1
|
Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 2022; 102:411-454. [PMID: 34898294 PMCID: PMC8676434 DOI: 10.1152/physrev.00002.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
2
|
RIPK1 Mediates TNF-Induced Intestinal Crypt Apoptosis During Chronic NF-κB Activation. Cell Mol Gastroenterol Hepatol 2019; 9:295-312. [PMID: 31606566 PMCID: PMC6957844 DOI: 10.1016/j.jcmgh.2019.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Tumor necrosis factor (TNF) is a major pathogenic effector and a therapeutic target in inflammatory bowel disease (IBD), yet the basis for TNF-induced intestinal epithelial cell (IEC) death is unknown, because TNF does not kill normal IECs. Here, we investigated how chronic nuclear factor (NF)- κB activation, which occurs in human IBD, promotes TNF-dependent IEC death in mice. METHODS Human IBD specimens were stained for p65 and cleaved caspase-3. C57BL/6 mice with constitutively active IKKβ in IEC (Ikkβ(EE)IEC), Ripk1D138N/D138N knockin mice, and Ripk3-/- mice were injected with TNF or lipopolysaccharide. Enteroids were also isolated from these mice and challenged with TNF with or without RIPK1 and RIPK3 inhibitors or butylated hydroxyanisole. Ripoptosome-mediated caspase-8 activation was assessed by immunoprecipitation. RESULTS NF-κB activation in human IBD correlated with appearance of cleaved caspase-3. Congruently, unlike normal mouse IECs that are TNF-resistant, IECs in Ikkβ(EE)IEC mice and enteroids were susceptible to TNF-dependent apoptosis, which depended on the protein kinase function of RIPK1. Constitutively active IKKβ facilitated ripoptosome formation, a RIPK1 signaling complex that mediates caspase-8 activation by TNF. Butylated hydroxyanisole treatment and RIPK1 inhibitors attenuated TNF-induced and ripoptosome-mediated caspase-8 activation and IEC death in vitro and in vivo. CONCLUSIONS Contrary to common expectations, chronic NF-κB activation induced intestinal crypt apoptosis after TNF stimulation, resulting in severe mucosal erosion. RIPK1 kinase inhibitors selectively inhibited TNF destructive properties while preserving its survival and proliferative properties, which do not require RIPK1 kinase activity. RIPK1 kinase inhibition could be a potential treatment for IBD.
Collapse
|
3
|
Garcia-Carbonell R, Yao SJ, Das S, Guma M. Dysregulation of Intestinal Epithelial Cell RIPK Pathways Promotes Chronic Inflammation in the IBD Gut. Front Immunol 2019; 10:1094. [PMID: 31164887 PMCID: PMC6536010 DOI: 10.3389/fimmu.2019.01094] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are common intestinal bowel diseases (IBD) characterized by intestinal epithelial injury including extensive epithelial cell death, mucosal erosion, ulceration, and crypt abscess formation. Several factors including activated signaling pathways, microbial dysbiosis, and immune deregulation contribute to disease progression. Although most research efforts to date have focused on immune cells, it is becoming increasingly clear that intestinal epithelial cells (IEC) are important players in IBD pathogenesis. Aberrant or exacerbated responses to how IEC sense IBD-associated microbes, respond to TNF stimulation, and regenerate and heal the injured mucosa are critical to the integrity of the intestinal barrier. The role of several genes and pathways in which single nucleotide polymorphisms (SNP) showed strong association with IBD has recently been studied in the context of IEC. In patients with IBD, it has been shown that the expression of specific dysregulated genes in IECs plays an important role in TNF-induced cell death and microbial sensing. Among them, the NF-κB pathway and its target gene TNFAIP3 promote TNF-induced and receptor interacting protein kinase (RIPK1)-dependent intestinal epithelial cell death. On the other hand, RIPK2 functions as a key signaling protein in host defense responses induced by activation of the cytosolic microbial sensors nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1 and NOD2). The RIPK2-mediated signaling pathway leads to the activation of NF-κB and MAP kinases that induce autophagy following infection. This article will review these dysregulated RIPK pathways in IEC and their role in promoting chronic inflammation. It will also highlight future research directions and therapeutic approaches involving RIPKs in IBD.
