1
|
Luna LDS, Nascimento RPDS, Oliveira PED, Junior AGDS, Bezerra-Santos M, de Brito RJVC, do Carmo RF, de Souza CDF. AIDS mortality in Brazil, 2012-2022: a time series study. AIDS Res Ther 2024; 21:80. [PMID: 39501403 PMCID: PMC11536946 DOI: 10.1186/s12981-024-00669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) infection is a health problem in Brazil and worldwide. Without treatment, the infection can progress to Acquired Immunodeficiency Syndrome (AIDS), with a high mortality potential. The objective of this study was to analyze the time trend of AIDS mortality in Brazil, macro-regions, federal units and their respective capitals, from 2012 to 2022. METHODS This is a time-series study of all AIDS deaths in Brazil from 2012 to 2022. The study included the annual number of deaths and the crude and standardized mortality rates. The Joinpoint regression model was used for the time analysis of the standardized rates. Annual percentage change (APC) and average annual percentage change (AAPC) were calculated. A 95% confidence interval (CI) and a 5% significance level were used. RESULTS During the period analyzed, 128,678 AIDS deaths were recorded in Brazil, with a crude mortality rate of 6.3/100,000 and a standardized mortality rate of 5.3/100,000. From 2012 to 2020, three regions showed a declining trend in AIDS mortality: Central-West (AAPC - 2.3%; 95%CI -4.3 to -0.21; p = 0.03), Southeast (AAPC - 5.6%; 95%CI -6.8 to -4.0; p < 0.001), and South (AAPC - 4.4%; 95%CI -5.27 to -3.6; p < 0.001). There was also a downward trend in 10 states and 10 capitals. There was an increase in the number of deaths from 2020 onwards in the North, Northeast and Southeast regions compared to 2019. CONCLUSION There was a downward trend in AIDS mortality from 2012 to 2020 and an upward trend from 2020 to 2022. The regional differences observed could reflect the social disparities that exist in Brazil. In addition, the Covid-19 pandemic has had an impact on the process of dealing with HIV in Brazil.
Collapse
Affiliation(s)
- Lucas de Souza Luna
- Federal University of the São Francisco Valley (UNIVASF), Av José Maniçoba, s/n, Centro, Petrolina, Pernambuco, 56.304-205, Brazil
| | - Rafael Pedro de Souza Nascimento
- Federal University of the São Francisco Valley (UNIVASF), Av José Maniçoba, s/n, Centro, Petrolina, Pernambuco, 56.304-205, Brazil
| | - Paula Esbaltar de Oliveira
- Federal University of the São Francisco Valley (UNIVASF), Av José Maniçoba, s/n, Centro, Petrolina, Pernambuco, 56.304-205, Brazil
| | | | | | | | - Rodrigo Feliciano do Carmo
- Federal University of the São Francisco Valley (UNIVASF), Av José Maniçoba, s/n, Centro, Petrolina, Pernambuco, 56.304-205, Brazil
| | - Carlos Dornels Freire de Souza
- Federal University of the São Francisco Valley (UNIVASF), Av José Maniçoba, s/n, Centro, Petrolina, Pernambuco, 56.304-205, Brazil.
| |
Collapse
|
2
|
Desrosiers RC. The Failure of AIDS Vaccine Efficacy Trials: Where to Go from Here. J Virol 2023; 97:e0021123. [PMID: 36916947 PMCID: PMC10062124 DOI: 10.1128/jvi.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The seven AIDS vaccine efficacy trials have yielded extremely disappointing results at great expense. Greater stringency is needed for government support of AIDS vaccine efficacy trials.
Collapse
|
3
|
Shchemelev AN, Semenov AV, Ostankova YV, Naidenova EV, Zueva EB, Valutite DE, Churina MA, Virolainen PA, Totolian AA. [Genetic diversity of the human immunodeficiency virus (HIV-1) in the Kaliningrad region]. Vopr Virusol 2022; 67:310-321. [PMID: 36097712 DOI: 10.36233/0507-4088-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION As is currently known, the epidemic process in the Kaliningrad Region was mainly associated with the spread of the recombinant form of HIV-1 (CRF03_AB); however, regular HIV importations from other countries and continents has created favorable conditions for emergence and spread of various recombinant forms of the virus.The most complete information on the diversity of recombinant forms in the region is also necessary to understand the structure of drug resistance (DR). The aim of the study was to explore the HIV-1 genetic diversity in the Kaliningrad Region. MATERIALS AND METHODS We studied 162 blood plasma samples obtained from patients from the Kaliningrad Region, both with confirmed virological failure of antiretroviral therapy (ART) and with newly diagnosed HIV infection. For reverse transcription and amplification of HIV genome fragments, diagnostic «AmpliSense HIVResist-Seq». RESULTS AND DISCUSSION The various recombinants between subtypes A and B (74%) were predominant in study group: recombinant was between CRF03_AB and subtype A (33.95%) and CRF03_AB-like (13.58%) were the most common. Among the "pure" subtypes of the virus, subtype A6 (16.67%). The circulation of subtypes B (3.70%) and G (1.23%) was also noted.Ninety-six patients (59.26%) were identified with at least one mutation associated with antiretroviral (ARV) drug resistance. CONCLUSION The observed diversity of subtypes and recombinant forms of the virus implies that the new recombinants are actively emerging in the studied region, both between existing recombinant forms and "pure" subtypes, as well as between "pure" subtypes.
Collapse
Affiliation(s)
- A N Shchemelev
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A V Semenov
- Ekaterinburg Research Institute of Viral Infections of the Federal Research Institute, State Research Center for Virology and Biotechnology "Vector" of the Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - Yu V Ostankova
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E V Naidenova
- FSSI Russian Research Anti-Plague Institute «Microbe» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E B Zueva
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - D E Valutite
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - M A Churina
- St. Petersburg GBUZ «Botkin Clinical Infectious Diseases Hospital»
| | - P A Virolainen
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A A Totolian
- FBSI «Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
4
|
Sivay MV, Palumbo PJ, Zhang Y, Cummings V, Guo X, Hamilton EL, McKinstry L, Ogendo A, Kayange N, Panchia R, Dominguez K, Chen YQ, Sandfort TGM, Eshleman SH. Human Immunodeficiency Virus (HIV) Drug Resistance, Phylogenetic Analysis, and Superinfection Among Men Who Have Sex with Men and Transgender Women in Sub-Saharan Africa: HIV Prevention Trials Network (HPTN) 075 Study. Clin Infect Dis 2021; 73:60-67. [PMID: 32761071 DOI: 10.1093/cid/ciaa1136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The HIV Prevention Trials Network (HPTN) 075 study evaluated the feasibility of enrolling and retaining men who have sex with men (MSM) and transgender women (TGW) from Kenya, Malawi, and South Africa. During the study follow-up, 21 participants acquired human immunodeficiency virus (HIV) (seroconverters). We analyzed HIV subtype diversity, drug resistance, transmission dynamics, and HIV superinfection data among MSM and TGW enrolled in HPTN 075. METHODS HIV genotyping and drug resistance testing were performed for participants living with HIV who had viral loads >400 copies/mL at screening (prevalent cases, n = 124) and seroconverters (n = 21). HIV pol clusters were identified using Cluster Picker. Superinfection was assessed by a longitudinal analysis of env and pol sequences generated by next-generation sequencing. RESULTS HIV genotyping was successful for 123/124 prevalent cases and all 21 seroconverters. The major HIV subtypes were A1 (Kenya) and C (Malawi and South Africa). Major drug resistance mutations were detected in samples from 21 (14.6%) of 144 participants; the most frequent mutations were K103N and M184V/I. Phylogenetic analyses identified 11 clusters (2-6 individuals). Clusters included seroconverters only (n = 1), prevalent cases and seroconverters (n = 4), and prevalent cases only (n = 6). Superinfections were identified in 1 prevalent case and 2 seroconverters. The annual incidence of superinfection was higher among seroconverters than among prevalent cases, and was higher than the rate of primary HIV infection in the cohort. CONCLUSIONS This report provides important insights into HIV genetic diversity, drug resistance, and superinfection among MSM and TGW in sub-Saharan Africa. These findings may help to inform future HIV prevention interventions in these high-risk groups.
Collapse
Affiliation(s)
- Mariya V Sivay
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip J Palumbo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yinfeng Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vanessa Cummings
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Guo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Erica L Hamilton
- Science Facilitation Department, Family Health International 360, Durham, North Carolina, USA
| | - Laura McKinstry
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Arthur Ogendo
- Kenya Medical Research Institute Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Noel Kayange
- Department of Internal Medicine, Johns Hopkins Project, College of Medicine, Malawi, Blantyre, Malawi
| | - Ravindre Panchia
- Perinatal Human Immunodeficiency Virus Research Unit, University of the Witwatersrand, Soweto Human Immunodeficiency Virus Prevention Trials Network Clinical Research Site, Soweto, South Africa
| | - Karen Dominguez
- Desmond Tutu Human Immunodeficiency Virus Centre, University of Cape Town Medical School, Cape Town, South Africa
| | - Ying Q Chen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Theodorus G M Sandfort
- Human Immunodeficiency Virus Center for Clinical and Behavioral Studies, Columbia University, New York, New York, USA
| | - Susan H Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
6
|
Wondemagegn F, Berkessa T. High level risky sexual behavior among persons living with HIV in the urban setting of the highest HIV prevalent areas in Ethiopia: Implications for interventions. PLoS One 2020; 15:e0242701. [PMID: 33237965 PMCID: PMC7688102 DOI: 10.1371/journal.pone.0242701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Data on the sexual behavior among people living with human immunodeficiency virus (PLHIV) dwelling at HIV prevalent setting located at the periphery of Ethiopia is lacking. Therefore, this study was designed to investigate sexual practice of patients following their antiretroviral therapy (ART) service and factors affecting their behavior. MATERIALS AND METHODS A facility based cross-sectional study design was employed to assess risky sexual practice and associated factors among HIV positive adults attending ART clinics in Gambella town, Southwest Ethiopia. Risky sexual practice is defined as a custom of getting in at least one of the following practices such as condom-unprotected sex with any partner, having two or more sexual partners and practicing casual sex in the last three months. A total of 352 randomly selected clients were interviewed by using a structured questionnaire. The multivariable logistic regression model was used to examine the association between covariates and the outcome variable. RESULTS Majority of the study participants were engaged at least in one of the risky sexual practices (79.8% confidence interval (CI): 75.3% - 83.9%). The multivariable analysis found that the odds of risky sexual practice were higher among individuals who use substances ('khat' users (AOR: 3.82, 95%CI:1.30-11.22), smoke cigarette (AOR:4.90, 95%CI:1.19-12.60), consume alcohol (AOR: 2.59, 95%CI:1.28-5.21)); those who never discuss about safe sex with their partner/s (AOR: 2.21, 95%CI:1.16-4.21); those who have been in attachment for longer duration (more than four years) with their partner (AOR: 3.56, 95%CI: 1.32-9.62); and groups who desire to bear children in their future life (AOR: 3.15, 95%CI:1.40-7.04) as compared to their respective comparison groups. CONCLUSIONS A significant number of participants were engaged at least in one of the risky sexual practices which potentially result in super infection by a new or/and drug resistant viral strain/s, and onward transmission of the virus. Thus, an HIV intervention program which focuses on the identified factors has to be implemented to mitigate risk of unsafe sexual behavior of this population group and move towards ending the HIV/Acquired Immunodeficiency Syndrome (AIDS) epidemic.
