1
|
Yu H, Dong Y, Li B, Wang S, Zhao J, Zuo J, Song Y, Qu C. Rapid enrichment of anaerobic ammonia oxidation bacteria by combining low nitrogen strength with microbial viability. BIORESOURCE TECHNOLOGY 2025; 427:132403. [PMID: 40090493 DOI: 10.1016/j.biortech.2025.132403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
The rapid enrichment of anaerobic ammonia oxidation (anammox) bacteria (AnAOB) is challenging owing to their slow growth rate. Substrate supply strategies influence the AnAOB yield and anammox performance. In this study, a feeding strategy for low nitrogen strength with constant substrate concentrations and a hydraulic retention time decreasing over a gradient was investigated in an up-flow sludge blanket reactor. With increasing nitrogen load, the nitrogen removal rate increased from 0.2 to 6.3 kg-N m-3 day-1, and the ratios among ammonium utilization, nitrite depletion, and nitrate production changed from 1:2.62:2.03 to 1:0.99:0.17. Excessive extracellular adenosine triphosphate (ATP) release occurred under famine conditions, whereas intracellular ATP accumulated under feast conditions. Rapid AnAOB growth, with a doubling time of 2 d, was associated with high microbial viability. A combined strategy of low nitrogen strength and microbial viability was proposed for the rapid growth of AnAOB. These results demonstrate accelerated process start-up and help us to understand anammox metabolism in depth.
Collapse
Affiliation(s)
- Heng Yu
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Yue Dong
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sike Wang
- Department of Material and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, China
| | - Junkai Zhao
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Jiane Zuo
- Tsinghua Shenzhen International Graduate School, Shenzhen, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chengtun Qu
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| |
Collapse
|
2
|
Mahmood E, Robitaille M, Bu Y, Khan A, Poulin MF, Mahmood F, Bose R, Khabbaz KR, Robson SC, Matyal R. Targeting the CD39/CD73 pathway: New insights into cardiac fibrosis and inflammation in female cardiac surgery patients. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 12:100294. [PMID: 40230374 PMCID: PMC11994921 DOI: 10.1016/j.jmccpl.2025.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/28/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025]
Abstract
Women undergoing cardiac surgery suffer from worse outcomes than their male counterparts. The reasons for this disparity are multifactorial, but the loss of the protective effects of estrogen likely plays a role. Estrogen acts on the CD39/CD73 purine pathway, and loss of estrogen effects may contribute to the increased inflammation seen in post-menopausal women. We aimed to compare CD39/CD73 expression and downstream fibrosis, and inflammation in men and women undergoing cardiac surgery and then used an ovariectomy/high fat diet mouse model to approximate women who present for cardiac surgery to test therapeutics. We found decreased CD39 and CD73 in women compared to men, which was associated with increased fibrosis. Apyrase supplementation (a CD39 mimetic) improved ejection fraction and decreased E/e'. Increased CD73 function (via dipyridamole) decreased fibrosis. This study demonstrates the importance of purinergic dysfunction in cardiovascular disease in women and presents two potential therapeutics to improve cardiac health via manipulation of purine pathways.
Collapse
Affiliation(s)
- Eitezaz Mahmood
- Department of Cardiology, Lahey Health & Medical Center, Burlington, MA, United States of America
| | - Mark Robitaille
- Department of Anesthesia Critical Care and Pain Management, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Yifan Bu
- Department of Anesthesia Critical Care and Pain Management, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Adnan Khan
- Department of Anesthesia Critical Care and Pain Management, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Marie-France Poulin
- Cardiovascular Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Feroze Mahmood
- Department of Anesthesia Critical Care and Pain Management, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Ruma Bose
- Department of Anesthesia Critical Care and Pain Management, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Kamal R. Khabbaz
- Department of Surgery, Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Simon C. Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine, Division of Gastroenterology-Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Robina Matyal
- Department of Anesthesia Critical Care and Pain Management, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
3
|
Nortz SP, Gupta V, Dick JE. The impact of common redox mediators on cellular health: a comprehensive study. Analyst 2025; 150:1795-1806. [PMID: 40176531 PMCID: PMC11966090 DOI: 10.1039/d5an00017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
Electrochemistry has become a key technique for studying biomolecular reactions and dynamics of living systems by using electron-transfer reactions to probe the complex interactions between biological redox molecules and their surrounding environments. To enable such measurements, redox mediators such as ferro/ferricyanide, ferrocene methanol, and tris(bipyridine) ruthenium(II) chloride are used. However, the impact of these exogeneous redox mediators on the health of cell cultures remains underexplored. Herein, we present the effects of three common redox mediators on the health of four of the most commonly used cell lines (Panc1, HeLa, U2OS, and MDA-MB-231) in biological studies. Cell health was assessed using three independent parameters: reactive oxygen species quantification by fluorescence flow cytometry, cell migration through scratch assays, and cell growth via luminescence assays. We show that as the concentration of mediator exceeds 1 mM, ROS increases in all cell types while cell viability plumets. In contrast, cell migration was only hindered at the highest concentration of each mediator. Our observations highlight the crucial role that optimized mediator concentrations play in ensuring accuracy when studying biological systems by electrochemical methods. As such, these findings provide a critical reference for selecting redox mediator concentrations for bioanalytical studies on live cells.
Collapse
Affiliation(s)
- Samuel P Nortz
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Vanshika Gupta
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
4
|
Best L, Dost T, Esser D, Flor S, Gamarra AM, Haase M, Kadibalban AS, Marinos G, Walker A, Zimmermann J, Simon R, Schmidt S, Taubenheim J, Künzel S, Häsler R, Franzenburg S, Groth M, Waschina S, Rosenstiel P, Sommer F, Witte OW, Schmitt-Kopplin P, Baines JF, Frahm C, Kaleta C. Metabolic modelling reveals the aging-associated decline of host-microbiome metabolic interactions in mice. Nat Microbiol 2025; 10:973-991. [PMID: 40140706 PMCID: PMC11964932 DOI: 10.1038/s41564-025-01959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025]
Abstract
Aging is accompanied by considerable changes in the gut microbiome, yet the molecular mechanisms driving aging and the role of the microbiome remain unclear. Here we combined metagenomics, transcriptomics and metabolomics from aging mice with metabolic modelling to characterize host-microbiome interactions during aging. Reconstructing integrated metabolic models of host and 181 mouse gut microorganisms, we show a complex dependency of host metabolism on known and previously undescribed microbial interactions. We observed a pronounced reduction in metabolic activity within the aging microbiome accompanied by reduced beneficial interactions between bacterial species. These changes coincided with increased systemic inflammation and the downregulation of essential host pathways, particularly in nucleotide metabolism, predicted to rely on the microbiota and critical for preserving intestinal barrier function, cellular replication and homeostasis. Our results elucidate microbiome-host interactions that potentially influence host aging processes. These pathways could serve as future targets for the development of microbiome-based anti-aging therapies.
