1
|
STOKES CALEB, J. MELVIN ANN. Viral Infections of the Fetus and Newborn. AVERY'S DISEASES OF THE NEWBORN 2024:450-486.e24. [DOI: 10.1016/b978-0-323-82823-9.00034-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Bonthius DJ. Lymphocytic choriomeningitis virus injures the developing brain: effects and mechanisms. Pediatr Res 2024; 95:551-557. [PMID: 38182822 DOI: 10.1038/s41390-023-02985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is a prevalent pathogen, whose natural host and reservoir is the wild mouse. Humans can be infected when they contact the secretions of mice. Most infections of postnatal humans result in mild illness. However, the consequences can be severe when the infection occurs during pregnancy, as the virus crosses the placenta to infect the fetus. LCMV infection of the human fetus can lead to severe neuropathologic effects, including microencephaly, hydrocephalus, focal destructive lesions, and cerebellar hypoplasia. Outcomes among children with congenital LCMV are variable, but most are permanently and severely disabled. The neonatal rat inoculated with LCMV models human prenatal infection. The rat model has demonstrated that effects of LCMV depend on host age at the time of infection. Some effects, including encephalomalacia and neuronal migration disturbances, are immune-mediated and depend on the actions of T-lymphocytes. Other effects, including cerebellar hypoplasia, are virus-mediated and do not depend on T-lymphocytes. Cerebellar neuronal migration disturbances are caused by immune-mediated corruption of Bergmann glia structure. The rat pup inoculated with LCMV is a superb animal model for human congenital infection. All neuropathologic effects observed in human congenital LCMV infection can be recapitulated in the rat model. IMPACT: Lymphocytic choriomeningitis virus (LCMV) is a prevalent human pathogen that can cause serious neurologic birth defects when the infection occurs during pregnancy. The effects of the virus on the developing brain depend strongly on the age of the host at the time of infection. Some of the pathologic effects of LCMV are immune-mediated and are driven by T-lymphocytes, while other pathologic effects are due to the virus itself.
Collapse
Affiliation(s)
- Daniel J Bonthius
- Atrium Health/Wake Forest University College of Medicine, Levine Children's Hospital, 4160 Medical Center Plaza, 1001 Blythe Blvd, Charlotte, NC, 28204, USA.
| |
Collapse
|
3
|
Xie Q, Zhu C, Ai L, Nie D, Wu Y, Wang C, He J, Tan W, Zhang L. Epidemiology and Genomic characteristics of arenavirus in rodents from the southeast coast of P.R. China. BMC Vet Res 2023; 19:253. [PMID: 38031051 PMCID: PMC10685642 DOI: 10.1186/s12917-023-03798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/29/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Wenzhou virus (WENV), a member of the Mammarenavirus genus in the Arenaviridae family, has been detected in wild rodents from eight provinces in China, including Zhejiang, Shandong, Hainan, Xinjiang, Hunan, Guangdong, Yunnan, and Jiangxi provinces, and some countries from Southeast Asia. The IgG-antibodies of WENV have been detected in both healthy populations and patients with unknown fever and respiratory symptoms. However, the potential harmfulness of WENV to humans has been underestimated due to mild symptoms after infection, similar to respiratory diseases. Thus, it is imperative to enhance the surveillance of WENV in wild rodents, particularly Rattus norvegicus, and continuously monitor its prevalence. RESULTS From 2017 to 2021, a total of 390 wild rodents were collected from six provinces in the eastern and southern coastal areas, containing nine species of rats. Samples of each tissue were collected, and PCR amplified for identification. Four R. norvegicus samples were detected to be WENV-positive. No genomic sequence of WENV was detected in Rattus flavipectus, Rattus losea, Suncus murinus, Apodemus agrarius, Mus musculus, Microtus fortis, Micromys minutus, and Niviventer niviventer from Jiangsu, Zhejiang, Fujian, Hainan, Guangdong and Guangxi provinces. Three genomic sequences were identified to be WENV by phylogenetic analysis. The full-length sequences of HAIKOU-40 were amplified in R. norvegicus from Hainan, which showed a close relationship to Wufeng/ WFS, sharing 84.5-89.4% homology at the nucleotide level and 91.6-98.9% homology at the amino acid level. Phylogenetic analysis revealed that HAIKOU-40 formed an Asia-specific cluster with all WENVs and Loie River mammarenavirus (LORV), provisionally named Asian ancestry. This cluster has diverged earlier from the remaining mammarenavirus. The sequences obtained in Xiamen, Fujian province showed more than 90% nucleotide identities with WENV, which may be a strain of WENV. Additionally, the sequence of Wuxi-87 which was a positive sequence detected in Wuxi, Jiangsu province exhibited 83% nucleotide identity with Lassa virus (LASV). Further efforts will be made to isolate and identify this virus strain, verify the relationship between Wuxi-87 and LASV, and confirm whether R. norvegicus is a new host of LASV. CONCLUSIONS In this study, we conducted a systematic examination of the prevalence of WENV among rodents on the southeast coast of China. Additionally, we characterized the genome of a newly discovered WENV strain, that confirmed the role of R. norvegicus in the transmission of WENV. This highlights the importance of investigating the prevalence of WENV in both wild rodents and humans.
Collapse
Affiliation(s)
- Qinghua Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, 210002, China
| | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, 210002, China
| | - Lele Ai
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, 210002, China
| | - Danyue Nie
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, 210002, China
| | - Yifan Wu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, 210002, China
| | - Chongcai Wang
- Hainan International Travel Healthcare Center, Haikou, 570311, China
| | - Ji He
- Xiamen International Travel Healthcare Center, (Xiamen Customs Port Outpatient Department), Xiamen, Fujian, 361012, China.
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, 210002, China.
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
5
|
Telikani Z, Monson EA, Hofer MJ, Helbig KJ. Antiviral response within different cell types of the CNS. Front Immunol 2022; 13:1044721. [PMID: 36458002 PMCID: PMC9706196 DOI: 10.3389/fimmu.2022.1044721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 01/28/2024] Open
Abstract
The central nervous system (CNS) is a constitutive structure of various cell types conserved by anatomical barriers. Many of the major CNS cell-type populations distributed across the different brain regions are targets for several neurotropic viruses. Numerous studies have demonstrated that viral susceptibility within the CNS is not absolute and initiates a cell-type specific antiviral defence response. Neurons, astrocytes, and microglial cells are among the major resident cell populations within the CNS and are all equipped to sense viral infection and induce a relative antiviral response mostly through type I IFN production, however, not all these cell types adopt a similar antiviral strategy. Rising evidence has suggested a diversity regarding IFN production and responsiveness based on the cell type/sub type, regional distinction and cell`s developmental state which could shape distinct antiviral signatures. Among CNS resident cell types, neurons are of the highest priority to defend against the invading virus due to their poor renewable nature. Therefore, infected and uninfected glial cells tend to play more dominant antiviral roles during a viral infection and have been found to be the major CNS IFN producers. Alternatively, neuronal cells do play an active part during antiviral responses but may adopt differential strategies in addition to induction of a typical type I IFN response, to minimize the chance of cellular damage. Heterogeneity observed in neuronal IFN responsiveness may be partially explained by their altered ISGs and/or lower STATS expression levels, however, further in vivo studies are required to fully elucidate the specificity of the acquired antiviral responses by distinct CNS cell types.
