| | - Takahiro Hasegawa
- Biostatistics Center, Shionogi & Co., Ltd, 12F, Hankyu Terminal Bldg, 1-4, Shibata 1-chome, Kita-ku, Osaka 530-0012, Japan
| | - Motoyasu Onishi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Mitsutaka Kitano
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ryoko Oka
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Makoto Kawai
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ryu Yoshida
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Akihiko Sato
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Takao Shishido
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Akira Naito
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
20
|
Liu X, Luo W, Zhang B, Lee YG, Shahriar I, Srinivasarao M, Low PS. Design of Neuraminidase-Targeted Imaging and Therapeutic Agents for the Diagnosis and Treatment of Influenza Virus Infections. Bioconjug Chem 2021; 32:1548-1553. [PMID: 34161726 DOI: 10.1021/acs.bioconjchem.1c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The last step in influenza virus replication involves the assembly of viral components on the infected cell's plasma membrane followed by budding of intact virus from the host cell surface. Because viral neuraminidase and hemagglutinin are both inserted into the host cell's membrane during this process, influenza virus-infected cells are distinguished from uninfected cells by the presence of viral neuraminidase and hemagglutinin on their cell surfaces. In an effort to exploit this difference in cell surface markers for development of diagnostic and therapeutic agents, we have modified an influenza neuraminidase inhibitor, zanamivir, for targeting of attached imaging and therapeutic agents selectively to influenza viruses and virus-infected cells. We have designed here a zanamivir-conjugated rhodamine dye that allows visual monitoring of binding, internalization, and intracellular trafficking of the fluorescence-labeled neuraminidase in virus-infected cells. We also synthesize a zanamivir-99mTc radioimaging conjugate that permits whole body imaging of the virus's biodistribution and abundance in infected mice. Finally, we create both a zanamivir-targeted cytotoxic drug (i.e., zanamivir-tubulysin B) and a viral neuraminidase-targeted CAR T cell and demonstrate that they are both able to kill viral neuraminidase-expressing cells without damaging healthy cells. Taken together, these data suggest that the influenza virus neuraminidase inhibitor, zanamivir, can be exploited to improve the diagnosis, imaging, and treatment of influenza virus infections.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Weichuan Luo
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Boning Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yong Gu Lee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Imrul Shahriar
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madduri Srinivasarao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
Deinhardt-Emmer S, Jäckel L, Häring C, Böttcher S, Wilden JJ, Glück B, Heller R, Schmidtke M, Koch M, Löffler B, Ludwig S, Ehrhardt C. Inhibition of Phosphatidylinositol 3-Kinase by Pictilisib Blocks Influenza Virus Propagation in Cells and in Lungs of Infected Mice. Biomolecules 2021; 11:biom11060808. [PMID: 34072389 PMCID: PMC8228449 DOI: 10.3390/biom11060808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Influenza virus (IV) infections are considered to cause severe diseases of the respiratory tract. Beyond mild symptoms, the infection can lead to respiratory distress syndrome and multiple organ failure. Occurrence of resistant seasonal and pandemic strains against the currently licensed antiviral medications points to the urgent need for new and amply available anti-influenza drugs. Interestingly, the virus-supportive function of the cellular phosphatidylinositol 3-kinase (PI3K) suggests that this signaling module may be a potential target for antiviral intervention. In the sense of repurposing existing drugs for new indications, we used Pictilisib, a known PI3K inhibitor to investigate its effect on IV infection, in mono-cell-culture studies as well as in a human chip model. Our results indicate that Pictilisib is a potent inhibitor of IV propagation already at early stages of infection. In a murine model of IV pneumonia, the in vitro key findings were verified, showing reduced viral titers as well as inflammatory response in the lung after delivery of Pictilisib. Our data identified Pictilisib as a promising drug candidate for anti-IV therapies that warrant further studying. These results further led to the conclusion that the repurposing of previously approved substances represents a cost-effective and efficient way for development of novel antiviral strategies.
Collapse
Affiliation(s)
- Stefanie Deinhardt-Emmer
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (M.K.); (B.L.)
