1
|
Holst JJ, Rosenkilde MM. Oxyntomodulin - past, present and future. Peptides 2025; 188:171393. [PMID: 40187415 DOI: 10.1016/j.peptides.2025.171393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Almost since its discovery, glucagon was suspected to be formed in the gastrointestinal tract, and the L-cells were shown to contain glucagon-like immunoreactivity. This was due to the presence of two peptides that both contained the full glucagon sequence:glicentin of 69 amino acids and oxyntomodulin of 37 amino acids. While glicentin is a part of the glucagon precursor, proglucagon, and probably is inactive, oxyntomodulin, a fragment of glicentin, interacts although weakly with the glucagon as well as the GLP-1 receptor. However, in agreement with these activities, oxyntomodulin inhibited appetite and food intake in humans and inspired development of long acting, potent glucagon-GLP-1 co-agonists. Several such co-agonists are currently in clinical development and show promise because they combine GLP-1 like activities with those of glucagon agonism: additive weight loss and a stimulation of hepatic lipid metabolism with unique effectiveness on hepatic steatosis. They may therefore be effective in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Jens Juul Holst
- The NovoNordisk Foundation Center for Basic Metabolic Research, Denmark; Department of Biomedical Sciences, the Panum institute, University of Copenhagen, Denmark.
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, the Panum institute, University of Copenhagen, Denmark.
| |
Collapse
|
2
|
Finan B, Douros JD, Goldwater R, Hansen AMK, Hjerpsted JB, Hjøllund KR, Kankam MK, Knerr PJ, Konkar A, Mowery SA, Müller TD, Nielsen JR, Nygård SB, Perez-Tilve D, Raun K, Yang B, Tschöp MH, DiMarchi RD. A once-daily GLP-1/GIP/glucagon receptor tri-agonist (NN1706) lowers body weight in rodents, monkeys and humans. Mol Metab 2025; 96:102129. [PMID: 40139439 PMCID: PMC12051155 DOI: 10.1016/j.molmet.2025.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Single molecules that combine complementary modes of action with glucagon-like peptide-1 receptor (GLP-1R) agonism are best-in-class therapeutics for obesity treatment. NN1706 (MAR423, RO6883746) is a fatty-acylated tri-agonist designed for balanced activity at GLP-1R and glucose-dependent insulinotropic peptide receptor (GIPR) with lower relative potency at the glucagon receptor (GcgR). Obese mice, rats and non-human primates dosed with NN1706 showed significant body weight reductions and improved glycemic control. In human participants with overweight or obesity, daily subcutaneous NN1706 treatment resulted in substantial body weight loss in a dose-dependent manner without impairing glycemic control (NCT03095807, NCT03661879). However, increased heart rate was observed across NN1706 treatment cohorts, which challenges further clinical development of NN1706.
Collapse
Affiliation(s)
- Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
| | - Jonathan D Douros
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Novo Nordisk Research Center Boston, Boston, MA, USA
| | | | | | | | | | | | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Anish Konkar
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany
| | | | | | - Diego Perez-Tilve
- Department of Pharmacology, Physiology and Neurobiology, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | | | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Matthias H Tschöp
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany; Helmholtz Munich, Neuherberg, Germany
| | | |
Collapse
|
3
|
Min JS, Jo SJ, Lee S, Kim DY, Kim DH, Lee CB, Bae SK. A Comprehensive Review on the Pharmacokinetics and Drug-Drug Interactions of Approved GLP-1 Receptor Agonists and a Dual GLP-1/GIP Receptor Agonist. Drug Des Devel Ther 2025; 19:3509-3537. [PMID: 40330819 PMCID: PMC12052016 DOI: 10.2147/dddt.s506957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are peptide-derived analogs that were initially investigated to treat type 2 diabetes. Recently, a drug targeting the receptors of both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) (tirzepatide) has been introduced to the market, and its indications have expanded to include treating obesity. Here, we review the pharmacokinetics, pharmacokinetic drug-drug interactions (DDIs), and pharmacokinetic modeling approaches of four currently available GLP-1 RAs (exenatide, liraglutide, dulaglutide, and semaglutide) and tirzepatide. To address the extremely short half-life (2 min) of native human GLP-1, structural modifications have been applied to GLP-1 RAs and a dual GLP-1/GIP RA. These include amino acid sequence substitutions, fatty acid conjugation using a linker, and fusion with albumin or the IgG fragment crystallizable (Fc) region, resulting in minimal metabolism and renal excretion. Due to their diverse structures, the pharmacokinetic profiles vary, and a prolonged half-life may be associated with an increased risk of adverse events. Clinically significant drug-metabolizing enzyme- and transporter-mediated DDIs are yet to be reported. Mechanism-of-action-mediated DDIs are currently limited to those involving delayed gastric emptying, and most studies have found them to be clinically insignificant. However, significant changes in exposure were observed for oral contraceptives and levothyroxine following the administration of tirzepatide and oral semaglutide, respectively, indicating the need for close monitoring in these instances. Thirty models have been developed to predict pharmacokinetics and physiologically based pharmacokinetic modeling can be useful for assessing mechanism-of-action-mediated DDIs. Alterations in the volume of distribution and clearance resulting from other mechanisms of action (eg, reduced fat mass, changes in cytochrome P450 activity, and glomerular filtration rate) are key factors in determining pharmacokinetics. However, the DDIs mediated by these factors remain poorly understood and require further investigation to ensure that GLP-1 RAs can be safely used with concomitant medications.