Collapse
Affiliation(s)
| | - Shih-Jing Yao
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Monica Guma
- Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
4
|
Hicks JA, Trakooljul N, Liu HC. Alterations in cellular and viral microRNA and cellular gene expression in Marek's disease virus-transformed T-cell lines treated with sodium butyrate. Poult Sci 2019; 98:642-652. [PMID: 30184155 DOI: 10.3382/ps/pey412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
A shared feature of herpesviruses is their ability to enter a latent state following an initially lytic infection. Marek's disease virus serotype 1 (MDV-1) is an oncogenic avian herpesvirus. Small RNA profiling studies have suggested that microRNAs (miRNAs) are involved in viral latency. Sodium butyrate treatment is known to induce herpesvirus reactivation. The present study was undertaken to determine transcriptome and miRNome changes induced by sodium butyrate in 2 MDV-transformed cell lines, RP2 and CU115. In the first 24 h post-treatment, microarray analysis of transcriptional changes in cell lines RP2 and CU115 identified 137 and 114 differentially expressed genes, respectively. Small RNA deep-sequencing analysis identified 17 cellular miRNAs that were differentially expressed. The expression of MDV-encoded miRNAs was also altered upon treatment. Many of the genes and miRNAs that are differentially expressed are involved in regulation of the cell cycle, mitosis, DNA metabolism, and lymphocyte differentiation.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Nares Trakooljul
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Chen X, Zhou X, Mao TC, Shi XH, Fan DL, Zhang YM. Effect of microtubule-associated protein-4 on epidermal cell migration under different oxygen concentrations. J Dermatol 2015; 43:674-81. [PMID: 26602869 DOI: 10.1111/1346-8138.13192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/25/2015] [Indexed: 11/30/2022]
Abstract
After skin trauma, regional epidermal cell migration mediates the re-epithelialization of the wound surface, which is an important step for wound healing, yet the underlying molecular regulatory mechanism is unclear. In the current study, HaCaT cells were maintained under different oxygen concentrations (1%, 21%, 40% and 65%). Technologies including immunofluorescence staining, wound scratch, transwell invasion, western blot and low-expression lentiviral vector were utilized to observe the changes in microtubule dynamics and the microtubule-associated protein (MAP)4 expression. MAP4's effect on cell migration under different oxygen concentrations was also studied. The results showed that under hyperoxic (40% and 65%) and hypoxic (1%) conditions, HaCaT cells were able to regulate cell microtubule dynamics by MAP4, thus promoting cell migration. On the other hand, MAP4 silencing through targeted shRNA attenuated HaCaT cell migration under the above oxygen concentrations. These results imply that MAP4 plays an important role in epidermal cell migration under different oxygen concentrations.
Collapse
Affiliation(s)
- Xin Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tong-Chun Mao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiao-Hua Shi
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Dong-Li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi-Ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
6
|
NF-κB activation coordinated by IKKβ and IKKε enables latent infection of Kaposi's sarcoma-associated herpesvirus. J Virol 2013; 88:444-55. [PMID: 24155403 DOI: 10.1128/jvi.01716-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
All herpesviruses share a remarkable propensity to establish latent infection. Human Kaposi's sarcoma-associated herpesvirus (KSHV) effectively enters latency after de novo infection, suggesting that KSHV has evolved with strategies to facilitate latent infection. NF-κB activation is imperative for latent infection of gammaherpesviruses. However, how NF-κB is activated during de novo herpesvirus infection is not fully understood. Here, we report that KSHV infection activates the inhibitor of κB kinase β (IKKβ) and the IKK-related kinase epsilon (IKKε) to enable host NF-κB activation and KSHV latent infection. Specifically, KSHV infection activated IKKβ and IKKε that were crucial for latent infection. Knockdown of IKKβ and IKKε caused aberrant lytic gene expression and impaired KSHV latent infection. Biochemical and genetic experiments identified RelA as a key player downstream of IKKβ and IKKε. Remarkably, IKKβ and IKKε were essential for phosphorylation of S(536) and S(468) of RelA, respectively. Phosphorylation of RelA S(536) was required for phosphorylation of S(468), which activated NF-κB and promoted KSHV latent infection. Expression of the phosphorylation-resistant RelA S(536)A increased KSHV lytic gene expression and impaired latent infection. Our findings uncover a scheme wherein NF-κB activation is coordinated by IKKβ and IKKε, which sequentially phosphorylate RelA in a site-specific manner to enable latent infection after KSHV de novo infection.
Collapse
|
7
|
Xu X, Zhang Q, Hu JY, Zhang DX, Jiang XP, Jia JZ, Zhu JC, Huang YS. Phosphorylation of DYNLT1 at serine 82 regulates microtubule stability and mitochondrial permeabilization in hypoxia. Mol Cells 2013; 36:322-32. [PMID: 24170091 PMCID: PMC3887991 DOI: 10.1007/s10059-013-0114-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/09/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-induced microtubule disruption and mitochondrial permeability transition (mPT) are crucial events leading to fatal cell damage and recent studies showed that microtubules (MTs) are involved in the modulation of mitochondrial function. Dynein light chain Tctex-type 1 (DYNLT1) is thought to be associated with MTs and mitochondria. Previously we demonstrated that DYNLT1 knockdown aggravates hypoxia-induced mitochondrial permeabilization, which indicates a role of DYNLT1 in hypoxic cytoprotection. But the underlying regulatory mechanism of DYNLT1 remains illusive. Here we aimed to investigate the phosphorylation alteration of DYNLT1 at serine 82 (S82) in hypoxia (1% O2). We therefore constructed recombinant adenoviruses to generate S82E and S82A mutants, used to transfect H9c2 and HeLa cell lines. Development of hypoxia-induced mPT (MMP examining, Cyt c release and mPT pore opening assay), hypoxic energy metabolism (cellular viability and ATP quantification), and stability of MTs were examined. Our results showed that phosph-S82 (S82-P) expression was increased in early hypoxia; S82E mutation (phosphomimic) aggravated mitochondrial damage, elevated the free tubulin in cytoplasm and decreased the cellular viability; S82A mutation (dephosphomimic) seemed to diminish the hypoxia-induced injury. These data suggest that DYNLT1 phosphorylation at S82 is involved in MTs and mitochondria regulation, and their interaction and cooperation contribute to the cellular hypoxic tolerance. Thus, we provide new insights into a DYNLT1 mechanism in stabilizing MTs and mitochondria, and propose a potential therapeutic target for hypoxia cytoprotective studies.