Collapse
Affiliation(s)
- Lena Best
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Dost
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Esser
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany
| | - Stefano Flor
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andy Mercado Gamarra
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Madlen Haase
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - A Samer Kadibalban
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Georgios Marinos
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- CAU Innovation GmbH, Kiel University, Kiel, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Rowena Simon
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Silvio Schmidt
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marco Groth
- Core Facility Next-Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Silvio Waschina
- Nutriinformatics, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg, Germany
- Institute of Analytical Food Chemistry, Technical University München, Freising, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Christiane Frahm
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
5
|
Kumar A, Rishabh, Singh N, Gautam YK, Priya, Malik N. Valorizing Banana Peel Waste into Mesoporous Biogenic Nanosilica and Novel Nano-biofertilizer Formulation Thereof via Nano-biopriming Inspired Tripartite Interaction Studies. ACS OMEGA 2025; 10:5537-5553. [PMID: 39989758 PMCID: PMC11840586 DOI: 10.1021/acsomega.4c08152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025]
Abstract
The present study attempts to valorize banana peel waste (BPW) into high-value precipitated nanosilica-based agri-input. XRD analysis revealed smaller-sized biogenic nanosilica (BNS) with an increase (without heating) or decrease (with heating) in the duration of acid pretreatment during the pre-calcination step. The highest BNS yield was recorded in post-calcinated BPW ash involving simultaneous acid and heat treatment (1 h) (SA-3). FTIR analysis displayed an intense peak at 1078.3 cm-1, indicating "Si-O-Si bond" asymmetric vibrations. FESEM-EDX micrographs revealed high-purity BNS of predominantly spheroid morphology. The BJH plot exhibited mesoporous nanosilica with a median pore diameter of ∼33.82 nm. The bipartite interaction of 0.001 g mL-1 BNS signifies growth-promoting effects on Bacillus subtilis (BS) and Raphanus sativus (RS). The nano-primed RS seeds showed higher germination indices over non-primed seeds at 0.001 g of BNS mL-1. Further, the nano-biopriming studies showed the synergistic response of BNS and BS interaction on RS seeds in terms of higher seedling growth, biomass content, and stress tolerance index. The findings open new avenues for developing nano-biofertilizer formulations that serve multifaceted functions such as waste management and biomass valorization into value-added products and fulfill sustainable development goals.
Collapse
Affiliation(s)
- Ajay Kumar
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
- Department
of Biotechnology, Mewar University, Chittorgarh, Rajasthan 312901, India
| | - Rishabh
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Neetu Singh
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Yogendra K. Gautam
- Smart
Materials and Sensor Laboratory, Department of Physics, Ch. Charan Singh University, Meerut, Uttar Pradesh 250004, India
| | - Priya
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| | - Namrata Malik
- Department
of Biotechnology, Mewar Institute of Management, Vasundhara, Ghaziabad, Uttar Pradesh 201012, India
| |
Collapse
|
6
|
Adeboye A, Onyeaka H, Al-Sharify Z, Nnaji N. Understanding the Influence of Rheology on Biofilm Adhesion and Implication for Food Safety. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2208472. [PMID: 39781092 PMCID: PMC11707067 DOI: 10.1155/ijfo/2208472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025]
Abstract
Understanding biofilm rheology is crucial for industrial and domestic food safety practices. This comprehensive review addresses the knowledge gap on the rheology of biofilm. Specifically, the review explores the influence of fluid flow, shear stress, and substrate properties on the initiation, structure, and functionality of biofilms, as essential implications for food safety. The viscosity and shear-thinning characteristics of non-Newtonian fluids may impact the attachment and detachment dynamics of biofilms, influencing their stability and resilience under different flow conditions. The discussion spans multiple facets, including the role of extracellular polymeric substances (EPSs) in biofilm formation, the impact of rheological attributes of biofilm on their adhesion to surfaces, and the influence of shear forces between biofilms and substrate's surface characteristics on biofilm stability. Analytical techniques, encompassing rheometry, microscopy, and molecular biology approaches, are scrutinized for their contributions to understanding these interactions. The paper delves into the implications for the food industry, highlighting potential risks associated with biofilm formation and proposing strategies for effective control and prevention. Future research directions and the integration of rheological considerations into food safety regulations are underscored as pivotal steps in mitigating biofilm-related risks. The synthesis of microbiology, materials science, and engineering perspectives offers a multidimensional exploration of rheology-biofilm interactions, laying the groundwork for informed interventions in diverse industrial settings.
Collapse
Affiliation(s)
- Adedola Adeboye
- African Food Research Network, Pretoria 0002, Gauteng, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Zainab Al-Sharify
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
- Pharmacy Department, Al Hikma University College, Baghdad, Iraq
- Department of Environmental Engineering, College of Engineering, Al-Mustansiriyah University, Baghdad, Iraq
| | - Nnabueze Nnaji
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| |
Collapse
|
7
|
Wacogne B, Belinger Podevin M, Vaccari N, Koubevi C, Codjiová C, Gutierrez E, Davoine L, Robert-Nicoud M, Rouleau A, Frelet-Barrand A. Concentration vs. Optical Density of ESKAPEE Bacteria: A Method to Determine the Optimum Measurement Wavelength. SENSORS (BASEL, SWITZERLAND) 2024; 24:8160. [PMID: 39771895 PMCID: PMC11679885 DOI: 10.3390/s24248160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Optical density measurement has been used for decades to determine the microorganism concentration and more rarely for mammalian cells. Although this measurement can be carried out at any wavelength, studies report a limited number of measurement wavelengths, mainly around 600 nm, and no consensus seems to be emerging to propose an objective method for determining the optimum measurement wavelength for each microorganism. In this article, we propose a method for analyzing the absorbance spectra of ESKAPEE bacteria and determining the optimum measurement wavelength for each of them. The method is based on the analysis of the signal-to-noise ratio of the relationships between concentrations and optical densities when the measurement wavelength varies over the entire spectral range of the absorbance spectra measured for each bacterium. These optimum wavelengths range from 612 nm for Enterococcus faecium to 705 nm for Acinetobacter baumannii. The method can be directly applied to any bacteria, any culture method, and also to any biochemical substance with an absorbance spectrum without any particular feature such as an identified maximum.