Collapse
Affiliation(s)
- Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Seong Jun Jo
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, 14214, USA
| | - Sangyoung Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Duk Yeon Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Da Hyun Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Chae Bin Lee
- Johns Hopkins Drug Discovery, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
4
|
Liu J, Lu W, Wu H, Yan Z, Liu Y, Tang C, Chen Y, Wang S, Tang W, Han J, Wei C, Jiang N. Rational design of dual-agonist peptides targeting GLP-1 and NPY2 receptors for regulating glucose homeostasis and body weight with minimal nausea and emesis. Eur J Med Chem 2025; 287:117320. [PMID: 39892093 DOI: 10.1016/j.ejmech.2025.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
There is an urgent need for effective treatments targeting comorbidities of type 2 diabetes (T2DM) and obesity. Developing dual agonists of glucagon-like peptide 1 receptor (GLP-1R) and neuropeptide Y receptor type 2 (NPY2R) with combined PYY3-36 and GLP-1 bioactivity is promising. However, designing such dual agonists that effectively control glycemia and reduce weight while minimizing gastrointestinal side effects is challenging. In this study, we systematically evaluated the side effects induced by co-administering various GLP-1R agonists and PYY3-36 analogue. Our findings revealed that different GLP-1R agonist-PYY analogue combinations elicited gastrointestinal side effects of varying intensities. Among these, the co-administration of bullfrog GLP-1 analogue (bGLP-1) with PYY3-36 analogue resulted in lower gastrointestinal side effects. Thus, bGLP-1 was selected as the preferred candidate for designing dual GLP-1R/NPY2R agonists. Through stepwise structural design, optimization of linker arms, and durability enhancements, coupled with in vitro receptor screening, the novel peptide bGLP/PYY-19 emerged as the lead candidate. Notably, experimental results in mice and rats showed a significant reduction in emesis with bGLP/PYY-19 compared to semaglutide and bGLP-1 long-acting analogue (LAbGLP-1). Furthermore, bGLP/PYY-19 significantly outperformed semaglutide and LAbGLP-1 in reducing body weight in diet-induced obese (DIO) mice, without inducing nausea-associated behavior. These findings underscore the potential of dual-targeting single peptide conjugates as a promising strategy for developing glucoregulatory treatments that offer superior weight loss benefits and are better tolerated compared to treatments targeting GLP-1R alone.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Weiwen Lu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Han Wu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China
| | - Zhiming Yan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Yun Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Yangxin Chen
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Shuang Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China
| | - Weizhong Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Changhong Wei
- Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University & the First People's Hospital of Nanning, Nanning, Guangxi, PR China.
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|
5
|
Kokkorakis M, Chakhtoura M, Rhayem C, Al Rifai J, Ghezzawi M, Valenzuela-Vallejo L, Mantzoros CS. Emerging pharmacotherapies for obesity: A systematic review. Pharmacol Rev 2025; 77:100002. [PMID: 39952695 DOI: 10.1124/pharmrev.123.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
The history of antiobesity pharmacotherapies is marked by disappointments, often entangled with societal pressure promoting weight loss and the prevailing conviction that excess body weight signifies a lack of willpower. However, categories of emerging pharmacotherapies generate hope to reduce obesity rates. This systematic review of phase 2 and phase 3 trials in adults with overweight/obesity investigates the effect of novel weight loss pharmacotherapies, compared to placebo/control or US Food and Drug Administration-approved weight loss medication, through searching Medline, Embase, and ClinicalTrials.gov (2012-2024). We identified 53 phase 3 and phase 2 trials, with 36 emerging antiobesity drugs or combinations thereof and 4 withdrawn or terminated trials. Oral semaglutide 50 mg is the only medication that has completed a phase 3 trial. There are 14 ongoing phase 3 trials on glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) (ecnoglutide, orforglipron, and TG103), GLP-1 RA/amylin agonist (CagriSema), GLP-1/glucagon RAs (mazdutide and survodutide), GLP-1/glucose-dependent insulinotropic polypeptide and glucagon RA (retatrutide), dapagliflozin, and the combination sibutramine/topiramate. Completed phase 2 trials on incretin-based therapies showed a mean percent weight loss of 7.4% to 24.2%. Almost half of the drugs undergoing phase 2 trials are incretin analogs. The obesity drug pipeline is expanding rapidly, with the most promising results reported with incretin analogs. Data on mortality and obesity-related complications, such as cardio-renal-metabolic events, are needed. Moreover, long-term follow-up data on the safety and efficacy of weight maintenance with novel obesity pharmacotherapies, along with studies focused on underrepresented populations, cost-effectiveness assessments, and drug availability, are needed to bridge the care gap for patients with obesity. SIGNIFICANCE STATEMENT: Obesity is the epidemic of the 21st century. Except for the newer injectable medications, drugs with suboptimal efficacy have been available in the clinician's armamentarium for weight management. However, emerging alternatives of novel agents and combinations populate the current obesity therapeutic pipeline. This systematic review identifies the state and mechanism of action of emerging pharmacotherapies undergoing or having completed phase 2 and phase 3 clinical trials. The information provided herein furthers the understanding of obesity management, implying direct clinical implications and stimulating research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marlene Chakhtoura
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Caline Rhayem
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jana Al Rifai
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Ghezzawi
- Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laura Valenzuela-Vallejo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
6
|
Winther JB, Holst JJ. Glucagon agonism in the treatment of metabolic diseases including type 2 diabetes mellitus and obesity. Diabetes Obes Metab 2024; 26:3501-3512. [PMID: 38853300 DOI: 10.1111/dom.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with obesity and, therefore, it is important to target both overweight and hyperglycaemia. Glucagon plays important roles in glucose, amino acid and fat metabolism and may also regulate appetite and energy expenditure. These physiological properties are currently being exploited therapeutically in several compounds, most often in combination with glucagon-like peptide-1 (GLP-1) agonism in the form of dual agonists. With this combination, increases in hepatic glucose production and hyperglycaemia, which would be counterproductive, are largely avoided. In multiple randomized trials, the co-agonists have been demonstrated to lead to significant weight loss and, in participants with T2DM, even improved glycated haemoglobin (HbA1c) levels. In addition, significant reductions in hepatic fat content have been observed. Here, we review and discuss the studies so far available. Twenty-six randomized trials of seven different GLP-1 receptor (GLP-1R)/glucagon receptor (GCGR) co-agonists were identified and reviewed. GLP-1R/GCGR co-agonists generally provided significant weight loss, reductions in hepatic fat content, improved lipid profiles, insulin secretion and sensitivity, and in some cases, improved HbA1c levels. A higher incidence of adverse effects was present with GLP-1R/GCGR co-agonist treatment than with GLP-1 agonist monotherapy or placebo. Possible additional risks associated with glucagon agonism are also discussed. A delicate balance between GLP-1 and glucagon agonism seems to be of particular importance. Further studies exploring the optimal ratio of GLP-1 and glucagon receptor activation and dosage and titration regimens are needed to ensure a sufficient safety profile while providing clinical benefits.
