1
|
Simar SR, Tran TT, Rydell KB, Atterstrom RL, Sahasrabhojane PV, Dinh AQ, Schettino MG, Slanis HS, Deyanov AE, DeTranaltes AM, Axell-House DB, Miller WR, Munita JM, Tobys D, Seifert H, Biehl L, Zervos M, Suleyman G, Kaur J, Warzocha V, Cifuentes RO, Abbo LM, Shimose L, Liu C, Nguyen K, Miller A, Shelburne SA, Hanson BM, Arias CA. Clinical and Genomic Characterization of Recalcitrant Enterococcal Bacteremia: A Multicenter Prospective Cohort Study (VENOUS). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.645485. [PMID: 40236068 PMCID: PMC11996524 DOI: 10.1101/2025.04.01.645485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Background Patients with recalcitrant enterococcal bloodstream infections are at greater risk of adverse outcomes. We identified patients in the 2016-2022 Vancomycin-Resistant Enterococcal Bacteremia Outcomes Study (VENOUS) cohort experiencing recalcitrant bloodstream infections for further clinical and genomic characterization. Methods Bacteremia episodes were considered "persistent" if there was a lack of clearance on day four while receiving ≥ 48 hours of active therapy and recurrent if there was clearance during hospitalization with a subsequent positive culture (collectively, "recalcitrant" bacteremia). A matched comparison group of non-recalcitrant bacteremia patients was chosen in a 2:1 control:case ratio. Isolates were subjected to short- and long-read whole-genome sequencing. Hybrid assemblies were created using a custom pipeline. Findings. A total of 46 recalcitrant infections from 41 patients were identified. Patients with persistent bacteremia were more often admitted to the ICU upon admission relative to controls. E. faecalis strains causing persistent infections had a significantly higher proportion of genes associated with carbohydrate utilization relative to controls. Representation of functional groups associated with mutated genes was disparate between E. faecium and E. faecalis index and persistent isolates, suggesting species-specific adaptation. Discussion Enterococcal isolates causing recalcitrant bacteremia were genomically diverse, indicating that strain-specific signatures are not drivers of persistence. However, comparisons of index vs. persistent isolates revealed that E. faecium may be genetically pre-adapted to cause persistent infection, and site-specific structural variation during infection suggests the role of differential gene expression in adaptation and persistence. This data lays groundwork for future studies to define signatures of enterococcal adaptation during bacteremia.
Collapse
|
2
|
Grieshop MP, Behr AA, Bowden S, Lin JD, Molari M, Reynolds GZ, Brooks EF, Doyle B, Rodriguez-Nava G, Salinas JL, Banaei N, Bhatt AS. Replicative selfish genetic elements are driving rapid pathogenic adaptation of Enterococcus faecium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.16.643550. [PMID: 40161577 PMCID: PMC11952509 DOI: 10.1101/2025.03.16.643550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Understanding how healthcare-associated pathogens adapt in clinical environments can inform strategies to reduce their burden. Here, we investigate the hypothesis that insertion sequences (IS), prokaryotic transposable elements, are a dominant mediator of rapid genomic evolution in healthcare-associated pathogens. Among 28,207 publicly available pathogen genomes, we find high copy numbers of the replicative ISL3 family in healthcare-associated Enterococcus faecium, Streptococcus pneumoniae and Staphylococcus aureus. In E. faecium, the ESKAPE pathogen with the highest IS density, we find that ISL3 proliferation has increased in the last 30 years. To enable better identification of structural variants, we long read-sequenced a new, single hospital collection of 282 Enterococcal infection isolates collected over three years. In these samples, we observed extensive, ongoing structural variation of the E. faecium genome, largely mediated by active replicative ISL3 elements. To determine if ISL3 is actively replicating in clinical timescales in its natural, gut microbiome reservoir, we long read-sequenced a collection of 28 longitudinal stool samples from patients undergoing hematopoietic cell transplantation, whose gut microbiomes were dominated by E. faecium. We found up to six structural variants of a given E. faecium strain within a single stool sample. Examining longitudinal samples from one individual in further detail, we find ISL3 elements can replicate and move to specific positions with profound regulatory effects on neighboring gene expression. In particular, we identify an ISL3 element that upon insertion replaces an imperfect -35 promoter sequence at a folT gene locus with a perfect -35 sequence, which leads to substantial upregulation of expression of folT, driving highly effective folate scavenging. As a known folate auxotroph, E. faecium depends on other members of the microbiota or diet to supply folate. Enhanced folate scavenging may enable E. faecium to thrive in the setting of microbiome collapse that is common in HCT and other critically ill patients. Together, ISL3 expansion has enabled E. faecium to rapidly evolve in healthcare settings, and this likely contributes to its metabolic fitness and may strongly influence its ongoing trajectory of genomic evolution.
Collapse
Affiliation(s)
- Matthew P Grieshop
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford, CA, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron A Behr
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Sierra Bowden
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jordan D Lin
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Marco Molari
- Swiss Institute of Bioinformatics, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Gabriella Zm Reynolds
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Erin F Brooks
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Current Address: School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Boryana Doyle
- Stanford University School of Medicine, Stanford, CA, USA
| | - Guillermo Rodriguez-Nava
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Jorge L Salinas
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Niaz Banaei
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
- Clinical Microbiology Laboratory, Stanford University Medical Center, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Erkorkmaz BA, Zeevi D, Rudich Y. Dust storm-driven dispersal of potential pathogens and antibiotic resistance genes in the Eastern Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178021. [PMID: 39674156 DOI: 10.1016/j.scitotenv.2024.178021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
The atmosphere hosts a microbiome that connects distant ecosystems yet remains relatively unexplored. In this study, we tested the hypothesis that dust storms enhance the spread of pathogenic microorganisms and whether these microorganisms carry antibiotic resistance and virulence-related genes in the Eastern Mediterranean. We collected air samples during a seasonal transition period, capturing data from 13 dusty days originating from Middle Eastern sources, including the Saharan Desert, Iraq, Iran, and Saudi Arabia, and 32 clear days, with temperatures ranging from 16.5 to 27.1 °C. Using metagenomic analysis, we identified several facultative pathogens like Klebsiella pneumoniae, Stenotrophomonas maltophilia, and Aspergillus fumigatus, which are linked to human respiratory diseases, and others like Zymoseptoria tritici, Fusarium poae, and Puccinia striiformis, which are harmful to wheat. The abundance of these pathogens increased during dust storms and with rising temperatures. Although we did not find strong evidence that these species harbored antibiotic resistance or virulence-related genes, which could be linked to their pathogenic potential, dust storms transported up to 125 times more total antibiotic resistance genes, as measured by RPKM abundance, compared to clear conditions. These levels during dust storms far exceeded those found in other ecosystems. While further research is needed to determine whether dust storms and temperature variations pose an immediate threat to public health and the environment, our findings underscore the importance of continuous monitoring of atmospheric microbiomes. This surveillance is crucial for assessing potential risks to human health and ecosystem stability, particularly in the face of accelerating global climate change.
Collapse
Affiliation(s)
- Burak Adnan Erkorkmaz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Zeevi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
4
|
Cinthi M, Coccitto SN, Massacci FR, Albini E, Binucci G, Gobbi M, Tentellini M, D'Avino N, Ranucci A, Papa P, Magistrali CF, Brenciani A, Giovanetti E. Genomic analysis of enterococci carrying optrA, poxtA, and vanA resistance genes from wild boars, Italy. J Appl Microbiol 2024; 135:lxae193. [PMID: 39076010 DOI: 10.1093/jambio/lxae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
AIMS To investigate enterococci carrying linezolid and vancomycin resistance genes from fecal samples recovered from wild boars. METHODS AND RESULTS Florfenicol- and vancomycin-resistant enterococci, isolated on selective agar plates, were screened by PCR for the presence of linezolid and vancomycin resistance genes. Five isolates carried optrA or poxtA linezolid resistance genes; one strain was resistant to vancomycin for the presence of vanA gene. All isolates were tested for their antibiotic susceptibility and subjected to Whole Genome Sequencing (WGS) analysis. In Enterococcus faecalis (E. faecalis) V1344 and V1676, the optrA was located on the new pV1344-optrA and pV1676-optrA plasmids, respectively, whereas in Enterococcus faecium (E. faecium) V1339 this gene was on a 22 354-bp chromosomal genetic context identical to the one detected in a human E. faecium isolate. In both E. faecium V1682 and E. durans V1343, poxtA was on the p1818-c plasmid previously found in a human E. faecium isolate. In E. faecium V1328, the vanA gene was on the Tn1546 transposon in turn located on a new pV1328-vanA plasmid. Only E. faecium V1682 successfully transferred the poxtA gene to an enterococcal recipient in filter mating assays. CONCLUSIONS The occurrence of genetic elements carrying linezolid and vancomycin resistance genes in enterococci from wild boars is a matter of concern, moreover, the sharing of plasmids and transposons between isolates from wild animals, human, and environment indicates an exchange of genetic material between these settings.
Collapse
Affiliation(s)
- Marzia Cinthi
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Sonia Nina Coccitto
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126 Ancona, Italy
| | - Francesca Romana Massacci
- Department of Research and Development, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM) "Togo Rosati", 06126 Perugia, Italy
| | - Elisa Albini
- Department of Research and Development, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM) "Togo Rosati", 06126 Perugia, Italy
| | - Giorgia Binucci
- Department of Research and Development, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM) "Togo Rosati", 06126 Perugia, Italy
| | - Marco Gobbi
- Department of Research and Development, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM) "Togo Rosati", 06126 Perugia, Italy
| | - Michele Tentellini
- Department of Research and Development, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM) "Togo Rosati", 06126 Perugia, Italy
| | - Nicoletta D'Avino
- Department of Research and Development, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM) "Togo Rosati", 06126 Perugia, Italy
| | - Alice Ranucci
- Department of Research and Development, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM) "Togo Rosati", 06126 Perugia, Italy
| | - Paola Papa
- Department of Research and Development, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche (IZSUM) "Togo Rosati", 06126 Perugia, Italy
| | - Chiara Francesca Magistrali
- Department of Sede Territoriale Lodi-Milano, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", 25124 Brescia, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Via Tronto 10/A, 60126 Ancona, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
5
|
Tam YL, Cameron S, Preston A, Cowley L. GWarrange: a pre- and post- genome-wide association studies pipeline for detecting phenotype-associated genome rearrangement events. Microb Genom 2024; 10:001268. [PMID: 38980151 PMCID: PMC11316554 DOI: 10.1099/mgen.0.001268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The use of k-mers to capture genetic variation in bacterial genome-wide association studies (bGWAS) has demonstrated its effectiveness in overcoming the plasticity of bacterial genomes by providing a comprehensive array of genetic variants in a genome set that is not confined to a single reference genome. However, little attempt has been made to interpret k-mers in the context of genome rearrangements, partly due to challenges in the exhaustive and high-throughput identification of genome structure and individual rearrangement events. Here, we present GWarrange, a pre- and post-bGWAS processing methodology that leverages the unique properties of k-mers to facilitate bGWAS for genome rearrangements. Repeat sequences are common instigators of genome rearrangements through intragenomic homologous recombination, and they are commonly found at rearrangement boundaries. Using whole-genome sequences, repeat sequences are replaced by short placeholder sequences, allowing the regions flanking repeats to be incorporated into relatively short k-mers. Then, locations of flanking regions in significant k-mers are mapped back to complete genome sequences to visualise genome rearrangements. Four case studies based on two bacterial species (Bordetella pertussis and Enterococcus faecium) and a simulated genome set are presented to demonstrate the ability to identify phenotype-associated rearrangements. GWarrange is available at https://github.com/DorothyTamYiLing/GWarrange.