Collapse
Affiliation(s)
- Xue Xu
- School of Nursing, The Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jiong-yu Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Dong-xia Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Xu-pin Jiang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - jie-zhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jing-ci Zhu
- School of Nursing, The Third Military Medical University, Chongqing, China
| | - Yue-sheng Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Feng P, Moses A, Früh K. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses. Curr Opin Virol 2013; 3:285-95. [PMID: 23735334 DOI: 10.1016/j.coviro.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 01/05/2023]
Abstract
γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies.
Collapse
Affiliation(s)
- Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
9
|
The Cellular Isopeptidase T Deubiquitinating Enzyme Regulates Kaposi’s Sarcoma-Associated Herpesvirus K7 Degradation. Pharm Res 2013; 32:749-61. [DOI: 10.1007/s11095-013-1064-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/18/2013] [Indexed: 11/25/2022]
|
10
|
Krug LT. Complexities of gammaherpesvirus transcription revealed by microarrays and RNAseq. Curr Opin Virol 2013; 3:276-84. [PMID: 23684513 DOI: 10.1016/j.coviro.2013.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/18/2013] [Indexed: 11/16/2022]
Abstract
Technological advances in genome-wide transcript analysis, referred to as the transcriptome, using microarrays and deep RNA sequencing methodologies are rapidly extending our understanding of the genetic content of the gammaherpesviruses (γHVs). These vast transcript analyses continue to uncover the complexity of coding transcripts due to alternative splicing, translation initiation and termination, as well as regulatory RNAs of the γHVs. A full assessment of the transcriptome requires that our analysis be extended to the virion and exosomes of infected cells since viral and host mRNAs, miRNAs, and other noncoding RNAs seem purposefully incorporated to exert function upon delivery to naïve cells. Understanding the regulation, biogenesis and function of the recently discovered transcripts will extend beyond pathogenesis and oncogenic events to offer key insights for basic RNA processes of the cell.
Collapse
Affiliation(s)
- Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
11
|
Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect Immun 2013; 81:2415-25. [PMID: 23630955 DOI: 10.1128/iai.00194-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anaplasma phagocytophilum causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects gene expression in both the vertebrate host and the tick vector, Ixodes scapularis. Here, we identified new genes, including spectrin alpha chain or alpha-fodrin (CG8) and voltage-dependent anion-selective channel or mitochondrial porin (T2), that are involved in A. phagocytophilum infection/multiplication and the tick cell response to infection. The pathogen downregulated the expression of CG8 in tick salivary glands and T2 in both the gut and salivary glands to inhibit apoptosis as a mechanism to subvert host cell defenses and increase infection. In the gut, the tick response to infection through CG8 upregulation was used by the pathogen to increase infection due to the cytoskeleton rearrangement that is required for pathogen infection. These results increase our understanding of the role of tick genes during A. phagocytophilum infection and multiplication and demonstrate that the pathogen uses similar strategies to establish infection in both vertebrate and invertebrate hosts.
Collapse
|
12
|
Viral inhibition of BAK promotes murine cytomegalovirus dissemination to salivary glands. J Virol 2013; 87:3592-6. [PMID: 23302869 DOI: 10.1128/jvi.02657-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Apoptosis induction is an important host defense mechanism to control viral infection, which is antagonized by viral proteins. Murine cytomegalovirus m41.1 encodes a viral inhibitor of BAK oligomerization (vIBO) that blocks the mitochondrial apoptosis mediator BAK. However, its importance for viral fitness in vivo has not been investigated. Here, we show that an m41.1-deficient virus attains reduced titers in salivary glands of wild-type but not Bak1(-/-) mice, indicating a requirement of BAK inhibition for optimal dissemination in vivo.
Collapse
|
13
|
Lycopodine triggers apoptosis by modulating 5-lipoxygenase, and depolarizing mitochondrial membrane potential in androgen sensitive and refractory prostate cancer cells without modulating p53 activity: signaling cascade and drug-DNA interaction. Eur J Pharmacol 2012; 698:110-21. [PMID: 23142370 DOI: 10.1016/j.ejphar.2012.10.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/27/2012] [Accepted: 10/31/2012] [Indexed: 12/22/2022]
Abstract
When the prostate cancer cells become unresponsive to androgen therapy, resistance to chemotherapy becomes imminent, resulting in high mortality. To combat this situation, lycopodine, a pharmacologically important bioactive component derived from Lycopodium clavatum spores, was tested against hormone sensitive (LnCaP) and refractory (PC3) prostate cancer cells in vitro. This study aims to check if lycopodine has demonstrable anti-cancer effects and if it has, to find out the possible mechanism of its action. The MTT assay was performed to evaluate the cytotoxic effect. Depolarization of mitochondrial membrane potential, cell cycle, EGF receptor activity and apoptosis were recorded by FACS; profiles of different anti- and pro-apoptotic genes and their products were studied by semi-quantitative RT-PCR, indirect-ELISA, western blotting. Drug-DNA interaction was determined by CD spectroscopy. Administration of lycopodine down-regulated the expression of 5-lipoxygenase and the 5-oxo-ETE receptor (OXE receptor1) and EGF receptor, and caused up-regulation of cytochrome c with depolarization of mitochondrial inner membrane potential, without palpable change in p53 activity, resulting in apoptosis, cell arrest at G0/G1 stage and ultimately reduced proliferation of cancer cells; concomitantly, there was externalization of phosphotidyl serine residues. CD spectroscopic analysis revealed intercalating property of lycopodine with DNA molecule, implicating its ability to block cellular DNA synthesis. The overall results suggest that lycopodine is a promising candidate suitable for therapeutic use as an anti-cancer drug.