Collapse
Affiliation(s)
- Jonathan Brix Winther
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and the NovoNordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Ansari S, Khoo B, Tan T. Targeting the incretin system in obesity and type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:447-459. [PMID: 38632474 DOI: 10.1038/s41574-024-00979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are widespread, non-communicable diseases that are responsible for considerable levels of morbidity and mortality globally, primarily in the form of cardiovascular disease (CVD). Changes to lifestyle and behaviour have insufficient long-term efficacy in most patients with these diseases; metabolic surgery, although effective, is not practically deliverable on the scale that is required. Over the past two decades, therapies based on incretin hormones, spearheaded by glucagon-like peptide 1 (GLP1) receptor agonists (GLP1RAs), have become the treatment of choice for obesity and T2DM, and clinical evidence now suggests that these agents have benefits for CVD. We review the latest advances in incretin-based pharmacotherapy. These include 'GLP1 plus' agents, which combine the known advantages of GLP1RAs with the activity of additional hormones, such as glucose-dependent insulinotropic peptide, glucagon and amylin, to achieve desired therapeutic goals. Second-generation non-peptidic oral GLP1RAs promise to extend the benefits of GLP1 therapy to those who do not want, or cannot have, subcutaneous injection therapy. We conclude with a discussion of the knowledge gaps that must be addressed before incretin-based therapies can be properly deployed for maximum benefit in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Saleem Ansari
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Bernard Khoo
- Department of Endocrinology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Tricia Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
| |
Collapse
|
8
|
Sun X, Yang D, Li Y, Shi J, Zhang X, Yi T. Identification and utility exploration of a highly potent and long-acting bullfrog GLP-1 analogue in GLP-1 and amylin combination therapy. Peptides 2024; 177:171203. [PMID: 38582303 DOI: 10.1016/j.peptides.2024.171203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
This study assesses the efficacy of an innovative therapeutic approach that combines GLP-1 and amylin analogues for weight reduction. Focusing on GLP-1 analogues from bullfrog (Rana catesbeiana), we designed ten bGLP-1 analogues with various modifications. Among them, bGLP-10 showed high potency in binding and activating GLP-1 receptors, with superior albumin affinity. In diet-induced obesity (DIO) mice fed a high-fat diet, bGLP-10 demonstrated significant superiority over semaglutide in reducing blood sugar and food intake at a dose of 10 nmol/kg (P < 0.001). Notably, in a chronic study involving DIO mice, the combination of bGLP-10 with the amylin analogue cagrilintide led to a more substantial weight loss (-38.4%, P < 0.001) compared to either the semaglutide-cagrilintide combination (-23.0%) or cagrilintide (-5.7%), bGLP-10 (-16.1%), and semaglutide (-10.9%) alone. Furthermore, the bGLP-10 and cagrilintide combination exhibited superior glucose control and liver lipid management compared to the semaglutide-cagrilintide combination (P < 0.001). These results highlight bGLP-10's potential in GLP-1 and amylin-based therapies and suggest exploring more GLP-1 analogues from natural sources for anti-obesity and anti-diabetic treatments.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, PR China
| | - Dawei Yang
- Affiliated Hospital of Youjiang Medical University For Nationalities, No. 18 Zhongshan Second Road, Youjiang, Baise, Guangxi, PR China
| | - Yan Li
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China
| | - Jingjing Shi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China
| | - Xiaolong Zhang
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China.
| | - Tingzhuang Yi
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi/Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China.
| |
Collapse
|
9
|
McGlone ER, Tan TMM. Glucagon-based therapy for people with diabetes and obesity: What is the sweet spot? Peptides 2024; 176:171219. [PMID: 38615717 DOI: 10.1016/j.peptides.2024.171219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
People with obesity and type 2 diabetes have a high prevalence of metabolic-associated steatotic liver disease, hyperlipidemia and cardiovascular disease. Glucagon increases hepatic glucose production; it also decreases hepatic fat accumulation, improves lipidemia and increases energy expenditure. Pharmaceutical strategies to antagonize the glucagon receptor improve glycemic outcomes in people with diabetes and obesity, but they increase hepatic steatosis and worsen dyslipidemia. Co-agonism of the glucagon and glucagon-like peptide-1 (GLP-1) receptors has emerged as a promising strategy to improve glycemia in people with diabetes and obesity. Addition of glucagon receptor agonism enhances weight loss, reduces liver fat and ameliorates dyslipidemia. Prior to clinical use, however, further studies are needed to investigate the safety and efficacy of glucagon and GLP-1 receptor co-agonists in people with diabetes and obesity and related conditions, with specific concerns regarding a higher prevalence of gastrointestinal side effects, loss of muscle mass and increases in heart rate. Furthermore, co-agonists with differing ratios of glucagon:GLP-1 receptor activity vary in their clinical effect; the optimum balance is yet to be identified.