Collapse
Affiliation(s)
- Zahra Telikani
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Ebony A. Monson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Markus J. Hofer
- School of Life and Environmental Sciences, Charles Perkins Centre and the Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Karla J. Helbig
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Sharma K, Singhapakdi K, Maertens P. Echoencephalography of encephalopathy due to congenital lymphocytic choriomeningitis virus. J Neuroimaging 2022; 32:412-419. [PMID: 35297514 DOI: 10.1111/jon.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Kamal Sharma
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, USA
| | - Kanya Singhapakdi
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, USA
| | - Paul Maertens
- Department of Neurology, Child Neurology Division, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
7
|
Abstract
Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and has been utilized for decades as a model to understand the host immune response against viral infection. LCMV infection can lead to fatal meningitis in immunocompromised people and can lead to congenital birth defects and spontaneous abortion if acquired during pregnancy. Using a genetic screen, we uncover host factors involved in LCMV entry that were previously unknown and are candidate therapeutic targets to combat LCMV infection. This study expands our understanding of the entry pathway of LCMV, revealing that its glycoprotein switches from utilizing the known receptor α-DG and heparan sulfate at the plasma membrane to binding the lysosomal mucin CD164 at pH levels found in endolysosomal compartments, facilitating membrane fusion. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne zoonotic arenavirus that causes congenital abnormalities and can be fatal for transplant recipients. Using a genome-wide loss-of-function screen, we identify host factors required for LCMV entry into cells. We identify the lysosomal mucin CD164, glycosylation factors, the heparan sulfate biosynthesis machinery, and the known receptor alpha-dystroglycan (α-DG). Biochemical analysis revealed that the LCMV glycoprotein binds CD164 at acidic pH and requires a sialylated glycan at residue N104. We demonstrate that LCMV entry proceeds by the virus switching binding from heparan sulfate or α-DG at the plasma membrane to CD164 prior to membrane fusion, thus identifying additional potential targets for therapeutic intervention.
Collapse
|
8
|
Hobson BD, Sulzer D. Neuronal Presentation of Antigen and Its Possible Role in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S137-S147. [PMID: 35253783 PMCID: PMC9440948 DOI: 10.3233/jpd-223153] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Patients with Parkinson's disease (PD) and other synucleinopathies often exhibit autoimmune features, including CD4+ and some CD8+ T lymphocytes that recognize epitopes derived from alpha-synuclein. While neurons have long been considered to not present antigens, recent data indicate that they can be induced to do so, particularly in response to interferons and other forms of stress. Here, we review literature on neuronal antigen presentation and its potential role in PD. Although direct evidence for CD8+ T cell-mediated neuronal death is lacking in PD, neuronal antigen presentation appears central to the pathology of Rasmussen's encephalitis, a pediatric neurological disorder driven by cytotoxic T cell infiltration and neuroinflammation. Emerging data suggest that T cells enter the brain in PD and other synucleinopathies, where the majority of neuromelanin-containing substantia nigra and locus coeruleus neurons express MHC Class I molecules. In cell culture, CD8+ T cell recognition of antigen:MHC Class I complexes on neuronal membranes leads to cytotoxic responses and neuronal cell death. Recent animal models suggest the possibility of T cell autoreactivity to mitochondrial antigens in PD. It remains unclear if neuronal antigen presentation plays a role in PD or other neurodegenerative disorders, and efforts are underway to better elucidate the potential impact of autoimmune responses on neurodegeneration.
Collapse
Affiliation(s)
- Benjamin D. Hobson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Correspondence to: David Sultzer, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA. E-mail:
| |
Collapse
|
9
|
Cheng JS, Hu JH, Chang MY, Lin MS, Ku HP, Chien RN, Chang ML. Hepatitis C-associated late-onset schizophrenia: a nationwide, population-based cohort study. J Psychiatry Neurosci 2021; 46:E583-E591. [PMID: 34728558 PMCID: PMC8565883 DOI: 10.1503/jpn.200154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Whether infection with the hepatitis C virus (HCV) causes schizophrenia - and whether the associated risk reverses after anti-HCV therapy - is unknown; we aimed to investigate these topics. METHODS We conducted a nationwide, population-based cohort study using the Taiwan National Health Insurance Research Database (TNHIRD). A diagnosis of schizophrenia was based on criteria from the International Classification of Diseases, 9th revision (295.xx). RESULTS From 2003 to 2012, from a total population of 19 298 735, we enrolled 3 propensity-score-matched cohorts (1:2:2): HCV-treated (8931 HCV-infected patients who had received interferon-based therapy for ≥ 6 months); HCV-untreated (17 862); and HCV-uninfected (17 862) from the TNHIRD. Of the total sample (44 655), 82.81% (36 980) were 40 years of age or older. Of the 3 cohorts, the HCV-untreated group had the highest 9-year cumulative incidence of schizophrenia (0.870%, 95% confidence interval [CI] 0.556%-1.311%; p < 0.001); the HCV-treated (0.251%, 95% CI 0.091%-0.599%) and HCV-uninfected (0.118%, 95% CI 0.062%-0.213%) cohorts showed similar cumulative incidence of schizophrenia (p = 0.33). Multivariate Cox analyses showed that HCV positivity (hazard ratio [HR] 3.469, 95% CI 2.168-5.551) was independently associated with the development of schizophrenia. The HCV-untreated cohort also had the highest cumulative incidence of overall mortality (20.799%, 95% CI 18.739%-22.936%; p < 0.001); the HCV-treated (12.518%, 95% CI 8.707%-17.052%) and HCV uninfected (6.707%, 95% CI 5.533%-8.026%) cohorts showed similar cumulative incidence of mortality (p = 0.12). LIMITATIONS We were unable to determine the precise mechanism of the increased risk of schizophrenia in patients with HCV infection. CONCLUSION In a population-based cohort (most aged ≥ 40 years), HCV positivity was a potential risk factor for the development of schizophrenia; the HCV-associated risk of schizophrenia might be reversed by interferon-based antiviral therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Ling Chang
- From the Clinical Informatics and Medical Statistics Research Center, College of Medicine, Chang Gung University, Taiwan (Cheng, Ku); the Department of Emergency Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan (Cheng); the Department of Gastroenterology and Hepatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Yunlin, Taiwan (Hu); the Division of Pediatric Neurologic Medicine, Chang Gung Children's Hospital, Taoyuan, Taiwan (M.-Y. Chang); the Division of Pediatric General Medicine, Chang Gung Children's Hospital, Taoyuan, Taiwan (M.-Y. Chang); the Department of Cardiology, Heart Failure Center, Chang Gung Memorial Hospital, Taiwan (Lin); the Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (Lin); the Liver Research Center, Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan (Chien, M.-L. Chang); and the Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan (Chien, M.-L. Chang)
| |
Collapse
|
10
|
Wang N, Yang L, Li G, Zhang X, Shao J, Ma J, Chen S, Liu Q. Molecular detection and genetic characterization of Wenzhou virus in rodents in Guangzhou, China. BMC Vet Res 2021; 17:301. [PMID: 34496846 PMCID: PMC8424800 DOI: 10.1186/s12917-021-03009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Background Wenzhou virus (WENV), a newly discovered mammarenavirus in rodents, is associated with fever and respiratory symptoms in humans. This study was aimed to detect and characterize the emerging virus in rodents in Guangzhou, China. Results A total of 100 small mammals, including 70 Rattus norvegicus, 22 Suncus murinus, 4 Bandicota indica, 3 Rattus flavipectus, and 1 Rattus losea, were captured in Guangzhou, and their brain tissues were collected and pooled for metagenomic analysis, which generated several contigs targeting the genome of WENV. Two R. norvegicus (2.9%) were further confirmed to be infected with WENV by RT-PCR. The complete genome (RnGZ37-2018 and RnGZ40-2018) shared 85.1–88.9% nt and 83.2–96.3% aa sequence identities to the Cambodian strains that have been shown to be associated with human disease. Phylogenetic analysis showed that all identified WENV could be grouped into four different lineages, and the two Guangzhou strains formed an independent clade. We also analyzed the potential recombinant events occurring in WENV strains. Conclusions Our study showed a high genetic diversity of WENV strains in China, emphasizing the relevance of surveillance of this emerging mammarenavirus in both natural reservoirs and humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03009-2.