Collapse
Affiliation(s)
| | - Tsegaye Berkessa
- Department of Public Health, Faculty of Public Health and Medical Sciences, Mettu University, Mettu, Ethiopia
- * E-mail:
| |
Collapse
|
7
|
Nel JS, Conradie F, Botha J, Etheredge H, Fabian J, Levin L, Mazanderani AH, Moorhouse M, Muller E, Tiemessen C, Thomson D, Turner J. Southern African HIV Clinicians Society guidelines for solid organ transplantation in human immunodeficiency virus: An evidence-based framework for human immunodeficiency virus-positive donors and recipients. South Afr J HIV Med 2020; 21:1133. [PMID: 33240537 PMCID: PMC7670031 DOI: 10.4102/sajhivmed.v21i1.1133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jeremy S Nel
- Helen Joseph Hospital, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Francesca Conradie
- Clinical HIV Research Unit, Wits Health Consortium, Johannesburg, South Africa.,Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa.,Helen Joseph Hospital, Johannesburg, South Africa
| | - Jean Botha
- Wits Donald Gordon Medical Centre, Johannesburg, South Africa
| | | | - June Fabian
- Wits Donald Gordon Medical Centre, Johannesburg, South Africa.,Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Leon Levin
- Helen Joseph Hospital, Johannesburg, South Africa.,Right to Care, NGO, Johannesburg, South Africa
| | - Ahmad H Mazanderani
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | | | - Elmi Muller
- Department of Medicine, University of Cape Town, Cape Town, South Africa.,Division of General Surgery, Groote Schuur Hospital, Cape Town, South Africa
| | - Caroline Tiemessen
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa.,Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,DST/NRF Chair of HIV Vaccine Translational Research, Pretoria, South Africa
| | - David Thomson
- Department of Medicine, University of Cape Town, Cape Town, South Africa.,Division of General Surgery, Groote Schuur Hospital, Cape Town, South Africa
| | | |
Collapse
|
8
|
Wei H, Yu D, Geng X, He Y. Defective HIV-1 envelope gene promotes the evolution of the infectious strain through recombination in vitro. BMC Infect Dis 2020; 20:569. [PMID: 32753067 PMCID: PMC7401196 DOI: 10.1186/s12879-020-05288-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background HIV-1 produces defective mutants in the process of reproduction. The significance of the mutants has not been well investigated. Methods The plasmids of wild type (HIV-1NL4–3) and Env-defective (HIV-1SG3ΔEnv) HIV-1 were co-transfected into HEK293T cells. The progeny virus was collected to infect MT4 cells. The env gene and near-full-length genome (NFLG) of HIV-1 were amplified and sequenced. The phylogenetic diversity, recombinant patterns and hotspots, and the functionality of HIV-1 Env were determined. Results A total of 42 env genes and 8 NFLGs were successfully amplified and sequenced. Five types of recombinant patterns of env were identified and the same recombinant sites were detected in different patterns. The recombination hotspots were found distributing mainly in conservative regions of env. The recombination between genes of HIV-1NL4–3 and HIV-1SG3Δenv increased the variety of viral quasispecies and resulted in progeny viruses with relative lower infectious ability than that of HIVNL4–3. The defective env genes as well as NFLG could be detected after 20 passages. Conclusion The existence of the defective HIV-1 promotes the phylogenetic evolution of the virus, thus increasing the diversity of virus population. The role of defective genes may be converted from junk genes to useful materials and cannot be neglected in the study of HIV-1 reservoir.
Collapse
Affiliation(s)
- Huamian Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Danwei Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xiuzhu Geng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China. .,Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
9
|
Partner HIV Serostatus Impacts Viral Load, Genital HIV Shedding, and Immune Activation in HIV-Infected Individuals. J Acquir Immune Defic Syndr 2020; 82:51-60. [PMID: 31169767 DOI: 10.1097/qai.0000000000002089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Studies of seronegative individuals in HIV discordant relationships provide important insights into the effects of HIV exposure on the seronegative partner, but few have examined the impact of partner serostatus on disease progression in seropositive individuals. We investigated the impact of HIV serostatus on clinical and biological factors influencing HIV disease progression in 337 HIV-infected heterosexual individuals in stable long-term HIV-seroconcordant or HIV-serodiscordant relationships. Seroconcordant individuals had significantly higher plasma viral loads (pVLs) than HIV-infected partners in serodiscordant partnerships [4.4 log10 copies RNA/mL (interquartile range 3.7-5.0) versus 3.9 (3.3-4.5), P < 0.0001], irrespective of gender. pVLs correlated inversely with CD4 T-cell counts, although CD4 counts did not differ significantly between seroconcordant and serodiscordant individuals. HIV+ seroconcordant individuals had higher frequencies of CCR5 CD4 and CD8 T cells (P = 0.03 and P = 0.02, respectively) than HIV+ individuals in serodiscordant relationships and higher concentrations of plasma IL-1β (P = 0.04), TNF-α (P = 0.02), and IL-10 (P = 0.02). Activated CD4 T-cell frequencies and TNF-α were the most influential in determining variation in pVLs, independently of CD4 counts. In addition, HIV+ seroconcordant women had significantly higher genital VLs (gVLs) than HIV+ women in serodiscordant relationships (P < 0.001), with pVLs correlating significantly with gVLs (Rho = 0.65, P < 0.0001). Cervical and blood T-cell activation tended to correlate positively, although partner seroconcordance did not influence genital T-cell activation. We conclude that HIV+ seroconcordant individuals have higher frequencies of activated, CCR5-expressing T cells in blood and higher pVLs and gVLs than their HIV+ counterparts in discordant relationships, which could translate to faster disease progression or larger viral reservoir.
Collapse
|
10
|
Pankau MD, Reeves DB, Harkins E, Ronen K, Jaoko W, Mandaliya K, Graham SM, McClelland RS, Matsen IV FA, Schiffer JT, Overbaugh J, Lehman DA. Dynamics of HIV DNA reservoir seeding in a cohort of superinfected Kenyan women. PLoS Pathog 2020; 16:e1008286. [PMID: 32023326 PMCID: PMC7028291 DOI: 10.1371/journal.ppat.1008286] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/18/2020] [Accepted: 12/16/2019] [Indexed: 11/29/2022] Open
Abstract
A reservoir of HIV-infected cells that persists despite suppressive antiretroviral therapy (ART) is the source of viral rebound upon ART cessation and the major barrier to a cure. Understanding reservoir seeding dynamics will help identify the best timing for HIV cure strategies. Here we characterize reservoir seeding using longitudinal samples from before and after ART initiation in individuals who sequentially became infected with genetically distinct HIV variants (superinfected). We previously identified cases of superinfection in a cohort of Kenyan women, and the dates of both initial infection and superinfection were determined. Six women, superinfected 0.2–5.2 years after initial infection, were subsequently treated with ART 5.4–18.0 years after initial infection. We performed next-generation sequencing of HIV gag and env RNA from plasma collected during acute infection as well as every ~2 years thereafter until ART initiation, and of HIV DNA from PBMCs collected 0.9–4.8 years after viral suppression on ART. We assessed phylogenetic relationships between HIV DNA reservoir sequences and longitudinal plasma RNA sequences prior to ART, to determine proportions of initial and superinfecting variants in the reservoir. The proportions of initial and superinfection lineage variants present in the HIV DNA reservoir were most similar to the proportions present in HIV RNA immediately prior to ART initiation. Phylogenetic analysis confirmed that the majority of HIV DNA reservoir sequences had the smallest pairwise distance to RNA sequences from timepoints closest to ART initiation. Our data suggest that while reservoir cells are created throughout pre-ART infection, the majority of HIV-infected cells that persist during ART entered the reservoir near the time of ART initiation. We estimate the half-life of pre-ART DNA reservoir sequences to be ~25 months, which is shorter than estimated reservoir decay rates during suppressive ART, implying continual decay and reseeding of the reservoir up to the point of ART initiation. During HIV infection, a reservoir of long-lived latently infected cells is established that persists during antiretroviral therapy (ART) and is the source of virus replication after treatment cessation. A better understanding of when viruses enter the HIV reservoir (reservoir seeding) will aid efforts to target these long-lived HIV infected cells during their establishment. We studied women infected at two different times with two genetically distinct HIV strains (called superinfection), and assessed the genetic relationship between sequences of the HIV strains that circulated throughout infection (pre-ART HIV RNA sequences) and the HIV strains that persisted in reservoir cells (HIV DNA sequences during ART). We estimated when HIV DNA sequences entered the reservoir by identifying the time the most genetically related HIV RNA sequence was detected. In most cases we observed that viruses in the reservoir included both the initial and superinfecting lineages, suggesting reservoir seeding occurs throughout HIV infection. However, the majority of HIV sequences entered the reservoir near the time of ART initiation, suggesting that novel strategies that aim to reduce reservoir size should focus on times immediately prior to ART.
Collapse
Affiliation(s)
- Mark D. Pankau
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Daniel B. Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Elias Harkins
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Keshet Ronen
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Kishor Mandaliya
- Coast Provincial General Hospital, Women’s Health Project, Mombasa, Kenya
| | - Susan M. Graham
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - R. Scott McClelland
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- Department of Medical Microbiology, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Frederick A. Matsen IV
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
11
|
HIV controllers suppress viral replication and evolution and prevent disease progression following intersubtype HIV-1 superinfection. AIDS 2019; 33:399-410. [PMID: 30531316 DOI: 10.1097/qad.0000000000002090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the impact of intersubtype HIV-1 superinfection on viremia, reservoir reseeding, viral evolution and disease progression in HIV controllers (HIC). DESIGN A longitudinal analysis of two Brazilian HIC individuals (EEC09 and VC32) previously identified as dually infected with subtypes B and F1 viruses. METHODS Changes in plasma viremia, total HIV-1 DNA levels, CD4+ T-cell counts and HIV-1 quasispecies composition were measured over time. HIV-1 env diversity in peripheral blood mononuclear cell (PBMC) and plasma samples was accessed by single genome amplification and next-generation sequencing approaches, respectively. Viral evolution was evaluated by estimating nucleotide diversity and divergence. RESULTS Individual EEC09 was probably initially infected with a CCR5-tropic subtype B strain and sequentially superinfected with a CXCR4-tropic subtype B strain and with a subtype F1 variant. Individual VC32 was infected with a subtype B strain and superinfected with a subtype F1 variant. The intersubtype superinfection events lead to a moderate increase in viremia and extensive turnover of viral population in plasma but exhibited divergent impact on the size and composition of cell-associated HIV DNA population. Both individuals maintained virologic control (<2000 copies/ml) and presented no evidence of viral evolution or immunologic progression for at least 2 years after the intersubtype superinfection event. CONCLUSION These data revealed that some HIC are able to repeatedly limit replication and evolution of superinfecting viral strains of a different subtype with no signs of disease progression.