Collapse
|
14
|
Mitochondrial porin Por1 and its homolog Por2 contribute to the positive control of Snf1 protein kinase in Saccharomyces cerevisiae. EUKARYOTIC CELL 2012; 11:1568-72. [PMID: 23104570 DOI: 10.1128/ec.00127-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae Snf1 is a member of the conserved Snf1/AMP-activated protein kinase (Snf1/AMPK) family involved in regulating responses to energy limitation, which is detected by mechanisms that include sensing adenine nucleotides. Mitochondrial voltage-dependent anion channel (VDAC) proteins, also known as mitochondrial porins, are conserved in eukaryotes from yeast to humans and play key roles in mediating mitochondrial outer membrane permeability to small metabolites, including ATP, ADP, and AMP. We previously recovered the yeast mitochondrial porin Por1 (yVDAC1) from a two-hybrid screen for Snf1-interacting proteins. Here, we present evidence that Snf1 interacts with Por1 and its homolog Por2 (yVDAC2). Cells lacking Por1 and Por2, but not respiratory-deficient rho(0) cells lacking the mitochondrial genome, exhibit reduced Snf1 activation loop phosphorylation in response to glucose limitation. Thus, Por1 and Por2 contribute to the positive control of Snf1 protein kinase. Physical proximity to the VDAC proteins and mitochondrial surface could facilitate Snf1's ability to sense energy limitation.
Collapse
|
15
|
Abe S, Kurata M, Suzuki S, Yamamoto K, Aisaki KI, Kanno J, Kitagawa M. Minichromosome maintenance 2 bound with retroviral Gp70 is localized to cytoplasm and enhances DNA-damage-induced apoptosis. PLoS One 2012; 7:e40129. [PMID: 22768239 PMCID: PMC3387003 DOI: 10.1371/journal.pone.0040129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022] Open
Abstract
The interaction of viral proteins with host-cellular proteins elicits the activation of cellular signal transduction pathways and possibly leads to viral pathogenesis as well as cellular biological events. Apoptotic signals induced by DNA-damage are remarkably up-regulated by Friend leukemia virus (FLV) exclusively in C3H hosts; however, the mechanisms underlying the apoptosis enhancement and host-specificity are unknown. Here, we show that C3H mouse-derived hematopoietic cells originally express higher levels of the minichromosome maintenance (MCM) 2 protein than BALB/c- or C57BL/6-deriverd cells, and undergo more frequent apoptosis following doxorubicin-induced DNA-damage in the presence of the FLV envelope protein gp70. Dual transfection with gp70/Mcm2 reproduced doxorubicin-induced apoptosis even in BALB/c-derived 3T3 cells. Immunoprecipitation assays using various deletion mutants of MCM2 revealed that gp70 bound to the nuclear localization signal (NLS) 1 (amino acids 18–24) of MCM2, interfered with the function of NLS2 (amino acids 132–152), and suppressed the normal nuclear-import of MCM2. Cytoplasmic MCM2 reduced the activity of protein phosphatase 2A (PP2A) leading to the subsequent hyperphosphorylation of DNA-dependent protein kinase (DNA-PK). Phosphorylated DNA-PK exhibited elevated kinase activity to phosphorylate P53, thereby up-regulating p53-dependent apoptosis. An apoptosis-enhancing domain was identified in the C-terminal portion (amino acids 703–904) of MCM2. Furthermore, simultaneous treatment with FLV and doxorubicin extended the survival of SCID mice bearing 8047 leukemia cells expressing high levels of MCM2. Thus, depending on its subcellular localization, MCM2 plays different roles. It participates in DNA replication in the nucleus as shown previously, and enhances apoptosis in the cytoplasm.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shiho Suzuki
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken-ichi Aisaki
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo, Japan
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, National Institute of Health Sciences, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
16
|
Tiled microarray identification of novel viral transcript structures and distinct transcriptional profiles during two modes of productive murine gammaherpesvirus 68 infection. J Virol 2012; 86:4340-57. [PMID: 22318145 DOI: 10.1128/jvi.05892-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We applied a custom tiled microarray to examine murine gammaherpesvirus 68 (MHV68) polyadenylated transcript expression in a time course of de novo infection of fibroblast cells and following phorbol ester-mediated reactivation from a latently infected B cell line. During de novo infection, all open reading frames (ORFs) were transcribed and clustered into four major temporal groups that were overlapping yet distinct from clusters based on the phorbol ester-stimulated B cell reactivation time course. High-density transcript analysis at 2-h intervals during de novo infection mapped gene boundaries with a 20-nucleotide resolution, including a previously undefined ORF73 transcript and the MHV68 ORF63 homolog of Kaposi's sarcoma-associated herpesvirus vNLRP1. ORF6 transcript initiation was mapped by tiled array and confirmed by 5' rapid amplification of cDNA ends. The ∼1.3-kb region upstream of ORF6 was responsive to lytic infection and MHV68 RTA, identifying a novel RTA-responsive promoter. Transcription in intergenic regions consistent with the previously defined expressed genomic regions was detected during both types of productive infection. We conclude that the MHV68 transcriptome is dynamic and distinct during de novo fibroblast infection and upon phorbol ester-stimulated B cell reactivation, highlighting the need to evaluate further transcript structure and the context-dependent molecular events that govern viral gene expression during chronic infection.