Collapse
Affiliation(s)
- Nina Wang
- School of Life Sciences and Engineering, Foshan University, 440605, Foshan, Guangdong Province, China
| | - Lichao Yang
- School of Life Sciences and Engineering, Foshan University, 440605, Foshan, Guangdong Province, China
| | - Guohui Li
- School of Life Sciences and Engineering, Foshan University, 440605, Foshan, Guangdong Province, China
| | - Xu Zhang
- School of Life Sciences and Engineering, Foshan University, 440605, Foshan, Guangdong Province, China
| | - Jianwei Shao
- School of Life Sciences and Engineering, Foshan University, 440605, Foshan, Guangdong Province, China
| | - Jun Ma
- School of Life Sciences and Engineering, Foshan University, 440605, Foshan, Guangdong Province, China
| | - Shouyi Chen
- Guangzhou Center for Disease Control and Prevention, 510440, Guangzhou, Guangdong Province, China.
| | - Quan Liu
- School of Life Sciences and Engineering, Foshan University, 440605, Foshan, Guangdong Province, China.
| |
Collapse
|
11
|
An Unusual Case of Meningitis in an Adolescent. Pediatr Infect Dis J 2021; 40:864-865. [PMID: 33538541 DOI: 10.1097/inf.0000000000003090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Abstract
Congenital hearing loss is the most common birth defect, estimated to affect 2-3 in every 1000 births. Currently there is no cure for hearing loss. Treatment options are limited to hearing aids for mild and moderate cases, and cochlear implants for severe and profound hearing loss. Here we provide a literature overview of the environmental and genetic causes of congenital hearing loss, common animal models and methods used for hearing research, as well as recent advances towards developing therapies to treat congenital deafness. © 2021 The Authors.
Collapse
Affiliation(s)
- Justine M Renauld
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Martin L Basch
- Department of Otolaryngology, Head & Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, Ohio.,Department of Biology, Case Western Reserve University, Cleveland, Ohio.,Department of Otolaryngology, Head & Neck Surgery, University Hospitals, Cleveland, Ohio
| |
Collapse
|
13
|
Wan W, Zhu S, Li S, Shang W, Zhang R, Li H, Liu W, Xiao G, Peng K, Zhang L. High-Throughput Screening of an FDA-Approved Drug Library Identifies Inhibitors against Arenaviruses and SARS-CoV-2. ACS Infect Dis 2021; 7:1409-1422. [PMID: 33183004 PMCID: PMC7671101 DOI: 10.1021/acsinfecdis.0c00486] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/07/2023]
Abstract
Arenaviruses are a large family of enveloped negative-strand RNA viruses that include several causative agents of severe hemorrhagic fevers. Currently, there are no FDA-licensed drugs to treat arenavirus infection except for the off-labeled use of ribavirin. Here, we performed antiviral drug screening against the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) using an FDA-approved drug library. Five drug candidates were identified, including mycophenolic acid, benidipine hydrochloride, clofazimine, dabrafenib, and apatinib, for having strong anti-LCMV effects. Further analysis indicated that benidipine hydrochloride inhibited LCMV membrane fusion, and an adaptive mutation on the LCMV glycoprotein D414 site was found to antagonize the anti-LCMV activity of benidipine hydrochloride. Mycophenolic acid inhibited LCMV replication by depleting GTP production. We also found mycophenolic acid, clofazimine, dabrafenib, and apatinib can inhibit the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Owing to their FDA-approved status, these drug candidates can potentially be used rapidly in the clinical treatment of arenavirus and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Weiwei Wan
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Shenglin Zhu
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Shufen Li
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Weijuan Shang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Ruxue Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
| | - Hao Li
- Beijing Institute of
Microbiology and Epidemiology, State Key
Laboratory of Pathogen and Biosecurity, Beijing 100071, PR
China
| | - Wei Liu
- Beijing Institute of
Microbiology and Epidemiology, State Key
Laboratory of Pathogen and Biosecurity, Beijing 100071, PR
China
| | - Gengfu Xiao
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Ke Peng
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| | - Leike Zhang
- State Key Laboratory of Virology,
Wuhan Institute of Virology, Chinese Academy of
Sciences, Wuhan, Hubei 430071, PR
China
- University of Chinese
Academy of Sciences, Beijing 100049, PR
China
| |
Collapse
|
14
|
Valerdi KM, Hage A, van Tol S, Rajsbaum R, Giraldo MI. The Role of the Host Ubiquitin System in Promoting Replication of Emergent Viruses. Viruses 2021; 13:369. [PMID: 33652634 PMCID: PMC7996891 DOI: 10.3390/v13030369] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/28/2022] Open
Abstract
Ubiquitination of proteins is a post-translational modification process with many different cellular functions, including protein stability, immune signaling, antiviral functions and virus replication. While ubiquitination of viral proteins can be used by the host as a defense mechanism by destroying the incoming pathogen, viruses have adapted to take advantage of this cellular process. The ubiquitin system can be hijacked by viruses to enhance various steps of the replication cycle and increase pathogenesis. Emerging viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), flaviviruses like Zika and dengue, as well as highly pathogenic viruses like Ebola and Nipah, have the ability to directly use the ubiquitination process to enhance their viral-replication cycle, and evade immune responses. Some of these mechanisms are conserved among different virus families, especially early during virus entry, providing an opportunity to develop broad-spectrum antivirals. Here, we discuss the mechanisms used by emergent viruses to exploit the host ubiquitin system, with the main focus on the role of ubiquitin in enhancing virus replication.
Collapse
Affiliation(s)
- Karl M. Valerdi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Sarah van Tol
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maria I. Giraldo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (K.M.V.); (A.H.); (S.v.T.); (R.R.)
| |
Collapse
|
15
|
Krolik M, Csepregi L, Hartmann F, Engetschwiler C, Flatz L. Recombinant lymphocytic choriomeningitis virus-based vaccine vector protects type I interferon receptor deficient mice from viral challenge. Vaccine 2021; 39:1257-1264. [PMID: 33518468 DOI: 10.1016/j.vaccine.2021.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/07/2020] [Accepted: 01/16/2021] [Indexed: 01/20/2023]
Abstract
Reverse genetically engineered recombinant lymphocytic choriomeningitis virus (rLCMV) is a novel vaccine vector platform. Here, we investigate the safety and efficacy of rLCMV in mice lacking a functional type I interferon system with high susceptibility to viral infections. Propagation-deficient rLCMV vector expressing ovalbumin as a model antigen is cleared from type I interferon receptor-deficient mice (Ifnar-/-) within seven days post vaccination. In Ifnar-/-, induction of vaccine antigen specific T cells is delayed compared to wild type animals. However, immunization of Ifnar-/- results in potent memory formation and generates multifunctional cytotoxic CD8+ T cells. Most importantly, Ifnar-/- vaccinated with rLCMV are protected from a challenge with the aggressive LCMV Clone 13. Our data provide evidence for an excellent safety profile with maintained efficacy in immunocompromised animals.