Collapse
Affiliation(s)
- Yi Ling Tam
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Sarah Cameron
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrew Preston
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Lauren Cowley
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
6
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. Cell Host Microbe 2024; 32:739-754.e4. [PMID: 38565143 PMCID: PMC11081829 DOI: 10.1016/j.chom.2024.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
7
|
Laverde D, Armiento S, Molinaro A, Huebner J, De Castro C, Romero-Saavedra F. Identification of a capsular polysaccharide from Enterococcus faecium U0317 using a targeted approach to discover immunogenic carbohydrates for vaccine development. Carbohydr Polym 2024; 330:121731. [PMID: 38368077 DOI: 10.1016/j.carbpol.2023.121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/19/2024]
Abstract
Enterococcus faecium, a gram-positive opportunistic pathogen, has become a major concern for nosocomial infections due to its resistance to several antibiotics, including vancomycin. Finding novel alternatives for treatment prevention, such as vaccines, is therefore crucial. In this study, we used various techniques to discover a novel capsular polysaccharide. Firstly, we identified an encapsulated E. faecium strain by evaluating the opsonophagocytic activity of fifteen strains with antibodies targeting the well-known lipoteichoic acid antigen. This activity was attributed to an unknown polysaccharide. We then prepared a crude cell wall glycopolymer and fractionated it, guided by immunodot-blot analysis. The most immunoreactive fractions were used for opsonophagocytic inhibition assays. The fraction containing the inhibitory polysaccharide underwent structural characterization using NMR and chemical analyses. The elucidated structure presents a branched repeating unit, with the linear part being: →)-β-d-Gal-(1 → 4)-β-d-Glc-(1 → 4)-β-d-Gal-(1 → 4)-β-d-GlcNAc-(1→, further decorated with a terminal α-d-Glc and a d-phosphoglycerol moiety, attached to O-2 and O-3 of the 4-linked Gal unit, respectively. This polysaccharide was conjugated to BSA and the synthetic glycoprotein used to immunize mice. The resulting sera exhibited good opsonic activity, suggesting its potential as a vaccine antigen. In conclusion, our effector-function-based approach successfully identified an immunogenic capsular polysaccharide with promising applications in immunotherapy.
Collapse
Affiliation(s)
- Diana Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Samantha Armiento
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Johannes Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Felipe Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
8
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
9
|
Wagner TM, Pöntinen AK, Fenzel CK, Engi D, Janice J, Almeida-Santos AC, Tedim AP, Freitas AR, Peixe L, van Schaik W, Johannessen M, Hegstad K. Interactions between commensal Enterococcus faecium and Enterococcus lactis and clinical isolates of Enterococcus faecium. FEMS MICROBES 2024; 5:xtae009. [PMID: 38606354 PMCID: PMC11008740 DOI: 10.1093/femsmc/xtae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Anna Kaarina Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Carolin Kornelia Fenzel
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Daniel Engi
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Ana C Almeida-Santos
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana P Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CiberES CB22/06/00035), 28029 Madrid, Spain
| | - Ana R Freitas
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- 1H- TOXRUN – One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4584-116 Gandra, Portugal
| | - Luísa Peixe
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mona Johannessen
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
10
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561241. [PMID: 37873088 PMCID: PMC10592638 DOI: 10.1101/2023.10.06.561241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to insertion "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
11
|
Tang YF, Lin YS, Su LH, Liu JW. Increasing trend of healthcare-associated infections due to vancomycin-resistant Enterococcus faecium (VRE-fm) paralleling escalating community-acquired VRE-fm infections in a medical center implementing strict contact precautions: An epidemiologic and pathogenic genotype analysis and its implications. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:1045-1053. [PMID: 37599123 DOI: 10.1016/j.jmii.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE To clarify whether there were clandestine intra-hospital spreads of vancomycin-resistant Enterococcus faecium (VRE-fm) isolates that led to specific strain of VRE lingering in the hospital and/or developing outbreaks that rendered a progressively increasing trend of healthcare-associated infections due to VRE-fm (VRE-fm-HAIs). SETTING Despite implementing strict contact precautions for hospitalized patients with VRE-fm-infection/colonization, number of VRE-fm-HAIs in a medical centre in southern Taiwan were escalating in 2009-2019, paralleling an increasing trend of community-acquired VRE-fm- infections. METHODS We analyzed epidemiologic data and genotypes of non-duplicate VRE-fm isolates each grown from a normally sterile site of 89 patients between December 2016 and October 2018; multilocus sequence typing (MLST) and pulse-field gel electrophoresis (PFGE) typing were performed. RESULTS Totally 13 sequence types (STs) were found, and the 3 leading STs were ST17 (44%), ST78 (37%), and ST18 (6%); 66 pulsotypes were generated by PFGE. Four VRE-fm isolates grouped as ST17/pulsotype S, 2 as ST17/pulsotype AS, 2 as ST17/pulsotype AU, and 3 as ST78/pulsotype V grew from clinical specimens sampled less than one week apart from patients staying at different wards/departments and/or on different floors of the hospital. CONCLUSIONS Despite possible small transitory clusters of intra-hospital VRE-fm spreads, there was no specific VRE-fm strain lingering in the hospital leading to increasing trend of VRE-fm-HAIs during the study period. Strict contact precautions were able to curb intra-hospital VRE-fm spreads, but unable to curb the increasing trend of VRE-fm-HAIs with the backdrop of progressively increasing VRE-fm-infections/colorizations in the community.
Collapse
Affiliation(s)
- Ya-Fen Tang
- Infection Control Team, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yin-Shiou Lin
- Infection Control Team, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Li-Hsiang Su
- Infection Control Team, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jien-Wei Liu
- Infection Control Team, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Kirsch JM, Ely S, Stellfox ME, Hullahalli K, Luong P, Palmer KL, Van Tyne D, Duerkop BA. Targeted IS-element sequencing uncovers transposition dynamics during selective pressure in enterococci. PLoS Pathog 2023; 19:e1011424. [PMID: 37267422 PMCID: PMC10266640 DOI: 10.1371/journal.ppat.1011424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/14/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
Insertion sequences (IS) are simple transposons implicated in the genome evolution of diverse pathogenic bacterial species. Enterococci have emerged as important human intestinal pathogens with newly adapted virulence potential and antibiotic resistance. These genetic features arose in tandem with large-scale genome evolution mediated by mobile elements. Pathoadaptation in enterococci is thought to be mediated in part by the IS element IS256 through gene inactivation and recombination events. However, the regulation of IS256 and the mechanisms controlling its activation are not well understood. Here, we adapt an IS256-specfic deep sequencing method to describe how chronic lytic phage infection drives widespread diversification of IS256 in E. faecalis and how antibiotic exposure is associated with IS256 diversification in E. faecium during a clinical human infection. We show through comparative genomics that IS256 is primarily found in hospital-adapted enterococcal isolates. Analyses of IS256 transposase gene levels reveal that IS256 mobility is regulated at the transcriptional level by multiple mechanisms in E. faecalis, indicating tight control of IS256 activation in the absence of selective pressure. Our findings reveal that stressors such as phages and antibiotic exposure drives rapid genome-scale transposition in the enterococci. IS256 diversification can therefore explain how selective pressures mediate evolution of the enterococcal genome, ultimately leading to the emergence of dominant nosocomial lineages that threaten human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Shannon Ely
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Madison E. Stellfox
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karthik Hullahalli
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Phat Luong
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| | - Kelli L. Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daria Van Tyne
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado–Anschutz Medical Campus, School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
13
|
Occult Vancomycin-Resistant Enterococcus faecium ST117 Displaying a Highly Mutated vanB2 Operon. Antibiotics (Basel) 2023; 12:antibiotics12030476. [PMID: 36978343 PMCID: PMC10044008 DOI: 10.3390/antibiotics12030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Rare information is available on clinical Enterococcus faecium encountered in Sardinia, Italy. This study investigated the antimicrobial susceptibility profiles and genotypic characteristics of E. faecium isolated at the University Hospital of Sassari, Italy, using the Vitek2 system and PCR, MLST, or WGS. Vitek2 revealed two VanB-type vancomycin-resistant Enterococcus faecium (VREfm) isolates (MICs mg/L = 8 and ≥32) but failed to detect vancomycin resistance in one isolate (MIC mg/L ≤ 1) despite positive genotypic confirmation of vanB gene, which proved to be vancomycin resistant by additional phenotypic methods (MICs mg/L = 8). This vanB isolate was able to increase its vancomycin MIC after exposure to vancomycin, unlike the “classic” occult vanB-carrying E. faecium, becoming detectable by Vitek 2 (MICs mg/L ≥ 32). All three E. faecium had highly mutated vanB2 operons, as part of a chromosomally integrated Tn1549 transposon, with common missense mutations in VanH and VanB2 resistance proteins and specific missense mutations in the VanW accessory protein. There were additional missense mutations in VanS, VanH, and VanB proteins in the vanB2-carrying VREfm isolates compared to Vitek2. The molecular typing revealed a polyclonal hospital-associated E. faecium population from Clade A1, and that vanB2-VREfm, and nearly half of vancomycin-susceptible E. faecium (VSEfm) analyzed, belonged to ST117. Based on core genome-MLST, ST117 strains had different clonal types (CT), excluding nosocomial transmission of specific CT. Detecting vanB2-carrying VREfm isolates by Vitek2 may be problematic, and alternative methods are needed to prevent therapeutic failure and spread.