Collapse
|
12
|
Shin YC, Bischof GF, Lauer WA, Gonzalez-Nieto L, Rakasz EG, Hendricks GM, Watkins DI, Martins MA, Desrosiers RC. A recombinant herpesviral vector containing a near-full-length SIVmac239 genome produces SIV particles and elicits immune responses to all nine SIV gene products. PLoS Pathog 2018; 14:e1007143. [PMID: 29912986 PMCID: PMC6023237 DOI: 10.1371/journal.ppat.1007143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/28/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
The properties of the human immunodeficiency virus (HIV) pose serious difficulties for the development of an effective prophylactic vaccine. Here we describe the construction and characterization of recombinant (r), replication-competent forms of rhesus monkey rhadinovirus (RRV), a gamma-2 herpesvirus, containing a near-full-length (nfl) genome of the simian immunodeficiency virus (SIV). A 306-nucleotide deletion in the pol gene rendered this nfl genome replication-incompetent as a consequence of deletion of the active site of the essential reverse transcriptase enzyme. Three variations were constructed to drive expression of the SIV proteins: one with SIV's own promoter region, one with a cytomegalovirus (cmv) immediate-early promoter/enhancer region, and one with an RRV dual promoter (p26 plus PAN). Following infection of rhesus fibroblasts in culture with these rRRV vectors, synthesis of the early protein Nef and the late structural proteins Gag and Env could be demonstrated. Expression levels of the SIV proteins were highest with the rRRV-SIVcmv-nfl construct. Electron microscopic examination of rhesus fibroblasts infected with rRRV-SIVcmv-nfl revealed numerous budding and mature SIV particles and these infected cells released impressive levels of p27 Gag protein (>150 ng/ml) into the cell-free supernatant. The released SIV particles were shown to be incompetent for replication. Monkeys inoculated with rRRV-SIVcmv-nfl became persistently infected, made readily-detectable antibodies against SIV, and developed T-cell responses against all nine SIV gene products. Thus, rRRV expressing a near-full-length SIV genome mimics live-attenuated strains of SIV in several important respects: the infection is persistent; >95% of the SIV proteome is naturally expressed; SIV particles are formed; and CD8+ T-cell responses are maintained indefinitely in an effector-differentiated state. Although the magnitude of anti-SIV immune responses in monkeys infected with rRRV-SIVcmv-nfl falls short of what is seen with live-attenuated SIV infection, further experimentation seems warranted.
Collapse
Affiliation(s)
- Young C. Shin
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Georg F. Bischof
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - William A. Lauer
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Lucas Gonzalez-Nieto
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gregory M. Hendricks
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - David I. Watkins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Mauricio A. Martins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
13
|
Reeves DB, Magaret AS, Greninger AL, Johnston C, Schiffer JT. Model-based estimation of superinfection prevalence from limited datasets. J R Soc Interface 2018; 15:20170968. [PMID: 29491180 PMCID: PMC5832741 DOI: 10.1098/rsif.2017.0968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Humans can be infected sequentially by different strains of the same virus. Estimating the prevalence of so-called 'superinfection' for a particular pathogen is vital because superinfection implies a failure of immunologic memory against a given virus despite past exposure, which may signal challenges for future vaccine development. Increasingly, viral deep sequencing and phylogenetic inference can discriminate distinct strains within a host. Yet, a population-level study may misrepresent the true prevalence of superinfection for several reasons. First, certain infections such as herpes simplex virus (HSV-2) only reactivate single strains, making multiple samples necessary to detect superinfection. Second, the number of samples collected in a study may be fewer than the actual number of independently acquired strains within a single person. Third, detecting strains that are relatively less abundant can be difficult, even for other infections such as HIV-1 where deep sequencing may identify multiple strains simultaneously. Here we develop a model of superinfection inspired by ecology. We define an infected individual's richness as the number of infecting strains and use ecological evenness to quantify the relative strain abundances. The model uses an EM methodology to infer the true prevalence of superinfection from limited clinical datasets. Simulation studies with known true prevalence are used to contrast our EM method to a standard (naive) calculation. While varying richness, evenness and sampling we quantify the accuracy and precision of our method. The EM method outperforms in all cases, particularly when sampling is low, and richness or unevenness is high. Here, sensitivity to our assumptions about clinical data is considered. The simulation studies also provide insight into optimal study designs; estimates of prevalence improve equally by enrolling more participants or gathering more samples per person. Finally, we apply our method to data from published studies of HSV-2 and HIV-1 superinfection.
Collapse
Affiliation(s)
- Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Amalia S Magaret
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
- Biostatistics, University of Washington, Seattle, WA, USA
| | - Alex L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Christine Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Serwanga J, Ssemwanga D, Muganga M, Nakiboneka R, Nakubulwa S, Kiwuwa-Muyingo S, Morris L, Redd AD, Quinn TC, Kaleebu P. HIV-1 superinfection can occur in the presence of broadly neutralizing antibodies. Vaccine 2017; 36:578-586. [PMID: 29274699 DOI: 10.1016/j.vaccine.2017.11.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/28/2017] [Accepted: 11/26/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Superinfection of individuals already infected with HIV-1 suggests that pre-existing immune responses may not adequately protect against re-infection. We assessed high-risk female sex workers initially infected with HIV-1 clades A, D or A/D recombinants, to determine if HIV-1 broadly neutralizing antibodies were lacking prior to superinfection. METHODS Six superinfected female sex workers previously stratified by HIV-1 high-risk behavior, infecting virus clade and volunteer CD4 counts were evaluated at baseline (n = 5) and at 350 days post-superinfection (n = 6); one superinfected volunteer lacked pre-superinfection plasma. Retrospective plasmas were assessed for neutralization of a multi-clade panel of 12 HIV-1 viruses before superinfection, and then at quarterly intervals thereafter. Similarly stratified singly infected female sex workers were correspondingly assessed at baseline (n = 19) and 350 days after superinfection (n = 24). Neutralization of at least 50% of the 12 viruses (broad neutralization), and geometric means of the neutralization titers (IC50) were compared before and after superinfection; and were correlated with the volunteer HIV-1 superinfection status, CD4 counts, and pseudovirus clade. RESULTS Preexisting broad neutralization occurred in 80% (4/5) of the superinfected subjects with no further broadening by 350 days after superinfection. In one of the five subjects, HIV-1 superinfection occurred when broad neutralization was lacking; with subsequent broadening of neutralizing antibodies occuring within 9 months and plateauing by 30 months after detection of superinfection. Clade B and C pseudoviruses were more sensitive to neutralization (13; [87%]); and (12; [80%]) than the locally circulating clades A (10; [67%]) and D (6; [40%]), respectively (p = 0.025). Low antibody titers correlated with clade D viruses and with >500 CD4 T cell counts, but not with the superinfection status. CONCLUSION These data demonstrate that HIV-1 superinfection can occur both in the presence, and in the absence of broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Jennifer Serwanga
- MRC/UVRI Uganda Research Unit on AIDS, c/o Uganda Virus Research Institute, Entebbe, Uganda.
| | - Deogratius Ssemwanga
- MRC/UVRI Uganda Research Unit on AIDS, c/o Uganda Virus Research Institute, Entebbe, Uganda
| | - Michael Muganga
- MRC/UVRI Uganda Research Unit on AIDS, c/o Uganda Virus Research Institute, Entebbe, Uganda
| | - Ritah Nakiboneka
- MRC/UVRI Uganda Research Unit on AIDS, c/o Uganda Virus Research Institute, Entebbe, Uganda
| | - Susan Nakubulwa
- MRC/UVRI Uganda Research Unit on AIDS, c/o Uganda Virus Research Institute, Entebbe, Uganda
| | - Sylvia Kiwuwa-Muyingo
- MRC/UVRI Uganda Research Unit on AIDS, c/o Uganda Virus Research Institute, Entebbe, Uganda
| | - Lynn Morris
- National Institute for Communicable Diseases, Johannesburg, South Africa; Center for the AIDS Program of Research in South Africa (CAPRISA), South Africa; University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas C Quinn
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Bethesda, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pontiano Kaleebu
- MRC/UVRI Uganda Research Unit on AIDS, c/o Uganda Virus Research Institute, Entebbe, Uganda; London School of Hygiene and Tropical Medicine, Department of Clinical Research, London, UK
| | | |
Collapse
|
15
|
Gao Y, Tian W, Han X, Gao F. Immunological and virological characteristics of human immunodeficiency virus type 1 superinfection: implications in vaccine design. Front Med 2017; 11:480-489. [PMID: 29170914 DOI: 10.1007/s11684-017-0594-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/30/2017] [Indexed: 02/04/2023]
Abstract
Superinfection is frequently detected among individuals infected by human immunodeficiency virus type I (HIV-1). Superinfection occurs at similar frequencies at acute and chronic infection stages but less frequently than primary infection. This observation indicates that the immune responses elicited by natural HIV-1 infection may play a role in curb of superinfection; however, these responses are not sufficiently strong to completely prevent superinfection. Thus, a successful HIV-1 vaccine likely needs to induce more potent and broader immune responses than those elicited by primary infection. On the other hand, potent and broad neutralization responses are more often detected after superinfection than during monoinfection. This suggests that broadly neutralizing antibodies are more likely induced by sequential immunization of multiple different immunogens than with only one form of envelope glycoprotein immunogens. Understanding why the protection from superinfection by immunity induced by primary infection is insufficient and if superinfection can lead to cross-reactive immune responses will be highly informative for HIV-1 vaccine design.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Wen Tian
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, 110001, China.
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Vesa J, Chaillon A, Wagner GA, Anderson CM, Richman DD, Smith DM, Little SJ. Increased HIV-1 superinfection risk in carriers of specific human leukocyte antigen alleles. AIDS 2017; 31:1149-1158. [PMID: 28244954 PMCID: PMC5559224 DOI: 10.1097/qad.0000000000001445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the demographic, behavioural, clinical and immunogenetic determinants of HIV-1 superinfection in a high-risk cohort of MSM. DESIGN A retrospective cohort study of prospectively followed MSM. METHODS Ninety-eight MSM with acute or early HIV-1 monoinfection were followed for a median of 15.6 months. Demographic and human leukocyte antigen (HLA) genotype data were collected at enrolment. Sexual behaviour, clinical and the infection status (monoinfection or superinfection) data were recorded at each visit (at enrolment and thereafter at a median of 4.2-month intervals). HIV-1 superinfection risk was determined by Cox regression and Kaplan-Meier survival analysis. RESULTS Ten individuals (10.2%) had superinfection during follow-up. Cox regression did not show significantly increased superinfection risk for individuals with an increased amount of condomless anal intercourse, lower CD4 T-cell count or higher viral load, but higher number of sexual contacts demonstrated a trend towards significance [hazard ratio, 4.74; 95% confidence interval (95% CI), 0.87-25.97; P = 0.073]. HLA-A*29 (hazard ratio, 4.10; 95% CI, 0.88-14.76; P = 0.069), HLA-B*35 (hazard ratio, 4.64; 95% CI, 1.33-18.17; P = 0.017), HLA-C*04 (hazard ratio, 5.30; 95% CI, 1.51-20.77; P = 0.010), HLA-C*16 (hazard ratio, 4.05; 95% CI, 0.87-14.62; P = 0.071), HLA-DRB1*07 (hazard ratio, 3.29; 95% CI, 0.94-12.90; P = 0.062) and HLA-DRB1*08 (hazard ratio, 15.37; 95% CI, 2.11-79.80; P = 0.011) were associated with an increased risk of superinfection at α = 0.10, whereas HLA-DRB1*11 was associated with decreased superinfection risk (hazard ratio, 0.13; 95% CI, 0.00-1.03; P = 0.054). CONCLUSION HLA genes may, in part, elucidate the genetic basis of differential superinfection risk, and provide important information for the development of efficient prevention and treatment strategies of HIV-1 superinfection.