Collapse
Affiliation(s)
- Michal Krolik
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Lucia Csepregi
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Fabienne Hartmann
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Céline Engetschwiler
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Oncology and Hematology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland; Department of Dermatology, Kantonsspital St.Gallen, Rorschacher Strasse 95, 9007 St.Gallen, Switzerland.
| |
Collapse
|
16
|
Abstract
Congenital infections are infections transmitted from mother to child during pregnancy (transplacentally) or delivery (peripartum). They have the potential to adversely affect fetal development and long-term neurodevelopmental outcome through inflammatory, destructive, developmental, or teratogenic lesions of the brain. Because the fetal/neonatal brain has a limited capacity to respond to injury, early inflammatory changes may be difficult to visualize and only manifest as neurocognitive disability later in life. Teratogenic effects, which may include aberrations of neuronal proliferation and migration, are more easily visible on imaging, but may be equally difficult to use to predict long-term neurocognitive outcomes. This chapter reviews the general pathophysiology of congenital infection and describes the epidemiology, the antenatal and postnatal diagnosis, and the treatment of congenital infections as well as the long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Isabelle Boucoiran
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Departments of Obstetrics and Gynecology and Social and Preventive Medicine, University of Montreal, Montreal, QC, Canada.
| | - Fatima Kakkar
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Christian Renaud
- Mother and Child Infection Center, Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, Canada; Department of Microbiology and Immunology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
17
|
Loftis JM, Taylor J, Hudson R, Firsick EJ. Neuroinvasion and cognitive impairment in comorbid alcohol dependence and chronic viral infection: An initial investigation. J Neuroimmunol 2019; 335:577006. [PMID: 31325774 DOI: 10.1016/j.jneuroim.2019.577006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/03/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
Viruses that invade the central nervous system (CNS) can cause neuropsychiatric impairments. Similarly, chronic alcohol exposure can induce inflammatory responses that alter brain function. However, the effects of a chronic viral infection and comorbid alcohol use on neuroinflammation and behavior are not well-defined. We investigated the role of heavy alcohol intake in regulating inflammatory responses and behavioral signs of cognitive impairments in mice infected with lymphocytic choriomeningitis virus (LCMV) clone 13. LCMV-infected mice exposed to alcohol had increased peripheral inflammation and impaired cognitive function (as indicated by performance on the novel object recognition test). Initial findings suggest that brain region-specific dysregulation of microglial response to viral infection may contribute to cognitive impairments in the context of heavy alcohol use.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Abuse Research Center, Veterans Affairs Portland Health Care System, Oregon Health & Science University, Portland, OR, USA.
| | - Jonathan Taylor
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Rebekah Hudson
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Evan J Firsick
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
18
|
Plume JM, Todd D, Bonthius DJ. Viral Strain Determines Disease Symptoms, Pathology, and Immune Response in Neonatal Rats with Lymphocytic Choriomeningitis Virus Infection. Viruses 2019; 11:E552. [PMID: 31207945 PMCID: PMC6631398 DOI: 10.3390/v11060552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
When infection with lymphocytic choriomeningitis (LCMV) occurs during pregnancy, the virus can infect the fetus and injure the fetal brain. However, type, location, and severity of neuropathology differ among cases. One possible explanation for this diversity is that fetuses are infected with different viral strains. Using a rat model of congenital LCMV infection, we investigated how differences in LCMV strain (E350, WE2.2, and Clone 13) affect outcome. Rat pups received intracranial inoculations on postnatal day 4. E350 initially targeted glial cells, while WE2.2 and Clone 13 targeted neurons. The E350 strain induced focal destructive lesions, while the other strains induced global microencephaly. E350 attracted large numbers of CD8+ lymphocytes early in the disease course, while Clone 13 attracted CD4+ lymphocytes, and the infiltration occurred late. The E350 and WE2.2 strains induced large increases in expression of pro-inflammatory cytokines, while Clone 13 did not. The animals infected with E350 and WE2.2 became ataxic and performed poorly on the negative geotaxis assay, while the Clone 13 animals had profound growth failure. Thus, in the developing brain, different LCMV strains have different patterns of infection, neuropathology, immune responses and disease symptoms. In humans, different outcomes from congenital LCMV may reflect infection with different strains.
Collapse
Affiliation(s)
- Jeffrey M Plume
- Neuroscience Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Dylan Todd
- Neuroscience Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Daniel J Bonthius
- Neuroscience Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Childs JE, Klein SL, Glass GE. A Case Study of Two Rodent-Borne Viruses: Not Always the Same Old Suspects. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Chandwani MN, Creisher PS, O'Donnell LA. Understanding the Role of Antiviral Cytokines and Chemokines on Neural Stem/Progenitor Cell Activity and Survival. Viral Immunol 2018; 32:15-24. [PMID: 30307795 DOI: 10.1089/vim.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling. However, it has been challenging to dissect the contribution of the virus and specific inflammatory mediators during an infection. In addition to initiating an antiviral program in infected NSPCs, cytokines/chemokines can induce multiple changes in NSPC behavior that can perturb NSPC numbers, differentiation into other neural cells, and migration to sites of injury, and ultimately brain development and repair. The focus of this review was to dissect the effects of common antiviral cytokines and chemokines on NSPC activity, and to consider the subsequent pathological consequences for the host from changes in NSPC function.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Patrick S Creisher
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Lauren A O'Donnell
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Racicot K, VanOeveren S, Alberts A. Viral Hijacking of Formins in Neurodevelopmental Pathologies. Trends Mol Med 2017; 23:778-785. [DOI: 10.1016/j.molmed.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/19/2023]
|
22
|
Artois J, Blasdell K, Duong V, Buchy P, Hul V, Morand S, Claude J. Effects of mammarenavirus infection (Wēnzhōu virus) on the morphology of Rattus exulans. INFECTION GENETICS AND EVOLUTION 2017; 63:404-409. [PMID: 28554857 DOI: 10.1016/j.meegid.2017.05.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/25/2017] [Indexed: 01/10/2023]
Abstract
The circulation of mammarenaviruses in rodent populations of the Mekong region has recently been established, with a genetic variant of Wēnzhōu virus, Cardamones virus, detected in two Rattus species. This study tests the potential teratogenic effects of Wēnzhōu infection on the development of a Murid rodent, Rattus exulans. Using direct virus detection, morphological records and comparative analyses, a link was demonstrated between host infection status and host morphologies (the spleen irrespective of weight, the skull shape and the cranial cavity volume) at the level of the individual (females only). This study demonstrates that mammarenavirus infections can impact natural host physiology and/or affect developmental processes. The presence of an infecting micro-parasite during the development of the rat may lead to a physiological trade-off between immunity and brain size. Alternatively, replication of virus in specialized organs can result in selective morphologic abnormalities and lesions.
Collapse
Affiliation(s)
- Jean Artois
- Spatial Epidemiology Lab. (SpELL), Université Libre de Bruxelles, Brussels, Belgium.
| | - Kim Blasdell
- Health & Biosecurity, CSIRO, Geelong, VIC, Australia
| | - Veasna Duong
- Institut Pasteur in Cambodia, 5 Monivong Boulevard, PO Box 983, Phnom Penh, Cambodia
| | - Philippe Buchy
- GlaxoSmithKline Vaccines, One R&D, 150 beach road, 189720, Singapore
| | - Vibol Hul
- Institut Pasteur in Cambodia, 5 Monivong Boulevard, PO Box 983, Phnom Penh, Cambodia
| | - Serge Morand
- ISE-M UMR CNRS/UM/EPHE/IRD, 2, Place E. Bataillon, Université de Montpellier, France
| | - Julien Claude
- ISE-M UMR CNRS/UM/EPHE/IRD, 2, Place E. Bataillon, Université de Montpellier, France
| |
Collapse
|
23
|
Abstract
RATIONALE It is widely believed that structural abnormalities of the brain contribute to the pathophysiology of schizophrenia. The parietal lobe is a central hub of multisensory integration, and abnormities in this region might account for the clinical features of schizophrenia. However, few cases of parietal encephalomalacia associated with schizophrenia have been described. PATIENT CONCERNS AND DIAGNOSES In this paper, we present a case of a 25-year-old schizophrenia patient with abnormal parietal encephalomalacia. The patient had poor nutrition and frequently had upper respiratory infections during childhood and adolescence. She showed severe schizophrenic symptoms such as visual hallucinations for 2 years. After examining all her possible medical conditions, we found that the patient had a lesion consistent with the diagnosis of encephalomalacia in her right parietal lobe and slight brain atrophy. INTERVENTIONS The patient was prescribed olanzapine (10 mg per day). OUTCOMES Her symptoms significantly improved after antipsychotic treatment and were still well controlled 1 year later. LESSONS This case suggested that parietal encephalomalacia, which might be caused by inflammatory and infectious conditions in early life and be aggravated by undernutrition, might be implicated in the etiology of schizophrenia.