Collapse
|
14
|
Lin J, Wang Y, Lin C, Li R, Wang G. High Prevalence of Group III-Like Mutations Among BLPACR and First Report of Haemophilus influenzae ST95 Isolated from Blood in China. Infect Drug Resist 2023; 16:999-1008. [PMID: 36824068 PMCID: PMC9942606 DOI: 10.2147/idr.s400207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Purpose We aimed to evaluate antibiotic resistance and molecular epidemiological characteristics of non-invasive Haemophilus influenzae (H. influenzae) from pneumonia patients and analyze the whole genome of one invasive H. influenzae isolated from blood in pediatric patients. Methods Antibiotic susceptibility was tested using the turbidimetric method. β-lactamase-producing and serotyping genes were evaluated via multiplex polymerase chain reaction (PCR), and ftsI was amplified using high-fidelity PCR. Lastly, whole genome sequencing (WGS) was conducted using Illumina HiSeq and PacBio sequencing technology. Results We observed that the ampicillin (AMP) and amoxicillin/clavulanate (AMC) resistance rates of non-invasive H. influenzae were as high as 99.06% (after adjustment) and 49.53%, respectively. The β-lactamase gene of 106 AMP-resistant strains was blaTEM-1 . Group III-like mutation accounted for 71.15% of β-lactamase-positive, AMC-resistant (BLPACR) strain mutants. The novel Asn-526→His mutation was present in one β-lactamase-negative AMP-susceptible (BLNAS) strain. Non-invasive H. influenzae strains all belonged to non-typeable H. influenzae (NTHi). In contrast, the invasive H. influenzae 108 isolated from blood in China belonged to H. influenzae type b (Hib). It belonged to sequence typing ST95 and exhibited sensitivity to all 11 antibiotics. Three prophages were identified, and the capb loci of the H. influenzae strain 108 revealed regions I-III exist in duplicate; however, complete deletion of IS1016 was only present in one of the copies. Conclusion Non-invasive H. influenzae NTHi with β-lactamase-positive was highly prevalent. Notably, group III-like mutations had increased prevalence among BLPACR strains. H. influenzae belonging to Hib and ST95 was first reported to cause sepsis in China.
Collapse
Affiliation(s)
- Jiansheng Lin
- School of Public Health of Fujian Medical University, Fuzhou, People’s Republic of China,Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Yinna Wang
- Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Chunli Lin
- Microbiology Laboratory, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China
| | - Ran Li
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, People’s Republic of China,Correspondence: Ran Li, Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, Fujian Province, 350122, People’s Republic of China, Tel +86 595 22791140, Email
| | - Gaoxiong Wang
- School of Public Health of Fujian Medical University, Fuzhou, People’s Republic of China,Research Administration Office, Quanzhou Women’s and Children’s Hospital, Quanzhou, People’s Republic of China,Gaoxiong Wang, Research Administration Office, Quanzhou Women’s and Children’s Hospital, 700 Fengze Street, Fengze District, Quanzhou, Fujian Province, 350122, People’s Republic of China, Tel +86 595 22131685, Email
| |
Collapse
|
15
|
Wagner TM, Howden BP, Sundsfjord A, Hegstad K. Transiently silent acquired antimicrobial resistance: an emerging challenge in susceptibility testing. J Antimicrob Chemother 2023; 78:586-598. [PMID: 36719135 PMCID: PMC9978586 DOI: 10.1093/jac/dkad024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acquisition and expression of antimicrobial resistance (AMR) mechanisms in bacteria are often associated with a fitness cost. Thus, evolutionary adaptation and fitness cost compensation may support the advance of subpopulations with a silent resistance phenotype when the antibiotic selection pressure is absent. However, reports are emerging on the transient nature of silent acquired AMR, describing genetic alterations that can change the expression of these determinants to a clinically relevant level of resistance, and the association with breakthrough infections causing treatment failures. This phenomenon of transiently silent acquired AMR (tsaAMR) is likely to increase, considering the overall expansion of acquired AMR in bacterial pathogens. Moreover, the augmented use of genotypic methods in combination with conventional phenotypic antimicrobial susceptibility testing (AST) will increasingly enable the detection of genotype and phenotype discrepancy. This review defines tsaAMR as acquired antimicrobial resistance genes with a corresponding phenotype within the wild-type distribution or below the clinical breakpoint for susceptibility for which genetic alterations can mediate expression to a clinically relevant level of resistance. References to in vivo resistance development and therapeutic failures caused by selected resistant subpopulations of tsaAMR in Gram-positive and Gram-negative pathogens are given. We also describe the underlying molecular mechanisms, including alterations in the expression, reading frame or copy number of AMR determinants, and discuss the clinical relevance concerning challenges for conventional AST.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Benjamin Peter Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | | |
Collapse
|
16
|
Selection of Beneficial Bacterial Strains With Potential as Oral Probiotic Candidates. Probiotics Antimicrob Proteins 2022; 14:1077-1093. [PMID: 34982415 DOI: 10.1007/s12602-021-09896-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to select beneficial strains from the oral cavity of healthy volunteers and to evaluate these as potential oral probiotic candidates. The selection process was based on the isolation, differentiation, identification, and safety assessment of LAB strains, followed by a series of experiments for the selection of appropriate candidates with beneficial properties. In the screening procedure, 8 isolates from the oral cavity of a Caucasian volunteers were identified as Streptococcus (Str.) salivarius ST48HK, ST59HK, ST61HK, and ST62HK; Lactiplantibacillus plantarum (Lb.) (Lactobacillus plantarum) ST63HK and ST66HK; Latilactobacillus sakei (Lb.) (Lactobacillus sakei) ST69HK; and Lactobacillus (Lb.) gasseri ST16HK based on 16S rRNA sequencing. Physiological and phenotypic tests did not show hemolytic, proteinase, or gelatinase activities, as well as production of biogenic amines. In addition, screening for the presence of efaA, cyt, IS16, esp, asa1, and hyl virulence genes and vancomycin-resistant genes confirmed safety of the studied strains. Moreover, cell-to-cell antagonism indicated that the strains were able to inhibit the growth of tested representatives from the genera Bacillus, Enterococcus, Streptococcus, and Staphylococcus in a strain-specific manner. Various beneficial genes were detected including gad gene, which codes for GABA production. Furthermore, cell surface hydrophobicity levels ranging between 1.58% and 85% were determined. The studied strains have also demonstrated high survivability in a broad range of pH (4.0-8.0). The interaction of the 8 putative probiotic candidates with drugs from different groups and oral hygiene products were evaluated for their MICs. This is to determine if the application of these drugs and hygiene products can negatively affect the oral probiotic candidates. Overall, antagonistic properties, safety assessment, and high rates of survival in the presence of these commonly used drugs and oral hygiene products indicate Str. salivarius ST48HK, ST59HK, ST61HK, and ST62HK; Lb. plantarum ST63HK and ST66HK; Lb. sakei ST69HK; and Lb. gasseri ST16HK as promising oral cavity probiotic candidates.
Collapse
|
17
|
Leigh RJ, McKenna C, McWade R, Lynch B, Walsh F. Comparative genomics and pangenomics of vancomycin-resistant and susceptible Enterococcus faecium from Irish hospitals. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Enterococcus faecium
has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.
Hypothesis/Gap statement. Vancomycin resistance rates persist amongst
E. faecium
isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.
Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.
Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of
E. faecium
persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.
Conclusions. These results highlight the evolutionary history of Irish
E. faecium
isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible
E. faecium
should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.
Collapse
Affiliation(s)
- Robert J. Leigh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Chloe McKenna
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Robert McWade
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Breda Lynch
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
18
|
Rodriguez Jimenez A, Guiglielmoni N, Goetghebuer L, Dechamps E, George IF, Flot JF. Comparative genome analysis of Vagococcus fluvialis reveals abundance of mobile genetic elements in sponge-isolated strains. BMC Genomics 2022; 23:618. [PMID: 36008774 PMCID: PMC9413892 DOI: 10.1186/s12864-022-08842-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vagococcus fluvialis is a species of lactic acid bacteria found both free-living in river and seawater and associated to hosts, such as marine sponges. This species has been greatly understudied, with no complete genome assembly available to date, which is essential for the characterisation of the mobilome. RESULTS We sequenced and assembled de novo the complete genome sequences of five V. fluvialis isolates recovered from marine sponges. Pangenome analysis of the V. fluvialis species (total of 17 genomes) showed a high intraspecific diversity, with 45.5% of orthologous genes found to be strain specific. Despite this diversity, analyses of gene functions clustered all V. fluvialis species together and separated them from other sequenced Vagococcus species. V. fluvialis strains from different habitats were highly similar in terms of functional diversity but the sponge-isolated strains were enriched in several functions related to the marine environment. Furthermore, sponge-isolated strains carried a significantly higher number of mobile genetic elements (MGEs) compared to previously sequenced V. fluvialis strains from other environments. Sponge-isolated strains carried up to 4 circular plasmids each, including a 48-kb conjugative plasmid. Three of the five strains carried an additional circular extrachromosomal sequence, assumed to be an excised prophage as it contained mainly viral genes and lacked plasmid replication genes. Insertion sequences (ISs) were up to five times more abundant in the genomes of sponge-isolated strains compared to the others, including several IS families found exclusively in these genomes. CONCLUSIONS Our findings highlight the dynamics and plasticity of the V. fluvialis genome. The abundance of mobile genetic elements in the genomes of sponge-isolated V. fluvialis strains suggests that the mobilome might be key to understanding the genomic signatures of symbiosis in bacteria.
Collapse
Affiliation(s)
- Ana Rodriguez Jimenez
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), Brussels, Belgium. .,Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nadège Guiglielmoni
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Lise Goetghebuer
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Etienne Dechamps
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle F George
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), Brussels, Belgium.,Marine Biology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels - (IB)², Brussels, Belgium
| |
Collapse
|
19
|
Assessment of Bacteriocin-Antibiotic Synergy for the Inhibition and Disruption of Biofilms of Listeria monocytogenes and Vancomycin-Resistant Enterococcus. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we have evaluated the effects of previously characterized bacteriocins produced by E. faecium strains ST651ea, ST7119ea, and ST7319ea, against biofilm formation and biofilms formed by L. monocytogenes ATCC15313 and vancomycin-resistant E. faecium VRE19. The effects of bacteriocins on the biofilms formed by L. monocytogenes ATCC151313 were evaluated by crystal violet assay and further confirmed by quantifying viable cells and cell metabolic activities through flow cytometry and TTC assay, respectively, indicating that bacteriocin activities required to completely eradicate biofilms are at least 1600 AU mL−1, 3200 AU mL−1, and 6400 AU mL−1, respectively for each bacteriocin evaluated. Furthermore, bacteriocins ST651ea and ST7119ea require at least 6400 AU mL−1 to completely eradicate the viability of cells within the biofilms formed by E. faecium VRE19, while bacteriocin ST7319ea requires at least 12800 AU mL−1 to obtain the same observations. Assessment of synergistic activities between selected conventional antibiotics (ciprofloxacin and vancomycin) with these bacteriocins was carried out to evaluate their effects on biofilm formation and pre-formed biofilms of both test microorganisms. Results showed that higher concentrations are needed to completely eradicate metabolic activities of cells within pre-formed biofilms in contrast with the biofilm formation abilities of the strains. Furthermore, synergistic activities of bacteriocins with both ciprofloxacin and vancomycin are more evident against vancomycin-resistant E. faecium VRE19 rather than L. monocytogenes ATCC15313. These observations can be further explored for possible applications of these combinations of antibiotics as a possible treatment of clinically relevant pathogens.