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
- Correspondence: (S.D.-E.); (C.E.); Tel.: +49-(0)3641-9393640 (S.D.-E.); +49-(0)3641-9395700 (C.E.)
| | - Laura Jäckel
- Institute of Virology Muenster, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University, D-48149 Muenster, Germany; (L.J.); (J.J.W.); (S.L.)
| | - Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
| | - Sarah Böttcher
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
| | - Janine J. Wilden
- Institute of Virology Muenster, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University, D-48149 Muenster, Germany; (L.J.); (J.J.W.); (S.L.)
| | - Brigitte Glück
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany;
| | - Michaela Schmidtke
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
| | - Mirijam Koch
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (M.K.); (B.L.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; (M.K.); (B.L.)
| | - Stephan Ludwig
- Institute of Virology Muenster, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University, D-48149 Muenster, Germany; (L.J.); (J.J.W.); (S.L.)
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, D-07745 Jena, Germany; (C.H.); (S.B.); (B.G.); (M.S.)
- Correspondence: (S.D.-E.); (C.E.); Tel.: +49-(0)3641-9393640 (S.D.-E.); +49-(0)3641-9395700 (C.E.)
| |
Collapse
|
22
|
Abstract
Baloxavir marboxil (Xofluza®; hereafter referred to as baloxavir), the prodrug of baloxavir acid, is a first-in-class, small molecule inhibitor of the polymerase acidic (PA) protein subunit of the influenza virus polymerase complex. Baloxavir (after conversion to baloxavir acid) acts to block influenza virus replication by inhibiting the cap-dependent endonuclease activity of the PA protein. Taken orally as a single dose, baloxavir is approved in the USA for the treatment of acute uncomplicated influenza in patients ≥ 12 years of age who have been symptomatic for ≤ 48 h. Data from randomized, double-blind, placebo- and oseltamivir-controlled phase III trials have shown that baloxavir is efficacious in improving influenza symptoms both in otherwise healthy adolescents and adults and in those at high risk of influenza complications, displaying similar efficacy to that of oseltamivir. Furthermore, there is evidence that baloxavir can reduce influenza viral load more rapidly than oseltamivir. Baloxavir has activity against influenza A and B viruses (including strains resistant to neuraminidase inhibitors) and is well tolerated. Evidence of the emergence and likely human-to-human transmission of variant viruses with reduced susceptibility to baloxavir highlights the importance of monitoring and surveillance for changes in influenza virus drug susceptibility patterns. However, currently available evidence suggests that baloxavir, with the benefits of a single oral dose regimen, provides a useful alternative to neuraminidase inhibitors for the treatment of acute uncomplicated influenza in adolescents and adults.
Collapse
Affiliation(s)
- Matt Shirley
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
23
|
Zuo Z, Wu T, Pan L, Zuo C, Hu Y, Luo X, Jiang L, Xia Z, Xiao X, Liu J, Ye M, Deng M. Modalities and Mechanisms of Treatment for Coronavirus Disease 2019. Front Pharmacol 2021; 11:583914. [PMID: 33643033 PMCID: PMC7908061 DOI: 10.3389/fphar.2020.583914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly throughout the world. Although COVID-19 has a relatively low case severity rate compared to SARS and Middle East Respiratory syndrome it is a major public concern because of its rapid spread and devastating impact on the global economy. Scientists and clinicians are urgently trying to identify drugs to combat the virus with hundreds of clinical trials underway. Current treatments could be divided into two major part: anti-viral agents and host system modulatory agents. On one hand, anti-viral agents focus on virus infection process. Umifenovir blocks virus recognizing host and entry. Remdesivir inhibits virus replication. Chloroquine and hydroxychloroquine involve preventing the whole infection process, including virus transcription and release. On the other hand, host system modulatory agents are associated with regulating the imbalanced inflammatory reaction and biased immune system. Corticosteroid is believed to be commonly used for repressing hyper-inflammation, which is one of the major pathologic mechanisms of COVID-19. Convalescent plasma and neutralizing antibodies provide essential elements for host immune system and create passive immunization. Thrombotic events are at high incidence in COVID-19 patients, thus anti-platelet and anti-coagulation are crucial, as well. Here, we summarized these current or reproposed agents to better understand the mechanisms of agents and give an update of present research situation.