Collapse
|
17
|
Fang YD, Xu X, Dang YM, Zhang YM, Zhang JP, Hu JY, Zhang Q, Dai X, Teng M, Zhang DX, Huang YS. MAP4 mechanism that stabilizes mitochondrial permeability transition in hypoxia: microtubule enhancement and DYNLT1 interaction with VDAC1. PLoS One 2011; 6:e28052. [PMID: 22164227 PMCID: PMC3229508 DOI: 10.1371/journal.pone.0028052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/31/2011] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial membrane permeability has received considerable attention recently because of its key role in apoptosis and necrosis induced by physiological events such as hypoxia. The manner in which mitochondria interact with other molecules to regulate mitochondrial permeability and cell destiny remains elusive. Previously we verified that hypoxia-induced phosphorylation of microtubule-associated protein 4 (MAP4) could lead to microtubules (MTs) disruption. In this study, we established the hypoxic (1% O2) cell models of rat cardiomyocytes, H9c2 and HeLa cells to further test MAP4 function. We demonstrated that increase in the pool of MAP4 could promote the stabilization of MT networks by increasing the synthesis and polymerization of tubulin in hypoxia. Results showed MAP4 overexpression could enhance cell viability and ATP content under hypoxic conditions. Subsequently we employed a yeast two-hybrid system to tag a protein interacting with mitochondria, dynein light chain Tctex-type 1 (DYNLT1), by hVDAC1 bait. We confirmed that DYNLT1 had protein-protein interactions with voltage-dependent anion channel 1 (VDAC1) using co-immunoprecipitation; and immunofluorescence technique showed that DYNLT1 was closely associated with MTs and VDAC1. Furthermore, DYNLT1 interactions with MAP4 were explored using a knockdown technique. We thus propose two possible mechanisms triggered by MAP4: (1) stabilization of MT networks, (2) DYNLT1 modulation, which is connected with VDAC1, and inhibition of hypoxia-induced mitochondrial permeabilization.
Collapse
Affiliation(s)
- Ya-dong Fang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xue Xu
- The No. 324 Hospital of PLA, Chongqing, China
| | - Yong-ming Dang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi-ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jia-ping Zhang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiong-yu Hu
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiong Zhang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xia Dai
- Department of Plastic and Cosmetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Miao Teng
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Dong-xia Zhang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yue-sheng Huang
- State Key Laboratory for Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
18
|
Murine gammaherpesvirus 68 evades host cytokine production via replication transactivator-induced RelA degradation. J Virol 2011; 86:1930-41. [PMID: 22130545 DOI: 10.1128/jvi.06127-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cytokines play crucial roles in curtailing the propagation and spread of pathogens within the host. As obligate pathogens, gammaherpesviruses have evolved a plethora of mechanisms to evade host immune responses. We have previously shown that murine gammaherpesvirus 68 (γHV68) induces the degradation of RelA, an essential subunit of the transcriptionally active NF-κB dimer, to evade cytokine production. Here, we report that the immediately early gene product of γHV68, replication transactivator (RTA), functions as a ubiquitin E3 ligase to promote RelA degradation and abrogate cytokine production. A targeted genomic screen identified that RTA, out of 24 candidates, induces RelA degradation and abolishes NF-κB activation. Biochemical analyses indicated that RTA interacts with RelA and promotes RelA ubiquitination, thereby facilitating RelA degradation. Mutations within a conserved cysteine/histidine-rich, putative E3 ligase domain impaired the ability of RTA to induce RelA ubiquitination and degradation. Moreover, infection by recombinant γHV68 carrying mutations that diminish the E3 ligase activity of RTA resulted in more robust NF-κB activation and cytokine induction than did infection by wild-type γHV68. These findings support the conclusion that γHV68 subverts early NF-κB activation and cytokine production through RTA-induced RelA degradation, uncovering a key function of RTA that antagonizes the intrinsic cytokine production during gammaherpesvirus infection.