Collapse
|
20
|
Enterococcus Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment. Antibiotics (Basel) 2022; 11:antibiotics11070857. [PMID: 35884110 PMCID: PMC9311936 DOI: 10.3390/antibiotics11070857] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Enterococcus are opportunistic pathogens that have been gaining importance in the clinical setting, especially in terms of hospital-acquired infections. This problem has mainly been associated with the fact that these bacteria are able to present intrinsic and extrinsic resistance to different classes of antibiotics, with a great deal of importance being attributed to vancomycin-resistant enterococci. However, other aspects, such as the expression of different virulence factors including biofilm-forming ability, and its capacity of trading genetic information, makes this bacterial genus more capable of surviving harsh environmental conditions. All these characteristics, associated with some reports of decreased susceptibility to some biocides, all described in this literary review, allow enterococci to present a longer survival ability in the hospital environment, consequently giving them more opportunities to disseminate in these settings and be responsible for difficult-to-treat infections.
Collapse
|
21
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
22
|
Shridhar PB, Amachawadi RG, Tokach M, Patel I, Gangiredla J, Mammel M, Nagaraja TG. Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. J Anim Sci 2022; 100:6527694. [PMID: 35150575 PMCID: PMC8908542 DOI: 10.1093/jas/skac030] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococcus faecium is one of the more commonly used bacterial species as a probiotic in animals. The organism, a common inhabitant of the gut of animals and humans, is a major nosocomial pathogen responsible for a variety infections in humans and sporadic infections in animals. In swine and cattle, E. faecium-based probiotic products are used for growth promotion and gut functional and health benefits. The objective of this study was to utilize whole genome sequence-based analysis to assess virulence potential, detect antimicrobial resistance genes, and analyze phylogenetic relationships of E. faecium strains from commercial swine and cattle probiotics. Genomic DNA extracted from E. faecium strains, isolated from commercial probiotic products of swine (n = 9) and cattle (n = 13), were sequenced in an Illumina MiSeq platform and analyzed. Seven of the nine swine strains and seven of the 13 cattle strains were identified as Enterococcus lactis, and not as E. faecium. None of the 22 probiotic strains carried major virulence genes required to initiate infections, but many carried genes involved in adhesion to host cells, which may benefit the probiotic strains to colonize and persist in the gut. Strains also carried genes encoding resistance to a few medically important antibiotics, which included aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia], macrolide, lincosamide and streptogramin B (msrC), tetracyclines [tet(L) and tet(M)], and phenicols [cat-(pc194)]. The comparison of the genotypic to phentypic AMR data showed presence of both related and unrelated genes in the probiotic strains. Swine and cattle probiotic E. faecium strains belonged to diverse sequence types. Phylogenetic analysis of the probiotic strains, and strains of human (n = 29), swine (n = 4), and cattle (n = 4) origin, downloaded from GenBank, indicated close clustering of strains belonging to the same species and source, but a few swine and cattle probiotic strains clustered closely with other cattle and human fecal strains. In conclusion, the absence of major virulence genes characteristic of the clinical E. faecium strains suggests that these probiotic strains are unlikely to initiate opportunistic infection. However, the carriage of AMR genes to medically important antibiotics and close clustering of the probiotic strains with other human and cattle fecal strains suggests that probiotic strains may pose risk to serve as a source of transmitting AMR genes to other gut bacteria.
Collapse
Affiliation(s)
- Pragathi B Shridhar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506-5800, USA
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, Kansas State University, Manhattan, KS 66506-5800, USA,Corresponding author:
| | - Mike Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506-5800, USA
| | - Isha Patel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Jayanthi Gangiredla
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Mark Mammel
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506-5800, USA
| |
Collapse
|
23
|
Lai CKC, Ng RWY, Leung SSY, Hui M, Ip M. Overcoming the rising incidence and evolving mechanisms of antibiotic resistance by novel drug delivery approaches - An overview. Adv Drug Deliv Rev 2022; 181:114078. [PMID: 34896131 DOI: 10.1016/j.addr.2021.114078] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a normal evolutionary process for microorganisms. Antibiotics exerted accelerated selective pressure that hasten bacterial resistance through mutation, and acquisition external genes. These genes often carry multiple antibiotic resistant determinants allowing the recipient microbe an instant "super-bug" status. The extent of Antimicrobial Resistance (AMR) has reached a level of global crisis, existing antimicrobials are no long effective in treating infections caused by AMR pathogens. The great majority of clinically available antimicrobial agents are administered through oral and intra-venous routes. Overcoming antibacterial resistance by novel drug delivery approach offered new hopes, particularly in the treatment of AMR pathogens in sites less assessible through systemic circulation such as the lung and skin. In the current review, we will revisit the mechanism and incidence of important AMR pathogens. Finally, we will discuss novel drug delivery approaches including novel local antibiotic delivery systems, hybrid antibiotics, and nanoparticle-based antibiotic delivery systems.
Collapse
Affiliation(s)
- Christopher K C Lai
- Department of Microbiology, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Rita W Y Ng
- Department of Microbiology, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Sharon S Y Leung
- School of Pharmacy, The Chinese University of Hong Kong, New Territories, Hong Kong Special Administrative Region.
| | - Mamie Hui
- Department of Microbiology, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region.
| | - Margaret Ip
- Department of Microbiology, Prince of Wales Hospital, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Fatahi-Bafghi M, Naseri S, Alizehi A. Genome analysis of probiotic bacteria for antibiotic resistance genes. Antonie van Leeuwenhoek 2022; 115:375-389. [PMID: 34989942 DOI: 10.1007/s10482-021-01703-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes.
Collapse
Affiliation(s)
- Mehdi Fatahi-Bafghi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sara Naseri
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Alizehi
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
25
|
Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100070. [PMID: 34841360 PMCID: PMC8610289 DOI: 10.1016/j.crmicr.2021.100070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteriocinogenic Enterococcus faecium strains were evaluated for their beneficial and safety properties. Safety of the strains were evaluated based on phenotypic and bio-molecular approaches. The beneficial properties of the strains were demonstrated. High survivability under simulated GIT conditions and inhibition of Listeria spp. were demonstrated. The strains were found to carry genes coding for GABA production.
Enterococcus spp., known for their wide ecological distribution, have been associated with various fermented food products of plant and animal origin. The strains used in this study, bacteriocinogenic Enterococcus faecium previously isolated from artisanal soybean paste, have shown strong activity against Listeria spp. and vancomycin-resistant enterococci. Although their antimicrobial activity is considered beneficial, the potential application of enterococci is still under debate due to concerns about their safety for human and other animal consumption. Therefore, this study not only focuses on the screening of potential virulence factors, but also the auxiliary beneficial properties of the strains Ent. faecium ST651ea, ST7119ea, and ST7319ea. Phenotypic screening for gelatinase, hemolysin, and biogenic amine production showed that the strains were all safe. Furthermore, the antibiogram profiling showed that all the strains were susceptible to the panel of antibiotics used in the assessment except for erythromycin. Yet, Ent. faecium ST7319ea was found to carry some of the virulence genes used in the molecular screening for safety including hyl, esp, and IS16. The probiotic potential and other beneficial properties of the strains were also studied, demonstrating high aggregation and co-aggregation levels compared to previously characterized strains, in addition to high survivability under simulated gastrointestinal conditions, and production of numerous desirable enzymes as evaluated by APIZym, indicating diverse possible biotechnological applications of these strains. Additionally, the strains were found to carry genes coding for γ-aminobutyric acid (GABA) production, an auxiliary characteristic for their probiotic potential. Although these tests showed relatively favorable characteristics, it should be considered that these assays were carried out in vitro and should therefore also be assessed under in vivo conditions.
Collapse
|
26
|
Terzić-Vidojević A, Veljović K, Popović N, Tolinački M, Golić N. Enterococci from Raw-Milk Cheeses: Current Knowledge on Safety, Technological, and Probiotic Concerns. Foods 2021; 10:2753. [PMID: 34829034 PMCID: PMC8624194 DOI: 10.3390/foods10112753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
The present study is focused on the safety, technological characteristics, and probiotic evaluation of Enterococcus species from different artisanal raw milk dairy products, mainly cheeses with ripening. Apart from proteolytic and lipolytic activities, most enterococci show the ability to metabolize citrate and convert it to various aromatic compounds. Long-ripened cheeses therefore have a specific flavor that makes them different from cheeses produced from thermally treated milk with commercial starter cultures. In addition, enterococci are producers of bacteriocins effective against spoilage and pathogenic bacteria, so they can be used as food preservatives. However, the use of enterococci in the dairy industry should be approached with caution. Although originating from food, enterococci strains may carry various virulence factors and antibiotic-resistance genes and can have many adverse effects on human health. Still, despite their controversial status, the use of enterococci in the food industry is not strictly regulated since the existence of these so-called desirable and undesirable traits in enterococci is a strain-dependent characteristic. To be specific, the results of many studies showed that there are some enterococci strains that are safe for use as starter cultures or as probiotics since they do not carry virulence factors and antibiotic-resistance genes. These strains even exhibit strong health-promoting effects such as stimulation of the immune response, anti-inflammatory activity, hypocholesterolemic action, and usefulness in prevention/treatment of some diseases.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (K.V.); (N.P.); (M.T.); (N.G.)
| | | | | | | | | |
Collapse
|
27
|
Tong J, Jiang Y, Xu H, Jin X, Zhang L, Ying S, Yu W, Qiu Y. In vitro Antimicrobial Activity of Fosfomycin, Rifampin, Vancomycin, Daptomycin Alone and in Combination Against Vancomycin-Resistant Enterococci. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3049-3055. [PMID: 34285472 PMCID: PMC8285921 DOI: 10.2147/dddt.s315061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/27/2021] [Indexed: 11/23/2022]
Abstract
Purpose The emergence of vancomycin resistant Enterococci (VRE) is shortening the choices for clinical anti-infective therapy. The aim of this study was to investigate the mechanism of vancomycin resistance and evaluate the effect of fosfomycin (FM), rifampin (RIF), vancomycin (VAN), linezolid (LNZ), daptomycin (DAP) alone or in combination against VRE. Methods Eight VRE isolates were collected. A total of 18 antibiotics susceptibility tests were further done for VRE. Whole genome sequencing and bioinformatics analysis were performed. The effect of FM, RIF, VNA, LNZ, DAP alone or in combination was determined using anti-biofilm testing and the time-kill assay. Results All isolates were susceptible to LNZ and DPA. The high-level resistance determinant of VAN in these strains was due to VanA-type cassette. MLST revealed two different STs for vancomycin-resistant Enterococcus faecium (VREm) and four different STs for vancomycin-resistant E. faecalis (VREs). Virulence genes in VREs were more than VREm, especially for 4942 isolated from blood. Gene acm and uppS were only identified in VREm, while virulence genes related to cytolysin were only found in E. faecalis. Further in vitro studies indicated FM (83 mg/L) combined with DAP (20.6 mg/L) and DAP monotherapy (47.1 mg/L) had bactericidal effect against VRE isolates at 24h. Conclusion High-level resistance determinant of VAN in tested isolates was due to VanA-type cassette. FM combined with DAP is a potential therapeutic option for VRE infections.