Collapse
Affiliation(s)
- Zhihong Zuo
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ting Wu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Chenzhe Zuo
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yingchuo Hu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Luo
- Hunan Yuanpin Cell Biotechnology Co., Ltd., Changsha, China
| | - Liping Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
24
|
Kiso M, Yamayoshi S, Murakami J, Kawaoka Y. Baloxavir Marboxil Treatment of Nude Mice Infected With Influenza A Virus. J Infect Dis 2021; 221:1699-1702. [PMID: 31837268 DOI: 10.1093/infdis/jiz665] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immunocompromised patients infected with influenza virus require prolonged treatment with neuraminidase inhibitors, because these patients are not able to eradicate the virus from the respiratory tract, leading to the emergence of drug-resistant mutant viruses. METHODS In this study, we examined the efficacy of baloxavir marboxil in nude mice that were immunologically deficient. RESULTS Daily treatment with a suboptimal dose of baloxavir marboxil increased the survival time of the virus-infected nude mice but did not clear the virus from their respiratory organs, resulting in gradual body weight loss after termination of treatment. CONCLUSIONS Despite the prolonged baloxavir marboxil treatment, few resistant mutants were detected.
Collapse
Affiliation(s)
- Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Jurika Murakami
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Portsmouth S, Hayden FG, Kawaguchi K, Ishibashi T, Kinoshita M, Shishido T, Tsuchiya K, Uehara T. Baloxavir Treatment in Adolescents With Acute Influenza: Subgroup Analysis From the CAPSTONE-1 Trial. J Pediatric Infect Dis Soc 2020; 10:477-484. [PMID: 33340316 PMCID: PMC8087144 DOI: 10.1093/jpids/piaa145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Baloxavir marboxil has demonstrated safety and efficacy in treating adult and adolescent outpatients with acute influenza (CAPSTONE-1 trial). Here, we report a subgroup analysis of outcomes in adolescents from the trial. METHODS CAPSTONE-1 was a randomized, double-blind, placebo-controlled study. Eligible adolescent outpatients (aged 12-17 years of age) were randomized in a ratio of 2:1 to a single dose of baloxavir 40/80 mg if less than/greater than or equal to 80 kg or placebo. The main outcomes were the time to alleviation of symptoms (TTAS), duration of infectious virus detection, and incidence of adverse events (AEs). RESULTS Among 117 adolescent patients, 90 (77%) comprised the intent-to-treat infected population (63 baloxavir and 27 placebo; 88.9% A(H3N2)). The median TTAS was 38.6 hours shorter (95% confidence interval: -2.6, 68.4) in the baloxavir group compared with placebo (median TTAS, 54.1 hours vs 92.7 hours, P = .0055). The median time to sustained cessation of infectious virus detection was 72.0 hours for baloxavir compared with 120.0 hours for placebo recipients (P < .0001). Treatment-emergent PA/I38X-substituted viruses were detected in 5 of the 51 (9.8%) baloxavir recipients. In the safety population (76 baloxavir and 41 placebo), AEs were less common in baloxavir than placebo recipients (17.1% vs 34.1%; P = .0421). In the baloxavir group, no AEs except for diarrhea were reported in 2 or more patients. CONCLUSIONS Baloxavir demonstrated clinical and virologic efficacy in the otherwise healthy adolescents with acute influenza compared with placebo. There were no safety concerns identified. These results were similar to the adult population in CAPSTONE-1 and support baloxavir as a treatment option in adolescents.
Collapse
Affiliation(s)
- Simon Portsmouth
- Clinical Development, Shionogi Inc., Florham Park, New Jersey, USA
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Keiko Kawaguchi
- Project Management Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Toru Ishibashi
- Project Management Department, Shionogi & Co., Ltd., Osaka, Japan
| | | | - Takao Shishido
- Drug Discovery & Disease Research Laboratory, Shionogi & Co. Ltd., Osaka, Japan
| | - Kenji Tsuchiya
- Project Management Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeki Uehara
- Project Management Department, Shionogi & Co., Ltd., Osaka, Japan,Corresponding Author: Takeki Uehara, DVM, PhD, Project Management Department, Shionogi & Co., Ltd. 12F, Hankyu Terminal Bldg., 1–4, Shibata 1-Chome, Kita-ku, Osaka 530-0012, Japan. E-mail:
| |
Collapse
|
26
|
Mhamdi Z, Fausther-Bovendo H, Uyar O, Carbonneau J, Venable MC, Abed Y, Kobinger G, Boivin G, Baz M. Effects of Different Drug Combinations in Immunodeficient Mice Infected with an Influenza A/H3N2 Virus. Microorganisms 2020; 8:microorganisms8121968. [PMID: 33322333 PMCID: PMC7764069 DOI: 10.3390/microorganisms8121968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The prolonged treatment of immunosuppressed (IS) individuals with anti-influenza monotherapies may lead to the emergence of drug-resistant variants. Herein, we evaluated oseltamivir and polymerase inhibitors combinations against influenza A/H3N2 infections in an IS mouse model. Mice were IS with cyclophosphamide and infected with 3 × 103 PFU of a mouse-adapted A/Switzerland/9715293/2013 (H3N2) virus. Forty-eight hours post-infection, the animals started oseltamivir, favipiravir or