Collapse
Affiliation(s)
- Emma Rose McGlone
- Department of Surgery and Cancer, Imperial College London, London, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
10
|
Thomas L, Martel E, Rist W, Uphues I, Hamprecht D, Neubauer H, Augustin R. The dual GCGR/GLP-1R agonist survodutide: Biomarkers and pharmacological profiling for clinical candidate selection. Diabetes Obes Metab 2024; 26:2368-2378. [PMID: 38560764 DOI: 10.1111/dom.15551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
AIM To describe the biomarker strategy that was applied to select survodutide (BI 456906), BI 456908 and BI 456897 from 19 dual glucagon receptor (GCGR)/ glucagon-like peptide-1 receptor (GLP-1R) agonists for in-depth pharmacological profiling, which led to the qualification of survodutide as the clinical development candidate. MATERIALS AND METHODS Potencies to increase cyclic adenosine monophosphate (cAMP) were determined in Chinese hamster ovary (CHO)-K1 cells stably expressing human GCGR and GLP-1R. Agonism for endogenously expressed receptors was investigated in insulinoma cells (MIN6) for mouse GLP-1R, and in rat primary hepatocytes for the GCGR. In vivo potencies to engage the GLP-1R or GCGR were determined, measuring improvement in oral glucose tolerance (30 nmol/kg) and increase in plasma fibroblast growth factor-21 (FGF21) and liver nicotinamide N-methyltransferase (NNMT) mRNA expression (100 nmol/kg), respectively. Body weight- and glucose-lowering efficacies were investigated in diet-induced obese (DIO) mice and diabetic db/db mice, respectively. RESULTS Upon acute dosing in lean mice, target engagement biomarkers for the GCGR and GLP-1R demonstrated a significant correlation (Spearman correlation coefficient with p < 0.05) to the in vitro GCGR and GLP-1R potencies for the 19 dual agonists investigated. Survodutide, BI 456908 and BI 456897 were selected for in-depth pharmacological profiling based on the significant improvement in acute oral glucose tolerance achieved (area under the curve [AUC] of 54%, 57% and 60% vs. vehicle) that was comparable to semaglutide (AUC of 45% vs. vehicle), while showing different degrees of in vivo GCGR engagement, as determined by hepatic NNMT mRNA expression (increased by 15- to 17-fold vs. vehicle) and plasma FGF21 concentrations (increased by up to sevenfold vs. vehicle). In DIO mice, survodutide (30 nmol/kg/once daily), BI 456908 (30 nmol/kg/once daily) and BI 456897 (10 nmol/kg/once daily) achieved a body weight-lowering efficacy from baseline of 25%, 27% and 26%, respectively. In db/db mice, survodutide and BI 456908 (10 and 20 nmol/kg/once daily) significantly lowered glycated haemoglobin (0.4%-0.6%); no significant effect was observed for BI 456897 (3 and 7 nmol/kg/once daily). CONCLUSIONS Survodutide was selected as the clinical candidate based on its balanced dual GCGR/GLP-1R pharmacology, engaging the GCGR for robust body weight-lowering efficacy exceeding that of selective GLP-1R agonists, while achieving antidiabetic efficacy that was comparable to selective GLP-1R agonism. Survodutide is currently being investigated in Phase 3 clinical trials in people living with obesity.
Collapse
Affiliation(s)
- Leo Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Eric Martel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Ingo Uphues
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | | | - Heike Neubauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| | - Robert Augustin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riβ, Germany
| |
Collapse
|
11
|
Jiang P, Zeng Y, Yang W, Li L, Zhou L, Xiao L, Li Y, Gu B, Li X, Li J, Li W, Guo L. The effects of Fc fusion protein glucagon-like peptide-1 and glucagon dual receptor agonist with different receptor selectivity in vivo studies. Biomed Pharmacother 2024; 174:116485. [PMID: 38518602 DOI: 10.1016/j.biopha.2024.116485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1)/glucagon (GCG) dual receptor agonists with different receptor selectivity are under investigation and have shown significant improvement in both weight loss and glycemic control, but the optimal potency ratio between the two receptors to balance efficacy and safety remains unclear. EXPERIMENTAL APPROACH We designed and constructed several dual receptor agonists with different receptor potency ratios using Fc fusion protein technology. The long-term effects of the candidates on body weight and metabolic dysfunction-associated steatotic liver disease (MASLD) were evaluated in diet-induced obese (DIO) model mice, high-fat diet (HFD)-ob/ob mice and AMLN diet-induced MASLD mice. Repeat dose toxicity assays were performed to investigate the safety profile of the candidate (HEC-C070) in Sprague Dawley (SD) rats. KEY RESULTS The high GCG receptor (GCGR) selectivity of HEC-C046 makes it more prominent than other compounds for weight loss and most MASLD parameters but may lead to safety concerns. The weight change of HEC-C052 with the lowest GCG agonism was inferior to that of selective GLP-1 receptor agonist (GLP-1RA) semaglutide in DIO model mice. The GLP-1R selectivity of HEC-C070 with moderate GCG agonism has a significant effect on weight loss and liver function in obese mice, and its lowest observed adverse effect level (LOAEL) was 30 nmol/kg in the repeat dose toxicity study. CONCLUSION We compared the potential of the Fc fusion protein GLP-1/GCG dual receptor agonists with different receptor selectivity to provide the setting for future GLP-1/GCG dual receptor agonists to treat obesity and MASLD.
Collapse
Affiliation(s)
- Peng Jiang
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Ying Zeng
- Sunshine Lake Pharma Co., Ltd, China
| | - Wen Yang
- Sunshine Lake Pharma Co., Ltd, China
| | - Lijia Li
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Linjun Zhou
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Lin Xiao
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Yong Li
- Sunshine Lake Pharma Co., Ltd, China
| | - Baohua Gu
- Sunshine Lake Pharma Co., Ltd, China
| | - Xiaoping Li
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Jing Li
- Sunshine Lake Pharma Co., Ltd, China
| | - Wenjia Li
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China
| | - Linfeng Guo
- Dongguan HEC Biopharmaceutical R&D Co., Ltd, China.
| |
Collapse
|
12
|
Hope DCD, Ansari S, Choudhury S, Alexiadou K, Tabbakh Y, Ilesanmi I, Lazarus K, Davies I, Jimenez-Pacheco L, Yang W, Ball LJ, Malviya R, Reglinska B, Khoo B, Minnion J, Bloom SR, Tan TMM. Adaptive infusion of a glucagon-like peptide-1/glucagon receptor co-agonist G3215, in adults with overweight or obesity: Results from a phase 1 randomized clinical trial. Diabetes Obes Metab 2024; 26:1479-1491. [PMID: 38229453 DOI: 10.1111/dom.15448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
AIMS To determine whether a continuous infusion of a glucagon-like peptide receptor (GLP-1R)/glucagon receptor (GCGR) co-agonist, G3215 is safe and well tolerated in adults with overweight or obesity. METHODS A phase 1 randomized, double blind, placebo-controlled trial of G3215 in overweight or obese participants, with or without type 2 diabetes. RESULTS Twenty-six participants were recruited and randomized with 23 completing a 14-day subcutaneous infusion of G3215 or placebo. The most common adverse events were nausea or vomiting, which were mild in most cases and mitigated by real-time adjustment of drug infusion. There were no cardiovascular concerns with G3215 infusion. The pharmacokinetic characteristics were in keeping with a continuous infusion over 14 days. A least-squares mean body weight loss of 2.39 kg was achieved with a 14-day infusion of G3215, compared with 0.84 kg with placebo infusion (p < .05). A reduction in food consumption was also observed in participants receiving G3215 and there was no deterioration in glycaemia. An improved lipid profile was seen in G3215-treated participants and consistent with GCGR activation, a broad reduction in circulating amino acids was seen during the infusion period. CONCLUSION An adaptive continuous infusion of the GLP-1/GCGR co-agonist, G3215, is safe and well tolerated offering a unique strategy to control drug exposure. By allowing rapid, response-directed titration, this strategy may allow for mitigation of adverse effects and afford significant weight loss within shorter time horizons than is presently possible with weekly GLP-1R and multi-agonists. These results support ongoing development of G3215 for the treatment of obesity and metabolic disease.