Collapse
Affiliation(s)
- Jiepeng Tong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yiheng Jiang
- Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xuehang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shuaibing Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
28
|
Reinseth IS, Ovchinnikov KV, Tønnesen HH, Carlsen H, Diep DB. The Increasing Issue of Vancomycin-Resistant Enterococci and the Bacteriocin Solution. Probiotics Antimicrob Proteins 2021; 12:1203-1217. [PMID: 31758332 PMCID: PMC8613153 DOI: 10.1007/s12602-019-09618-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enterococci are commensals of human and other animals’ gastrointestinal tracts. Only making up a small part of the microbiota, they have not played a significant role in research, until the 1980s. Although the exact year is variable according to different geographical areas, this was the decade when vancomycin-resistant enterococci (VRE) were discovered and since then their role as causative agents of human infections has increased. Enterococcus faecium is on the WHO’s list of “bacteria for which new antibiotics are urgently needed,” and with no new antibiotics in development, the situation is desperate. In this review, different aspects of VRE are outlined, including the mortality caused by VRE, antibiotic resistance profiles, animal-modeling efforts, and virulence. In addition, the limitations of current antibiotic treatments for VRE and prospective new treatments, such as bacteriocins, are reviewed.
Collapse
Affiliation(s)
- Ingvild S Reinseth
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Kirill V Ovchinnikov
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Hanne H Tønnesen
- Section of Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Harald Carlsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Dzung B Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
29
|
Chen YH, Lin SY, Lin YT, Tseng SP, Chang CC, Yu SY, Hung WW, Jao YT, Lin CY, Chen YH, Hung WC. Emergence of aac(6')-Ie-aph(2'')-Ia-positive enterococci with non-high-level gentamicin resistance mediated by IS1216V: adaptation to decreased aminoglycoside usage in Taiwan. J Antimicrob Chemother 2021; 76:1689-1697. [PMID: 33822062 DOI: 10.1093/jac/dkab071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To explore the mechanisms mediating the different levels of gentamicin resistance in enterococci. METHODS Susceptibility testing with gentamicin and PCR of resistance determinants were performed in 149 enterococcal isolates. Genetic relatedness was characterized by MLST and PFGE analysis. Sequences of the aac(6')-Ie-aph(2'')-Ia gene and its surrounding environment were determined by Illumina sequencing. Stability assays of gentamicin resistance were carried out to evaluate the probability of loss of the high-level gentamicin resistance (HLGR) phenotype. RESULTS A total of 17 (11.4%) aac(6')-Ie-aph(2'')-Ia-positive enterococcal isolates (2 Enterococcus faecalis and 15 Enterococcus faecium) with non-HLGR phenotype were found. MLST analysis revealed that the 2 E. faecalis belonged to ST116 and ST618, while all the 15 E. faecium belonged to clonal complex 17. Sequence analysis demonstrated that IS1216V was inserted into the 5'-end of aac(6')-Ie-aph(2'')-Ia, leading to loss of HLGR phenotype. Three IS1216V insertion types were found, and type II and III were frequently found in E. faecium. Interestingly, a total of 38 aac(6')-Ie-aph(2'')-Ia-positive E. faecium with HLGR phenotype also had type II or type III IS1216V insertion. Sequencing of the aac(6')-Ie-aph(2'')-Ia-positive HLGR E. faecium E37 revealed that an intact aac(6')-Ie-aph(2'')-Ia was located adjacent to IS1216V-disrupted aac(6')-Ie-aph(2'')-Ia. In a non-antibiotic environment, E37 tended to lose HLGR phenotype with a probability of 1.57 × 10-4, which was largely attributed to homologous recombination between the intact and disrupted aac(6')-Ie-aph(2'')-Ia. CONCLUSIONS This is first study to elucidate that the E. faecium is capable of changing its HLGR phenotype, which may contribute to adaptation to hospital environments with decreased usage of gentamicin.
Collapse
Affiliation(s)
- You-Han Chen
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Tzu Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Sung-Pin Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Chia Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Song-Yih Yu
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Wen Hung
- Division of Endocrine and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ting Jao
- Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
30
|
Innes GK, Nachman KE, Abraham AG, Casey JA, Patton AN, Price LB, Tartof SY, Davis MF. Contamination of Retail Meat Samples with Multidrug-Resistant Organisms in Relation to Organic and Conventional Production and Processing: A Cross-Sectional Analysis of Data from the United States National Antimicrobial Resistance Monitoring System, 2012-2017. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57004. [PMID: 33978452 PMCID: PMC8114881 DOI: 10.1289/ehp7327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND During food animal production, animals are exposed to, colonized by, and sometimes infected with bacteria that may contaminate animal products with susceptible and multidrug-resistant organisms (MDRO). The United States' Organic Foods Production Act resulted in decreased antibiotic use in some animal production operations. Some studies have reported that decreased antibiotic use is associated with reduced MDRO on meat. OBJECTIVES The aim of this study was to investigate associations of meat production and processing methods with MDRO and overall bacterial contamination of retail meats. METHODS Bacterial contamination data from 2012 to 2017 for chicken breast, ground beef, ground turkey, and pork chops were downloaded from the National Antimicrobial Resistance Monitoring System. Poisson regression models with robust variance were used to estimate associations with MDRO contamination and any contamination (adjusted for year and meat type) overall, and according to bacteria genus (Salmonella, Campylobacter, Enterococcus, Escherichia coli) and meat type. RESULTS A total of 39,349 retail meat samples were linked to 216 conventional, 123 split (conventional and organic), and three organic processing facilities. MDRO contamination was similar in conventionally produced meats processed at split vs. conventional facilities but was significantly lower in organically produced meats processed at split facilities [adjusted prevalance ratio (aPR)=0.43; 95% CI: 0.30, 0.63]. Meat processed by split vs. conventional processors had higher or similar MDRO contamination for all tested bacterial genera except Campylobacter (aPR=0.29; 95% CI: 0.13, 0.64). The prevalence of any contamination was lower in samples processed at split vs. conventional facilities for aggregated samples (aPR=0.70; 95% CI: 0.68, 0.73) and all meat types and bacterial genera. DISCUSSION Organically produced and processed retail meat samples had a significantly lower prevalence of MDRO than conventionally produced and processed samples had, whereas meat from split processors had a lower prevalence of any contamination than samples from conventional processors had. Additional studies are needed to confirm findings and clarify specific production and processing practices that might explain them. https://doi.org/10.1289/EHP7327.
Collapse
Affiliation(s)
- Gabriel K. Innes
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Keeve E. Nachman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Center for a Livable Future, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Risk Sciences and Public Policy Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alison G. Abraham
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, School of Public Health University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joan A. Casey
- Mailman School of Public Heath, Columbia University, New York, New York, USA
| | - Andrew N. Patton
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lance B. Price
- Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Sara Y. Tartof
- Kaiser Permanente Southern California, Pasadena, California, USA
| | - Meghan F. Davis
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Dissemination of quinolone low-susceptible Haemophilus influenzae ST422 in Tokyo, Japan. J Infect Chemother 2021; 27:962-966. [PMID: 33612378 DOI: 10.1016/j.jiac.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Haemophilus influenzae with a reduced susceptibility to quinolones (quinolone low-susceptible H. influenzae) has recently emerged in Japan. In addition, the regional outbreak of the quinolone low-susceptible H. influenzae ST422 clone has been reported. In this study, we isolated this clone from an acute care hospital located in a geographically different area from the previous outbreak and characterised the nature of this clone. METHODS Eighty-nine H. influenzae isolated between 2017 and 2019 were tested. The antimicrobial susceptibility was determined by the broth dilution method. The genetic background was analysed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Growth ability and β-lactamase acquisition were evaluated by growth curve analysis and conjugative transfer experiments, respectively. RESULTS Quinolone low-susceptible isolates accounted for 4.2% (1/24) in 2018 and 13.9% (5/36) in 2019. Most of the quinolone low-susceptible strains (83.3%) were classified as ST422 and had amino acid substitutions in quinolone resistance-determining regions in both GyrA and ParC. The patients' backgrounds were highly diverse. In addition, these isolates showed the same PFGE pattern as outbreak strains. The growth of ST422 clone was relatively faster than other clones. Furthermore, ST422 clone was able to acquire β-lactamase from a β-lactamase positive strain by horizontal transfer, becoming highly resistant to β-lactams. CONCLUSION Our study indicated that the quinolone low-susceptible H. influenzae ST422 clone has been spreading in the community undetected. In addition, this clone has the potential to grow faster and become more resistant through exogenous gene transfer. Therefore, ST422 clone should be monitored attention throughout Japan.
Collapse
|
32
|
Stratmann JA, Lacko R, Ballo O, Shaid S, Gleiber W, Vehreschild MJGT, Wichelhaus T, Reinheimer C, Göttig S, Kempf VAJ, Kleine P, Stera S, Brandts C, Sebastian M, Koschade S. Colonization with multi-drug-resistant organisms negatively impacts survival in patients with non-small cell lung cancer. PLoS One 2020; 15:e0242544. [PMID: 33237921 PMCID: PMC7688109 DOI: 10.1371/journal.pone.0242544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/05/2020] [Indexed: 02/01/2023] Open
Abstract
Objectives Multidrug-resistant organisms (MDRO) are considered an emerging threat worldwide. Data covering the clinical impact of MDRO colonization in patients with solid malignancies, however, is widely missing. We sought to determine the impact of MDRO colonization in patients who have been diagnosed with Non-small cell lung cancer (NSCLC) who are at known high-risk for invasive infections. Materials and methods Patients who were screened for MDRO colonization within a 90-day period after NSCLC diagnosis of all stages were included in this single-center retrospective study. Results Two hundred and ninety-five patients were included of whom 24 patients (8.1%) were screened positive for MDRO colonization (MDROpos) at first diagnosis. Enterobacterales were by far the most frequent MDRO detected with a proportion of 79.2% (19/24). MDRO colonization was present across all disease stages and more present in patients with concomitant diabetes mellitus. Median overall survival was significantly inferior in the MDROpos study group with a median OS of 7.8 months (95% CI, 0.0–19.9 months) compared to a median OS of 23.9 months (95% CI, 17.6–30.1 months) in the MDROneg group in univariate (p = 0.036) and multivariate analysis (P = 0.02). Exploratory analyses suggest a higher rate of non-cancer-related-mortality in MDROpos patients compared to MDROneg patients (p = 0.002) with an increased rate of fatal infections in MDROpos patients (p = 0.0002). Conclusions MDRO colonization is an independent risk factor for inferior OS in patients diagnosed with NSCLC due to a higher rate of fatal infections. Empirical antibiotic treatment approaches should cover formerly detected MDR commensals in cases of (suspected) invasive infections.