Collapse
Affiliation(s)
- Bruno Wacogne
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
- Centre d’Investigation Clinique, Centre Hospitalier Universitaire de Besançon, INSERM CIC 1431, 25030 Besançon, France
| | - Marine Belinger Podevin
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
| | - Naïs Vaccari
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
| | - Claudia Koubevi
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
| | - Céline Codjiová
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
| | - Emilie Gutierrez
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
| | - Lucie Davoine
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
| | | | - Alain Rouleau
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
| | - Annie Frelet-Barrand
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France; (M.B.P.); (N.V.); (C.K.); (C.C.); (E.G.); (L.D.); (A.R.); (A.F.-B.)
| |
Collapse
|
8
|
Ballout J, Diener M. Purinergic control of apical ion conductance by luminal ATP in rat colonic epithelium. Eur J Pharmacol 2024; 982:176941. [PMID: 39182544 DOI: 10.1016/j.ejphar.2024.176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
ATP, released e.g. after cell damage or during inflammation, can alter ion transport across the intestinal mucosa via stimulation of purinergic receptors in the basolateral as well as in the apical membrane of epithelial cells. When ATP acts from the serosal side, it induces an increase in short-circuit current (Isc) via Cl- secretion across the colonic epithelium. In contrast, mucosal ATP or its derivative, BzATP, predominantly stimulating ionotropic P2X4 and P2X7 receptors, evoke an increase in Isc, which could not be explained by Cl- secretion. The underlying ion currents after stimulation of apical purinergic receptors in rat distal colon are still unclear and were investigated in the present study. Ussing chamber experiments revealed that the Isc induced by mucosal ATP was dependent on the presence of mucosal Ca2+ and inhibited by the K+ channel blocker, Ba2+, indicating the involvement of Ca2+-dependent K+ channels. Blockade of the transepithelial Isc by lanthanides (La3+, Gd3+) suggests that Ca2+ enters the epithelium via nonselective cation channels. Experiments with basolaterally depolarized epithelia confirmed the activation of apical lanthanide-sensitive Na+- and Ca2+-permeable cation channels by ATP. Putative candidates might be TRP channels, from which several subtypes were detected in colonic tissue in RT-PCR experiments. In addition, the activation of an apical Cl- conductance was observed when suitable Cl- concentration gradients were applied. Consequently, mucosal ATP, acting as 'danger signal', stimulates cation and anion channels in the apical membrane to induce a secretory response as part of the local defence mechanism in the intestinal epithelium.
Collapse
Affiliation(s)
- Jasmin Ballout
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Germany.
| |
Collapse
|
9
|
Spari D, Schmid A, Sanchez-Taltavull D, Murugan S, Keller K, Ennaciri N, Salm L, Stroka D, Beldi G. Released bacterial ATP shapes local and systemic inflammation during abdominal sepsis. eLife 2024; 13:RP96678. [PMID: 39163101 PMCID: PMC11335348 DOI: 10.7554/elife.96678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.
Collapse
Affiliation(s)
- Daniel Spari
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Annina Schmid
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Daniel Sanchez-Taltavull
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Shaira Murugan
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Keely Keller
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Nadia Ennaciri
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Lilian Salm
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Deborah Stroka
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University Hospital of BernBernSwitzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University Hospital of BernBernSwitzerland
| |
Collapse
|
10
|
Chan YJ, Dileep D, Rothstein SM, Cochran EW, Reuel NF. Single-Use, Metabolite Absorbing, Resonant Transducer (SMART) Culture Vessels for Label-Free, Continuous Cell Culture Progression Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401260. [PMID: 38900081 PMCID: PMC11348071 DOI: 10.1002/advs.202401260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Secreted metabolites are an important class of bio-process analytical technology (PAT) targets that can correlate to cell conditions. However, current strategies for measuring metabolites are limited to discrete measurements, resulting in limited understanding and ability for feedback control strategies. Herein, a continuous metabolite monitoring strategy is demonstrated using a single-use metabolite absorbing resonant transducer (SMART) to correlate with cell growth. Polyacrylate is shown to absorb secreted metabolites from living cells containing hydroxyl and alkenyl groups such as terpenoids, that act as a plasticizer. Upon softening, the polyacrylate irreversibly conformed into engineered voids above a resonant sensor, changing the local permittivity which is interrogated, contact-free, with a vector network analyzer. Compared to sensing using the intrinsic permittivity of cells, the SMART approach yields a 20-fold improvement in sensitivity. Tracking growth of many cell types such as Chinese hamster ovary, HEK293, K562, HeLa, and E. coli cells as well as perturbations in cell proliferation during drug screening assays are demonstrated. The sensor is benchmarked to show continuous measurement over six days, ability to track different growth conditions, selectivity to transducing active cell growth metabolites against other components found in the media, and feasibility to scale out for high throughput campaigns.
Collapse
Affiliation(s)
- Yee Jher Chan
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | - Dhananjay Dileep
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | | | - Eric W. Cochran
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
| | - Nigel F. Reuel
- Chemical and Biological EngineeringIowa State UniversityAmesIA50011USA
- Skroot Laboratory IncAmesIA50010USA
| |
Collapse
|
11
|
Riester O, Kaiser L, Laufer S, Deigner HP. Rapid Phenotypic Antibiotics Susceptibility Analysis by a 3D Printed Prototype. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308806. [PMID: 38528800 DOI: 10.1002/advs.202308806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/31/2024] [Indexed: 03/27/2024]
Abstract
One of the most important public health concerns is the increase in antibiotic-resistant pathogens and corresponding treatment of associated infections. Addressing this challenge requires more efficient use of antibiotics, achievable by the use of evidence-based, effective antibiotics identified by antibiotic susceptibility testing (AST). However, the current standard method of phenotypic AST used for this purpose requires 48 h or more from sample collection to result. Until results are available, broad-spectrum antibiotics are used to avoid delaying treatment. The turnaround time must therefore be shortened in order for the results to be available before the second administration of antibiotics. The phenotypic electrochemical AST method presented here identifies effective antibiotics within 5-10 h after sampling. Spiked serum samples, including polymicrobial samples, with clinically relevant pathogens and respective concentrations commonly found in bloodstream infections (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa) are used. Direct loading of the test with diluted serum eliminates the need for a pre-culture, as required by existing methods. Furthermore, by combining several electrochemical measurement procedures with computational analysis, allowing the method to be used both online and offline, the AST achieves a sensitivity of 94.44% and a specificity of 95.83% considering each replicate individually.