Collapse
Affiliation(s)
- Fen Pan
- Department of Mental Health, The First Affiliated Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Mental Disorder's Management, Zhejiang Province
| | - Jun-Yuan Wang
- Department of Mental Health, The First Affiliated Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Mental Disorder's Management, Zhejiang Province
- The School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Xu
- Department of Mental Health, The First Affiliated Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Mental Disorder's Management, Zhejiang Province
| | - Man-Li Huang
- Department of Mental Health, The First Affiliated Hospital, School of Medicine, Zhejiang University
- Key Laboratory of Mental Disorder's Management, Zhejiang Province
| |
Collapse
|
24
|
Intracerebral Inoculation of Mouse-Passaged Saffold Virus Type 3 Affects Cerebellar Development in Neonatal Mice. J Virol 2016; 90:10007-10021. [PMID: 27581974 DOI: 10.1128/jvi.00864-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/22/2016] [Indexed: 01/04/2023] Open
Abstract
Saffold virus (SAFV), a human cardiovirus, is occasionally detected in infants with neurological disorders, including meningitis and cerebellitis. We recently reported that SAFV type 3 isolates infect cerebellar glial cells, but not large neurons, in mice. However, the impact of this infection remained unclear. Here, we determined the neuropathogenesis of SAFV type 3 in the cerebella of neonatal ddY mice by using SAFV passaged in the cerebella of neonatal BALB/c mice. The virus titer in the cerebellum increased following the inoculation of each of five passaged strains. The fifth passaged strain harbored amino acid substitutions in the VP2 (H160R and Q239R) and VP3 (K62M) capsid proteins. Molecular modeling of the capsid proteins suggested that the VP2-H160R and VP3-K62M mutations alter the structural dynamics of the receptor binding surface via the formation of a novel hydrophobic interaction between the VP2 puff B and VP3 knob regions. Compared with the original strain, the passaged strain showed altered growth characteristics in human-derived astroglial cell lines and greater replication in the brains of neonatal mice. In addition, the passaged strain was more neurovirulent than the original strain, while both strains infected astroglial and neural progenitor cells in the mouse brain. Intracerebral inoculation of either the original or the passaged strain affected brain Purkinje cell dendrites, and a high titer of the passaged strain induced cerebellar hypoplasia in neonatal mice. Thus, infection by mouse-passaged SAFV affected cerebellar development in neonatal mice. This animal model contributes to the understanding of the neuropathogenicity of SAFV infections in infants. IMPORTANCE Saffold virus (SAFV) is a candidate neuropathogenic agent in infants and children, but the neuropathogenicity of the virus has not been fully elucidated. Recently, we evaluated the pathogenicity of two clinical SAFV isolates in mice. Similar to other neurotropic picornaviruses, these isolates showed mild infectivity of glial and neural progenitor cells, but not of large neurons, in the cerebellum. However, the outcome of this viral infection in the cerebellum has not been clarified. Here, we examined the tropism of SAFV in the cerebellum. We obtained an in vivo-passaged strain from the cerebella of neonatal mice and examined its genome and its neurovirulence in the neonatal mouse brain. The passaged virus showed high infectivity and neurovirulence in the brain, especially the cerebellum, and affected cerebellar development. This unique neonatal mouse model will be helpful for elucidating the neuropathogenesis of SAFV infections occurring early in life.
Collapse
|
25
|
Klein H, Rabe GK, Karacay B, Bonthius DJ. T-Cells Underlie Some but Not All of the Cerebellar Pathology in a Neonatal Rat Model of Congenital Lymphocytic Choriomeningitis Virus Infection. J Neuropathol Exp Neurol 2016; 75:1031-1047. [PMID: 27667772 DOI: 10.1093/jnen/nlw079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) infection during pregnancy injures the human fetal brain. Neonatal rats inoculated with LCMV are an excellent model of congenital LCMV infection because they develop cerebellar injuries similar to those in humans. To evaluate the role of T-lymphocytes in LCMV-induced cerebellar pathology, congenitally athymic rats, deficient in T-lymphocytes were compared with euthymic rats. Peak viral titers and cellular targets of infection were similar, but viral clearance from astrocytes was impaired in the athymic rats. Cytokines and chemokines rose to higher levels and for a greater duration in the euthymic rats than in their athymic counterparts. The euthymic rats developed an intense lymphocytic infiltration, accompanied by destructive lesions of the cerebellum and a neuronal migration defect because of T-cell-mediated alteration of Bergmann glia. These pathologic changes were absent in the athymic rats but were restored by adoptive transfer of lymphocytes. Athymic rats were not free of pathologic effects, however, as the virus induced cerebellar hypoplasia. Thus, T-lymphocytes play key roles in LCMV clearance, cytokine/chemokine responses, and pathogenesis of destructive lesions and neuronal migration disturbances but not all pathology is T-lymphocyte-dependent. Cerebellar hypoplasia from LCMV occurs even in the absence of T-lymphocytes and is likely due to the viral infection itself.
Collapse
Affiliation(s)
- Hannah Klein
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Glenda K Rabe
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Bahri Karacay
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| | - Daniel J Bonthius
- From the Department of Neurology (HK, DJB); Department of Pediatrics (GKR, BK); and Neuroscience Graduate Program, University of Iowa College of Medicine, Iowa City, Iowa (HK, DJB)
| |
Collapse
|
26
|
Panchaud A, Stojanov M, Ammerdorffer A, Vouga M, Baud D. Emerging Role of Zika Virus in Adverse Fetal and Neonatal Outcomes. Clin Microbiol Rev 2016; 29:659-94. [PMID: 27281741 PMCID: PMC4978612 DOI: 10.1128/cmr.00014-16] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The rapid spread of the Zika virus (ZIKV) in the Americas and its potential association with thousands of suspected cases of microcephaly in Brazil and higher rates of Guillain-Barré syndrome meet the conditions for a Public Health Emergency of International Concern, as stated by the World Health Organization in February 2016. Two months later, the Centers for Disease Control and Prevention (CDC) announced that the current available evidence supports the existence of a causal relationship between prenatal Zika virus infection and microcephaly and other serious brain anomalies. Microcephaly can be caused by several factors, and its clinical course and prognosis are difficult to predict. Other pathogens with proven teratogenicity have been identified long before the current ZIKV epidemic. Despite the growing number of cases with maternal signs of infection and/or presence of ZIKV in tissues of affected newborns or fetuses, it is currently difficult to assess the magnitude of increase of microcephaly prevalence in Brazil, as well as the role of other factors in the development of congenital neurological conditions. Meanwhile, health agencies and medical organizations have issued cautious guidelines advising health care practitioners and expectant couples traveling to, returning from, or living in affected areas. Analogous to dengue virus (DENV) epidemics, ZIKV has the potential to become endemic in all countries infested by Aedes mosquitoes, while new mutations could impact viral replication in humans, leading to increased virulence and consequently heightened chances of viral transmission to additional naive mosquito vectors. Studies are urgently needed to answer the questions surrounding ZIKV and its role in congenital neurological conditions.