Collapse
Affiliation(s)
- Jouni Vesa
- University of California San Diego, La Jolla
| | | | | | | | - Douglas D. Richman
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Davey M. Smith
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | | |
Collapse
|
17
|
Ronen K, Dingens AS, Graham SM, Jaoko W, Mandaliya K, McClelland RS, Overbaugh J. Comprehensive Characterization of Humoral Correlates of Human Immunodeficiency Virus 1 Superinfection Acquisition in High-risk Kenyan Women. EBioMedicine 2017; 18:216-224. [PMID: 28427948 PMCID: PMC5405187 DOI: 10.1016/j.ebiom.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 11/16/2022] Open
Abstract
HIV-1 superinfection, in which an infected individual acquires a second HIV-1 infection from a different partner, is one of the only settings in which HIV acquisition occurs in the context of a pre-existing immune response to natural HIV infection. There is evidence that initial infection provides some protection from superinfection, particularly after 6 months of initial infection, when development of broad immunity occurs. Comparison of the immune response of superinfected individuals at the time of superinfection acquisition to that of individuals who remain singly infected despite continued exposure can shed light on immune correlates of HIV acquisition to inform prophylactic vaccine design. We evaluated a panel of humoral immune responses in the largest published group of superinfected individuals (n = 21), compared to a set of 3:1 matched singly infected controls from the same cohort. The immune functions studied included plasma neutralization, plasma and cervical antibody-dependent cellular cytotoxicity, and plasma IgG and IgA binding to a panel of 18 envelope antigens, including correlates of HIV acquisition in the RV144 vaccine trial, IgG binding to V1V2 and IgA binding to gp140. Association between each immune function and HIV superinfection was evaluated using conditional logistic regression. No significant associations were detected between any of the immune functions and superinfection acquisition. This study constitutes the most comprehensive and detailed characterization of multiple immune correlates of superinfection to date. The results suggest that immune responses not commonly measured in current HIV studies may be important in protection from HIV infection, and these or a more robust humoral response than that seen in naturally infected women may be needed for a protective vaccine. We conducted a case-control study of the association between humoral immune functions and HIV superinfection (SI). Neutralization, antibody-dependent cellular cytotoxicity, and IgG and IgA binding to Env antigens were interrogated. We found no significant associations between SI acquisition and neutralizing or non-neutralizing antibody activity.
HIV superinfection (repeat infection from a second partner) is a unique situation in which infection occurs in the presence of a pre-existing HIV-specific immune response. Identification of immune deficits in superinfected individuals prior to superinfection can shed light on immune functions associated with HIV acquisition, and help inform prophylactic vaccine development. We compared various antibody measures in superinfected women vs. women who remained singly infected. We found no evidence that deficits in any of the measures analyzed were associated with superinfection risk. This suggests a prophylactic vaccine may need to elicit stronger or different immune responses than those investigated here.
Collapse
Affiliation(s)
- Keshet Ronen
- Human Biology Division, Fred Hutch Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 98109, USA; Department of Global Health, University of Washington, 325 9th Avenue, Seattle, WA 98104, USA; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Adam S Dingens
- Human Biology Division, Fred Hutch Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 98109, USA; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Susan M Graham
- Department of Global Health, University of Washington, 325 9th Avenue, Seattle, WA 98104, USA; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Kishor Mandaliya
- Department of Global Health, University of Washington, 325 9th Avenue, Seattle, WA 98104, USA
| | - R Scott McClelland
- Department of Global Health, University of Washington, 325 9th Avenue, Seattle, WA 98104, USA; Department of Epidemiology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Institute of Tropical and Infectious Disease, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Julie Overbaugh
- Human Biology Division, Fred Hutch Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutch Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 98109, USA.
| |
Collapse
|
18
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
19
|
Pessôa R, Loureiro P, Esther Lopes M, Carneiro-Proietti ABF, Sabino EC, Busch MP, Sanabani SS. Ultra-Deep Sequencing of HIV-1 near Full-Length and Partial Proviral Genomes Reveals High Genetic Diversity among Brazilian Blood Donors. PLoS One 2016; 11:e0152499. [PMID: 27031505 PMCID: PMC4816342 DOI: 10.1371/journal.pone.0152499] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/15/2016] [Indexed: 11/28/2022] Open
Abstract
Background Here, we aimed to gain a comprehensive picture of the HIV-1 diversity in the northeast and southeast part of Brazil. To this end, a high-throughput sequencing-by-synthesis protocol and instrument were used to characterize the near full length (NFLG) and partial HIV-1 proviral genome in 259 HIV-1 infected blood donors at four major blood centers in Brazil: Pro-Sangue foundation (São Paulo state (SP), n 51), Hemominas foundation (Minas Gerais state (MG), n 41), Hemope foundation (Recife state (PE), n 96) and Hemorio blood bank (Rio de Janeiro (RJ), n 70). Materials and Methods A total of 259 blood samples were obtained from 195 donors with long-standing infections and 64 donors with a lack of stage information. DNA was extracted from the peripheral blood mononuclear cells (PBMCs) to amplify the HIV-1 NFLGs from five overlapping fragments. The amplicons were molecularly bar-coded, pooled, and sequenced by Illumina paired-end protocol. Results Of the 259 samples studied, 208 (80%) NFLGs and 49 (18.8%) partial fragments were de novo assembled into contiguous sequences and successfully subtyped. Of these 257 samples, 183 (71.2%) were pure subtypes consisting of clade B (n = 167, 65%), C (n = 10, 3.9%), F1 (n = 4, 1.5%), and D (n = 2, 0.7%). Recombinant viruses were detected in 74 (28.8%) samples and consist of unique BF1 (n = 41, 15.9%), BC (n = 7, 2.7%), BCF1 (n = 4, 1.5%), CF1 and CDK (n = 1, 0.4%, each), CRF70_BF1 (n = 4, 1.5%), CRF71_BF1 (n = 12, 4.7%), and CRF72_BF1 (n = 4, 1.5%). Evidence of dual infection was detected in four patients coinfected with the same subtype (n = 3) and distinct subtype (n = 1). Conclusion Based on this work, subtype B appears to be the prevalent subtype followed by a high proportion of intersubtype recombinants that appeared to be arising continually in this country. Our study represents the largest analysis of the viral NFLG ever undertaken worldwide and provides insights into the understanding the genesis of the HIV-1 epidemic in this particular area of South America and informs vaccine design and clinical trials.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Clinical Laboratory, Department of Pathology, LIM 03, Hospital das Clínicas (HC), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paula Loureiro
- Pernambuco State Center of Hematology and Hemotherapy—HEMOPE, Recife, Pernambuco, Brazil
| | | | | | - Ester C Sabino
- Department of Infectious Disease/Institute of Tropical Medicine, University of São Paulo, Sao Paulo, Brazil
| | - Michael P. Busch
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Sabri S Sanabani
- Clinical Laboratory, Department of Pathology, LIM 03, Hospital das Clínicas (HC), School of Medicine, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
20
|
Sun X, Xiao Y, Peng Z. Modelling HIV superinfection among men who have sex with men. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2016; 13:171-191. [PMID: 26776258 DOI: 10.3934/mbe.2016.13.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Superinfection, a phenomenon that an individual infected by one HIV strain is re-infected by the second heterologous HIV strain, occurs in HIV infection. A mathematical model is formulated to examine how superinfection affects transmission dynamics of drug sensitive/resistant strains. Three reproduction numbers are defined: reproduction numbers Rr and Rs for drug-resistant and drug-sensitive strains, respectively, and the invasion reproduction number R (r)s. The disease-free equilibrium always exists and is locally stable when the larger of Rs and Rr is less than one. The drug resistant strain-only equilibrium is locally stable when Rr > 1 and R (r)s < 1. Numerical studies show that as the superinfection coefficient of the sensitive strain increases the system may (1) change to bistable states of disease-free equilibrium and the coexistence state from the stable disease-free equilibrium under no superinfection; (2) experience the stable resistant-strain only equilibrium, the bistable states of resistant-strain only equilibrium and the coexistence state, and the stable coexistence state in turn. This implies that superinfection of the sensitive strain is beneficial for two strains to coexist. While superinfection of the resistant strain makes resistant strain more likely to be sustained. The findings suggest that superinfection induces the complicated dynamics, and brings more difficulties in antiretroviral therapy.
Collapse
Affiliation(s)
- Xiaodan Sun
- Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | |
Collapse
|
21
|
Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort. PLoS Pathog 2016; 12:e1005369. [PMID: 26766578 PMCID: PMC4713061 DOI: 10.1371/journal.ppat.1005369] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.
Collapse
|
22
|
Love TMT, Park SY, Giorgi EE, Mack WJ, Perelson AS, Lee HY. SPMM: estimating infection duration of multivariant HIV-1 infections. Bioinformatics 2015; 32:1308-15. [PMID: 26722117 DOI: 10.1093/bioinformatics/btv749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Illustrating how HIV-1 is transmitted and how it evolves in the following weeks is an important step for developing effective vaccination and prevention strategies. It is currently possible through DNA sequencing to account for the diverse array of viral strains within an infected individual. This provides an unprecedented opportunity to pinpoint when each patient was infected and which viruses were transmitted. RESULTS Here we develop a mathematical tool for early HIV-1 evolution within a subject whose infection originates either from a single or multiple viral variants. The shifted Poisson mixture model (SPMM) provides a quantitative guideline for segregating viral lineages, which in turn enables us to assess when a subject was infected. The infection duration estimated by SPMM showed a statistically significant linear relationship with that by Fiebig laboratory staging (P = 0.00059) among 37 acutely infected subjects. Our tool provides a functional approach to understanding early genetic diversity, one of the most important parameters for deciphering HIV-1 transmission and predicting the rate of disease progression. AVAILABILITY AND IMPLEMENTATION SPMM, webserver, is available at http://www.hayounlee.org/web-tools.html. CONTACT hayoun@usc.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York, 14642, USA
| | - Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, 90089, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and
| | - Ha Youn Lee
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and
| |
Collapse
|
23
|
Cortez V, Wang B, Dingens A, Chen MM, Ronen K, Georgiev IS, McClelland RS, Overbaugh J. The Broad Neutralizing Antibody Responses after HIV-1 Superinfection Are Not Dominated by Antibodies Directed to Epitopes Common in Single Infection. PLoS Pathog 2015; 11:e1004973. [PMID: 26158467 PMCID: PMC4497680 DOI: 10.1371/journal.ppat.1004973] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/22/2015] [Indexed: 12/18/2022] Open
Abstract
HIV-1 vaccines designed to date have failed to elicit neutralizing antibodies (Nabs) that are capable of protecting against globally diverse HIV-1 subtypes. One relevant setting to study the development of a strong, cross-reactive Nab response is HIV-1 superinfection (SI), defined as sequential infections from different source partners. SI has previously been shown to lead to a broader and more potent Nab response when compared to single infection, but it is unclear whether SI also impacts epitope specificity and if the epitopes targeted after SI differ from those targeted after single infection. Here the post-SI Nab responses were examined from 21 Kenyan women collectively exposed to subtypes A, C, and D and superinfected after a median time of ~1.07 years following initial infection. Plasma samples chosen for analysis were collected at a median time point ~2.72 years post-SI. Because previous studies of singly infected populations with broad and potent Nab responses have shown that the majority of their neutralizing activity can be mapped to 4 main epitopes on the HIV-1 Envelope, we focused on these targets, which include the CD4-binding site, a V1/V2 glycan, the N332 supersite in V3, and the membrane proximal external region of gp41. Using standard epitope mapping techniques that were applied to the previous cohorts, the present study demonstrates that SI did not induce a dominant Nab response to any one of these epitopes in the 21 women. Computational sera delineation analyses also suggested that 20 of the 21 superinfected women's Nab responses could not be ascribed a single specificity with high confidence. These data are consistent with a model in which SI with diverse subtypes promotes the development of a broad polyclonal Nab response, and thus would provide support for vaccine designs using multivalent HIV immunogens to elicit a diverse repertoire of Nabs.