Collapse
Affiliation(s)
- Jan A. Stratmann
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt am Main, Germany
- * E-mail:
| | - Raphael Lacko
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Olivier Ballo
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Shabnam Shaid
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Gleiber
- Department of Internal Medicine, Pneumology, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, Goethe University, Frankfurt, Frankfurt am Main, Germany
- University Center for Infectious Diseases, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Thomas Wichelhaus
- University Center for Infectious Diseases, Goethe University, Frankfurt, Frankfurt am Main, Germany
- Institute of Medical Microbiology and Infection Control, Goethe University, Frankfurt, Frankfurt am Main, Germany
- University Center of Competence for Infection Control, Frankfurt, State of Hesse, Germany
| | - Claudia Reinheimer
- University Center for Infectious Diseases, Goethe University, Frankfurt, Frankfurt am Main, Germany
- Institute of Medical Microbiology and Infection Control, Goethe University, Frankfurt, Frankfurt am Main, Germany
- University Center of Competence for Infection Control, Frankfurt, State of Hesse, Germany
| | - Stephan Göttig
- University Center for Infectious Diseases, Goethe University, Frankfurt, Frankfurt am Main, Germany
- Institute of Medical Microbiology and Infection Control, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Volkhard A. J. Kempf
- University Center for Infectious Diseases, Goethe University, Frankfurt, Frankfurt am Main, Germany
- Institute of Medical Microbiology and Infection Control, Goethe University, Frankfurt, Frankfurt am Main, Germany
- University Center of Competence for Infection Control, Frankfurt, State of Hesse, Germany
| | - Peter Kleine
- Department of Cardiothoracic Surgery, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Susanne Stera
- Department of Radiation Oncology, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Christian Brandts
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt am Main, Germany
- University Cancer Center Frankfurt (UCT), Goethe University, Frankfurt, Germany
| | - Martin Sebastian
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Koschade
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
33
|
Zhou X, Willems RJL, Friedrich AW, Rossen JWA, Bathoorn E. Enterococcus faecium: from microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob Resist Infect Control 2020; 9:130. [PMID: 32778149 PMCID: PMC7418317 DOI: 10.1186/s13756-020-00770-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Early in its evolution, Enterococcus faecium acquired traits that allowed it to become a successful nosocomial pathogen. E. faecium inherent tenacity to build resistance to antibiotics and environmental stressors that allows the species to thrive in hospital environments. The continual wide use of antibiotics in medicine has been an important driver in the evolution of E. faecium becoming a highly proficient hospital pathogen.For successful prevention and reduction of nosocomial infections with vancomycin resistant E. faecium (VREfm), it is essential to focus on reducing VREfm carriage and spread. The aim of this review is to incorporate microbiological insights of E. faecium into practical infection control recommendations, to reduce the spread of hospital-acquired VREfm (carriage and infections). The spread of VREfm can be controlled by intensified cleaning procedures, antibiotic stewardship, rapid screening of VREfm carriage focused on high-risk populations, and identification of transmission routes through accurate detection and typing methods in outbreak situations. Further, for successful management of E. faecium, continual innovation in the fields of diagnostics, treatment, and eradication is necessary.
Collapse
Affiliation(s)
- Xuewei Zhou
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - John W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Tanaka E, Wajima T, Nakaminami H, Noguchi N. Whole-genome sequence of Haemophilus influenzae ST422 outbreak clone strain 2018-Y40 with low quinolone susceptibility isolated from a paediatric patient. J Glob Antimicrob Resist 2020; 22:759-761. [PMID: 32653727 DOI: 10.1016/j.jgar.2020.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/15/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES In recent years, Haemophilus influenzae strains with reduced susceptibility to quinolones have emerged and spread in Japan. In addition, an outbreak of isolates with low quinolone susceptibility among paediatric patients has also been reported. The aim of this study was to determine the molecular characteristics of an H. influenzae ST422 outbreak clone with low quinolone susceptibility isolated from a paediatric patient using whole-genome sequencing. METHODS The PacBio RS II platform was used for sequencing, and de novo assembly was performed using RS HGAP assembly version 3.0. The assembled sequences were annotated using DFAST version 1.1.15. Prophages were estimated using the PHASTER program. RESULTS Whole-genome sequencing of H. influenzae ST422 isolate 2018-Y40 revealed that the genome size was 1 957 393bp, comprising 1 926 protein-coding sequences, 19 rRNAs, and 57 tRNAs, with a guanine-cytosine (GC) content of 38.2%. This isolate had no relevant exogenous antimicrobial-resistant genes. However, amino acid substitutions were found in both GyrA and ParC, as well as at the 385th and 526th amino acid residues in penicillin-binding protein 3. In addition, four intact prophage regions and one incomplete prophage region were found. CONCLUSIONS The whole-genome sequence of H. influenzae 2018-Y40 indicated that this clone emerged as a result of extensive genomic rearrangement by integration of multiple phages. As genomic rearrangement occasionally leads to a new phenotype, this clone could have acquired antimicrobial resistance and diversification via rearrangement events. These findings can form a basis to help clarify the mechanisms of low quinolone susceptibility and the spread of this outbreak clone.
Collapse
Affiliation(s)
- Emi Tanaka
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takeaki Wajima
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Hidemasa Nakaminami
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
35
|
Couchoud C, Bertrand X, Valot B, Hocquet D. Deciphering the role of insertion sequences in the evolution of bacterial epidemic pathogens with panISa software. Microb Genom 2020; 6:e000356. [PMID: 32213253 PMCID: PMC7371109 DOI: 10.1099/mgen.0.000356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Next-generation sequencing (NGS) is now widely used in microbiology to explore genome evolution and the structure of pathogen outbreaks. Bioinformatics pipelines readily detect single-nucleotide polymorphisms or short indels. However, bacterial genomes also evolve through the action of small transposable elements called insertion sequences (ISs), which are difficult to detect due to their short length and multiple repetitions throughout the genome. We designed panISa software for the ab initio detection of IS insertions in the genomes of prokaryotes. PanISa has been released as open source software (GPL3) available from https://github.com/bvalot/panISa. In this study, we assessed the utility of this software for evolutionary studies, by reanalysing five published datasets for outbreaks of human major pathogens in which ISs had not been specifically investigated. We reanalysed the raw data from each study, by aligning the reads against reference genomes and running panISa on the alignments. Each hit was automatically curated and IS-related events were validated on the basis of nucleotide sequence similarity, by comparison with the ISFinder database. In Acinetobacter baumannii, the panISa pipeline identified ISAba1 or ISAba125 upstream from the ampC gene, which encodes a cephalosporinase in all third-generation cephalosporin-resistant isolates. In the genomes of Vibrio cholerae isolates, we found that early Haitian isolates had the same ISs as Nepalese isolates, confirming the inferred history of the contamination of this island. In Enterococcus faecalis, panISa identified regions of high plasticity, including a pathogenicity island enriched in IS-related events. The overall distribution of ISs deduced with panISa was consistent with SNP-based phylogenic trees, for all species considered. The role of ISs in pathogen evolution has probably been underestimated due to difficulties detecting these transposable elements. We show here that panISa is a useful addition to the bioinformatics toolbox for analyses of the evolution of bacterial genomes. PanISa will facilitate explorations of the functional impact of ISs and improve our understanding of prokaryote evolution.
Collapse
Affiliation(s)
- Charlotte Couchoud
- Laboratoire d’Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
- UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Xavier Bertrand
- Laboratoire d’Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
- UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
| | - Benoit Valot
- UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
- Bioinformatique et big data au service de la santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- Laboratoire d’Hygiène Hospitalière, Centre Hospitalier Régional Universitaire, Besançon, France
- UMR CNRS 6249 Chrono-environnement, Université de Bourgogne Franche-Comté, Besançon, France
- Bioinformatique et big data au service de la santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
36
|
Bayjanov JR, Baan J, Rogers MRC, Troelstra A, Willems RJL, van Schaik W. Enterococcus faecium genome dynamics during long-term asymptomatic patient gut colonization. Microb Genom 2019; 5:e000277. [PMID: 31166888 PMCID: PMC6700664 DOI: 10.1099/mgen.0.000277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 11/18/2022] Open
Abstract
Enterococcus faecium is a gut commensal of humans and animals. In addition, it has recently emerged as an important nosocomial pathogen through the acquisition of genetic elements that confer resistance to antibiotics and virulence. We performed a whole-genome sequencing-based study on 96 multidrug-resistant E. faecium strains that asymptomatically colonized five patients with the aim of describing the genome dynamics of this species. The patients were hospitalized on multiple occasions and isolates were collected over periods ranging from 15 months to 6.5 years. Ninety-five of the sequenced isolates belonged to E. faecium clade A1, which was previously determined to be responsible for the vast majority of clinical infections. The clade A1 strains clustered into six clonal groups of highly similar isolates, three of which consisted entirely of isolates from a single patient. We also found evidence of concurrent colonization of patients by multiple distinct lineages and transfer of strains between patients during hospitalization. We estimated the evolutionary rate of two clonal groups that each colonized single patients at 12.6 and 25.2 single-nucleotide polymorphisms (SNPs)/genome/year. A detailed analysis of the accessory genome of one of the clonal groups revealed considerable variation due to gene gain and loss events, including the chromosomal acquisition of a 37 kbp prophage and the loss of an element containing carbohydrate metabolism-related genes. We determined the presence and location of 12 different insertion sequence (IS) elements, with ISEfa5 showing a unique pattern of location in 24 of the 25 isolates, suggesting widespread ISEfa5 excision and insertion into the genome during gut colonization. Our findings show that the E. faecium genome is highly dynamic during asymptomatic colonization of the human gut. We observed considerable genomic flexibility due to frequent horizontal gene transfer and recombination, which can contribute to the generation of genetic diversity within the species and, ultimately, can contribute to its success as a nosocomial pathogen.
Collapse
Affiliation(s)
- Jumamurat R. Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Jery Baan
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Malbert R. C. Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Annet Troelstra
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Antibiotic resistance genes in the Actinobacteria phylum. Eur J Clin Microbiol Infect Dis 2019; 38:1599-1624. [PMID: 31250336 DOI: 10.1007/s10096-019-03580-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum.
Collapse
|
38
|
Sacramento AG, Fernandes MR, Sellera FP, Dolabella SS, Zanella RC, Cerdeira L, Lincopan N. VanA-type vancomycin-resistant Enterococcus faecium ST1336 isolated from mussels in an anthropogenically impacted ecosystem. MARINE POLLUTION BULLETIN 2019; 142:533-536. [PMID: 31232334 DOI: 10.1016/j.marpolbul.2019.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
We report the occurrence and genomic features of multidrug-resistant vancomycin-resistant Enterococcus faecium vanA belonging to a novel sequence type (designated ST1336), carrying a Tn1546-like element, in marine brown mussels (Perna perna) from anthropogenically affected coastal waters of the Atlantic coast of Brazil, highlighting a potential source of dissemination for related ecosystems, with additional consequences for seafood safety and quality.