Collapse
|
19
|
Dong X, Feng P. Murine gamma herpesvirus 68 hijacks MAVS and IKKβ to abrogate NFκB activation and antiviral cytokine production. PLoS Pathog 2011; 7:e1002336. [PMID: 22110409 PMCID: PMC3213086 DOI: 10.1371/journal.ppat.1002336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/11/2011] [Indexed: 12/25/2022] Open
Abstract
Upon viral infection, mitochondrial antiviral signaling (MAVS) protein serves as a key adaptor to promote cytokine production. We report here that murine gamma herpesvirus 68 (γHV68), a model virus for oncogenic human gamma herpesviruses, subverts cytokine production via the MAVS adaptor. During early infection, γHV68 hijacks MAVS and IKKβ to induce the site-specific phosphorylation of RelA, a crucial subunit of the transcriptionally active NFκB dimer, which primes RelA for the proteasome-mediated degradation. As such, γHV68 efficiently abrogated NFκB activation and cytokine gene expression. Conversely, uncoupling RelA degradation from γHV68 infection promoted NFκB activation and elevated cytokine production. Loss of MAVS increased cytokine production and immune cell infiltration in the lungs of γHV68-infected mice. Moreover, exogenous expression of the phosphorylation- and degradation-resistant RelA variant restored γHV68-induced cytokine production. Our findings uncover an intricate strategy whereby signaling via the upstream MAVS adaptor is intercepted by a pathogen to nullify the immediate downstream effector, RelA, of the innate immune pathway. Innate immunity represents the first line of defense against invading pathogens chiefly through anti-viral cytokines. The mitochondrial antiviral signaling (MAVS)-dependent innate immune pathways are critical for inflammatory cytokine production. Deficiency in essential innate immune components, such as MAVS, severely impairs cytokine production and host defense that are enabled by the master transcription factor, NFκB. Here we show that murine gamma herpesvirus 68 (γHV68), a model herpesvirus for human Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, hijacks MAVS and IKKβ to abrogate NFκB activation and cytokine production. Uncoupling RelA degradation from γHV68 infection restored NFκB-dependent cytokine gene expression and elevated cytokine production. Thus, our results demonstrate that upstream innate immune activation can be harnessed by pathogens to inactivate the downstream effector and subvert cytokine production.
Collapse
Affiliation(s)
- Xiaonan Dong
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Pinghui Feng
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011; 29:351-97. [PMID: 21219186 DOI: 10.1146/annurev-immunol-072710-081639] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gammaherpesviruses are lymphotropic viruses that are associated with the development of lymphoproliferative diseases, lymphomas, as well as other nonlymphoid cancers. Most known gammaherpesviruses establish latency in B lymphocytes. Research on Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68/γHV68/MHV4) has revealed a complex relationship between virus latency and the stage of B cell differentiation. Available data support a model in which gammaherpesvirus infection drives B cell proliferation and differentiation. In general, the characterized gammaherpesviruses exhibit a very narrow host tropism, which has severely limited studies on the human gammaherpesviruses EBV and Kaposi's sarcoma-associated herpesvirus. As such, there has been significant interest in developing animal models in which the pathogenesis of gammaherpesviruses can be characterized. MHV68 represents a unique model to define the effects of chronic viral infection on the antiviral immune response.
Collapse
Affiliation(s)
- Erik Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
21
|
Taylor GS, Blackbourn DJ. Infectious agents in human cancers: lessons in immunity and immunomodulation from gammaherpesviruses EBV and KSHV. Cancer Lett 2011; 305:263-78. [PMID: 21470769 DOI: 10.1016/j.canlet.2010.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/23/2010] [Accepted: 08/22/2010] [Indexed: 01/13/2023]
Abstract
Members of the herpesvirus family have evolved the ability to persist in their hosts by establishing a reservoir of latently infected cells each carrying the viral genome with reduced levels of viral protein synthesis. In order to spread within and between hosts, in some cells, the quiescent virus will reactivate and enter lytic cycle replication to generate and release new infectious virus particles. To allow the efficient generation of progeny viruses, all herpesviruses have evolved a wide variety of immunomodulatory mechanisms to limit the exposure of cells undergoing lytic cycle replication to the immune system. Here we have focused on the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) that, uniquely among the eight human herpesviruses identified to date, have growth transforming potential. Most people infected with these viruses will not develop cancer, viral growth-transforming activity being kept under control by the host's antigen-specific immune responses. Nonetheless, EBV and KSHV are associated with several malignancies in which various viral proteins, either predominantly or exclusively latency-associated, are expressed; at least some of these proteins also have immunomodulatory activities. Of these malignancies, some are the result of a disrupted virus/immune balance through genetic, infectious or iatrogenic immune suppression. Others develop in people that are not overtly immune suppressed and likely modulate the immunological response. This latter aspect of immune modulation by EBV and KSHV forms the basis of this review.
Collapse
Affiliation(s)
- Graham S Taylor
- CR UK Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
| | | |
Collapse
|
22
|
Abstract
Due to the oncogenic potential associated with persistent infection of human gamma-herpesviruses, including Epstein-Barr virus (EBV or HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8), vaccine development has focused on subunit vaccines. However, the results using an animal model of mouse infection with a related rodent virus, murine gamma-herpesvirus 68 (MHV-68, γHV-68, or MuHV-4), have shown that the only effective vaccination strategy is based on live attenuated viruses, including viruses engineered to be incapable of establishing persistence. Vaccination with a virus lacking persistence would eliminate many potential complications. Progress in understanding persistent infections of EBV and KSHV raises the possibility of engineering a live attenuated virus without persistence. Therefore, we should keep the option open for developing a live EBV or KSHV vaccine.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
23
|
Abstract
Mitochondria are involved in a variety of cellular metabolic processes, and their functions are regulated by extrinsic and intrinsic stimuli including viruses. Recent studies have shown that mitochondria play a central role in the primary host defense mechanisms against viral infections, and a number of novel viral and mitochondrial proteins are involved in these processes. Some viral proteins localize in mitochondria and interact with mitochondrial proteins to regulate cellular responses. This review summarizes recent findings on the functions and roles of these molecules as well as mitochondrial responses to viral infections.