Collapse
Affiliation(s)
- Valerie Cortez
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Bingjie Wang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Adam Dingens
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mitchell M. Chen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Keshet Ronen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ivelin S. Georgiev
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - R. Scott McClelland
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 30:296-307. [PMID: 25541518 PMCID: PMC7106159 DOI: 10.1016/j.meegid.2014.12.022] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 02/08/2023]
Abstract
Recombination is a pervasive process generating diversity in most viruses. It joins variants that arise independently within the same molecule, creating new opportunities for viruses to overcome selective pressures and to adapt to new environments and hosts. Consequently, the analysis of viral recombination attracts the interest of clinicians, epidemiologists, molecular biologists and evolutionary biologists. In this review we present an overview of three major areas related to viral recombination: (i) the molecular mechanisms that underlie recombination in model viruses, including DNA-viruses (Herpesvirus) and RNA-viruses (Human Influenza Virus and Human Immunodeficiency Virus), (ii) the analytical procedures to detect recombination in viral sequences and to determine the recombination breakpoints, along with the conceptual and methodological tools currently used and a brief overview of the impact of new sequencing technologies on the detection of recombination, and (iii) the major areas in the evolutionary analysis of viral populations on which recombination has an impact. These include the evaluation of selective pressures acting on viral populations, the application of evolutionary reconstructions in the characterization of centralized genes for vaccine design, and the evaluation of linkage disequilibrium and population structure.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal; Computational Biology Institute, George Washington University, Ashburn, VA 20147, USA
| | - Miguel Arenas
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER en Epidemiología y Salud Pública, Spain
| | - Ferran Palero
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain.
| |
Collapse
|
25
|
HIV competition dynamics over sexual networks: first comer advantage conserves founder effects. PLoS Comput Biol 2015; 11:e1004093. [PMID: 25654450 PMCID: PMC4318579 DOI: 10.1371/journal.pcbi.1004093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/16/2014] [Indexed: 11/24/2022] Open
Abstract
Outside Africa, the global phylogeography of HIV is characterized by compartmentalized local epidemics that are typically dominated by a single subtype, which indicates strong founder effects. We hypothesized that the competition of viral strains at the epidemic level may involve an advantage of the resident strain that was the first to colonize a population. Such an effect would slow down the invasion of new strains, and thus also the diversification of the epidemic. We developed a stochastic modelling framework to simulate HIV epidemics over dynamic contact networks. We simulated epidemics in which the second strain was introduced into a population where the first strain had established a steady-state epidemic, and assessed whether, and on what time scale, the second strain was able to spread in the population. Simulations were parameterized based on empirical data; we tested scenarios with varying levels of overall prevalence. The spread of the second strain occurred on a much slower time scale compared with the initial expansion of the first strain. With strains of equal transmission efficiency, the second strain was unable to invade on a time scale relevant for the history of the HIV pandemic. To become dominant over a time scale of decades, the second strain needed considerable (>25%) advantage in transmission efficiency over the resident strain. The inhibition effect was weaker if the second strain was introduced while the first strain was still in its growth phase. We also tested how possible mechanisms of interference (inhibition of superinfection, depletion of highly connected hubs in the network, one-time acute peak of infectiousness) contribute to the inhibition effect. Our simulations confirmed a strong first comer advantage in the competition dynamics of HIV at the population level, which may explain the global phylogeography of the virus and may influence the future evolution of the pandemic. The African epicentre of the HIV pandemic is home to a vast array of divergent viruses; however, local epidemics in other parts of the world are typically dominated by a single variant (subtype) of the virus, with different subtypes found in the different regions. This pattern indicates that local epidemics outside Africa have been started by the introduction of single “founder” viruses in the susceptible populations. However, how these patterns persisted over several decades in the face of international migration requires further explanation. By analyzing simulated epidemics, we demonstrated that an epidemic established by the first successful founder strain can inhibit the introduction and slow down the subsequent spread of further virus strains by several mechanisms of interference. Our results have implications for the global evolution of the HIV pandemic: the fast expansion of subtypes benefited from a “first comer advantage,” and founder viruses may have been selected by random sampling, rather than due to superior transmissibility/fitness; the fast expansion of these (possibly) suboptimal virus strains may have considerably delayed the spread of more transmissible HIV variants; however, the future evolution of the pandemic is likely to be characterized by a slow expansion of viral strains with increased transmission potential.
Collapse
|
26
|
HIV-1 superinfection is associated with an accelerated viral load increase but has a limited impact on disease progression. AIDS 2014; 28:2281-6. [PMID: 25102090 DOI: 10.1097/qad.0000000000000422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE HIV-1 superinfection occurs frequently in high-risk populations, but its clinical consequences remain poorly characterized. We undertook this study to determine the impact of HIV-1 superinfection on disease progression. DESIGN/METHODS In the largest prospective cohort study of superinfection to date, we compared measures of HIV-1 progression in women who acquired superinfection with those who did not. Clinical and laboratory data were collected at quarterly intervals. Linear mixed effects models were used to compare postacute viral load and CD4 T-cell counts over time in singly infected and superinfected women. Cox proportional hazards analysis was used to determine the effect of superinfection on time to clinical progression [CD4 cell count <200 cells/μl, antiretroviral therapy (ART) initiation or death]. RESULTS Among 144 women, 21 of whom acquired superinfection during follow-up, the rate of viral load increase was higher in superinfected than in singly infected women (P = 0.0008). In adjusted analysis, superinfected women had lower baseline viral load before superinfection (P = 0.05) and a trend for increased viral load at superinfection acquisition (P = 0.09). We also observed a borderline association of superinfection with accelerated CD4 cell count decline (P = 0.06). However, there was no significant difference in time to clinical progression events. CONCLUSION These data suggest that superinfection is associated with accelerated progression in laboratory measures of HIV-1 disease, but has a limited impact on the occurrence of clinical events. Our observation that superinfected individuals have lower baseline viral load prior to superinfection suggests that there may be host or viral determinants of susceptibility to superinfection.
Collapse
|
27
|
Rawson JMO, Mansky LM. Retroviral vectors for analysis of viral mutagenesis and recombination. Viruses 2014; 6:3612-42. [PMID: 25254386 PMCID: PMC4189041 DOI: 10.3390/v6093612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Association between cellular immune activation, target cell frequency, and risk of human immunodeficiency virus type 1 superinfection. J Virol 2014; 88:5894-9. [PMID: 24623424 DOI: 10.1128/jvi.00187-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We performed a case-control study of women at risk of HIV-1 superinfection to understand the relationship between immune activation and HIV-1 acquisition. An increase in the frequency of HIV-1 target cells, but not in other markers of T cell activation, was associated with a 1.7-fold increase in the odds of superinfection. This suggests that HIV-1 acquisition risk is influenced more by the frequency of target cells than by the generalized level of immune activation.
Collapse
|
29
|
Prevalence of HIV-1 dual infection in long-term nonprogressor-elite controllers. J Acquir Immune Defic Syndr 2014; 64:225-31. [PMID: 23714744 DOI: 10.1097/qai.0b013e31829bdc85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Human immunodeficiency virus type 1 (HIV-1) dual infection (DI) in long-term nonprogressor-elite controller patients (LTNP-EC) has been described only in sporadic cases and then, consequences in disease progression are not clearly established. To fill-up this limited knowledge, we analyzed, for the first time, the prevalence, host genetic polymorphisms, and clinical consequences of HIV-1 DI in a group of LTNP-EC. METHODS For DI detection, nucleotide sequences in env gene from viruses from 20 LTNP-EC were analyzed by maximum likelihood. Epidemiological and clinical parameters and host factors of patients were also studied. RESULTS DI was detected in 4 (20%) of the 20 LTNP-EC, of which 3 maintained the elite controller status. CD4⁺ T-cell counts were not different between single and DI patients although higher CD8⁺ T-cell counts were observed in DI patients, and, consequently, the CD4⁺/CD8⁺ ratios were lower in LTNP-EC DI patients. CONCLUSIONS Prevalence of HIV-1 DIs in LTNP-EC is similar to other groups of HIV-1 patients; in addition, DI was not associated with loss of disease control in the patients. These DI LTNP-EC patients showed, in comparison with single infected patients, higher numbers of CD8⁺ T cells and lower CD4⁺/CD8⁺ ratios.
Collapse
|
30
|
Nunes ERDM, Zukurov JP, Maricato JT, Sucupira MCA, Diaz RS, Janini LMR. Analysis of HIV-1 protease gene reveals frequent multiple infections followed by recombination among drug treated individuals living in São Paulo and Santos, Brazil. PLoS One 2014; 9:e84066. [PMID: 24404149 PMCID: PMC3880281 DOI: 10.1371/journal.pone.0084066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
The present study investigated the prevalence of HIV-1 multiple infections in a population composed by 47 patients under HAART failure and enrolled at the National DST/AIDS, Program, Ministry of Health, Brazil.Detection of multiple infections was done using a previously published RFLP assay for the HIV-1 protease gene, which is able of distinguishing between infections caused by a single or multiple HIV-1 subtypes. Samples with multiple infections were cloned, and sequence data submitted to phylogenetic analysis. We were able to identify 17 HIV-1 multiple infections out of 47 samples. Multiple infections were mostly composed by a mixture of recombinant viruses (94%), with only one case in which protease gene pure subtypes B and F were recovered. This is the first study that reports the prevalence of multiple infections and intersubtype recombinants in a population undergoing HAART in Brazil. Based on the data there was a steep increase of multiple infections after the introduction of the combined antiretroviral therapy in Brazil. Cases of multiple infections may be associated with HIV-1 genetic diversity through recombination allowing for the generation of viruses showing a combination of resistance mutations.
Collapse
Affiliation(s)
| | - Jean Paulo Zukurov
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Luíz Mário Ramos Janini
- Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Limited HIV-1 superinfection in seroconverters from the CAPRISA 004 Microbicide Trial. J Clin Microbiol 2013; 52:844-8. [PMID: 24371237 DOI: 10.1128/jcm.03143-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
HIV-1 superinfection (SI) occurs when an infected individual acquires a distinct new viral strain. The rate of superinfection may be reflective of the underlying HIV risk in a population. The Centre for the AIDS Programme of Research in South Africa (CAPRISA) 004 clinical trial demonstrated that women who used a tenofovir-containing microbicide gel had lower rates of HIV infection than women using a placebo gel. Women who contracted HIV-1 during the trial were screened for the occurrence of superinfection by next-generation sequencing of the viral gag and env genes. There were two cases (one in each trial arm) of subtype C superinfection identified from the 76 women with primary infection screened at two time points (rate of superinfection, 1.5/100 person-years). Both women experienced a >0.5-log increase in viral load during the window when superinfection occurred. The rate of superinfection was significantly lower than the overall primary HIV incidence in the microbicide trial (incidence rate ratio [IRR], 0.20; P=0.003). The women who seroconverted during the trial reported a significant increase in sexual contact with their stable partner 4 months after seroconversion (P<0.001), which may have lowered the risk of superinfection in this population. The lower frequency of SI compared to the primary incidence is in contrast to a report from a general heterosexual African population but agrees with a study of high-risk women in Kenya. A better understanding of the rate of HIV superinfection could have important implications for ongoing HIV vaccine research.