Collapse
Affiliation(s)
- David C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Saleem Ansari
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sirazum Choudhury
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Kleopatra Alexiadou
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yasmin Tabbakh
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ibiyemi Ilesanmi
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Katharine Lazarus
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Iona Davies
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lara Jimenez-Pacheco
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wei Yang
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Laura-Jayne Ball
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Reshma Malviya
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Beata Reglinska
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Bernard Khoo
- Endocrinology, Division of Medicine, University College London, London, UK
| | - James Minnion
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Stephen R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Tricia M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
13
|
Monfeuga T, Norlin J, Bugge A, Gaalsgaard ED, Prada-Medina CA, Latta M, Veidal SS, Petersen PS, Feigh M, Holst D. Evaluation of long acting GLP1R/GCGR agonist in a DIO and biopsy-confirmed mouse model of NASH suggest a beneficial role of GLP-1/glucagon agonism in NASH patients. Mol Metab 2024; 79:101850. [PMID: 38065435 PMCID: PMC10772820 DOI: 10.1016/j.molmet.2023.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE The metabolic benefits of GLP-1 receptor (GLP-1R) agonists on glycemic and weight control are well established as therapy for type 2 diabetes and obesity. Glucagon's ability to increase energy expenditure is well described, and the combination of these mechanisms-of-actions has the potential to further lower hepatic steatosis in metabolic disorders and could therefore be attractive for the treatment for non-alcoholic steatohepatitis (NASH). Here, we have investigated the effects of a dual GLP-1/glucagon receptor agonist NN1177 on hepatic steatosis, fibrosis, and inflammation in a preclinical mouse model of NASH. Having observed strong effects on body weight loss in a pilot study with NN1177, we hypothesized that direct engagement of the hepatic glucagon receptor (GCGR) would result in a superior effect on steatosis and other liver related parameters as compared to the GLP-1R agonist semaglutide at equal body weight. METHODS Male C57Bl/6 mice were fed a diet high in trans-fat, fructose, and cholesterol (Diet-Induced Obese (DIO)-NASH) for 36 weeks. Following randomization based on the degree of fibrosis at baseline, mice were treated once daily with subcutaneous administration of a vehicle or three different doses of NN1177 or semaglutide for 8 weeks. Hepatic steatosis, inflammation and fibrosis were assessed by immunohistochemistry and morphometric analyses. Plasma levels of lipids and liver enzymes were determined, and hepatic gene expression was analyzed by RNA sequencing. RESULTS NN1177 dose-dependently reduced body weight up to 22% compared to vehicle treatment. Plasma levels of ALT, a measure of liver injury, were reduced in all treatment groups with body weight loss. The dual agonist reduced hepatic steatosis to a greater extent than semaglutide at equal body weight loss, as demonstrated by three independent methods. Both the co-agonist and semaglutide significantly decreased histological markers of inflammation such as CD11b and Galectin-3, in addition to markers of hepatic stellate activation (αSMA) and fibrosis (Collagen I). Interestingly, the maximal beneficial effects on above mentioned clinically relevant endpoints of NN1177 treatment on hepatic health appear to be achieved with the middle dose tested. Administering the highest dose resulted in a further reduction of liver fat and accompanied by a massive induction in genes involved in oxidative phosphorylation and resulted in exaggerated body weight loss and a downregulation of a module of co-expressed genes involved in steroid hormone biology, bile secretion, and retinol and linoleic acid metabolism that are also downregulated due to NASH itself. CONCLUSIONS These results indicate that, in a setting of overnutrition, the liver health benefits of activating the fasting-related metabolic pathways controlled by the glucagon receptor displays a bell-shaped curve. This observation is of interest to the scientific community, due to the high number of ongoing clinical trials attempting to leverage the positive effects of glucagon biology to improve metabolic health.
Collapse
Affiliation(s)
- Thomas Monfeuga
- AI & Digital Research, Research & Early Development, Novo Nordisk Research Centre Oxford, UK
| | - Jenny Norlin
- Novo Nordisk A/S, Novo Park, DK-2750 Maaloev, Denmark
| | - Anne Bugge
- Novo Nordisk A/S, Novo Park, DK-2750 Maaloev, Denmark
| | | | - Cesar A Prada-Medina
- AI & Digital Research, Research & Early Development, Novo Nordisk Research Centre Oxford, UK
| | - Markus Latta
- Novo Nordisk A/S, Novo Park, DK-2750 Maaloev, Denmark
| | - Sanne S Veidal
- Gubra A/S, Hørsholm Kongevej 11, B, DK-2970 Hørsholm, Denmark
| | - Pia S Petersen
- Gubra A/S, Hørsholm Kongevej 11, B, DK-2970 Hørsholm, Denmark
| | - Michael Feigh
- Gubra A/S, Hørsholm Kongevej 11, B, DK-2970 Hørsholm, Denmark
| | - Dorte Holst
- Novo Nordisk A/S, Novo Park, DK-2750 Maaloev, Denmark.