Collapse
Affiliation(s)
- Andrey G Sacramento
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil.
| | - Miriam R Fernandes
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Silvio S Dolabella
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Louise Cerdeira
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
Chajęcka-Wierzchowska W, Zadernowska A, Zarzecka U, Zakrzewski A, Gajewska J. Enterococci from ready-to-eat food - horizontal gene transfer of antibiotic resistance genes and genotypic characterization by PCR melting profile. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1172-1179. [PMID: 30047163 DOI: 10.1002/jsfa.9285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The aim of this study was to evaluate the possibility of the horizontal transfer of genes encoding resistance to aminoglycosides (aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, aph(2″)-Id, ant(4')-Ia and ant(6')-Ia), tetracyclines (tetM, tetL, tetK, tetO and tetW), and macrolides (ermA, ermB, ermC, msrC, mefAB) in Enterococcus strains isolated from ready-to-eat dishes purchased in bars and restaurants in Olsztyn, Poland. RESULTS It was found that 74% of tested strains were able to conjugal transfer at least one of the antibiotic resistance genes. Transfer of resistance to tetracyclines in strains was observed with a frequency ranging from 1.3 × 10-6 to 8.7 × 10-7 transconjugants/donor. The int gene and the tetM gene were transferred simultaneously, which indicated that a transposon of the Tn916/Tn1545 also participated in the conjugation process. The frequency of transferring genes of resistance to macrolides ranged from 3.2 × 10-6 to 2.4 × 10-8 transconjugants/donor. The ermB gene was transferred the most frequently. The frequency of acquisition of genes encoding aminoglycosides in strains isolated from food ranged from 1.7 × 10-6 to 3,2 × 10-8 transconjugants/donor. Transfer of the aac(6')-Ie-aph(2″) gene was the most frequent. In all reactions, the clonal character of transconjugants and recipients was confirmed by the polymerase chain reaction melting profile (PCR MP) method, which is an alternative to the pulsed field gel electrophoresis (PFGE) method. CONCLUSION The findings of this study indicate that Enterococcus isolated from ready-to-eat food is able to horizontally transfer genes encoding various antibiotic resistance mechanisms. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Anna Zadernowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Urszula Zarzecka
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Arkadiusz Zakrzewski
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Gajewska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
40
|
Santona A, Taviani E, Hoang HM, Fiamma M, Deligios M, Ngo TVQ, Van Le A, Cappuccinelli P, Rubino S, Paglietti B. Emergence of unusual vanA/vanB genotype in a highly mutated vanB-vancomycin-resistant hospital-associated E. faecium background in Vietnam. Int J Antimicrob Agents 2018; 52:586-592. [DOI: 10.1016/j.ijantimicag.2018.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 11/25/2022]
|
41
|
Safety Aspect of Enterococcus faecium FL31 Strain and Antibacterial Mechanism of Its Hydroxylated Bacteriocin BacFL31 against Listeria monocytogenes. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5308464. [PMID: 30515405 PMCID: PMC6236939 DOI: 10.1155/2018/5308464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
Abstract
In previous work we have isolated and identified a new strain called Enterococcus faecium FL31. The active compound secreted by this strain, "BacFL31", has been purified and characterized. In the present study, safety aspect, assessed by microbiological and molecular tests, demonstrated that Enterococcus faecium FL31 was susceptible to relevant antibiotics, free of hemolytic, gelatinase, DNase, and lipase activities. In addition, it did not harbor virulence and antibiotic resistance genes. Combined SYTOX Green dye and UV-absorbing experiments, along with released extracellular potassium and transmembrane electrical potential measurements, showed that pure BacFL31 at a concentration of 1×MIC (50 μg/mL) could damage cytoplasmic membrane of the pathogen Listeria monocytogenes ATCC19117. The same concentration causes the leakage of its intracellular constituents and leads to the destruction of this pathogenic microorganism. In summary, this work reflected characteristics of Enterococcus faecium FL31 strain and its bacteriocin in terms of functional and safety perspectives.
Collapse
|
42
|
Dabul ANG, Avaca-Crusca JS, Navais RB, Merlo TP, Van Tyne D, Gilmore MS, Camargo ILBDC. Molecular basis for the emergence of a new hospital endemic tigecycline-resistant Enterococcus faecalis ST103 lineage. INFECTION GENETICS AND EVOLUTION 2018; 67:23-32. [PMID: 30393188 DOI: 10.1016/j.meegid.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/25/2022]
Abstract
Enterococcus faecalis are a major cause of nosocomial infection worldwide, and the spread of vancomycin resistant strains (VRE) limits treatment options. Tigecycline-resistant VRE began to be isolated from inpatients at a Brazilian hospital within months following the addition of tigecycline to the hospital formulary. This was found to be the result of a spread of an ST103 E. faecalis clone. Our objective was to identify the basis for tigecycline resistance in this lineage. The genomes of two closely related tigecycline-susceptible (MIC = 0.06 mg/L), and three representative tigecycline-resistant (MIC = 1 mg/L) ST103 isolates were sequenced and compared. Further, efforts were undertaken to recapitulate the emergence of resistant strains in vitro. The specific mutations identified in clinical isolates in several cases were within the same genes identified in laboratory-evolved strains. The contribution of various polymorphisms to the resistance phenotype was assessed by trans-complementation of the wild type or mutant alleles, by testing for differences in mRNA abundance, and/or by examining the phenotype of transposon insertion mutants. Among tigecycline-resistant clinical isolates, five genes contained non-synonymous mutations, including two genes known to be related to enterococcal tigecycline resistance (tetM and rpsJ). Finally, within the in vitro-selected resistant variants, mutation in the gene for a MarR-family response regulator was associated with tigecycline resistance. This study shows that E. faecalis mutates to attain tigecycline resistance through the complex interplay of multiple mechanisms, along multiple evolutionary trajectories.
Collapse
Affiliation(s)
| | | | - Roberto Barranco Navais
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 135560-970 São Carlos, SP, Brazil
| | - Thaís Panhan Merlo
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 135560-970 São Carlos, SP, Brazil
| | - Daria Van Tyne
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, USA; Department of Microbiology and Immunobiology, Harvard Medical School, 25 Shattuck Street, Boston, USA
| | - Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, USA; Department of Microbiology and Immunobiology, Harvard Medical School, 25 Shattuck Street, Boston, USA
| | | |
Collapse
|
43
|
Hasan KA, Ali SA, Rehman M, Bin-Asif H, Zahid S. The unravelled Enterococcus faecalis zoonotic superbugs: Emerging multiple resistant and virulent lineages isolated from poultry environment. Zoonoses Public Health 2018; 65:921-935. [PMID: 30105884 DOI: 10.1111/zph.12512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the zoonotic potential by virtue of phylogenetic analysis, virulence and resistance gene profiles of Enterococcus faecalis originating from poultry environment. The ERIC, BOX and RAPD PCR analysis showed the clustering of E. faecalis strains (n = 74) into five groups (G1-G5) and fifteen sub-clusters (B1-B15), which share 50%-80% similarities with ATCC E. faecalis and clinical strains of human infection. E. faecalis strains harboured seven enterocins genes including ent1097 (85%), entB (84%), enterolysinA (51%), entSEK4 (51%), entL50 (31%), entA (25.7%) and ent1071 (14.9%). The highest prevalence of gelE-sprE (90%), lip-fl (90%) followed by cylL (62%), hyl (60%), katA (16%) and cylA (5.4%) was observed in poultry isolates. The fsr operon and gelE-sprE was co-associated in 66.2% strains. E. faecalis also harboured biofilm and endocarditis-associated genes, including efaAfs (97%), ebp-pilli (ebpABC and srtC 69.9%-80%), asa1 (71%), agg (55%), ace (54%) and esp-Tim (3%). Despite all found sensitive to vancomycin, 98.6% strains were multi-drug resistant to five to twelve tested antimicrobials. An increased-level of resistance (≥32 μg/ml) was observed to ampicillin (8.1%), meropenem (21.6%), chloramphenicol (73.4%), erythromycin (90.5%), tetracycline (100%) and high-level resistance to kanamycin (79.7%) and gentamicin (52.7%). The multi-drug resistant E. faecalis (MDRe.f) were carried pbp4 (90%), tetL (90%), tetM (70%), ermB (81%), cat (52.7%), acc6-aph2 (58.1%), aaph(3)-III (49.9%), gyrA (97%) and parC (98%) genes. Moreover, these MDRe.f were also harboured, hospital-associated marker IS16 (58%) and pheromone responsive genes, that is ccf (88%), cpd (74%), cob (62%) and eep (66%). Thus, regardless of the distinct phylogenetic background of E. faecalis of poultry origin, ATCC E. faecalis and clinical strains of human origin, we found major similarities in virulence, resistance gene profiles and mobile genetic elements (IS16 and pheromone responsive plasmids), supporting the zoonotic/reverse zoonotic risk associated with this organism.
Collapse
Affiliation(s)
- Khwaja A Hasan
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Syed A Ali
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Marium Rehman
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Hassaan Bin-Asif
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sindhu Zahid
- International Center for Chemical and Biological Sciences (ICCBS), H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
44
|
Di Sante L, Morroni G, Brenciani A, Vignaroli C, Antonelli A, D'Andrea MM, Di Cesare A, Giovanetti E, Varaldo PE, Rossolini GM, Biavasco F. pHTβ-promoted mobilization of non-conjugative resistance plasmids from Enterococcus faecium to Enterococcus faecalis. J Antimicrob Chemother 2018. [PMID: 28645197 DOI: 10.1093/jac/dkx197] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objectives To analyse the recombination events associated with conjugal mobilization of two multiresistance plasmids, pRUM17i48 and pLAG (formerly named pDO1-like), from Enterococcus faecium 17i48 to Enterococcus faecalis JH2-2. Methods The plasmids from two E. faecalis transconjugants (JH-4T, tetracycline resistant, and JH-8E, erythromycin resistant) and from the E. faecium donor (also carrying a pHTβ-like conjugative plasmid, named pHTβ17i48) were investigated by several methods, including PCR mapping and sequencing, S1-PFGE followed by Southern blotting and hybridization, and WGS. Results Two locations of repApHTβ were detected in both transconjugants, one on a ∼50 kb plasmid (as in the donor) and the other on plasmids of larger sizes. In JH-4T, WGS disclosed an 88.6 kb plasmid resulting from the recombination of pHTβ17i48 (∼50 kb) and a new plasmid, named pLAG (35.3 kb), carrying the tet(M), tet(L), lsa(E), lnu(B), spw and aadE resistance genes. In JH-8E, a 75 kb plasmid resulting from the recombination of pHTβ17i48 and pRUM17i48 was observed. In both cases, the cointegrates were apparently derived from replicative transposition of an IS1216 present in each of the multiresistance plasmids into pHTβ17i48. The cointegrates could resolve to yield the multiresistance plasmids and a pHTβ17i48 derivative carrying an IS1216 (unlike the pHTβ17i48 of the donor). Conclusions Our results completed the characterization of the multiresistance plasmids carried by the E. faecium 17i48, confirming the role of pHT plasmids in the mobilization of non-conjugative antibiotic resistance elements among enterococci. Results also revealed that mobilization to E. faecalis was associated with the generation of cointegrate plasmids promoted by IS1216-mediated transposition.