Collapse
Affiliation(s)
- Oliver Riester
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
- IFIT Cluster of Excellence EXC 2180 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, 72076, Tuebingen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057, Rostock, Germany
| |
Collapse
|
12
|
Kong Y, Yan H, Hu J, Dang Y, Han Z, Tian B, Wang P. Antibacterial Activity and Mechanism of Action of Osthole against Listeria monocytogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10853-10861. [PMID: 38708871 DOI: 10.1021/acs.jafc.3c07931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The purpose of this study was to investigate the antibacterial activity and mechanism of action of osthole against Listeria monocytogenes. The antibacterial activity of osthole was evaluated by determining the minimum inhibitory concentration (MIC) and growth curve. Cell morphology, membrane permeability, membrane integrity, bacterial physiology, and metabolism were explored using different methods to elucidate the mechanism of action of osthole. It was shown that the MIC of osthole against L. monocytogenes was 62.5 μg/mL and it inhibited the growth of L. monocytogenes effectively in a concentration-dependent manner. Scanning electron microscopy (SEM) images demonstrated morphology changes of L. monocytogenes, including rough surface, cell shrinkage, and rupture. It was found that extracellular conductivity and macromolecule content were increased significantly in the presence of osthole, indicating the disruption of cell membrane integrity and permeability. Laser confocal microscopy results supported the conclusion that osthole caused severe damage to the cell membrane. It was also noticed that osthole depleted intracellular adenosine triphosphate (ATP), inhibited Na+-K+-ATPase and Ca2+-Mg2+-ATPase activity, and promoted the accumulation of intracellular reactive oxygen species (ROS), leading to cell death. This study suggests that osthole is a promising antibacterial agent candidate against L. monocytogenes, and it shows potential in the prevention and control of foodborne pathogens.
Collapse
Affiliation(s)
- Yang Kong
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Hui Yan
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jinjing Hu
- Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases of Sichuan Higher Education Institutes, School of Bioscience and Technology, Chengdu Medical College, Chengdu 610500, P. R. China
| | - Yixuan Dang
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zihao Han
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Bin Tian
- School of Biological and Pharmaceutical Science, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Puxiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, P. R. China
| |
Collapse
|
13
|
Dash R, Holsinger KA, Chordia MD, Gh. MS, Pires MM. Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in Escherichia coli. ACS Infect Dis 2024; 10:1602-1611. [PMID: 38592927 PMCID: PMC11091882 DOI: 10.1021/acsinfecdis.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving the cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between the arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules in the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotic accumulation in live bacterial cells in real time.
Collapse
Affiliation(s)
- Rachita Dash
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Kadie A. Holsinger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Mohammad Sharifian Gh.
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Sever EA, Aybakan E, Beşli Y, Karatuna O, Kocagoz T. A novel rapid bioluminescence-based antimicrobial susceptibility testing method based on adenosine triphosphate consumption. Front Microbiol 2024; 15:1357680. [PMID: 38404596 PMCID: PMC10885693 DOI: 10.3389/fmicb.2024.1357680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Standard, phenotypic antimicrobial susceptibility testing (AST) methods require 16-20 h of incubation and are considered as the bottleneck in providing timely input for appropriate antimicrobial treatment. In this study, a novel adenosine triphosphate (ATP)-bioluminescence-based method which allows rapid AST within 3 h was described. Methods Standard AST was performed for 56 Enterobacterales isolates using EUCAST disk diffusion (DD) methodology. For the bioluminescence-based rapid AST, suspensions of bacteria were prepared using Mueller-Hinton broth to obtain a turbidity of 0.5 McFarland. The suspensions were distributed into 96-well microtiter plates. ATP (20 mM) and fixed concentrations of different antibiotics were added. Following incubation at 37°C for 1 h, a luminescent reaction mixture, including the substrate luciferin and luciferase enzyme solutions, was added. The chemiluminescence was monitored using an imaging system. Light production demonstrated the presence of ATP, indicating that the isolate was susceptible to the antibiotic in the well. Absence or decrease of light intensity, compared with the growth control well, indicated the use of ATP as an indirect measure of bacterial growth, and therefore resistance to the antibiotic in the well. Results The novel AST method was tested using a total of 348 test wells. Concordance was achieved for 290 (83.3%) of the tests, whereas 52 (14.9%) and 6 (1.7%) tests caused minor and major errors, respectively. Discussion In this study, a bioluminescence-based rapid AST was developed based on the consumption of ATP by bacteria. Our method's uniqueness relies on determining ATP consumption by microorganisms in the presence or absence of an antibiotic. The novel AST method described in this study lays the groundwork for obtaining rapid results, which should be considered as a proof of concept. With further optimization studies, this novel method can provide higher accuracy and be introduced into clinical practice as a routine AST method.
Collapse
Affiliation(s)
- Elif Arik Sever
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Esma Aybakan
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Yeşim Beşli
- American Hospital Clinical Laboratory, Istanbul, Türkiye
| | - Onur Karatuna
- EUCAST Development Laboratory, Clinical Microbiology, Central Hospital, Växjö, Sweden
| | - Tanil Kocagoz
- Department of Medical Biotechnology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Department of Medical Microbiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
15
|
Dash R, Holsinger KA, Chordia MD, Sharifian Gh M, Pires MM. Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570448. [PMID: 38106213 PMCID: PMC10723488 DOI: 10.1101/2023.12.06.570448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Antibiotic resistance is an alarming public health concern that affects millions of individuals across the globe each year. A major challenge in the development of effective antibiotics lies in their limited ability to permeate into cells, noting that numerous susceptible antibiotic targets reside within the bacterial cytosol. Consequently, improving cellular permeability is often a key consideration during antibiotic development, underscoring the need for reliable methods to assess the permeability of molecules across cellular membranes. Currently, methods used to measure permeability often fail to discriminate between arrival within the cytoplasm and the overall association of molecules with the cell. Additionally, these techniques typically possess throughput limitations. In this work, we describe a luciferase-based assay designed for assessing the permeability of molecules into the cytosolic compartment of Gram-negative bacteria. Our findings demonstrate a robust system that can elucidate the kinetics of intracellular antibiotics accumulation in live bacterial cells in real time.
Collapse
|
16
|
Hemeg HA, Albulushi HO, Ozbak HA, Ali HM, Alahmadi EK, Almutawif YA, Alhuofie ST, Alaeq RA, Alhazmi AA, Najim MA, Hanafy AM. Evaluating the Sensitivity of Different Molecular Techniques for Detecting Mycobacterium tuberculosis Complex in Patients with Pulmonary Infection. Pol J Microbiol 2023; 72:421-431. [PMID: 37934050 PMCID: PMC10725165 DOI: 10.33073/pjm-2023-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023] Open
Abstract
This study aimed to evaluate the accuracy of detecting drug-resistant Mycobacterium tuberculosis complex (MTBC)-specific DNA in sputum specimens from 48 patients diagnosed with pulmonary tuberculosis. The presence of MTBC DNA in the specimens was validated using the GeneXpert MTB/RIF system and compared with a specific PCR assay targeting the IS6110 and the mtp40 gene sequence fragments. Additionally, the results obtained by multiplex PCR assays to detect the most frequently encountered rifampin, isoniazid, and ethambutol resistance-conferring mutations were matched with those obtained by GeneXpert and phenotypic culture-based drug susceptibility tests. Of the 48 sputum samples, 25 were positive for MTBC using the GeneXpert MTB/RIF test. Nevertheless, the IS6110 and mtp40 single-step PCR revealed the IS6110 in 27 of the 48 sputum samples, while the mtp40 gene fragment was found in only 17 of them. Furthermore, multiplex PCR assays detected drug-resistant conferring mutations in 21 (77.8%) of the 27 samples with confirmed MTBC DNA, 10 of which contained single drug-resistant conferring mutations towards ethambutol and two towards rifampin, and the remaining nine contained double-resistant mutations for ethambutol and rifampin. In contrast, only five sputum specimens (18.5%) contained drug-resistant MTBC isolates, and two contained mono-drug-resistant MTBC species toward ethambutol and rifampin, respectively, and the remaining three were designated as multi-drug resistant toward both drugs using GeneXpert and phenotypic culture-based drug susceptibility tests. Such discrepancies in the results emphasize the need to develop novel molecular tests that associate with phenotypic non-DNA-based assays to improve the detection of drug-resistant isolates in clinical specimens in future studies.