Collapse
|
32
|
Bartha I, Assel M, Sloot PMA, Zazzi M, Torti C, Schülter E, De Luca A, Sönnerborg A, Abecasis AB, Van Laethem K, Rosi A, Svärd J, Paredes R, van de Vijver DAMC, Vandamme AM, Müller V. Superinfection with drug-resistant HIV is rare and does not contribute substantially to therapy failure in a large European cohort. BMC Infect Dis 2013; 13:537. [PMID: 24219163 PMCID: PMC3879221 DOI: 10.1186/1471-2334-13-537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
Background Superinfection with drug resistant HIV strains could potentially contribute to compromised therapy in patients initially infected with drug-sensitive virus and receiving antiretroviral therapy. To investigate the importance of this potential route to drug resistance, we developed a bioinformatics pipeline to detect superinfection from routinely collected genotyping data, and assessed whether superinfection contributed to increased drug resistance in a large European cohort of viremic, drug treated patients. Methods We used sequence data from routine genotypic tests spanning the protease and partial reverse transcriptase regions in the Virolab and EuResist databases that collated data from five European countries. Superinfection was indicated when sequences of a patient failed to cluster together in phylogenetic trees constructed with selected sets of control sequences. A subset of the indicated cases was validated by re-sequencing pol and env regions from the original samples. Results 4425 patients had at least two sequences in the database, with a total of 13816 distinct sequence entries (of which 86% belonged to subtype B). We identified 107 patients with phylogenetic evidence for superinfection. In 14 of these cases, we analyzed newly amplified sequences from the original samples for validation purposes: only 2 cases were verified as superinfections in the repeated analyses, the other 12 cases turned out to involve sample or sequence misidentification. Resistance to drugs used at the time of strain replacement did not change in these two patients. A third case could not be validated by re-sequencing, but was supported as superinfection by an intermediate sequence with high degenerate base pair count within the time frame of strain switching. Drug resistance increased in this single patient. Conclusions Routine genotyping data are informative for the detection of HIV superinfection; however, most cases of non-monophyletic clustering in patient phylogenies arise from sample or sequence mix-up rather than from superinfection, which emphasizes the importance of validation. Non-transient superinfection was rare in our mainly treatment experienced cohort, and we found a single case of possible transmitted drug resistance by this route. We therefore conclude that in our large cohort, superinfection with drug resistant HIV did not compromise the efficiency of antiretroviral treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
33
|
Ronen K, McCoy CO, Matsen FA, Boyd DF, Emery S, Odem-Davis K, Jaoko W, Mandaliya K, McClelland RS, Richardson BA, Overbaugh J. HIV-1 superinfection occurs less frequently than initial infection in a cohort of high-risk Kenyan women. PLoS Pathog 2013; 9:e1003593. [PMID: 24009513 PMCID: PMC3757054 DOI: 10.1371/journal.ppat.1003593] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
HIV superinfection (reinfection) has been reported in several settings, but no study has been designed and powered to rigorously compare its incidence to that of initial infection. Determining whether HIV infection reduces the risk of superinfection is critical to understanding whether an immune response to natural HIV infection is protective. This study compares the incidence of initial infection and superinfection in a prospective seroincident cohort of high-risk women in Mombasa, Kenya. A next-generation sequencing-based pipeline was developed to screen 129 women for superinfection. Longitudinal plasma samples at <6 months, >2 years and one intervening time after initial HIV infection were analyzed. Amplicons in three genome regions were sequenced and a median of 901 sequences obtained per gene per timepoint. Phylogenetic evidence of polyphyly, confirmed by pairwise distance analysis, defined superinfection. Superinfection timing was determined by sequencing virus from intervening timepoints. These data were combined with published data from 17 additional women in the same cohort, totaling 146 women screened. Twenty-one cases of superinfection were identified for an estimated incidence rate of 2.61 per 100 person-years (pys). The incidence rate of initial infection among 1910 women in the same cohort was 5.75 per 100 pys. Andersen-Gill proportional hazards models were used to compare incidences, adjusting for covariates known to influence HIV susceptibility in this cohort. Superinfection incidence was significantly lower than initial infection incidence, with a hazard ratio of 0.47 (CI 0.29-0.75, p = 0.0019). This lower incidence of superinfection was only observed >6 months after initial infection. This is the first adequately powered study to report that HIV infection reduces the risk of reinfection, raising the possibility that immune responses to natural infection are partially protective. The observation that superinfection risk changes with time implies a window of protection that coincides with the maturation of HIV-specific immunity.
Collapse
Affiliation(s)
- Keshet Ronen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Connor O. McCoy
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - David F. Boyd
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sandra Emery
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Katherine Odem-Davis
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
| | - Kishor Mandaliya
- Coast Provincial General Hospital, Women's Health Project, Mombasa, Kenya
| | - R. Scott McClelland
- Department of Medical Microbiology, University of Nairobi, Kenyatta National Hospital, Nairobi, Kenya
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Barbra A. Richardson
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
34
|
Matsen FA, Gallagher A, McCoy CO. Minimizing the average distance to a closest leaf in a phylogenetic tree. Syst Biol 2013; 62:824-36. [PMID: 23843314 DOI: 10.1093/sysbio/syt044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
When performing an analysis on a collection of molecular sequences, it can be convenient to reduce the number of sequences under consideration while maintaining some characteristic of a larger collection of sequences. For example, one may wish to select a subset of high-quality sequences that represent the diversity of a larger collection of sequences. One may also wish to specialize a large database of characterized "reference sequences" to a smaller subset that is as close as possible on average to a collection of "query sequences" of interest. Such a representative subset can be useful whenever one wishes to find a set of reference sequences that is appropriate to use for comparative analysis of environmentally derived sequences, such as for selecting "reference tree" sequences for phylogenetic placement of metagenomic reads. In this article, we formalize these problems in terms of the minimization of the Average Distance to the Closest Leaf (ADCL) and investigate algorithms to perform the relevant minimization. We show that the greedy algorithm is not effective, show that a variant of the Partitioning Around Medoids (PAM) heuristic gets stuck in local minima, and develop an exact dynamic programming approach. Using this exact program we note that the performance of PAM appears to be good for simulated trees, and is faster than the exact algorithm for small trees. On the other hand, the exact program gives solutions for all numbers of leaves less than or equal to the given desired number of leaves, whereas PAM only gives a solution for the prespecified number of leaves. Via application to real data, we show that the ADCL criterion chooses chimeric sequences less often than random subsets, whereas the maximization of phylogenetic diversity chooses them more often than random. These algorithms have been implemented in publicly available software.
Collapse
Affiliation(s)
- Frederick A Matsen
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 91802, USA
| | | | | |
Collapse
|
35
|
Bouvin-Pley M, Morgand M, Moreau A, Jestin P, Simonnet C, Tran L, Goujard C, Meyer L, Barin F, Braibant M. Evidence for a continuous drift of the HIV-1 species towards higher resistance to neutralizing antibodies over the course of the epidemic. PLoS Pathog 2013; 9:e1003477. [PMID: 23853594 PMCID: PMC3701719 DOI: 10.1371/journal.ppat.1003477] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 11/24/2022] Open
Abstract
We compared the neutralization sensitivity of early/transmitted HIV-1 variants from patients infected by subtype B viruses at 3 periods of the epidemic (1987–1991, 1996–2000, 2006–2010). Infectious pseudotyped viruses expressing envelope glycoproteins representative of the viral quasi-species infecting each patient were tested for sensitivity to neutralization by pools of sera from HIV-1 chronically infected patients and by an updated panel of 13 human monoclonal neutralizing antibodies (HuMoNAbs). A progressive significantly enhanced resistance to neutralization was observed over calendar time, by both human sera and most of the HuMoNAbs tested (b12, VRC01, VRC03, NIH45-46G54W, PG9, PG16, PGT121, PGT128, PGT145). Despite this evolution, a combination of two HuMoNAbs (NIH45-46G54W and PGT128) still would efficiently neutralize the most contemporary transmitted variants. In addition, we observed a significant reduction of the heterologous neutralizing activity of sera from individuals infected most recently (2003–2007) compared to patients infected earlier (1987–1991), suggesting that the increasing resistance of the HIV species to neutralization over time coincided with a decreased immunogenicity. These data provide evidence for an ongoing adaptation of the HIV-1 species to the humoral immunity of the human population, which may add an additional obstacle to the design of an efficient HIV-1 vaccine. Most of the patients develop autologous neutralizing antibodies (NAbs) during HIV-1 infection. These NAbs drive the viral evolution and lead to the selection of escape variants at the individual level. The aim of our study was to check if, subsequently to the selective pressure exerted by the individual NAbs responses, the HIV-1 species has evolved at the population level towards an enhanced resistance to antibody neutralization. By comparing HIV-1 subtype B variants collected at three periods spanning more than 2 decades, we found a significantly progressive enhanced resistance to neutralization of the HIV-1 species over time. In addition, the enhanced resistance of the HIV species to neutralization coincided with a decreased capability of the virus to induce NAbs in infected patients. Despite this evolution, one combination of two human monoclonal broadly NAbs still were able to neutralize the most recent HIV-1 variants, suggesting that this combination should be preferentially included in future human immunoprophylaxis trials.
Collapse
Affiliation(s)
| | - Marion Morgand
- Université François Rabelais, Inserm U966, Tours, France
| | - Alain Moreau
- Université François Rabelais, Inserm U966, Tours, France
| | - Pauline Jestin
- Université Paris Sud, CESP Inserm U1018, Paris, France
- AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Laurent Tran
- Université Paris Sud, CESP Inserm U1018, Paris, France
- AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
- for the ANRS SEROCO and PRIMO study groups
| | - Cécile Goujard
- Université Paris Sud, CESP Inserm U1018, Paris, France
- AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
- for the ANRS SEROCO and PRIMO study groups
| | - Laurence Meyer
- Université Paris Sud, CESP Inserm U1018, Paris, France
- AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
- for the ANRS SEROCO and PRIMO study groups
| | - Francis Barin
- Université François Rabelais, Inserm U966, Tours, France
- Centre National de Référence VIH, Laboratoire de Bactériologie-Virologie, CHU Bretonneau, Tours, France
| | - Martine Braibant
- Université François Rabelais, Inserm U966, Tours, France
- * E-mail:
| |
Collapse
|
36
|
Manrique J, Piatak M, Lauer W, Johnson W, Mansfield K, Lifson J, Desrosiers R. Influence of mismatch of Env sequences on vaccine protection by live attenuated simian immunodeficiency virus. J Virol 2013; 87:7246-54. [PMID: 23637396 PMCID: PMC3700272 DOI: 10.1128/jvi.00798-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/20/2013] [Indexed: 01/08/2023] Open
Abstract
Vaccine/challenge experiments that utilize live attenuated strains of simian immunodeficiency virus (SIV) in monkeys may be useful for elucidating what is needed from a vaccine in order to achieve protective immunity. Derivatives of SIVmac239 and SIVmac239Δnef were constructed in which env sequences were replaced with those of the heterologous strain E543; these were then used in vaccine/challenge experiments. When challenge occurred at 22 weeks, 10 of 12 monkeys exhibited apparent sterilizing immunity despite a mismatch of Env sequences, compared to 12 of 12 monkeys with apparent sterilizing immunity when challenge virus was matched in its Env sequence. However, when challenge occurred at 6 weeks, 6 of 6 SIV239Δnef-immunized monkeys became superinfected by challenge virus mismatched in its Env sequence (SIV239/EnvE543). These results contrast markedly not only with the results of the week 22 challenge but also with the sterilizing immunity observed in 5 of 5 SIV239Δnef-immunized rhesus monkeys challenged at 5 weeks with SIV239, i.e., with no mismatch of Env sequences. We conclude from these studies that a mismatch of Env sequences in the challenge virus can have a dramatic effect on the extent of apparent sterilizing immunity when challenge occurs relatively early, 5 to 6 weeks after the nef-deleted SIV administration. However, by 22 weeks, mismatch of Env sequences has little or no influence on the degree of protection against challenge virus. Our findings suggest that anti-Env immune responses are a key component of the protective immunity elicited by live attenuated, nef-deleted SIV.