baloxavir marboxil (BXM) as single or combined therapies for 10 days. Weight losses, survival rates and lung viral titers (LVTs) were determined. The neuraminidase (NA) and polymerase genes from lung viral samples were sequenced. All untreated animals died. Oseltamivir and favipiravir monotherapies only delayed mortality (the mean day to death (MDD) of 21.4 and 24 compared to 11.4 days for those untreated) while a synergistic improvement in survival (80%) and LVT reduction was observed in the oseltamivir/favipiravir group compared to the oseltamivir group. BXM alone or in double/triple combination provided a complete protection and significantly reduced LVTs. Oseltamivir and BXM monotherapies induced the E119V (NA) and I38T (PA) substitutions, respectively, while no resistance mutation was detected with combinations. We found that the multiple dose regimen of BXM alone provided superior benefits compared to oseltamivir and favipiravir monotherapies. Moreover, we suggest the potential for drug combinations to reduce the incidence of resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mariana Baz
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48281)
| |
Collapse
|
27
|
A universal dual mechanism immunotherapy for the treatment of influenza virus infections. Nat Commun 2020; 11:5597. [PMID: 33154358 PMCID: PMC7645797 DOI: 10.1038/s41467-020-19386-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza epidemics lead to 3–5 million severe infections and 290,000–650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies. In this study, the authors combine an anti-viral drug and immune system inducer to treat influenza A and B viral infections in vitro and in vivo. They show that the compound outperforms zanamivir alone as it is still able to clear infection three days post infection, and it can be administered via different routes without reduced efficacy.
Collapse
|
28
|
Screening for Anti-Influenza Actives of Prefractionated Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4979850. [PMID: 33123207 PMCID: PMC7584957 DOI: 10.1155/2020/4979850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023]
Abstract
Traditional Chinese medicines (TCMs) have proven to possess advantages in counteracting virus infections according to clinical practices. It's therefore of great value to discover novel antivirals from TCMs. In this paper, One hundred medicinal plants which have been included in TCM prescriptions for antiviral treatment were selected and prefractionated into 5 fractions each by sequentially using cyclohexane, dichloromethane, ethyl acetate, n-butanol, and water. 500 TCM-simplified extracts were then subjected to a phenotypic screening using a recombinant IAV expressing Gaussia luciferase. Ten TCM fractions were identified to possess antiviral activities against influenza virus. The IC50's of the hit fractions range from 1.08 to 6.45 μg/mL, while the SIs, from 7.52 to 98.40. Furthermore, all the ten hit fractions inhibited the propagation of progeny influenza virus significantly at 20 μg/mL. The hit TCM fractions deserve further isolation for responsible constituents leading towards anti-influenza drugs. Moreover, a library consisting of 500 simplified TCM extracts was established, facilitating antiviral screening in quick response to emerging and re-emerging viruses such as Ebola virus and current SARS-CoV-2 pandemic.
Collapse
|
29
|
Abed Y, Saim-Mamoun A, Boivin G. Fitness of influenza A and B viruses with reduced susceptibility to baloxavir: A mini-review. Rev Med Virol 2020; 31:e2175. [PMID: 32975358 DOI: 10.1002/rmv.2175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Neuraminidase inhibitors (NAIs), that currently include oseltamivir (Tamiflu® ), zanamivir (Relenza® ), peramivir (Rapivab® ) and laninamivir (Inavir® ), constitute an important class of antivirals recommended against seasonal influenza A and B infections. NAIs target the surface NA protein whose sialidase activity is responsible for virion release from infected cells. Because of their pivotal role in the transcription/translation process, the polymerase acidic (PA) and polymerase basic 1 and 2 (PB1 and PB2, respectively) internal proteins also constitute targets of interest for the development of additional anti-influenza agents. Baloxavir marboxil (BXM), an inhibitor of the cap-dependent endonuclease activity of the influenza PA protein, was approved in the United States and Japan in 2018. Baloxavir acid (BXA), the active compound of BXM, demonstrated a potent in vitro activity against different types/subtypes of influenza viruses including seasonal influenza A/B strains as well as avian influenza A viruses with a pandemic potential. A single oral dose of BXM provided virological and clinical benefits that were respectively superior or equal to those displayed by the standard (5 days, twice daily) oseltamivir regimen. Nevertheless, BXM-resistant variants have emerged at relatively high rates in BXM-treated children and adults. Consequently, there is a need to study the fitness (virulence and transmissibility) characteristics of mutants with a high potential to emerge as such variants can compromise the clinical usefulness of BXM. The purpose of this manuscript is to review the fitness properties of influenza A and B isolates harbouring mutations of reduced susceptibility to BXA.