Collapse
|
24
|
Dong X, Feng H, Sun Q, Li H, Wu TT, Sun R, Tibbetts SA, Chen ZJ, Feng P. Murine gamma-herpesvirus 68 hijacks MAVS and IKKbeta to initiate lytic replication. PLoS Pathog 2010; 6:e1001001. [PMID: 20686657 PMCID: PMC2912392 DOI: 10.1371/journal.ppat.1001001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 06/16/2010] [Indexed: 12/25/2022] Open
Abstract
Upon viral infection, the mitochondrial antiviral signaling (MAVS)-IKKβ pathway is activated to restrict viral replication. Manipulation of immune signaling events by pathogens has been an outstanding theme of host-pathogen interaction. Here we report that the loss of MAVS or IKKβ impaired the lytic replication of gamma-herpesvirus 68 (γHV68), a model herpesvirus for human Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. γHV68 infection activated IKKβ in a MAVS-dependent manner; however, IKKβ phosphorylated and promoted the transcriptional activation of the γHV68 replication and transcription activator (RTA). Mutational analyses identified IKKβ phosphorylation sites, through which RTA-mediated transcription was increased by IKKβ, within the transactivation domain of RTA. Moreover, the lytic replication of recombinant γHV68 carrying mutations within the IKKβ phosphorylation sites was greatly impaired. These findings support the conclusion that γHV68 hijacks the antiviral MAVS-IKKβ pathway to promote viral transcription and lytic infection, representing an example whereby viral replication is coupled to host immune activation. Innate immunity represents the first line of defense against pathogen infection. Recent studies uncovered an array of sensors that detect pathogen-associated molecular patterns and induce antiviral cytokine production via two closely related kinase complexes, i.e., the IKKα/β/γ and TBK-1/IKKε. To counteract host immune defense, herpesviruses have evolved diverse strategies to evade, manipulate, and exploit host immune responses. Here we report that infection by murine gamma-herpesvirus 68 (γHV68), a model gamma-herpesvirus for human Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, activated the IKKβ kinase and IKKβ was usurped to promote viral transcriptional activation. As such, uncoupling IKKβ from transcriptional activation by biochemical and genetic approaches impaired γHV68 lytic replication. Our study represents an example whereby viral lytic replication is coupled to host innate immune activation and sheds light on herpesvirus exploitation of immune responses.
Collapse
Affiliation(s)
- Xiaonan Dong
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Hao Feng
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qinmiao Sun
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Chao Yang District, Beijing, People's Republic of China
| | - Haiyan Li
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, Louisiana, United States of America
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Scott A. Tibbetts
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, Louisiana, United States of America
| | - Zhijian J. Chen
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Pinghui Feng
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Sulfotyrosines of the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promote tumorigenesis through autocrine activation. J Virol 2010; 84:3351-61. [PMID: 20106924 DOI: 10.1128/jvi.01939-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) G protein-coupled receptor (vGPCR) is a bona fide signaling molecule that is implicated in KSHV-associated malignancies. Whereas vGPCR activates specific cellular signaling pathways in a chemokine-independent fashion, vGPCR binds a broad spectrum of CC and CXC chemokines, and the roles of chemokines in vGPCR tumorigenesis remain poorly understood. We report here that vGPCR is posttranslationally modified by sulfate groups at tyrosine residues within its N-terminal extracellular domain. A chemokine-binding assay demonstrated that the tyrosine sulfate moieties were critical for vGPCR association with GRO-alpha (an agonist) but not with IP-10 (an inverse agonist). A sulfated peptide corresponding to residues 12 through 33 of vGPCR, but not the unsulfated equivalent, partially inhibited vGPCR association with GRO-alpha. Although the vGPCR variant lacking sulfotyrosines activated downstream signaling pathways, the ability of the unsulfated vGPCR variant to induce tumor growth in nude mice was significantly diminished. Furthermore, the unsulfated vGPCR variant was unable to induce the secretion of proliferative cytokines, some of which serve as vGPCR agonists. This implies that autocrine activation by agonist chemokines is critical for vGPCR tumorigenesis. Indeed, GRO-alpha increased vGPCR-mediated AKT phosphorylation and vGPCR tumorigenesis in a sulfotyrosine-dependent manner. Our findings support the conclusion that autocrine activation triggered by chemokine agonists via sulfotyrosines is necessary for vGPCR tumorigenesis, thereby providing a rationale for future therapeutic design targeting the tumorigenic vGPCR.