Collapse
Affiliation(s)
- Hassan A. Hemeg
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hamzah O. Albulushi
- Biology Department, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hani A. Ozbak
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Hamza M. Ali
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Emad K. Alahmadi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Yahya A. Almutawif
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Sari T. Alhuofie
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Rana A. Alaeq
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Areej A. Alhazmi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Mustafa A. Najim
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Ahmed M. Hanafy
- Biology Department, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
Wacogne B, Belinger Podevin M, Vaccari N, Koubevi C, Codjiová C, Gutierrez E, Bourgeois P, Davoine L, Robert-Nicoud M, Rouleau A, Frelet-Barrand A. Absorption/Attenuation Spectral Description of ESKAPEE Bacteria: Application to Seeder-Free Culture Monitoring, Mammalian T-Cell and Bacteria Mixture Analysis and Contamination Description. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094325. [PMID: 37177529 PMCID: PMC10181643 DOI: 10.3390/s23094325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Despite numerous innovations, measuring bacteria concentrations on a routine basis is still time consuming and ensuring accurate measurements requires careful handling. Furthermore, it often requires sampling small volumes of bacteria suspensions which might be poorly representative of the real bacteria concentration. In this paper, we propose a spectroscopy measurement method based on a description of the absorption/attenuation spectra of ESKAPEE bacteria. Concentrations were measured with accuracies less than 2%. In addition, mixing the mathematical description of the absorption/attenuation spectra of mammalian T-cells and bacteria allows for the simultaneous measurements of both species' concentrations. This method allows real-time, sampling-free and seeder-free measurement and can be easily integrated into a closed-system environment.
Collapse
Affiliation(s)
- Bruno Wacogne
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
- Centre d'Investigation Clinique, Centre Hospitalier Universitaire de Besançon, INSERM CIC 1431, 25030 Besançon, France
| | | | - Naïs Vaccari
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Claudia Koubevi
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Céline Codjiová
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Emilie Gutierrez
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Pauline Bourgeois
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | - Lucie Davoine
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | | | - Alain Rouleau
- Institut FEMTO-ST, Université de Franche-Comté, CNRS, F-25000 Besançon, France
| | | |
Collapse
|
18
|
Metryka O, Wasilkowski D, Adamczyk-Habrajska M, Mrozik A. Undesirable consequences of the metallic nanoparticles action on the properties and functioning of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis membranes. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130728. [PMID: 36610340 DOI: 10.1016/j.jhazmat.2023.130728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Controversial and inconsistent findings on the toxicity of metallic nanoparticles (NPs) against many bacteria are common in recorded studies; therefore, further advanced experimental work is needed to elucidate the mechanisms underlying nanotoxicity. This study deciphered the direct effects of Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs on membrane permeability, cytoplasmic leakage, ATP level, ATPase activity and fatty acid profiling of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis as model microorganisms. A multifaceted analysis of all collected results indicated the different influences of individual NPs on the measured parameters depending on their type and concentration. Predominantly, membrane permeability was correlated with increased cytoplasmic leakage, reduced total ATP levels and ATPase activity. The established fatty acid profiles were unique and concerned various changes in the percentages of hydroxyl, cyclopropane, branched and unsaturated fatty acids. Decisively, E. coli was more susceptible to changes in measured parameters than B. cereus and S. epidermidis. Also, it was established that ZnO-NPs and Cu-NPs had a major differentiating impact on studied parameters. Additionally, bacterial cell imaging using scanning electron microscopy elucidated different NPs distributions on the cell surface. The presented results are believed to provide novel, valuable and accumulated knowledge in the understanding of NPs action on bacterial membranes.
Collapse
Affiliation(s)
- Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, Katowice 40-032, Poland.
| | - Daniel Wasilkowski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 29, Katowice 40-032, Poland
| | - Małgorzata Adamczyk-Habrajska
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, Żytnia 12, Sosnowiec 41-200, Poland
| | - Agnieszka Mrozik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellońska 29, Katowice 40-032, Poland.
| |
Collapse
|
19
|
Salam MA, Al-Amin MY, Pawar JS, Akhter N, Lucy IB. Conventional methods and future trends in antimicrobial susceptibility testing. Saudi J Biol Sci 2023; 30:103582. [PMID: 36852413 PMCID: PMC9958398 DOI: 10.1016/j.sjbs.2023.103582] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/07/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023] Open
Abstract
Antimicrobial susceptibility testing is an essential task for selecting appropriate antimicrobial agents to treat infectious diseases. Constant evolution has been observed in methods used in the diagnostic microbiology laboratories. Disc diffusion or broth microdilution are classical and conventional phenotypic methods with long turnaround time and labour-intensive but still widely practiced as gold-standard. Scientists are striving to develop innovative, novel and faster methods of antimicrobial susceptibility testing to be applicable for routine microbiological laboratory practice and research. To meet the requirements, there is an increasing trend towards automation, genotypic and micro/nano technology-based innovations. Automation in detection systems and integration of computers for online data analysis and data sharing are giant leaps towards versatile nature of automated methods currently in use. Genotypic methods detect a specific genetic marker associated with resistant phenotypes using molecular amplification techniques and genome sequencing. Microfluidics and microdroplets are recent addition in the continuous advancement of methods that show great promises with regards to safety and speed and have the prospect to identify and monitor resistance mechanisms. Although genotypic and microfluidics methods have many exciting features, however, their applications into routine clinical laboratory practice warrant extensive validation. The main impetus behind the evolution of methods in antimicrobial susceptibility testing is to shorten the overall turnaround time in obtaining the results and to enhance the ease of sample processing. This comprehensive narrative review summarises major conventional phenotypic methods and automated systems currently in use, and highlights principles of some of the emerging genotypic and micro/nanotechnology-based methods in antimicrobial susceptibility testing.