Collapse
Affiliation(s)
- Yacine Abed
- CHUQ-CHUL and Laval University, Québec, Canada
| | | | - Guy Boivin
- CHUQ-CHUL and Laval University, Québec, Canada
| |
Collapse
|
30
|
Jang WS, Lim DH, Nam J, Mihn DC, Sung HW, Lim CS, Kim J. Development of a multiplex isothermal amplification molecular diagnosis method for on-site diagnosis of influenza. PLoS One 2020; 15:e0238615. [PMID: 32915821 PMCID: PMC7485819 DOI: 10.1371/journal.pone.0238615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 01/30/2023] Open
Abstract
Influenza, which is an acute respiratory disease caused by the influenza virus, represents a worldwide public health and economic problem owing to the significant morbidity and mortality caused by its seasonal epidemics and pandemics. Sensitive and convenient methodologies for the detection of influenza viruses are important for clinical care and infection control as well as epidemiological investigations. Here, we developed a multiplex reverse transcription loop-mediated isothermal amplification (RT-LAMP) with quencher/fluorescence oligonucleotides connected by a 5' backward loop (LF or LB) primer for the detection of two subtypes of influenza viruses: Influenza A (A/H1 and A/H3) and influenza B. The detection limits of the multiplex RT-LAMP assay were 103 copies and 102 copies of RNA for influenza A and influenza B, respectively. The sensitivities of the multiplex influenza A/B/IC RT-LAMP assay were 94.62% and 97.50% for influenza A and influenza B clinical samples, respectively. The specificities of the multiplex influenza A/B/IC RT-LAMP assay were 100% for influenza A, influenza B, and healthy clinical samples. In addition, the multiplex influenza A/B/IC RT-LAMP assay had no cross-reactivity with other respiratory viruses.
Collapse
Affiliation(s)
- Woong Sik Jang
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Da Hye Lim
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeonghun Nam
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Do-CiC Mihn
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Haan Woo Sung
- Department of Veterinary Microbiology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeeyong Kim
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
31
|
Monoclonal Antibody Therapy Protects Pharmacologically Immunosuppressed Mice from Lethal Infection with Influenza B Virus. Antimicrob Agents Chemother 2020; 64:AAC.00284-20. [PMID: 32631823 DOI: 10.1128/aac.00284-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/27/2020] [Indexed: 11/20/2022] Open
Abstract
Human influenza A and B viruses are highly contagious and cause similar illnesses and seasonal epidemics. Currently available antiviral drugs have limited efficacy in humans with compromised immune systems; therefore, alternative strategies for protection are needed. Here, we investigated whether monoclonal antibodies (MAbs) targeting hemagglutinin (HA) and/or neuraminidase (NA) proteins would protect immunosuppressed mice from severe infections with influenza B virus. Pharmacologically immunosuppressed BALB/c mice were inoculated with B/Brisbane/60/2008 (BR/08) influenza virus and were treated with a single dose of 1, 5, or 25 mg/kg of body weight per day of either an anti-HA MAb (1D2) or an anti-NA MAb (1F2) starting at 24 hours postinoculation (hpi). Monotherapy with 1D2 or 1F2 MAbs provided dose-dependent protection of mice, with decreased BR/08 virus replication and spread in the mouse lungs, compared with those of controls. Combination treatment with 1D2 and 1F2 provided greater protection than did monotherapy, even when started at 48 hpi. Virus spread was also efficiently restrained within the lungs, being limited to 6%, 10%, and 10% of that seen in active infection when treatment was initiated at 24, 48, and 72 hpi, respectively. In most cases, the expression of cytokines and chemokines was altered according to when treatment was initiated. Higher expression of proinflammatory IP-10 and MCP-1 in combination-treatment groups, but not in monotherapy groups, to some extent, promoted better control of virus spread within the lungs. This study demonstrates the potential value of MAb immunotherapy in treating influenza in immunocompromised hosts who are at increased risk of severe disease.