Collapse
Affiliation(s)
- Alice Panchaud
- School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA Swiss Teratogen Information Service and Division of Clinical Pharmacology, University of Lausanne and University Hospital, Lausanne, Switzerland
| | - Miloš Stojanov
- Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne and University Hospital, Lausanne, Switzerland Materno-fetal and Obstetrics Research Unit, Department Femme-Mère-Enfant, University of Lausanne and University Hospital, Lausanne, Switzerland
| | - Anne Ammerdorffer
- Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne and University Hospital, Lausanne, Switzerland Materno-fetal and Obstetrics Research Unit, Department Femme-Mère-Enfant, University of Lausanne and University Hospital, Lausanne, Switzerland
| | - Manon Vouga
- Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne and University Hospital, Lausanne, Switzerland Materno-fetal and Obstetrics Research Unit, Department Femme-Mère-Enfant, University of Lausanne and University Hospital, Lausanne, Switzerland
| | - David Baud
- Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne and University Hospital, Lausanne, Switzerland Materno-fetal and Obstetrics Research Unit, Department Femme-Mère-Enfant, University of Lausanne and University Hospital, Lausanne, Switzerland
| |
Collapse
|
27
|
Abstract
Vaccination with a recombinant LCMV based vector expressing tumor-associated or viral antigens is a safe and versatile method to induce an immune response against tumors or viral infections. Here, we describe the generation of recombinant LCMV vectors in which the gene encoding the viral LCMV-GP was substituted with a gene of interest (vaccine antigen). This renders the vaccine vector propagation-incompetent while it preserves the property of eliciting a strong cytotoxic T cell response.
Collapse
Affiliation(s)
- Sandra Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, Rorschacher Str. 95, St. Gallen, 9007, Switzerland
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, Rorschacher Str. 95, St. Gallen, 9007, Switzerland.
| |
Collapse
|
28
|
Ibi D, Yamada K. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation. Int J Mol Sci 2015; 16:28218-29. [PMID: 26633355 PMCID: PMC4691039 DOI: 10.3390/ijms161226092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 01/02/2023] Open
Abstract
Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Meijo University, 150 Yagotoyama, Tenpaku-ku, Nagoya 468-8503, Japan.
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan.
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan.
| |
Collapse
|
29
|
Levy SE, Hyman SL. Complementary and alternative medicine treatments for children with autism spectrum disorders. Child Adolesc Psychiatr Clin N Am 2015; 24:117-43. [PMID: 25455579 DOI: 10.1016/j.chc.2014.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are many treatments in current use for core and associated symptoms of autism spectrum disorders (ASD). This review discusses the complementary and alternative medical (CAM) treatments commonly added to conventional interventions for children with ASD, including natural products, mind and body practices, and other biomedical treatments. The article focuses on factors associated with use of CAM, the empirical evidence for the most frequently used treatments, and how clinicians work with families who choose CAM treatments. Some treatments have been ineffective, some have unacceptable potential side effects, and others require more study in depth.
Collapse
Affiliation(s)
- Susan E Levy
- Division of Developmental & Behavioral Pediatrics, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, 3550 Market Street, 3rd Floor, Philadelphia, PA 19104, USA.
| | - Susan L Hyman
- Neurodevelopmental and Behavioral Pediatrics, Golisano Children's Hospital, School of Medicine and Dentistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
30
|
Congenitally acquired persistent lymphocytic choriomeningitis viral infection reduces neuronal progenitor pools in the adult hippocampus and subventricular zone. PLoS One 2014; 9:e96442. [PMID: 24802239 PMCID: PMC4011784 DOI: 10.1371/journal.pone.0096442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 04/08/2014] [Indexed: 02/06/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) can be transmitted through congenital infection, leading to persistent infection of numerous organ systems including the central nervous system (CNS). Adult mice persistently infected with LCMV (LCMV-cgPi mice) exhibit learning deficits, such as poor performance in spatial discrimination tests. Given that deficits in spatial learning have been linked to defects in adult neurogenesis, we investigated the impact of congenital LCMV infection on generation of neuroblasts from neural progenitor cells within neurogenic zones of adult mice. In LCMV-cgPi mice, QPCR and immunohistochemistry detected presence of LCMV glycoprotein-coding RNA and nucleoprotein in the hippocampal dentate gyrus and subventricular zone (SVZ), sites of neurogenesis that harbor populations of neuroblasts. Numbers of neuroblasts were reduced in LCMV-cgPi mice, as determined by IHC quantification, and analysis of BrdU incorporation by flow cytometry revealed lower numbers of BrdU-labeled neuroblasts. Additionally, TUNEL assays performed in situ showed increased numbers of apoptotic cells in the two neurogenic regions. Next, neurosphere cultures were infected in vitro with LCMV and differentiated to create a population of cells that consisted of both transit amplifying cells and neuroblasts. Immunocytochemical and TUNEL assays revealed increased numbers of TUNEL-positive cells that express nestin, suggesting that the drop in numbers of neuroblasts was due to a combination of impaired proliferation and apoptosis of progenitor cells. LCMV-cgPi mice exhibited transcriptional up-regulation several cytokines and chemokines, including gamma-interferon inducible chemokines CXCL9 and CXCL10. Chronic up-regulation of these chemokines can facilitate a pro-inflammatory niche that may contribute to defects in neurogenesis.
Collapse
|
31
|
Puccini JM, Ruller CM, Robinson SM, Knopp KA, Buchmeier MJ, Doran KS, Feuer R. Distinct neural stem cell tropism, early immune activation, and choroid plexus pathology following coxsackievirus infection in the neonatal central nervous system. J Transl Med 2014; 94:161-81. [PMID: 24378643 DOI: 10.1038/labinvest.2013.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022] Open
Abstract
Coxsackievirus B3 (CVB3) and lymphocytic choriomeningitis virus (LCMV) are both neurotropic RNA viruses, which can establish a persistent infection and cause meningitis and encephalitis in the neonatal host. Utilizing our neonatal mouse model of infection, we evaluated the consequences of early viral infection upon the host central nervous system (CNS) by comparing CVB3 and LCMV infection. Both viruses expressed high levels of viral protein in the choroid plexus and subventricular zone (SVZ), a region of neurogenesis. LCMV infected a greater number of cells in the SVZ and targeted both nestin(+) (neural progenitor cell marker) and olig2(+) (glial progenitor marker) cells at a relatively equal proportion. In contrast, CVB3 preferentially infected nestin(+) cells within the SVZ. Microarray analysis revealed differential kinetics and unique host gene expression changes for each infection. MHC class I gene expression, several developmental-related Hox genes, and transthyretin (TTR), a protein secreted in the cerebrospinal fluid by the choroid plexus, were specifically downregulated following CVB3 infection. Also, we identified severe pathology in the choroid plexus of CVB3-infected animals at 48 h post infection accompanied by a decrease in the level of TTR and carbonic anhydrase II. These results demonstrate broader neural progenitor and stem cell (NPSC) tropism for LCMV in the neonatal CNS, whereas CVB3 targeted a more specific subset of NPSCs, stimulated a distinct early immune response, and induced significant acute damage in the choroid plexus.
Collapse
Affiliation(s)
- Jenna M Puccini
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Chelsea M Ruller
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Scott M Robinson
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| | - Kristeene A Knopp
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, UC Irvine, Irvine, CA, USA
| | - Kelly S Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA, USA
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
32
|
Pasquato A, Burri DJ, Kunz S. Current drug discovery strategies against arenavirus infections. Expert Rev Anti Infect Ther 2013; 10:1297-309. [PMID: 23241187 DOI: 10.1586/eri.12.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arenaviruses are a large group of emerging viruses including several causative agents of severe hemorrhagic fevers with high mortality in man. Considering the number of people affected and the currently limited therapeutic options, novel efficacious therapeutics against arenaviruses are urgently needed. Over the past decade, significant advances in knowledge about the basic virology of arenaviruses have been accompanied by the development of novel therapeutics targeting different steps of the arenaviral life cycle. High-throughput, small-molecule screens identified potent and broadly active inhibitors of arenavirus entry that were instrumental for the dissection of unique features of arenavirus fusion. Novel inhibitors of arenavirus replication have been successfully tested in animal models and hold promise for application in humans. Late in the arenavirus life cycle, the proteolytic processing of the arenavirus envelope glycoprotein precursor and cellular factors critically involved virion assembly and budding provide further promising 'druggable' targets for novel therapeutics to combat human arenavirus infection.