| |
Collapse
|
14
|
Friedrichsen MH, Endahl L, Kreiner FF, Goldwater R, Kankam M, Toubro S, Nygård SB. Results from three phase 1 trials of NNC9204-1177, a glucagon/GLP-1 receptor co-agonist: Effects on weight loss and safety in adults with overweight or obesity. Mol Metab 2023; 78:101801. [PMID: 37690519 PMCID: PMC10568562 DOI: 10.1016/j.molmet.2023.101801] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Glucagon/glucagon-like peptide-1 (GLP-1) receptor co-agonists may provide greater weight loss than agonists targeting the GLP-1 receptor alone. We report results from three phase 1 trials investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of the glucagon/GLP-1 receptor co-agonist NNC9204-1177 (NN1177) for once-weekly subcutaneous use in adults with overweight or obesity. METHODS Our focus was a 12-week, multiple ascending dose (MAD), placebo-controlled, double-blind trial in which adults (N = 99) received NN1177 (on an escalating dose regimen of 200, 600, 1300, 1900, 2800, 4200 and 6000 μg) or placebo. Two other trials also contributed to the findings reported in this article: a first human dose (FHD)/single ascending dose (SAD), placebo-controlled, double-blind trial in which adults (N = 49) received NN1177 (treatment doses of 10, 40, 120, 350, 700 and 1100 μg) or placebo, and a drug-drug interaction, open-label, single-sequence trial in which adults (N = 45) received a 4200-μg dose of NN1177, following administration of a Cooperstown 5 + 1 index cocktail. Safety, tolerability, pharmacokinetic and pharmacodynamic endpoints were assessed. RESULTS For the FHD/SAD and MAD trials, baseline characteristics were generally balanced across treatment cohorts. The geometric mean half-life of NN1177 at steady state was estimated at between 77 and 111 h, and clinically relevant weight loss was achieved (up to 12.6% at week 12; 4200 μg in the MAD trial). Although NN1177 appeared tolerable across trials, several unexpected treatment-related safety signals were observed; increased heart rate, decreased reticulocyte count, increased markers of inflammation (fibrinogen and C-reactive protein), increased aspartate and alanine aminotransferase, impaired glucose tolerance and reduced blood levels of some amino acids. CONCLUSION Although treatment with NN1177 was associated with dose-dependent and clinically relevant weight loss, the observed safety signals precluded further clinical development.
Collapse
Affiliation(s)
| | | | | | | | - Martin Kankam
- Altasciences Clinical Kansas, Overland Park, KS, USA
| | | | | |
Collapse
|
15
|
MacIsaac RJ, Deed G, D'Emden M, Ekinci EI, Hocking S, Sumithran P, Rasalam R. Challenging Clinical Perspectives in Type 2 Diabetes with Tirzepatide, a First-in-Class Twincretin. Diabetes Ther 2023; 14:1997-2014. [PMID: 37824027 PMCID: PMC10597955 DOI: 10.1007/s13300-023-01475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
Tirzepatide is a first-in-class GIP/GLP-1 receptor agonist ('twincretin')-a single molecule that acts as an agonist at both glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors. In the SURPASS clinical trial program in type 2 diabetes mellitus (T2D), tirzepatide was associated with unprecedented reductions in HbA1c, clinically significant weight loss and other metabolic benefits, combined with low rates of hypoglycaemia across a wide range of patient characteristics. The safety and adverse event rate for tirzepatide appears comparable to that of GLP-1 receptor agonists. Although results from dedicated cardiovascular (CV) and kidney trials are currently not available, information to date suggests that tirzepatide may have CV and kidney benefits in people with T2D. Tirzepatide has been approved for the treatment of T2D in the USA, United Arab Emirates, European Union, Japan and Australia. Here, we review how tirzepatide will fit into the T2D treatment continuum. We also consider future directions with tirzepatide in T2D, including its potential for targeting cardio-renal-metabolic disease in T2D, and discuss how tirzepatide-and other co-agonists in development-may challenge current approaches for management of T2D.
Collapse
Affiliation(s)
- Richard J MacIsaac
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia.
- The Australian Centre for Accelerating Diabetes Innovations, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia.
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia.
- Department of Endocrinology and Diabetes, Level 4 Daly Wing, 35 Victoria Pde, PO Box 2900, Fitzroy, VIC, 3065, Australia.
| | - Gary Deed
- Monash University, Brisbane, QLD, Australia
| | - Michael D'Emden
- Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Queensland Health, Brisbane, QLD, Australia
| | - Elif I Ekinci
- The Australian Centre for Accelerating Diabetes Innovations, Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Samantha Hocking
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Priya Sumithran
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Endocrinology and Diabetes, Alfred Health, Melbourne, VIC, Australia
| | - Roy Rasalam
- Department of Endocrinology and Diabetes, Alfred Health, Melbourne, VIC, Australia.
- University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
Xu J, Wang S, Wu H, Chen D, Han J, Lin Q. Engineering a potent and long-acting GLP-1/Y 2 receptor dual agonist as a multi-agonist therapy for diabetes and obesity. Peptides 2023; 169:171073. [PMID: 37536423 DOI: 10.1016/j.peptides.2023.171073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Novel dual agonists for the glucagon-like peptide-1 (GLP-1) and Y2 receptor hold the potential for enhanced efficacy over GLP-1 receptor (GLP-1R) agonists in treating obesity and diabetes. In this study, we aimed to improve the stability and increase the drug development success rate of our previously identified GLP-1/Y2 receptor dual agonist, 6q. To achieve this, we first optimized the structure of the linker within 6q. Additionally, we explored various fatty acid albumin binders to further enhance the stability of 6q. These binders were mainly selected from approved or clinically developed GLP-1R agonists or GLP-1-based multi-agonists. Through this process, we were able to identify a lead peptide, xGLP/PYY-6, that exhibited comparable in vitro potency toward the GLP-1 and Y2 receptors as 6q but with significantly improved stability compared to 6q. In Kunming and DIO mice, xGLP/PYY-6 showed a comparable hypoglycemic effect to semaglutide, and a significantly better effect on inhibiting food intake than semaglutide. In a chronic study in DIO mice, xGLP/PYY-6 exhibited significant metabolic benefits, as reflected by regulation of lipid levels, improved glucose tolerance, weight loss, decreased hepatocellular vacuolation, and the reversal of steatosis effects caused by xGLP/PYY-6. These results indicate the potential of developing xGLP/PYY-6 as an antiobesity, lipid regulation, antisteatotic, and antidiabetic agent.