Collapse
Affiliation(s)
- Julieta Manrique
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - William Lauer
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| | - Welkin Johnson
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| | - Keith Mansfield
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory, Frederick, Maryland, USA
| | - Ronald Desrosiers
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| |
Collapse
|
37
|
Redd AD, Quinn TC, Tobian AAR. Frequency and implications of HIV superinfection. THE LANCET. INFECTIOUS DISEASES 2013; 13:622-8. [PMID: 23726798 PMCID: PMC3752600 DOI: 10.1016/s1473-3099(13)70066-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HIV superinfection occurs when an individual with HIV is infected with a new distinct HIV viral strain. Superinfection has been reported throughout the world, and studies have recorded incidence rates of 0-7·7% per year. Use of next-generation sequencing has improved detection of superinfection, which can be transmitted by injecting drug use and sexual intercourse. Superinfection might have incidence rates comparable to those of initial HIV infection. Clinicians should encourage safe sexual and injecting drug use practices for HIV-infected patients because superinfection has detrimental effects on clinical outcomes and could pose a concern for large-scale antiretroviral treatment plans. The occurrence of superinfection has implications for vaccine research, since it seems initial HIV infection is not fully protective against a subsequent infection. Additional collaborative research could benefit care of patients and inform future vaccine design.
Collapse
Affiliation(s)
- Andrew D Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
38
|
Forthal DN, Landucci G, Chohan B, Richardson BA, McClelland RS, Jaoko W, Blish C, Overbaugh J. Antibody-dependent cell-mediated virus inhibition antibody activity does not correlate with risk of HIV-1 superinfection. J Acquir Immune Defic Syndr 2013; 63:31-3. [PMID: 23344546 DOI: 10.1097/qai.0b013e3182874d41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies of HIV-infected women with high-risk behavior have indicated that neither neutralizing antibody nor cellular immunity elicited by an initial HIV-1 infection is associated with protection against superinfection with a different HIV-1 strain. Here, we measured antibody-dependent cell-mediated virus inhibition (ADCVI) antibody activity in the plasma of 12 superinfected cases and 36 singly infected matched controls against 2 heterologous viruses. We found no association between plasma ADCVI activity and superinfection status. ADCVI antibody activity against heterologous virus elicited by the original infection may not contribute to preventing a superinfecting HIV-1.
Collapse
Affiliation(s)
- Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92967, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Koning FA, Badhan A, Shaw S, Fisher M, Mbisa JL, Cane PA. Dynamics of HIV type 1 recombination following superinfection. AIDS Res Hum Retroviruses 2013; 29:963-70. [PMID: 23495713 DOI: 10.1089/aid.2013.0009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There are currently few detailed studies describing HIV-1 recombination events or the potential impact of recombination on drug resistance. We describe here the viral recombination dynamics in a drug-naive patient initially infected with a circulating recombinant form 19 (CRF19) virus containing transmitted drug resistance mutations followed by superinfection with "wild-type" subtype B virus. Single genome analysis showed replacement of the primary CRF19 virus by recombinants of the CRF19 virus and the superinfecting subtype B virus. The CRF19/B recombinant virus dominating after superinfection had lost drug resistance mutations and at no time was the superinfecting subtype B variant found to be dominant in blood plasma. Furthermore, the detection of recombinant viruses in seminal plasma indicates the potential for onward transmission of these strains.
Collapse
Affiliation(s)
- Fransje A. Koning
- Virus Reference Department, Public Health England, London, United Kingdom
| | - Anjna Badhan
- Virus Reference Department, Public Health England, London, United Kingdom
| | - Simon Shaw
- Brighton and Sussex University Hospitals NHS Trust, Department of HIV and GUM, Royal Sussex County Hospital, Brighton, United Kingdom
| | - Martin Fisher
- Brighton and Sussex University Hospitals NHS Trust, Department of HIV and GUM, Royal Sussex County Hospital, Brighton, United Kingdom
| | - Jean L. Mbisa
- Virus Reference Department, Public Health England, London, United Kingdom
| | - Patricia A. Cane
- Virus Reference Department, Public Health England, London, United Kingdom
| |
Collapse
|
40
|
The role of virulence in in vivo superinfection fitness of the vertebrate RNA virus infectious hematopoietic necrosis virus. J Virol 2013; 87:8145-57. [PMID: 23678165 DOI: 10.1128/jvi.00089-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a novel in vivo superinfection fitness assay to examine superinfection dynamics and the role of virulence in superinfection fitness. This assay involves controlled, sequential infections of a natural vertebrate host, Oncorhynchus mykiss (rainbow trout), with variants of a coevolved viral pathogen, infectious hematopoietic necrosis virus (IHNV). Intervals between infections ranged from 12 h to 7 days, and both frequency of superinfection and viral replication levels were examined. Using virus genotype pairs of equal and unequal virulence, we observed that superinfection generally occurred with decreasing frequency as the interval between exposures to each genotype increased. For both the equal-virulence and unequal-virulence genotype pairs, the frequency of superinfection in most cases was the same regardless of which genotype was used in the primary exposure. The ability to replicate in the context of superinfection also did not differ between the genotypes of equal or unequal virulence tested here. For both genotype pairs, the mean viral load of the secondary virus was significantly reduced in superinfection while primary virus replication was unaffected. Our results demonstrate, for the two genotype pairs examined, that superinfection restriction does occur for IHNV and that higher virulence did not correlate with a significant difference in superinfection fitness. To our knowledge, this is the first assay to examine the role of virulence of an RNA virus in determining superinfection fitness dynamics within a natural vertebrate host.
Collapse
|
41
|
Mohanram V, Sköld AE, Bächle SM, Pathak SK, Spetz AL. IFN-α Induces APOBEC3G, F, and A in Immature Dendritic Cells and Limits HIV-1 Spread to CD4+T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3346-53. [DOI: 10.4049/jimmunol.1201184] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Coverage of primary mother-to-child HIV transmission isolates by second-generation broadly neutralizing antibodies. AIDS 2013; 27:337-46. [PMID: 23296195 DOI: 10.1097/qad.0b013e32835cadd6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES AND DESIGN A vaccine capable of providing cross-clade, sterilizing protection has been the holy grail of HIV-1 prevention and control since the beginning of the pandemic. A major component of this effort has been the identification and characterization of broadly neutralizing antibodies (bNAbs). Recent advances in bNAb isolation, structure-based engineering, and vector-mediated gene transfer have led to increased interest in bypassing the immune system by expressing neutralizing antibodies directly in muscle. To assess the neutralization potency and coverage of a panel of second-generation bNAbs, we cloned and phenotypically characterized 227 primary HIV-1 envelopes from 23 mother-to-child transmission (MTCT) pairs. METHODS Viral envelopes were tested for in-vitro neutralization sensitivity using a standard pseudotype assay system. A 50% inhibitory concentration (IC50) at least 10 μg/ml was used to define neutralization resistance. RESULTS The combination of antibodies PG16 and NIH45-46 had the broadest activity with the highest neutralization potency, achieving full coverage of 87% of transmission pairs (at a median sampling depth of 10 envelopes per pair) and 96% of recently infected infants in a very conservative analysis. CONCLUSIONS Our data strongly support the inclusion of NIH45-46, or a more extensively modified variant, in future proof-of-principle immunoprophylaxis or gene therapy-based trials. Furthermore, until robust sequence-based resistance detection becomes available, it will be necessary to conduct deeper phenotypic screening of primary isolates in order to determine the prevalence of minor resistant variants to help in selecting the best reagents for clinical trials.
Collapse
|
43
|
Manigart O, Boeras DI, Karita E, Hawkins PA, Vwalika C, Makombe N, Mulenga J, Derdeyn CA, Allen S, Hunter E. A gp41-based heteroduplex mobility assay provides rapid and accurate assessment of intrasubtype epidemiological linkage in HIV type 1 heterosexual transmission Pairs. AIDS Res Hum Retroviruses 2012; 28:1745-55. [PMID: 22587371 DOI: 10.1089/aid.2012.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A critical step in HIV-1 transmission studies is the rapid and accurate identification of epidemiologically linked transmission pairs. To date, this has been accomplished by comparison of polymerase chain reaction (PCR)-amplified nucleotide sequences from potential transmission pairs, which can be cost-prohibitive for use in resource-limited settings. Here we describe a rapid, cost-effective approach to determine transmission linkage based on the heteroduplex mobility assay (HMA), and validate this approach by comparison to nucleotide sequencing. A total of 102 HIV-1-infected Zambian and Rwandan couples, with known linkage, were analyzed by gp41-HMA. A 400-base pair fragment within the envelope gp41 region of the HIV proviral genome was PCR amplified and HMA was applied to both partners' amplicons separately (autologous) and as a mixture (heterologous). If the diversity between gp41 sequences was low (<5%), a homoduplex was observed upon gel electrophoresis and the transmission was characterized as having occurred between partners (linked). If a new heteroduplex formed, within the heterologous migration, the transmission was determined to be unlinked. Initial blind validation of gp-41 HMA demonstrated 90% concordance between HMA and sequencing with 100% concordance in the case of linked transmissions. Following validation, 25 newly infected partners in Kigali and 12 in Lusaka were evaluated prospectively using both HMA and nucleotide sequences. Concordant results were obtained in all but one case (97.3%). The gp41-HMA technique is a reliable and feasible tool to detect linked transmissions in the field. All identified unlinked results should be confirmed by sequence analyses.
Collapse
Affiliation(s)
- Olivier Manigart
- Rwanda Zambia HIV Research Group (RZHRG), Projet San Francisco (PSF), Kigali, Rwanda
- Emory University, Atlanta, Georgia
- RZHRG, Zambia Emory University HIV Research Project (ZEHRP), Lusaka, Zambia
| | | | - Etienne Karita
- Rwanda Zambia HIV Research Group (RZHRG), Projet San Francisco (PSF), Kigali, Rwanda
| | | | - Cheswa Vwalika
- RZHRG, Zambia Emory University HIV Research Project (ZEHRP), Lusaka, Zambia
| | - Nathan Makombe
- Rwanda Zambia HIV Research Group (RZHRG), Projet San Francisco (PSF), Kigali, Rwanda
| | - Joseph Mulenga
- RZHRG, Zambia Emory University HIV Research Project (ZEHRP), Lusaka, Zambia
| | | | | | | |
Collapse
|
44
|
HIV-1 subtypes and recombinants in Northern Tanzania: distribution of viral quasispecies. PLoS One 2012; 7:e47605. [PMID: 23118882 PMCID: PMC3485255 DOI: 10.1371/journal.pone.0047605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/13/2012] [Indexed: 11/25/2022] Open
Abstract
This study analyzed the distribution and prevalence of HIV-1 subtypes, multiplicity of HIV-1 infection, and frequency of inter-subtype recombination among HIV-1-infected female bar and hotel workers in Moshi, Kilimanjaro Region, Tanzania, from 2004 to 2007. The HIV-1 viral sequences spanning the V1-C5 region of HIV-1 env gp120 were analyzed from 50 subjects by single genome amplification and sequencing (SGA/S) technique. A total of 1740 sequences were amplified and sequenced from the HIV-1 proviral DNA template. The median env sequences analyzed per subject per two time points was 38 (IQR 28–50) over one year of HIV infection. In a subset of 14 subjects, a total of 239 sequences were obtained from HIV-1 RNA template at the baseline visit. The most prevalent HIV-1 subtypes were A1 (56%) and C (30%), while HIV-1 subtype D and inter-subtype recombinant viruses were found in 6% and 8% of subjects respectively. Transmission of multiple HIV-1 variants was evident in 27% of the subjects infected with pure HIV-1 subtypes A1, C, or D. The HIV-1 inter-subtype recombinants were found in 8% including HIV-1 C/A, D/A, and complex mosaic recombinants. Multiple viral variants were found in two subjects infected with inter-subtype recombinants. One subject harbored quasispecies of both pure HIV-1 A1 and C/A recombinant. The other subject was infected with two complex mosaic inter-subtype recombinant variants belonging to subtype D. HIV-1 multiple infections and ongoing recombination contribute significantly to the genetic diversity of circulating HIV-1 in Tanzania and have important implications for vaccine design and the development of therapeutic strategies.