Collapse
Key Words
- ADR, Adverse drug reaction
- AMR, Antimicrobial resistance
- AST, Antimicrobial susceptibility testing
- ATCC, American Type Culture Collection
- Advantages and disadvantages
- Antimicrobial susceptibility testing
- Automations
- CFU, Colony forming units
- CLSI, Clinical & Laboratory Standards Institute
- Conventional methods
- DOT-MGA, Direct-On-Target Microdroplet Growth Assay
- EUCAST, European Committee on Antimicrobial Susceptibility Testing
- Etest, Epsilometer testing
- Genotypic methods
- ID, Identification
- MALDI-TOF MS, Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry
- MBC, Minimum bactericidal concentration
- MDR, Multi drug resistant
- MHA, Muller Hinton Agar
- MIC, Minimum inhibitory concentration
- Micro/nanotechnology-based techniques
- NAAT, Nucleic Acid Amplification Test
- PCR, Polymerase chain reaction
- PMF, Peptide mass fingerprint
- POC, Point of care
- WGS, Whole Genome Sequencing
- ZOI, Zone of inhibition
Collapse
Affiliation(s)
- Md. Abdus Salam
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Malaysia
| | - Md. Yusuf Al-Amin
- Purdue University Interdisciplinary Life Sciences Graduate Program, Purdue University, West Lafayette, IN, USA,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jogendra Singh Pawar
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Irine Banu Lucy
- Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh,Corresponding author at: Department of Physics, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
20
|
Boinapalli Y, Shankar Pandey R, Singh Chauhan A, Sudheesh MS. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm 2023; 632:122579. [PMID: 36603671 DOI: 10.1016/j.ijpharm.2022.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cell uptake study is a routine experiment used as a surrogate to predict in vivo response in cancer nanomedicine research. Cell culture conditions should be designed in such a way that it emulates 'real' physiological conditions and avoid artefacts. It is critical to dissect the steps involved in cellular uptake to understand the physical, chemical, and biological factors responsible for particle internalization. The two-dimensional model (2D) of cell culture is overly simplistic to mimic the complexity of cancer tissues that exist in vivo. It cannot simulate the critical tissue-specific properties like cell-cell interaction and cell-extracellular matrix (ECM) interaction and its influences on the temporal and spatial distribution of nanoparticles (NPs). The three dimensional model organization of heterogenous cancer and normal cells with the ECM acts as a formidable barrier to NP penetration and cellular uptake. The three dimensional cell culture (3D) technology is a breakthrough in this direction that can mimic the barrier properties of the tumor microenvironment (TME). Herein, we discuss the physiological factors that should be considered to bridge the translational gap between in and vitro cell culture studies and in-vivo studies in cancer nanomedicine.
Collapse
Affiliation(s)
- Yamini Boinapalli
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India
| | - Abhay Singh Chauhan
- Department of Biopharmaceutical Sciences, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
21
|
Esimbekova EN, Kirillova MA, Kratasyuk VA. Immobilization of Firefly Bioluminescent System: Development and Application of Reagents. BIOSENSORS 2022; 13:47. [PMID: 36671882 PMCID: PMC9855680 DOI: 10.3390/bios13010047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The present study describes the method of preparing reagents containing firefly luciferase (FLuc) and its substrate, D-luciferin, immobilized into gelatin gel separately or together. The addition of stabilizers dithiothreitol (DTT) and bovine serum albumin (BSA) to the reagent is a factor in achieving higher activity of reagents and their stability during storage. The use of immobilized reagents substantially simplifies the procedure of assay for microbial contamination. The mechanism of action of the reagents is based on the relationship between the intensity of the bioluminescent signal and the level of ATP contained in the solution of the lysed bacterial cells. The highest sensitivity to ATP is achieved by using immobilized FLuc or reagents containing separately immobilized FLuc and D-luciferase. The limit of detection of ATP by the developed reagents is 0.3 pM, which corresponds to 20,000 cells·mL-1. The linear response range is between 0.3 pM and 3 nM ATP. The multicomponent reagent, containing co-immobilized FLuc and D-luciferin, shows insignificantly lower sensitivity to ATP-0.6 pM. Moreover, the proposed method of producing an immobilized firefly luciferin-luciferase system holds considerable promise for the development of bioluminescent biosensors intended for the analysis of microbial contamination.
Collapse
Affiliation(s)
- Elena N. Esimbekova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Maria A. Kirillova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
| | - Valentina A. Kratasyuk
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Avenue, 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| |
Collapse
|
22
|
Belotti M, El‐Tahawy MMT, Darwish N, Garavelli M, Ciampi S. Electrochemically Generated Luminescence of Luminol and Luciferin in Ionic Liquids. ChemElectroChem 2022. [DOI: 10.1002/celc.202201033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
| | - Mohsen M. T. El‐Tahawy
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna Bologna 40136 Emilia Romagna Italy
- Chemistry Department Faculty of Science Damanhour University Damanhour 22511 Egypt
| | - Nadim Darwish
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari” Università di Bologna Bologna 40136 Emilia Romagna Italy
| | - Simone Ciampi
- School of Molecular and Life Sciences Curtin University Bentley Western Australia 6102 Australia
| |
Collapse
|
23
|
Belotti M, El‐Tahawy MMT, Yu L, Russell IC, Darwish N, Coote ML, Garavelli M, Ciampi S. Luciferase-free Luciferin Electrochemiluminescence. Angew Chem Int Ed Engl 2022; 61:e202209670. [PMID: 36169114 PMCID: PMC9828091 DOI: 10.1002/anie.202209670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/12/2023]
Abstract
Luciferin is one of Nature's most widespread luminophores, and enzymes that catalyze luciferin luminescence are the basis of successful commercial "glow" assays for gene expression and metabolic ATP formation. Herein we report an electrochemical method to promote firefly's luciferin luminescence in the absence of its natural biocatalyst-luciferase. We have gained experimental and computational insights on the mechanism of the enzyme-free luciferin electrochemiluminescence, demonstrated its spectral tuning from green to red by means of electrolyte engineering, proven that the colour change does not require, as still debated, a keto/enol isomerization of the light emitter, and gained evidence of the electrostatic-assisted stabilization of the charge-transfer excited state by double layer electric fields. Luciferin's electrochemiluminescence, as well as the in situ generation of fluorescent oxyluciferin, are applied towards an optical measurement of diffusion coefficients.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life SciencesCurtin UniversityBentley6102Western AustraliaAustralia
| | - Mohsen M. T. El‐Tahawy
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaBologna40136Emilia RomagnaItaly
- Chemistry DepartmentFaculty of ScienceDamanhour UniversityDamanhour22511Egypt
| | - Li‐Juan Yu
- Research School of ChemistryAustralian National UniversityCanberra2601Australian Capital TerritoryAustralia
| | - Isabella C. Russell
- Research School of ChemistryAustralian National UniversityCanberra2601Australian Capital TerritoryAustralia
| | - Nadim Darwish