Collapse
|
32
|
Baloxavir Marboxil Single-dose Treatment in Influenza-infected Children: A Randomized, Double-blind, Active Controlled Phase 3 Safety and Efficacy Trial (miniSTONE-2). Pediatr Infect Dis J 2020; 39:700-705. [PMID: 32516282 PMCID: PMC7360097 DOI: 10.1097/inf.0000000000002747] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Baloxavir marboxil (baloxavir) is a novel, cap-dependent endonuclease inhibitor that has previously demonstrated efficacy in the treatment of influenza in adults and adolescents. We assessed the safety and efficacy of baloxavir in otherwise healthy children with acute influenza. METHODS MiniSTONE-2 (Clinicaltrials.gov: NCT03629184) was a double-blind, randomized, active controlled trial enrolling children 1-<12 years old with a clinical diagnosis of influenza. Children were randomized 2:1 to receive either a single dose of oral baloxavir or oral oseltamivir twice daily for 5 days. The primary endpoint was incidence, severity and timing of adverse events (AEs); efficacy was a secondary endpoint. RESULTS In total, 173 children were randomized and dosed, 115 to the baloxavir group and 58 to the oseltamivir group. Characteristics of participants were similar between treatment groups. Overall, 122 AEs were reported in 84 (48.6%) children. Incidence of AEs was similar between baloxavir and oseltamivir groups (46.1% vs. 53.4%, respectively). The most common AEs were gastrointestinal (vomiting/diarrhea) in both groups [baloxavir: 12 children (10.4%); oseltamivir: 10 children (17.2%)]. No deaths, serious AEs or hospitalizations were reported. Median time (95% confidence interval) to alleviation of signs and symptoms of influenza was similar between groups: 138.1 (116.6-163.2) hours with baloxavir versus 150.0 (115.0-165.7) hours with oseltamivir. CONCLUSIONS Oral baloxavir is well tolerated and effective at alleviating symptoms in otherwise healthy children with acute influenza. Baloxavir provides a new therapeutic option with a simple oral dosing regimen.
Collapse
|
33
|
Salvatore M, Laplante JM, Soave R, Orfali N, Plate M, Besien K, St. George K. Baloxavir for the treatment of Influenza in allogeneic hematopoietic stem cell transplant recipients previously treated with oseltamivir. Transpl Infect Dis 2020; 22:e13336. [DOI: 10.1111/tid.13336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jennifer M. Laplante
- Laboratory of Viral Diseases Wadsworth Center New York State Department of Health Albany NY USA
| | - Rosemary Soave
- Department of Medicine Weill Cornell Medicine New York NY USA
| | - Nina Orfali
- Department of Medicine Weill Cornell Medicine New York NY USA
| | - Markus Plate
- Department of Medicine Weill Cornell Medicine New York NY USA
| | - Koen Besien
- Meyer Cancer Center Weill Cornell Medicine New York NY USA
| | - Kirsten St. George
- Laboratory of Viral Diseases Wadsworth Center New York State Department of Health Albany NY USA
| |
Collapse
|
34
|
Advanced researches on the inhibition of influenza virus by Favipiravir and Baloxavir. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res 2020; 220:33-42. [PMID: 32088166 PMCID: PMC7102518 DOI: 10.1016/j.trsl.2020.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
Influenza viruses are a major threat to human health globally. In addition to further improving vaccine prophylaxis, disease management through antiviral therapeutics constitutes an important component of the current intervention strategy to prevent advance to complicated disease and reduce case-fatality rates. Standard-of-care is treatment with neuraminidase inhibitors that prevent viral dissemination. In 2018, the first mechanistically new influenza drug class for the treatment of uncomplicated seasonal influenza in 2 decades was approved for human use. Targeting the PA endonuclease subunit of the viral polymerase complex, this class suppresses viral replication. However, the genetic barrier against viral resistance to both drug classes is low, pre-existing resistance is observed in circulating strains, and resistant viruses are pathogenic and transmit efficiently. Addressing the resistance problem has emerged as an important objective for the development of next-generation influenza virus therapeutics. This review will discuss the status of influenza therapeutics including the endonuclease inhibitor baloxavir marboxil after its first year of clinical use and evaluate a subset of direct-acting antiviral candidates in different stages of preclinical and clinical development.
Collapse
Affiliation(s)
- Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|