Collapse
Affiliation(s)
- Antonella Pasquato
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
33
|
Etiopathogenesis of autism spectrum disorders: fitting the pieces of the puzzle together. Med Hypotheses 2013; 81:26-35. [PMID: 23622947 DOI: 10.1016/j.mehy.2013.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorders (ASD) are disorders of the central nervous system characterized by impairments in communication and social reciprocity. Despite thousands of studies on this topic, the etiopathogenesis of these disorders remains unclear, apart from a general belief that they derive from an interaction between several genes and the environment. Given the mystery surrounding the etiopathogenesis of ASD it is impossible to plan effective preventive and treatment measures. This is of particular concern due to the progressive increase in the prevalence of ASD, which has reached a figure as high as 1:88 children in the USA. Here we present data corroborating a novel unifying hypothesis of the etiopathogenesis of ASD. We suggest that ASD are disorders of the immune system that occur in a very early phase of embryonic development. In a background of genetic predisposition and environmental predisposition (probably vitamin D deficiency), an infection (notably a viral infection) could trigger a deranged immune response which, in turn, results in damage to specific areas of the central nervous system. If proven, this hypothesis would have dramatic consequences for strategies aimed at preventing and treating ASD. To confirm or refute this hypothesis, we need a novel research approach, which unlike former approaches in this field, examine the major factors implicated in ASD (genetic, infections, vitamin D deficiency, immune system deregulation) not separately, but collectively and simultaneously.
Collapse
|
34
|
Pasquato A, Ramos da Palma J, Galan C, Seidah NG, Kunz S. Viral envelope glycoprotein processing by proprotein convertases. Antiviral Res 2013; 99:49-60. [PMID: 23611717 DOI: 10.1016/j.antiviral.2013.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 01/03/2023]
Abstract
The proprotein convertases (PCs) are a family of nine mammalian enzymes that play key roles in the maintenance of cell homeostasis by activating or inactivating proteins via limited proteolysis under temporal and spatial control. A wide range of pathogens, including major human pathogenic viruses can hijack cellular PCs for their own purposes. In particular, productive infection with many enveloped viruses critically depends on the processing of their fusion-active viral envelope glycoproteins by cellular PCs. Based on their crucial role in virus-host interaction, PCs can be important determinants for viral pathogenesis and represent promising targets of therapeutic antiviral intervention. In the present review we will cover basic aspects and recent developments of PC-mediated maturation of viral envelope glycoproteins of selected medically important viruses. The molecular mechanisms underlying the recognition of PCs by viral glycoproteins will be described, including recent findings demonstrating differential PC-recognition of viral and cellular substrates. We will further discuss a possible scenario how viruses during co-evolution with their hosts adapted their glycoproteins to modulate the activity of cellular PCs for their own benefit and discuss the consequences for virus-host interaction and pathogenesis. Particular attention will be given to past and current efforts to evaluate cellular PCs as targets for antiviral therapeutic intervention, with emphasis on emerging highly pathogenic viruses for which no efficacious drugs or vaccines are currently available.
Collapse
Affiliation(s)
- Antonella Pasquato
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
Kosmac K, Bantug GR, Pugel EP, Cekinovic D, Jonjic S, Britt WJ. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development. PLoS Pathog 2013; 9:e1003200. [PMID: 23505367 PMCID: PMC3591306 DOI: 10.1371/journal.ppat.1003200] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/08/2013] [Indexed: 01/07/2023] Open
Abstract
Infection of the developing fetus with human cytomegalovirus (HCMV) is a major cause of central nervous system disease in infants and children; however, mechanism(s) of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV) results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC) proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ) in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.
Collapse
Affiliation(s)
- Kate Kosmac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
| | | | | | | | | | | |
Collapse
|
36
|
Kinnunen PM, Palva A, Vaheri A, Vapalahti O. Epidemiology and host spectrum of Borna disease virus infections. J Gen Virol 2012; 94:247-262. [PMID: 23223618 DOI: 10.1099/vir.0.046961-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Borna disease virus (BDV) has gained lot of interest because of its zoonotic potential, ability to introduce cDNA of its RNA transcripts into host genomes, and ability to cause severe neurobehavioural diseases. Classical Borna disease is a progressive meningoencephalomyelitis in horses and sheep, known in central Europe for centuries. According to current knowledge, BDV or a close relative also infects several other species, including humans at least occasionally, in central Europe and elsewhere, but the existence of potential 'human Borna disease' with its suspected neuropsychiatric symptoms is highly controversial. The recent detection of endogenized BDV-like genes in primate and various other vertebrate genomes confirms that at least ancient bornaviruses did infect our ancestors. The epidemiology of BDV is largely unknown, but accumulating evidence indicates vectors and reservoirs among small wild mammals. The aim of this review is to bring together the current knowledge on epidemiology of BDV infections. Specifically, geographical and host distribution are addressed and assessed in the critical light of the detection methods used. We also review some salient clinical aspects.
Collapse
Affiliation(s)
- Paula M Kinnunen
- Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| | - Antti Vaheri
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland
| | - Olli Vapalahti
- HUSLAB, Helsinki University Central Hospital, Helsinki, Finland.,Infection Biology Research Program Unit, Department of Virology, Haartman Institute, Faculty of Medicine, University of Helsinki, Finland.,Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Finland
| |
Collapse
|
37
|
Burri DJ, Pasquato A, da Palma JR, Igonet S, Oldstone MBA, Kunz S. The role of proteolytic processing and the stable signal peptide in expression of the Old World arenavirus envelope glycoprotein ectodomain. Virology 2012; 436:127-33. [PMID: 23218200 DOI: 10.1016/j.virol.2012.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/21/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022]
Abstract
Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimers as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.
Collapse
Affiliation(s)
- Dominique J Burri
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Bonthius DJ. Lymphocytic choriomeningitis virus: an underrecognized cause of neurologic disease in the fetus, child, and adult. Semin Pediatr Neurol 2012; 19:89-95. [PMID: 22889536 PMCID: PMC4256959 DOI: 10.1016/j.spen.2012.02.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocytic choriomeningitis virus (LCMV) is an important cause of neurologic disease in humans. Carried and secreted principally by wild mice, LCMV covers a large geographic range and infects great numbers of people. Humans acquire LCMV disease when they come into contact with the secretions of infected mice. Because it has a strong neurotropism, the clinical signs and symptoms of LCMV infection are mostly neurologic. When the virus is acquired postnatally by children or adults, the clinical manifestations are usually those of aseptic meningitis. Most people who acquire LCMV infection during childhood or adulthood are moderately symptomatic for several weeks, but have a full recovery. A much more severe disease ensues when the infection occurs prenatally. LCMV can infect the fetal brain and retina, where it leads to substantial injury and permanent dysfunction. The possibility of LCMV infection should be considered in all babies with evidence of congenital infection, especially those with prominent neurologic signs, such as microencephaly, periventricular calcifications, and hydrocephalus.
Collapse
Affiliation(s)
- Daniel J Bonthius
- Department of Pediatrics, Division of Child Neurology, University of Iowa College of Medicine, Iowa City 52242, USA.
| |
Collapse
|
39
|
|
40
|
Harvey L, Boksa P. Prenatal and postnatal animal models of immune activation: Relevance to a range of neurodevelopmental disorders. Dev Neurobiol 2012; 72:1335-48. [DOI: 10.1002/dneu.22043] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/11/2022]
|
41
|
Chapman KE, Raol YH, Brooks-Kayal A. Neonatal seizures: controversies and challenges in translating new therapies from the lab to the isolette. Eur J Neurosci 2012; 35:1857-65. [PMID: 22708596 PMCID: PMC3383637 DOI: 10.1111/j.1460-9568.2012.08140.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neonatal seizures have unique properties that have proved challenging for both clinicians and basic science researchers. Clinical therapies aimed at neonatal seizures have proven only partially effective and new therapies are slow to develop. This article will discuss neonatal seizures within the framework of the barriers that exist to the development of new therapies, and the challenges inherent in bringing new therapies from the bench to the bedside. With the European Union and USA creating national collaborative project infrastructure, improved collaborative resources should advance clinical research on urgently needed new therapies for this disorder.