- School of Molecular and Life SciencesCurtin UniversityBentley6102Western AustraliaAustralia
| | - Michelle L. Coote
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford Park5042South AustraliaAustralia
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”Università di BolognaBologna40136Emilia RomagnaItaly
| | - Simone Ciampi
- School of Molecular and Life SciencesCurtin UniversityBentley6102Western AustraliaAustralia
| |
Collapse
|
24
|
Shan Y, Zhang D, Luo Z, Li T, Qu H, Duan X, Jiang Y. Advances in chilling injury of postharvest fruit and vegetable: Extracellular ATP aspects. Compr Rev Food Sci Food Saf 2022; 21:4251-4273. [PMID: 35876655 DOI: 10.1111/1541-4337.13003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 01/28/2023]
Abstract
Due to the global use of cold chain, the development of postharvest technology to reduce chilling injury (CI) in postharvest fruits and vegetables during storage and transport is needed urgently. Considerable evidence shows that maintaining intracellular adenosine triphosphate (iATP) in harvested fruits and vegetables is beneficial to inhibiting CI occurrence. Extracellular ATP (eATP) is a damage-associated signal molecule and plays an important role in CI of postharvest fruits and vegetables through its receptor and subsequent signal transduction under low-temperature stress. The development of new aptasensors for the simultaneous determination of eATP level allows for better understanding of the roles of eATP in a myriad of responses mediated by low-temperature stress in relation to the chilling tolerance of postharvest fruits and vegetables. The multiple biological functions of eATP and its receptors in postharvest fruits and vegetables were attributed to interactions with reactive oxygen species (ROS) and nitric oxide (NO) in coordination with phytohormones and other signaling molecules via downstream physiological activities. The complicated interconnection among eATP in relation to its receptors, eATP/iATP homeostasis, ROS, NO, and heat shock proteins triggered by eATP recognition has been emphasized. This paper reviews recent advances in the beneficial effects of energy handling, outlines the production and homeostasis of eATP, discusses the possible mechanism of eATP and its receptors in chilling tolerance, and provides future research directions for CI in postharvest fruits and vegetables during low-temperature storage.
Collapse
Affiliation(s)
- Youxia Shan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, Core Botanical Gardens, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Bioluminescent test systems based on firefly luciferase for studying stress effects on living cells. Biophys Rev 2022; 14:887-892. [PMID: 36124280 PMCID: PMC9481846 DOI: 10.1007/s12551-022-00978-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022] Open
Abstract
The bioluminescent luciferin-luciferase reaction is based on the oxidation of D-luciferin by oxygen in the presence of ATP and magnesium ions, catalyzed by firefly luciferase. The possibilities of using this reaction to study the influence of external effectors of a physical and chemical nature (temperature exposure, additions of drugs, membrane-active compounds, etc.) on living cells (prokaryotes and eukaryotes) are considered. Examples of the use of test systems based on living cells producing thermostable firefly luciferase for monitoring cellular homeostasis are given. The study of the kinetics of changes in the concentration of ATP and luciferase inside and outside cells made it possible to determine in dynamics the metabolic activity, cytotoxicity, and survival of cells under conditions of cellular stress, to study the processes of ATP synthesis/hydrolysis, and to evaluate the effectiveness of lytic agents in changing the permeability of the cell membrane.
Collapse
|
26
|
Gruber JV, Riemer J. Examining Skin Recovery After a 3% Aqueous Hydrogen Peroxide (H 2O 2) Treatment Using ATP Biofluorescence. Clin Cosmet Investig Dermatol 2022; 15:929-937. [PMID: 35637748 PMCID: PMC9148219 DOI: 10.2147/ccid.s363723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/18/2022] [Indexed: 11/24/2022]
Abstract
Introduction Since its complete mapping, the human skin microbiome has become an important area of research related to skin health. The human skin is populated by an environment of microorganisms, fungi, insects, and viruses that is collectively known as the microbiota, and the complete genomic contribution to the skin is called the microbiome. The terms are different but frequently used interchangeably. Measuring the skin’s microbial diversity can be done, but it is a sophisticated technique that is performed using expensive instruments that can sequence the 16S ribosomal RNA of the microorganisms. Finding more rapid and less costly methods to analyze the changes in the skin’s microbial biome is desirable. Methods A study was conducted on thirty (30) inner volar forearms to see if ATP biofluorescence could be employed to examine skin microbial dysbiosis caused by the application of 3% hydrogen peroxide. Fifteen individuals were examined on both arms for a total of thirty inner volar forearms using a Charm Science® NovaLum® ATP analyzer to examine in a broad sense the skin’s total microbial population and how it is affected after surface treatment with 3% hydrogen peroxide over a 24-hour period. Results It was found that surface treatment of the skin with three cotton swab applications of 3% hydrogen peroxide five minutes apart was able to statistically significantly suppress the expression of ATP biofluorescence compared against un-swabbed sites and the effects remained significant for six hours following the H2O2 treatment. After 8 hours, and into the 24th hour, the ATP biofluorescence difference returns to non-statistical significance indicating potential return of the stable microbiota. Discussion Using ATP biofluorescence to detect possible sanitizer-induced microbial dysbiosis may be a rapid way to examine how skin treatments may impact the return of microbially disrupted skin to its normal state and how surface treatments may impact the rate of return to normal after a disruptive event.
Collapse
Affiliation(s)
| | - Jed Riemer
- Research, Jeen International, Fairfield, NJ, USA
| |
Collapse
|
27
|
Lomakina GY, Ugarova NN. Application of Bioluminescent Methods to Study the Effect of the Membrane-active Antibiotic Colistin on Bacterial Cells. Photochem Photobiol 2022; 98:1077-1083. [PMID: 35132643 DOI: 10.1111/php.13606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
For the first time, recombinant Escherichia coli cells expressing thermostable Luciola mingrelica firefly luciferase were used to study the effect of the membrane-active antibiotic colistin on live cells. Simple, fast and highly sensitive bioluminescent methods were developed for measurement of luciferase activity and ATP concentration inside and outside E. coli cells incubated in a nutrient medium, or in saline. Luciferase proved to be an informative protein marker for detecting the irreversible changes in cell membrane permeability. The study of kinetics of intra- and extracellular ATP concentration at different concentrations of colistin showed that the rate of decrease in intracellular ATP concentration significantly exceeded the rate of accumulation of extracellular ATP concentration. This fact could not be explained only by the release of ATP from the cell with an increase in the permeability of the outer cell membrane under the action of colistin. The loss of a significant part of intracellular ATP in presence of the colistin is probably due to a decrease in the activity of the respiratory chain enzymes and ATP synthase which operate in the cytoplasmic cell membrane, which leads to a decrease in the rate of ATP synthesis or even to its halt.