Collapse
|
45
|
Hemelaar J. Implications of HIV diversity for the HIV-1 pandemic. J Infect 2012; 66:391-400. [PMID: 23103289 DOI: 10.1016/j.jinf.2012.10.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/21/2012] [Indexed: 11/17/2022]
Abstract
HIV-1 genetic variability within individuals and populations plays a central role in the HIV pandemic. Multiple zoonotic transmissions of SIV to humans have resulted in distinct HIV lineages in humans which have further diversified within the population over time. High rates of mutation and recombination during HIV reverse transcription create a genetic diversity in the host which is subject to selection pressures by the immune response and antiretroviral treatment. The global distribution of HIV genetic variants and the impact of HIV diversity on pathogenesis, transmission and clinical management are reviewed. Finally, the key role of escape mutations in the immune response to HIV is discussed as well as the major challenge which HIV-1 diversity poses to HIV vaccine development.
Collapse
Affiliation(s)
- Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
46
|
Soares de Oliveira AC, Pessôa de Farias R, da Costa AC, Sauer MM, Bassichetto KC, Oliveira SMS, Costa PR, Tomiyama C, Tomiyama HTI, Sabino EC, Kallas EG, Sanabani SS. Frequency of subtype B and F1 dual infection in HIV-1 positive, Brazilian men who have sex with men. Virol J 2012; 9:223. [PMID: 23021203 PMCID: PMC3499372 DOI: 10.1186/1743-422x-9-223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/27/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Because various HIV vaccination studies are in progress, it is important to understand how often inter- and intra-subtype co/superinfection occurs in different HIV-infected high-risk groups. This knowledge would aid in the development of future prevention programs. In this cross-sectional study, we report the frequency of subtype B and F1 co-infection in a clinical group of 41 recently HIV-1 infected men who have sex with men (MSM) in São Paulo, Brazil. METHODOLOGY Proviral HIV-1 DNA was isolated from subject's peripheral blood polymorphonuclear leukocytes that were obtained at the time of enrollment. Each subject was known to be infected with a subtype B virus as determined in a previous study. A small fragment of the integrase gene (nucleotide 4255-4478 of HXB2) was amplified by nested polymerase chain reaction (PCR) using subclade F1 specific primers. The PCR results were further confirmed by phylogenetic analysis. Viral load (VL) data were extrapolated from the medical records of each patient. RESULTS For the 41 samples from MSM who were recently infected with subtype B virus, it was possible to detect subclade F1 proviral DNA in five patients, which represents a co-infection rate of 12.2%. In subjects with dual infection, the median VL was 5.3 × 10(4) copies/ML, whereas in MSM that were infected with only subtype B virus the median VL was 3.8 × 10(4) copies/ML (p > 0.8). CONCLUSIONS This study indicated that subtype B and F1 co-infection occurs frequently within the HIV-positive MSM population as suggested by large number of BF1 recombinant viruses reported in Brazil. This finding will help us track the epidemic and provide support for the development of immunization strategies against the HIV.
Collapse
|
47
|
Basu D, Kraft CS, Murphy MK, Campbell PJ, Yu T, Hraber PT, Irene C, Pinter A, Chomba E, Mulenga J, Kilembe W, Allen SA, Derdeyn CA, Hunter E. HIV-1 subtype C superinfected individuals mount low autologous neutralizing antibody responses prior to intrasubtype superinfection. Retrovirology 2012; 9:76. [PMID: 22995123 PMCID: PMC3477039 DOI: 10.1186/1742-4690-9-76] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background The potential role of antibodies in protection against intra-subtype HIV-1 superinfection remains to be understood. We compared the early neutralizing antibody (NAb) responses in three individuals, who were superinfected within one year of primary infection, to ten matched non-superinfected controls from a Zambian cohort of subtype C transmission cases. Sequence analysis of single genome amplified full-length envs from a previous study showed limited diversification in the individuals who became superinfected with the same HIV-1 subtype within year one post-seroconversion. We hypothesized that this reflected a blunted NAb response, which may have made these individuals more susceptible to superinfection. Results Neutralization assays showed that autologous plasma NAb responses to the earliest, and in some cases transmitted/founder, virus were delayed and had low to undetectable titers in all three superinfected individuals prior to superinfection. In contrast, NAbs with a median IC50 titer of 1896 were detected as early as three months post-seroconversion in non-superinfected controls. Early plasma NAbs in all subjects showed limited but variable levels of heterologous neutralization breadth. Superinfected individuals also exhibited a trend toward lower levels of gp120- and V1V2-specific IgG binding antibodies but higher gp120-specific plasma IgA binding antibodies. Conclusions These data suggest that the lack of development of IgG antibodies, as reflected in autologous NAbs as well as gp120 and V1V2 binding antibodies to the primary infection virus, combined with potentially competing, non-protective IgA antibodies, may increase susceptibility to superinfection in the context of settings where a single HIV-1 subtype predominates.
Collapse
Affiliation(s)
- Debby Basu
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Redd AD, Collinson-Streng AN, Chatziandreou N, Mullis CE, Laeyendecker O, Martens C, Ricklefs S, Kiwanuka N, Nyein PH, Lutalo T, Grabowski MK, Kong X, Manucci J, Sewankambo N, Wawer MJ, Gray RH, Porcella SF, Fauci AS, Sagar M, Serwadda D, Quinn TC. Previously transmitted HIV-1 strains are preferentially selected during subsequent sexual transmissions. J Infect Dis 2012; 206:1433-42. [PMID: 22997233 DOI: 10.1093/infdis/jis503] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A genetic bottleneck is known to exist for human immunodeficiency virus (HIV) at the point of sexual transmission. However, the nature of this bottleneck and its effect on viral diversity over time is unclear. METHODS Interhost and intrahost HIV diversity was analyzed in a stable population in Rakai, Uganda, from 1994 to 2002. HIV-1 envelope sequences from both individuals in initially HIV-discordant relationships in which transmission occurred later were examined using Sanger sequencing of bulk polymerase chain reaction (PCR) products (for 22 couples), clonal analysis (for 3), and next-generation deep sequencing (for 9). RESULTS Intrahost viral diversity was significantly higher than changes in interhost diversity (P < .01). The majority of HIV-1-discordant couples examined via bulk PCR (16 of 22 couples), clonal analysis (3 of 3), and next-generation deep sequencing (6 of 9) demonstrated that the viral populations present in the newly infected recipient were more closely related to the donor partner's HIV-1 variants found earlier during infection as compared to those circulating near the estimated time of transmission (P = .03). CONCLUSIONS These findings suggest that sexual transmission constrains viral diversity at the population level, partially because of the preferential transmission of ancestral as opposed to contemporary strains circulating in the transmitting partner. Future successful vaccine strategies may need to target these transmitted ancestral strains.
Collapse
Affiliation(s)
- Andrew D Redd
- Laboratory of Immunoregulation, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Melo FL, Jamal LF, Zanotto PMDA. Characterization of primary isolates of HIV type 1 CRF28_BF, CRF29_BF, and unique BF recombinants circulating in São Paulo, Brazil. AIDS Res Hum Retroviruses 2012; 28:1082-8. [PMID: 22176121 PMCID: PMC3423645 DOI: 10.1089/aid.2011.0123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We report for the first time the genetic and biological characterization of 10 HIV-1 primary isolates representing CRF28_BF and CRF29_BF together with additional unique BF recombinant forms (URFs) obtained by PBMC cocultivation. Recombination is an important factor promoting the increase in the genetic diversity of HIV-1. Notably, more than 20% of HIV-1 sequences worldwide were recombinants. Several recombinant viruses were reported in Brazil, and six circulating recombinant forms (CRFs) have been identified (CRF28_BF, CRF29_BF, CRF31_BC, CRF39_BF, CRF40_BF, and CRF46_BF). CRF28_BF and CRF29_BF were found to infect almost 30% of the patients in São Paulo State. The near full-length genomes of these 10 primary isolates were amplified by nested PCR in three overlapping segments, purified, and sequenced. Three samples were related to CRF28_BF, three to CRF29_BF, and four were unique recombinant forms (URFs), as determined by their breakpoint profile determined with the jpHMM program. Additionally, the coreceptor usage of these isolates was investigated in vitro using GHOST assays, which revealed three dual-tropic (X4/R5) viruses, four lymphotropic (X4) viruses, and three macrophage-tropic (R5) viruses with different V3-loop motifs, which challenges the notion that GWGR-carrying viruses are macrophage-tropic only. In sum, we report a much-anticipated well-characterized panel of viruses representing CRF28_BF, CRF29_BF, and URFs from São Paulo State, Brazil.
Collapse
Affiliation(s)
- Fernando Lucas Melo
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute-ICBII, University of São Paulo, Brazil
| | | | | |
Collapse
|
50
|
Mukhopadhyay S, Ringe R, Patil A, Paranjape R, Bhattacharya J. Characterization of circulating HIV type 1 env genes in plasma of two antiretroviral-naive slow progressing patients with broad neutralizing antibody response with evidence of recombination. AIDS Res Hum Retroviruses 2012; 28:739-45. [PMID: 21916806 DOI: 10.1089/aid.2011.0238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, we investigated genetic divergence between complete autologous HIV-1 env genes amplified directly from plasma of two antiretroviral-naive, slow progressing Indian patients with broad neutralizing antibody response. All the envelope (Env) clones obtained from one patient (LT1) belonged to subtype C; the second patient (LT5) harbored quasispecies comprised of pure B, C, and B/C recombinants with distinct breakpoints indicative of dual infection with genetically distinct strains. Further characterization of these Envs would provide insight into the biological properties under strong humoral immune response.
Collapse
Affiliation(s)
- Sampurna Mukhopadhyay
- Department of Molecular Virology, National AIDS Research Institute, Bhosari, Pune, India
| | - Rajesh Ringe
- Department of Molecular Virology, National AIDS Research Institute, Bhosari, Pune, India
| | - Ajit Patil
- Department of Molecular Virology, National AIDS Research Institute, Bhosari, Pune, India
| | - Ramesh Paranjape
- Department of Molecular Virology, National AIDS Research Institute, Bhosari, Pune, India
| | - Jayanta Bhattacharya
- Department of Molecular Virology, National AIDS Research Institute, Bhosari, Pune, India
| |
Collapse
|