Collapse
Affiliation(s)
- Jing Xu
- Department of Pharmacy, Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000, PR China
| | - Shuang Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Han Wu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - De Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Jing Han
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning 530021, China.; School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China.
| | - Qisi Lin
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China.
| |
Collapse
|
17
|
Nogueiras R, Nauck MA, Tschöp MH. Gut hormone co-agonists for the treatment of obesity: from bench to bedside. Nat Metab 2023:10.1038/s42255-023-00812-z. [PMID: 37308724 DOI: 10.1038/s42255-023-00812-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/24/2023] [Indexed: 06/14/2023]
Abstract
The discovery and development of so-called gut hormone co-agonists as a new class of drugs for the treatment of diabetes and obesity is considered a transformative breakthrough in the field. Combining action profiles of multiple gastrointestinal hormones within a single molecule, these novel therapeutics achieve synergistic metabolic benefits. The first such compound, reported in 2009, was based on balanced co-agonism at glucagon and glucagon-like peptide-1 (GLP-1) receptors. Today, several classes of gut hormone co-agonists are in development and advancing through clinical trials, including dual GLP-1-glucose-dependent insulinotropic polypeptide (GIP) co-agonists (first described in 2013), and triple GIP-GLP-1-glucagon co-agonists (initially designed in 2015). The GLP-1-GIP co-agonist tirzepatide was approved in 2022 by the US Food and Drug Administration for the treatment of type 2 diabetes, providing superior HbA1c reductions compared to basal insulin or selective GLP-1 receptor agonists. Tirzepatide also achieved unprecedented weight loss of up to 22.5%-similar to results achieved with some types of bariatric surgery-in non-diabetic individuals with obesity. In this Perspective, we summarize the discovery, development, mechanisms of action and clinical efficacy of the different types of gut hormone co-agonists, and discuss potential challenges, limitations and future developments.
Collapse
Affiliation(s)
- Ruben Nogueiras
- CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galicia Agency of Innovation, Xunta de Galicia, Santiago de Compostela, Spain
| | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Medical Department I, St. Josef-Hospital, Katholisches Klinikum Bochum, Ruhr University of Bochum, Bochum, Germany
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany.
| |
Collapse
|
18
|
Hope DCD, Tan TMM. Glucagon and energy expenditure; Revisiting amino acid metabolism and implications for weight loss therapy. Peptides 2023; 162:170962. [PMID: 36736539 DOI: 10.1016/j.peptides.2023.170962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Glucagon receptor (GCGR)-targeted multi-agonists are being developed for the treatment of obesity and metabolic disease. GCGR activity is utilised for its favourable weight loss and metabolic properties, including increased energy expenditure (EE) and hepatic lipid metabolism. GLP1R and GIPR activities are increasingly present in a multi-agonist strategy. Due to the compound effect of increased satiety, reduced food intake and increased energy expenditure, the striking weight loss effects of these multi-agonists has been demonstrated in pre-clinical models of obesity. The precise contribution and mechanism of GCGR activity to enhanced energy expenditure and weight loss in both rodents and humans is not fully understood. In this review, our understanding of glucagon-mediated EE is explored, and an amino acid-centric paradigm contributing to this phenomenon is presented. The current progress of GCGR-targeted multi-agonists in development is also highlighted with a focus on the implications of glucagon-stimulated hypoaminoacidemia.
Collapse
Affiliation(s)
- D C D Hope
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - T M-M Tan
- Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
19
|
Zhang X, Cai Y, Yao Z, Chi H, Li Y, Shi J, Zhou Z, Sun L. Discovery of novel OXM-based glucagon-like peptide 1 (GLP-1)/glucagon receptor dual agonists. Peptides 2023; 161:170948. [PMID: 36646385 DOI: 10.1016/j.peptides.2023.170948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Novel glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP-1R) dual agonists are reported to have improved efficacy over GLP-1R mono-agonists in treating type 2 diabetes (T2DM) and obesity. Here, we describe the discovery of a novel oxyntomodulin (OXM) based GLP-1R/GCGR dual agonist with potent and balanced potency toward GLP-1R and GCGR. The lead peptide OXM-7 was obtained via stepwise rational design and long-acting modification. In ICR and db/db mice, OXM-7 exhibited prominent acute and long-acting hypoglycemic effects. In diet-induced obesity (DIO) mice, twice-daily administration of OXM-7 produced significant weight loss, normalized lipid metabolism, and improved glucose control. In DIO-nonalcoholic steatohepatitis (NASH) mice, OXM-7 treatment significantly reversed hepatic steatosis, and reduced serum and hepatic lipid levels. These preclinical data suggest the therapeutic potential of OXM-7 as a novel anti-diabetic, anti-steatotic and/or anti-obesity agent.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Yuchen Cai
- School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Zhihong Yao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Heng Chi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Yan Li
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Jingjing Shi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian 223003, Jiangsu, PR China
| | - Zhongbo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise 533000, Guangxi, PR China.
| | - Lidan Sun
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, Zhejiang, PR China.
| |
Collapse
|
20
|
Affiliation(s)
- Tricia M-M Tan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
21
|
Zimmermann T, Thomas L, Baader-Pagler T, Haebel P, Simon E, Reindl W, Bajrami B, Rist W, Uphues I, Drucker DJ, Klein H, Santhanam R, Hamprecht D, Neubauer H, Augustin R. BI 456906: Discovery and preclinical pharmacology of a novel GCGR/GLP-1R dual agonist with robust anti-obesity efficacy. Mol Metab 2022; 66:101633. [PMID: 36356832 PMCID: PMC9679702 DOI: 10.1016/j.molmet.2022.101633] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Obesity and its associated comorbidities represent a global health challenge with a need for well-tolerated, effective, and mechanistically diverse pharmaceutical interventions. Oxyntomodulin is a gut peptide that activates the glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R) and reduces bodyweight by increasing energy expenditure and reducing energy intake in humans. Here we describe the pharmacological profile of the novel glucagon receptor (GCGR)/GLP-1 receptor (GLP-1R) dual agonist BI 456906. METHODS BI 456906 was characterized using cell-based in vitro assays to determine functional agonism. In vivo pharmacological studies were performed using acute and subchronic dosing regimens to demonstrate target engagement for the GCGR and GLP-1R, and weight lowering efficacy. RESULTS BI 456906 is a potent, acylated peptide containing a C18 fatty acid as a half-life extending principle to support once-weekly dosing in humans. Pharmacological doses of BI 456906 provided greater bodyweight reductions in mice compared with maximally effective doses of the GLP-1R agonist semaglutide. BI 456906's superior efficacy is the consequence of increased energy expenditure and reduced food intake. Engagement of both receptors in vivo was demonstrated via glucose tolerance, food intake, and gastric emptying tests for the GLP-1R, and liver nicotinamide N-methyltransferase mRNA expression and circulating biomarkers (amino acids, fibroblast growth factor-21) for the GCGR. The dual activity of BI 456906 at the GLP-1R and GCGR was supported using GLP-1R knockout and transgenic reporter mice, and an ex vivo bioactivity assay. CONCLUSIONS BI 456906 is a potent GCGR/GLP-1R dual agonist with robust anti-obesity efficacy achieved by increasing energy expenditure and decreasing food intake.