Collapse
Affiliation(s)
- Galina Yu Lomakina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Bauman Moscow State Technical University, Moscow, Russia
| | - Natalia N Ugarova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
28
|
Yoon HK, Park SY, Kim CG. Comparison of the bacterial viability assessments for the disinfected quarantined water along with an effect of total residual oxidants. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:782. [PMID: 34751845 DOI: 10.1007/s10661-021-09371-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The water discarded from the quarantine station inspecting aquatic products can be served as an influx channel of invasive microorganisms to our own ecosystem. This study thus compared the viability of three different pathogenic bacteria (Escherichia coli, Vibrio harveyi, and Enterococcus faecalis) in either seawater or freshwater after their disinfection. For that, they were treated by ozonation (2.08 mM of ozone), ultraviolet irradiation (UVC-254), or thermal treatment (90℃) for 10 min, during which their resultant viability was monitored using colorimetric ATP assay, colony counting, and real-time quantitative RT-PCR. From this, ATP measurement and real-time quantitative RT-PCR have proved to be a much stronger correlation built in the fraction of each of their assays versus the colony counting, although they differed in the type of disinfection implemented. Especially, ATP assay was the most sensitively influenced by high levels of total residual oxidants (TRO) undesirably produced during the ozonation of V. harveyi and E. faecalis in seawater, although easily and shortly measured within 1 h, with higher accuracy. Aside from that, the real-time quantitative RT-PCR had a stronger correlation versus either that of seawater ozonation or thermal treatment. It is decided referring to measurement time and convenience in the field that ATP assay can be more reliably used in bacterial cell viability measurement in the quarantine after the ozonation in seawater to specifically allow the bacterial deactivation, not to overwhelmingly produce TRO due to the residual ozone provided.
Collapse
Affiliation(s)
- Hong Keun Yoon
- Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Seon Yeong Park
- Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Chang Gyun Kim
- Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
- Program in Environmental and Polymer Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
29
|
Sousi M, Salinas-Rodriguez SG, Liu G, Dusseldorp J, Kemperman AJB, Schippers JC, Van der Meer WGJ, Kennedy MD. Comparing the bacterial growth potential of ultra-low nutrient drinking water assessed by growth tests based on flow cytometric intact cell count versus adenosine triphosphate. WATER RESEARCH 2021; 203:117506. [PMID: 34371231 DOI: 10.1016/j.watres.2021.117506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The bacterial growth potential (BGP) of drinking water is widely assessed either by flow cytometric intact cell count (BGPICC) or adenosine triphosphate (BGPATP) based methods. Combining BGPICC and BGPATP measurements has been previously applied for various types of drinking water having high to low growth potential. However, this has not been applied for water with ultra-low nutrient content, such as remineralised RO permeate. To conduct a sound comparison, conventionally treated drinking water was included in this study, which was also used as an inoculum source. BGPICC, BGPATP, intact cell-yield (YICC), and ATP-yield (YATP) were determined for conventionally treated drinking water (Tap-water) and remineralised RO permeate (RO-water). In addition, both BGPICC and BGPATP methods were used to identify the growth-limiting nutrient in each water type. The results showed that the BGPICC ratio between Tap-water/RO-water was ∼7.5, whereas the BGPATP ratio was only ∼4.5. Moreover, the YICC ratio between Tap-water/RO-water was ∼2 (9.8 ± 0.6 × 106 vs. 4.6 ± 0.8 × 106 cells/µg-C), whereas the YATP ratio was ∼1 (0.39 ± 0.12 vs. 0.42 ± 0.06 ng ATP/µg-C), resulting in a consistently higher ATP per cell in RO-water than that of Tap-water. Both BGPICC and BGPATP methods revealed that carbon was the growth-limiting nutrient in the two types of water. However, with the addition of extra carbon, phosphate limitation was detected only with the BGPICC method, whereas BGPATP was not affected, suggesting that a combination of carbon and phosphate is essential for biomass synthesis, whereas carbon is probably utilised for cellular activities other than cell synthesis when phosphate is limited. It was estimated that the intact cell-yield growing on phosphate would be 0.70 ± 0.05 × 109 cells/µg PO4-P.
Collapse
Affiliation(s)
- Mohaned Sousi
- Department of Water Supply, IHE Delft Institute for Water Education, Sanitation and Environmental Engineering, Westvest 7, Delft 2611 AX, the Netherlands; Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, the Netherlands
| | - Sergio G Salinas-Rodriguez
- Department of Water Supply, IHE Delft Institute for Water Education, Sanitation and Environmental Engineering, Westvest 7, Delft 2611 AX, the Netherlands
| | - Gang Liu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Key Laboratory of Drinking Water Science and Technology, Beijing 100085, PR China; Department of Water Management, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Mekelweg 2, Delft 2628 CD, the Netherlands.
| | - Jos Dusseldorp
- Oasen Drinkwater, Nieuwe Gouwe O.Z. 3, Gouda 2801 SB, the Netherlands
| | - Antoine J B Kemperman
- Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, the Netherlands
| | - Jan C Schippers
- Department of Water Supply, IHE Delft Institute for Water Education, Sanitation and Environmental Engineering, Westvest 7, Delft 2611 AX, the Netherlands
| | - Walter G J Van der Meer
- Faculty of Science and Technology, University of Twente, Drienerlolaan 5, Enschede 7522 NB, the Netherlands; Oasen Drinkwater, Nieuwe Gouwe O.Z. 3, Gouda 2801 SB, the Netherlands
| | - Maria D Kennedy
- Department of Water Supply, IHE Delft Institute for Water Education, Sanitation and Environmental Engineering, Westvest 7, Delft 2611 AX, the Netherlands; Department of Water Management, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Mekelweg 2, Delft 2628 CD, the Netherlands
| |
Collapse
|
30
|
Wu S, Hulme JP. Recent Advances in the Detection of Antibiotic and Multi-Drug Resistant Salmonella: An Update. Int J Mol Sci 2021; 22:3499. [PMID: 33800682 PMCID: PMC8037659 DOI: 10.3390/ijms22073499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotic and multi-drug resistant (MDR) Salmonella poses a significant threat to public health due to its ability to colonize animals (cold and warm-blooded) and contaminate freshwater supplies. Monitoring antibiotic resistant Salmonella is traditionally costly, involving the application of phenotypic and genotypic tests over several days. However, with the introduction of cheaper semi-automated devices in the last decade, strain detection and identification times have significantly fallen. This, in turn, has led to efficiently regulated food production systems and further reductions in food safety hazards. This review highlights current and emerging technologies used in the detection of antibiotic resistant and MDR Salmonella.
Collapse
Affiliation(s)
- Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong;
| | - John P. Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| |
Collapse
|