Collapse
Affiliation(s)
- Laura Di Sante
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Carla Vignaroli
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Maria D'Andrea
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Di Cesare
- Microbial Ecology Group, CNR - Institute of Ecosystem Study, Verbania, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Francesca Biavasco
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
45
|
Dai F, Xiang X, Duan G, Duan B, Xiao X, Chang H. Pathogenicity characteristics of Enterococcus faecium from diseased black bears. IRANIAN JOURNAL OF VETERINARY RESEARCH 2018; 19:82-86. [PMID: 30046317 PMCID: PMC6056144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/25/2017] [Accepted: 12/23/2017] [Indexed: 06/08/2023]
Abstract
The death of several black bears at the black bear breeding base in Yunnan Pingbian Daweishan is a matter of concern. Multiple black bears exhibited decreased appetite or unusual waste, and some were soporific or suffered from vomiting and anhelation. In order to ascertain the cause of death, 16S rDNA gene sequencing and phylogenetic analysis was performed on bacteria isolated from tissue samples obtained from dead bears. The biochemical characteristics of the isolated bacteria were subsequently analyzed using different biochemical test systems. The bacteria can decompose glucose, but it cannot produce gas. The fermentation study of sucrose, lactose, trehalose, glycerol and mannitol yielded positive results; while it was unable to decompose urea or ODC (ornithine decarboxylase). Basic Local Alignment Search Tool (BLAST) analysis of a ~1500-bp DNA product amplified from the 16S rDNA of the bacterial isolate revealed that Enterococcus faecium from black bears is highly similar to other E. faecium isolates in the National Center for Biotechnology Information (NCBI) database, and the highest sequence similarity (99%) was with the reference strain. In addition, mice infected with the E. faecium isolate succumbed to severe damage to the lungs, liver, spleen, myocardium, and kidney tissues. In summary, the isolated E. faecium from dead black bears induced pathological changes in mice.
Collapse
Affiliation(s)
- F. Dai
- Department of Clinical Veterinary, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- These authors contributed equally to this work and should all be considered as first authors
| | - X. Xiang
- Department of Clinical Veterinary, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- These authors contributed equally to this work and should all be considered as first authors
| | - G. Duan
- Department of Clinical Veterinary, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- These authors contributed equally to this work and should all be considered as first authors
| | - B. Duan
- Animal Disease Prevention and Control Center of Yunnan Province, Kunming, Yunnan, 650201, China
| | - X. Xiao
- Department of Clinical Veterinary, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - H. Chang
- Department of Clinical Veterinary, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| |
Collapse
|
46
|
Zhang X, de Maat V, Guzmán Prieto AM, Prajsnar TK, Bayjanov JR, de Been M, Rogers MRC, Bonten MJM, Mesnage S, Willems RJL, van Schaik W. RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics 2017; 18:893. [PMID: 29162049 PMCID: PMC5699109 DOI: 10.1186/s12864-017-4299-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022] Open
Abstract
Background The Gram-positive bacterium Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. The mechanisms by which E. faecium can survive and grow in blood during an infection have not yet been characterized. Here, we identify genes that contribute to growth of E. faecium in human serum through transcriptome profiling (RNA-seq) and a high-throughput transposon mutant library sequencing approach (Tn-seq). Results We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, using a combination of short- and long read sequencing, revealing a 2,765,010 nt chromosome and 6 plasmids, with sizes ranging between 9.3 kbp and 223.7 kbp. We then compared the transcriptome of E. faecium E745 during exponential growth in rich medium and in human serum by RNA-seq. This analysis revealed that 27.8% of genes on the E. faecium E745 genome were differentially expressed in these two conditions. A gene cluster with a role in purine biosynthesis was among the most upregulated genes in E. faecium E745 upon growth in serum. The E. faecium E745 transposon mutant library was then used to identify genes that were specifically required for growth of E. faecium in serum. Genes involved in de novo nucleotide biosynthesis (including pyrK_2, pyrF, purD, purH) and a gene encoding a phosphotransferase system subunit (manY_2) were thus identified to be contributing to E. faecium growth in human serum. Transposon mutants in pyrK_2, pyrF, purD, purH and manY_2 were isolated from the library and their impaired growth in human serum was confirmed. In addition, the pyrK_2 and manY_2 mutants were tested for their virulence in an intravenous zebrafish infection model and exhibited significantly attenuated virulence compared to E. faecium E745. Conclusions Genes involved in carbohydrate metabolism and nucleotide biosynthesis of E. faecium are essential for growth in human serum and contribute to the pathogenesis of this organism. These genes may serve as targets for the development of novel anti-infectives for the treatment of E. faecium bloodstream infections. Electronic supplementary material The online version of this article (10.1186/s12864-017-4299-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinglin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.,Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Vincent de Maat
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Ana M Guzmán Prieto
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Tomasz K Prajsnar
- Krebs Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Mark de Been
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands. .,Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
47
|
Laverde D, Probst I, Romero-Saavedra F, Kropec A, Wobser D, Keller W, Grohmann E, Huebner J. Targeting Type IV Secretion System Proteins to Combat Multidrug-Resistant Gram-positive Pathogens. J Infect Dis 2017; 215:1836-1845. [PMID: 28863473 DOI: 10.1093/infdis/jix227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
For many gram-positive pathogens, conjugative plasmid transfer is an important means of spreading antibiotic resistance . Therefore, the search for alternative treatments to fight and prevent infections caused by these bacteria has become of major interest. In the present study, we evaluated the protein TraM, from the conjugative plasmid pIP501, as a potential vaccine candidate. Anti-TraM antiserum mediated in vitro opsonophagocytic killing of the strain harboring the pIP501 plasmid and also proved to be cross-reactive against other clinically relevant enterococcal and staphylococcal strains. Specificity of antibodies toward TraM was confirmed by results of an opsonophagocytic inhibition assay and Western blot. In addition, conjugative transfer experiments proved that TraM is essential for the transfer of pIP501. Finally, immunization with either TraM or anti-TraM antiserum reduced significantly the colony counts in mice livers, demonstrating that TraM is a promising vaccine candidate against enterococci and other gram-positive pathogens.
Collapse
Affiliation(s)
- Diana Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich
| | - Ines Probst
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg.,Faculty of Biology, Microbiology, Albert Ludwigs University Freiburg
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich
| | - Andrea Kropec
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg
| | - Walter Keller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Austria
| | - Elisabeth Grohmann
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg.,Microbiology, Faculty of Life Sciences and Technology, Beuth University of Applied Sciences Berlin, Germany
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich.,Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg
| |
Collapse
|
48
|
Characterization of Class IIa Bacteriocin Resistance in Enterococcus faecium. Antimicrob Agents Chemother 2017; 61:AAC.02033-16. [PMID: 28115354 DOI: 10.1128/aac.02033-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Vancomycin-resistant enterococci, particularly resistant Enterococcus faecium, pose an escalating threat in nosocomial environments because of their innate resistance to many antibiotics, including vancomycin, a treatment of last resort. Many class IIa bacteriocins strongly target these enterococci and may offer a potential alternative for the management of this pathogen. However, E. faecium's resistance to these peptides remains relatively uncharacterized. Here, we explored the development of resistance of E. faecium to a cocktail of three class IIa bacteriocins: enterocin A, enterocin P, and hiracin JM79. We started by quantifying the frequency of resistance to these peptides in four clinical isolates of E. faecium We then investigated the levels of resistance of E. faecium 6E6 mutants as well as their fitness in different carbon sources. In order to elucidate the mechanism of resistance of E. faecium to class IIa bacteriocins, we completed whole-genome sequencing of resistant mutants and performed reverse transcription-quantitative PCR (qRT-PCR) of a suspected target mannose phosphotransferase (ManPTS). We then verified this ManPTS's role in bacteriocin susceptibility by showing that expression of the ManPTS in Lactococcus lactis results in susceptibility to the peptide cocktail. Based on the evidence found from these studies, we conclude that, in accord with other studies in E. faecalis and Listeria monocytogenes, resistance to class IIa bacteriocins in E. faecium 6E6 is likely caused by the disruption of a particular ManPTS, which we believe we have identified.
Collapse
|
49
|
Buultjens AH, Lam MMC, Ballard S, Monk IR, Mahony AA, Grabsch EA, Grayson ML, Pang S, Coombs GW, Robinson JO, Seemann T, Johnson PDR, Howden BP, Stinear TP. Evolutionary origins of the emergent ST796 clone of vancomycin resistant Enterococcus faecium. PeerJ 2017; 5:e2916. [PMID: 28149688 PMCID: PMC5267571 DOI: 10.7717/peerj.2916] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/03/2022] Open
Abstract
From early 2012, a novel clone of vancomycin resistant Enterococcus faecium (assigned the multi locus sequence type ST796) was simultaneously isolated from geographically separate hospitals in south eastern Australia and New Zealand. Here we describe the complete genome sequence of Ef_aus0233, a representative ST796 E. faecium isolate. We used PacBio single molecule real-time sequencing to establish a high quality, fully assembled genome comprising a circular chromosome of 2,888,087 bp and five plasmids. Comparison of Ef_aus0233 to other E. faecium genomes shows Ef_aus0233 is a member of the epidemic hospital-adapted lineage and has evolved from an ST555-like ancestral progenitor by the accumulation or modification of five mosaic plasmids and five putative prophage, acquisition of two cryptic genomic islands, accrued chromosomal single nucleotide polymorphisms and a 80 kb region of recombination, also gaining Tn1549 and Tn916, transposons conferring resistance to vancomycin and tetracycline respectively. The genomic dissection of this new clone presented here underscores the propensity of the hospital E. faecium lineage to change, presumably in response to the specific conditions of hospital and healthcare environments.
Collapse
Affiliation(s)
- Andrew H Buultjens
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Victoria , Australia
| | - Margaret M C Lam
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Victoria , Australia
| | - Susan Ballard
- Microbiology Diagnostic Unit, Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Victoria , Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Victoria , Australia
| | - Andrew A Mahony
- Infectious Diseases Department, Austin Health , Heidelberg , Victoria , Australia
| | - Elizabeth A Grabsch
- Infectious Diseases Department, Austin Health , Heidelberg , Victoria , Australia
| | - M Lindsay Grayson
- Infectious Diseases Department, Austin Health , Heidelberg , Victoria , Australia
| | - Stanley Pang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia; Department of Microbiology, Pathwest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia; Department of Microbiology, Pathwest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - J Owen Robinson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia; Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Torsten Seemann
- Victorian Life Sciences Computation Initiative, University of Melbourne , Carlton , Victoria , Australia
| | - Paul D R Johnson
- Infectious Diseases Department, Austin Health, Heidelberg, Victoria, Australia; Department of Medicine, University of Melbourne, Heidelberg, Victoria, Australia
| | - Benjamin P Howden
- Microbiology Diagnostic Unit, Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Victoria , Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
50
|
High-Quality Draft Genome Sequence of the Multidrug-Resistant Clinical Isolate Enterococcus faecium VRE16. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00992-16. [PMID: 27660781 PMCID: PMC5034132 DOI: 10.1128/genomea.00992-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Specific lineages of the commensal bacterium Enterococcus faecium belonging to CC17, especially ST412, have been isolated from patients in several hospitals worldwide and harbor antibiotic resistance genes and virulence factors. Here, we report a high-quality draft genome sequence and highlight features of E. faecium VRE16, a representative of this ST.
Collapse
|