Collapse
Affiliation(s)
- Tina Zimmermann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Leo Thomas
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Tamara Baader-Pagler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Peter Haebel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Eric Simon
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Wolfgang Reindl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Besnik Bajrami
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Wolfgang Rist
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Ingo Uphues
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.
| | - Holger Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Rakesh Santhanam
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Dieter Hamprecht
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany; Boehringer Ingelheim Research Italia, Via Lorenzini 8, 20139 Milano, Italy.
| | - Heike Neubauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| | - Robert Augustin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88400 Biberach an der Riβ, Germany.
| |
Collapse
|
22
|
Knerr PJ, Mowery SA, Douros JD, Premdjee B, Hjøllund KR, He Y, Kruse Hansen AM, Olsen AK, Perez-Tilve D, DiMarchi RD, Finan B. Next generation GLP-1/GIP/glucagon triple agonists normalize body weight in obese mice. Mol Metab 2022; 63:101533. [PMID: 35809773 PMCID: PMC9305623 DOI: 10.1016/j.molmet.2022.101533] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/19/2022] Open
Abstract
Objective Pharmacological strategies that engage multiple mechanisms-of-action have demonstrated synergistic benefits for metabolic disease in preclinical models. One approach, concurrent activation of the glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptors (i.e. triagonism), combines the anorectic and insulinotropic activities of GLP-1 and GIP with the energy expenditure effect of glucagon. While the efficacy of triagonism in preclinical models is known, the relative contribution of GcgR activation remains unassessed. This work aims to addresses that central question. Methods Herein, we detail the design of unimolecular peptide triagonists with an empirically optimized receptor potency ratio. These optimized peptide triagonists employ a protraction strategy permitting once-weekly human dosing. Additionally, we assess the effects of these peptides on weight-reduction, food intake, glucose control, and energy expenditure in an established DIO mouse model compared to clinically relevant GLP-1R agonists (e.g. semaglutide) and dual GLP-1R/GIPR agonists (e.g. tirzepatide). Results Optimized triagonists normalize body weight in DIO mice and enhance energy expenditure in a manner superior to that of GLP-1R mono-agonists and GLP-1R/GIPR co-agonists. Conclusions These pre-clinical data suggest unimolecular poly-pharmacology as an effective means to target multiple mechanisms contributing to obesity and further implicate GcgR activation as the differentiating factor between incretin receptor mono- or dual-agonists and triagonists. Details the design of unimolecular peptide triagonists for GLP-1R/GIPR/GCGR. Optimal weight-loss is achieved when receptor potency ratio is weighted toward GCGR vs GLP-1R or GIPR. These agonists are protracted for once-weekly human dosing. Optimized triagonists normalizes body weight & enhance energy expenditure in mice. Efficacy of optimized triagonists is superior to GLP-1R & GLP-1R/GIPR agonists.
Collapse
Affiliation(s)
- Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | | | | | | | - Yantao He
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | | | | | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Säll C, Alifrangis L, Dahl K, Friedrichsen MH, Nygård SB, Kristensen K. In vitro CYP450 enzyme down-regulation by GLP-1/glucagon co-agonist does not translate to observed drug-drug interactions in the clinic. Drug Metab Dispos 2022; 50:DMD-AR-2022-000865. [PMID: 35680133 DOI: 10.1124/dmd.122.000865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
NN1177 is a glucagon/glucagon-like peptide 1 receptor co-agonist investigated for chronic weight management and treatment of non-alcoholic steatohepatitis. Here, we show concentration-dependent down-regulation of cytochrome P450 enzymes using freshly isolated human hepatocytes treated with this linear 29-amino acid peptide. Notably, reductions in CYP3A4 mRNA expression (57.2-71.7%) and activity (18.5-51.5%) were observed with a clinically-relevant concentration of 100 nM NN1177. CYP1A2 and CYP2B6 were also affected, but to a lesser extent. Physiological-based pharmacokinetic modelling simulated effects on CYP3A4 and CYP1A2 probe substrates (midazolam and caffeine, respectively) and revealed potential safety concerns related to drug-drug interactions (DDIs). To investigate the clinical relevance of observed in vitro CYP down-regulation, a phase 1 clinical cocktail study was initiated to assess the DDI potential. The study enrolled 45 study participants (BMI 23.0-29.9 kg/m2) to receive a Cooperstown 5+1 cocktail (midazolam, caffeine, omeprazole, dextromethorphan, and S-warfarin/vitamin K) alone and following steady state NN1177 exposure. The analysis of pharmacokinetic profiles for the cocktail drugs showed no significant effect from the co-administration of NN1177 on AUC0-inf for midazolam or S-warfarin. Omeprazole, caffeine, and dextromethorphan generally displayed decreases in AUC0-inf and Cmax following NN1177 co-administration. Thus, the in vitro observations were not reflected in the clinic. These findings highlight remaining challenges associated with standard in vitro systems used to predict DDIs for peptide-based drugs as well as the complexity of DDI trial design for these modalities. Overall, there is an urgent need for better pre-clinical models to assess potential drug-drug interaction risks associated with therapeutic peptides during drug development. Significance Statement This study highlights significant challenges associated with assessing drug-drug interaction risks for therapeutic peptides using in vitro systems, since potential concerns identified by standard assays did not translate to the clinical setting. Further research is required to guide investigators involved in peptide-based drug development towards better non-clinical models in order to more accurately evaluate potential drug-drug interactions.
Collapse
|