Collapse
Affiliation(s)
- Kevin E Chapman
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado School Of Medicine, Children's Hospital Colorado, 13123 East 16th Ave, B155, Aurora, CO 80045, USA
| | | | | |
Collapse
|
42
|
Pathogenic Old World arenaviruses inhibit TLR2/Mal-dependent proinflammatory cytokines in vitro. J Virol 2012; 86:7216-26. [PMID: 22532679 DOI: 10.1128/jvi.06508-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV), the prototype arenavirus, and Lassa virus (LASV), the causative agent of Lassa fever (LF), have extensive strain diversity and significant variations in pathogenicity for humans and experimental animals. The WE strain of LCMV (LCMV-WE), but not the Armstrong (Arm) strain, induces a fatal LF-like disease in rhesus macaques. We also demonstrated that LASV infection of human macrophages and endothelial cells resulted in reduced levels of proinflammatory cytokines. Here we have shown that cells infected with LASV or with LCMV-WE suppressed Toll-like receptor 2 (TLR2)-dependent proinflammatory cytokine responses. The persisting isolate LCMV clone 13 (CL13) also failed to stimulate interleukin-6 (IL-6) in macrophages. In contrast, nonpathogenic Mopeia virus, which is a genetic relative of LASV and LCMV-Arm induced robust responses that were TLR2/Mal dependent, required virus replication, and were enhanced by CD14. Superinfection experiments demonstrated that the WE strain of LCMV inhibited the Arm-mediated IL-8 response during the early stage of infection. In cells transfected with the NF-κB-luciferase reporter, infection with LCMV-Arm resulted in the induction of NF-κB, but cells infected with LCMV-WE and CL13 did not. These results suggest that pathogenic arenaviruses suppress NF-κB-mediated proinflammatory cytokine responses in infected cells.
Collapse
|
43
|
Viral infection and neural stem/progenitor cell's fate: implications in brain development and neurological disorders. Neurochem Int 2011; 59:357-66. [PMID: 21354238 DOI: 10.1016/j.neuint.2011.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 01/08/2023]
Abstract
Viral infections in the prenatal (during pregnancy) and perinatal period have been a common cause of brain malformation. Besides the immediate neurological dysfunctions, virus infections may critically affect CNS development culminating in long-term cognitive deficits. Most of these neurotropic viruses are most damaging at a critical stage of the host, when the brain is in a dynamic stage of development. The neuropathology can be attributed to the massive neuronal loss induced by the virus as well as lack of CNS repair owing to a deficit in the neural stem/progenitor cell (NSPC) pool or aberrant formation of new neurons from NSPCs. Being one of the mitotically active populations in the post natal brain, the NSPCs have emerged as the potential targets of neurotropic viruses. The NSPCs are self-renewing and multipotent cells residing in the neurogenic niches of the brain, and, therefore, hampering the developmental fate of these cells may adversely affect the overall neurogenesis pattern. A number of neurotropic viruses utilize NSPCs as their cellular reservoirs and often establish latent and persistent infection in them. Both HIV and Herpes virus infect NSPCs over long periods of time and reactivation of the virus may occur later in life. The virus infected NSPCs either undergoes cell cycle arrest or impaired neuronal or glial differentiation, all of which leads to impaired neurogenesis. The disturbances in neurogenesis and CNS development following neurotropic virus infections have direct implications in the viral pathogenesis and long-term neurobehavioral outcome in infected individuals.
Collapse
|
44
|
Induction of Toll-like receptor 3-mediated immunity during gestation inhibits cortical neurogenesis and causes behavioral disturbances. mBio 2010; 1. [PMID: 20941330 PMCID: PMC2953007 DOI: 10.1128/mbio.00176-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/01/2010] [Indexed: 01/08/2023] Open
Abstract
Maternal infection during pregnancy with a wide range of RNA and DNA viruses is associated with increased risk for schizophrenia and autism in their offspring. A common feature in these exposures is that virus replication induces innate immunity through interaction with Toll-like receptors (TLRs). We employed a mouse model wherein pregnant mice were exposed to polyinosinic-polycytidylic acid [poly(I ⋅ C)], a synthetic, double-stranded RNA molecular mimic of replicating virus. Poly(I ⋅ C) inhibited embryonic neuronal stem cell replication and population of the superficial layers of the neocortex by neurons. Poly(I ⋅ C) also led to impaired neonatal locomotor development and abnormal sensorimotor gating responses in adult offspring. Using Toll-like receptor 3 (TLR3)-deficient mice, we established that these effects were dependent on TLR3. Inhibition of stem cell proliferation was also abrogated by pretreatment with the nonsteroidal anti-inflammatory drug (NSAID) carprofen, a cyclooxygenase (COX) inhibitor. Our findings provide insights into mechanisms by which maternal infection can induce subtle neuropathology and behavioral dysfunction, and they may suggest strategies for reducing the risk of neuropsychiatric disorders subsequent to prenatal exposures to pathogens and other triggers of innate immunity. Maternal infection during gestation increases the risk of neuropsychiatric disorders in their offspring. Furthermore, work in animal models indicates that pre- or neonatal infections with a wide range of viruses results in similar neurodevelopmental outcomes. These observations are consistent with a mechanism whereby damage is mediated through common pathways. Exposure of pregnant mice to polyinosinic-polycytidylic acid [poly(I ⋅ C)], a synthetic, double-stranded RNA (dsRNA) molecular mimic of replicating virus, inhibited embryonic neuronal stem cell replication and led to behavioral abnormalities in their offspring. These effects were mediated through TLR3 and abrogated by pretreatment with the nonsteroidal anti-inflammatory drug (NSAID) carprofen. Our findings provide insights into mechanisms by which maternal infection can induce subtle neuropathology and may suggest strategies for reducing the risk of neuropsychiatric diseases following exposures to infectious agents and other triggers of innate immunity during gestation.
Collapse
|
45
|
Meyer U, Feldon J. Epidemiology-driven neurodevelopmental animal models of schizophrenia. Prog Neurobiol 2010; 90:285-326. [DOI: 10.1016/j.pneurobio.2009.10.018] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/17/2022]
|
46
|
|
47
|
|
48
|
Immunopathological basis of lymphocytic choriomeningitis virus-induced chorioretinitis and keratitis. J Virol 2008; 83:159-66. [PMID: 18945766 DOI: 10.1128/jvi.01211-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The infection of humans with the rodent-borne lymphocytic choriomeningitis virus (LCMV) can lead to central nervous system disease in adults or severe neurological disease with hydrocephalus and chorioretinitis in children infected congenitally. Although LCMV-induced meningitis and encephalitis have been studied extensively, the immunopathological mechanisms underlying LCMV infection-associated ocular disease remain elusive. We report here that the intraocular administration of the neurotropic LCMV strain Armstrong (Arm) elicited pronounced chorioretinitis and keratitis and that infection with the more viscerotropic strains WE and Docile precipitated less severe immunopathological ocular disease. Time course analyses revealed that LCMV Arm infection of the uvea and neuroretina led to monophasic chorioretinitis which peaked between days 7 and 12 after infection. Analyses of T-cell-deficient mouse strains showed that LCMV-mediated ocular disease was strictly dependent on the presence of virus-specific CD8(+) T cells and that the contribution of CD4(+) T cells was negligible. Whereas the topical application of immunosuppressive agents did not prevent the development of chorioretinitis, passive immunization with hyperimmune sera partially prevented retinal and corneal damage. Likewise, mice displaying preexisting LCMV-specific T-cell responses were protected against LCMV-induced ocular disease. Thus, antibody- and/or T-cell-based vaccination protocols could be employed as preventive strategies against LCMV-mediated chorioretinitis.
Collapse
|