Collapse
|
26
|
E X, Hwang S, Oh S, Lee JS, Jeong JH, Gwack Y, Kowalik TF, Sun R, Jung JU, Liang C. Viral Bcl-2-mediated evasion of autophagy aids chronic infection of gammaherpesvirus 68. PLoS Pathog 2009; 5:e1000609. [PMID: 19816569 PMCID: PMC2752191 DOI: 10.1371/journal.ppat.1000609] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 09/09/2009] [Indexed: 01/07/2023] Open
Abstract
Gamma-herpesviruses (gammaHVs) have developed an interaction with their hosts wherein they establish a life-long persistent infection and are associated with the onset of various malignancies. One critical virulence factor involved in the persistency of murine gamma-herpesvirus 68 (gammaHV68) is the viral homolog of the Bcl-2 protein (vBcl-2), which has been implicated to counteract both host apoptotic responses and autophagy pathway. However, the relative significance of the two activities of vBcl-2 in viral persistent infection has yet to be elucidated. Here, by characterizing a series of loss-of-function mutants of vBcl-2, we have distinguished the vBcl-2-mediated antagonism of autophagy from the vBcl-2-mediated inhibition of apoptosis in vitro and in vivo. A mutant gammaHV68 virus lacking the anti-autophagic activity of vBcl-2 demonstrates an impaired ability to maintain chronic infections in mice, whereas a mutant virus lacking the anti-apoptotic activity of vBcl-2 establishes chronic infections as efficiently as the wild-type virus but displays a compromised ability for ex vivo reactivation. Thus, the vBcl-2-mediated antagonism of host autophagy constitutes a novel mechanism by which gammaHVs confer persistent infections, further underscoring the importance of autophagy as a critical host determinant in the in vivo latency of gamma-herpesviruses.
Collapse
Affiliation(s)
- Xiaofei E
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Seungmin Hwang
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Soohwan Oh
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Jong-Soo Lee
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Joseph H. Jeong
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
| | - Yousang Gwack
- Department of Physiology, University of California, Los Angeles, California, United States of America
| | - Timothy F. Kowalik
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ren Sun
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (JUJ); (CL)
| | - Chengyu Liang
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (JUJ); (CL)
| |
Collapse
|
27
|
Marek's disease virus phosphorylated polypeptide pp38 alters transcription rates of mitochondrial electron transport and oxidative phosphorylation genes. Virus Genes 2009; 39:102-12. [PMID: 19472043 DOI: 10.1007/s11262-009-0372-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/15/2009] [Indexed: 11/27/2022]
Abstract
Two splice variants of the Marek's disease virus phosphorylated polypeptide (pp)38 were previously identified in the quail cell line QTP32 expressing pp38 under the control of an inducible promoter. We developed QT35-derived cell lines expressing these splice variants or full length pp38 with the splice acceptor sites mutated to further elucidate the role of pp38. Only induction of full length pp38 resulted in an increase in mitochondrial succinate dehydrogenase activity compared to non-induced cells. Transcript copy numbers of cytochrome C oxidase subunit I and ATP synthase were reduced in induced cells. The ATP content of isolated mitochondria from induced cells was greatly reduced compared to those of non-induced cells. Mitochondrial and pp38 staining suggests that there is no direct interaction between pp38 and the mitochondria. Mitochondrial transcripts were also reduced in DF-1 cells expressing full length pp38 and in MDV-infected chick kidney cells indicating that this effect occurs independent of other viral genes and after in vitro infection with MDV.
Collapse
|
28
|
Kaposi's sarcoma-associated herpesvirus K7 induces viral G protein-coupled receptor degradation and reduces its tumorigenicity. PLoS Pathog 2008; 4:e1000157. [PMID: 18802460 PMCID: PMC2529400 DOI: 10.1371/journal.ppat.1000157] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 08/19/2008] [Indexed: 11/19/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) genome encodes a G protein-coupled receptor (vGPCR). vGPCR is a ligand-independent, constitutively active signaling molecule that promotes cell growth and proliferation; however, it is not clear how vGPCR is negatively regulated. We report here that the KSHV K7 small membrane protein interacts with vGPCR and induces its degradation, thereby dampening vGPCR signaling. K7 interaction with vGPCR is readily detected in transiently transfected human cells. Mutational analyses reveal that the K7 transmembrane domain is necessary and sufficient for this interaction. Biochemical and confocal microscopy studies indicate that K7 retains vGPCR in the endoplasmic reticulum (ER) and induces vGPCR proteasomeal degradation. Indeed, the knockdown of K7 by shRNA-mediated silencing increases vGPCR protein expression in BCBL-1 cells that are induced for KSHV lytic replication. Interestingly, K7 expression significantly reduces vGPCR tumorigenicity in nude mice. These findings define a viral factor that negatively regulates vGPCR protein expression and reveal a post-translational event that modulates GPCR-dependent transformation and tumorigenicity.
Collapse
|
29
|
Abstract
Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Sud 11, Villejuif, France
| | - Catherine Brenner
- University of Versailles/St Quentin, PRES UniverSud Paris, CNRS UMR8159, Versailles, France
- * E-mail: (CB); (GK)
| | - Eugenia Morselli
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Sud 11, Villejuif, France
| | - Zahia Touat
- University of Versailles/St Quentin, PRES UniverSud Paris, CNRS UMR8159, Versailles, France
| | - Guido Kroemer
- INSERM, U848, Villejuif, France
- Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Sud 11, Villejuif, France
- * E-mail: (CB); (GK)
| |
Collapse
|