1
|
Xin D, Kurien L, Briggs K, Schimek A, Dambra R, Hochdorfer D, Arnouk TA, Brgles M, Gautam S, Hotter D, Solzin J, Kriehuber T, Ashour J, Vigil A, Hawley M, He X. Characterization of VSV-GP morphology by cryo-EM imaging and SEC-MALS. Mol Ther Methods Clin Dev 2025; 33:101429. [PMID: 40083959 PMCID: PMC11904549 DOI: 10.1016/j.omtm.2025.101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/03/2025] [Indexed: 03/16/2025]
Abstract
Vesicular stomatitis virus expressing the glycoprotein of the lymphocytic choriomeningitis virus (VSV-GP) is a promising platform for oncolytic viruses and cancer vaccines. In this work, cryoelectron microscopy (cryo-EM) imaging was employed to directly visualize VSV-GP particles. Several different subpopulations of virus particle morphology were observed. Definition and fraction counting of subpopulations enabled quantitative comparison of subpopulation profiles between several VSV-GP samples. In developing an orthogonal method with higher throughput, we showed that the morphological profile of the VSV-GP particles can be characterized by size exclusion chromatography coupled with a multi-angle light scattering detector (SEC-MALS) based on a novel shape-based separation mechanism. Together, the two complementary techniques enable the analysis of morphological profile for VSV-GP and potentially other non-spherical viruses or nanoparticles.
Collapse
Affiliation(s)
- Dongyue Xin
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Leela Kurien
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Katherine Briggs
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | | | - Richard Dambra
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Daniel Hochdorfer
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tanja A. Arnouk
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Marija Brgles
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Saurabh Gautam
- ViraTherapeutics GmbH, Innsbruck, Austria
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | - Dominik Hotter
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Johannes Solzin
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Kriehuber
- Viral Therapeutics Center, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Joseph Ashour
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Adam Vigil
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Michael Hawley
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Xiaorong He
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
2
|
Mashura G, Maburutse B, Chidoti V, Zinyakasa TR, Porovha E, Nhara RB, Mwandiringana E, Gori E. Bat Rhabdoviruses: occurrence, detection and challenges in Africa. Trop Anim Health Prod 2025; 57:108. [PMID: 40059248 DOI: 10.1007/s11250-025-04327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 02/06/2025] [Indexed: 04/12/2025]
Abstract
Bats carry zoonotic viruses which can be harmful to humans. Zoonotic diseases have caused huge economic losses in the production and trade of animal products and recurring diseases outbreaks and global pandemics. Studies have shown that Rabies and rabies related viruses (Lyssavirus genera, family Rhabdoviridae) are spread to humans by bats. The aim of this article is to assess the global distribution of bat Rhabdoviruses, detection and challenges in Africa. Studies have shown that the prevalence of Rhabdoviruses is high in Africa and Asia. In addition to Rabies virus, other bat Rhabdoviruses which were detected in Africa are Mokola, Lagos bat virus, Duvenhage, and Ledantevirus. In Asia Vesiculovirus and Ledantevirus were found. Australian bat lyssavirus was detected in Australia, Rabies virus was detected in American bats and European bat lyssaviruses were detected in Europe. Surveillance in Africa is inadequate due to lack of diagnostic capabilities meaning that infections maybe under reported.
Collapse
Affiliation(s)
- Getrude Mashura
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Brighton Maburutse
- Faculty of Plant and Animal Sciences and Technology, Marondera University of Agricultural Sciences and Technology (MUAST), Marondera, CSC Campus, Plot 15, Longlands Road, P.O. Box 35, Marondera, Zimbabwe
| | - Vimbiso Chidoti
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Taona R Zinyakasa
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Emildah Porovha
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Rumbidzai Blessing Nhara
- Faculty of Agriculture Environment and Food Systems, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Ellen Mwandiringana
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe
| | - Elizabeth Gori
- Faculty of Veterinary Sciences, University of Zimbabwe, P.O. Box MP 167, Harare, Zimbabwe.
- Colleges of Medicine and Health Sciences- School of Medicine and Pharmacy, University of Rwanda, P.O. Box 117, Butare, Rwanda.
| |
Collapse
|
3
|
Ahmed MM, Okesanya OJ, Ukoaka BM, Ibrahim AM, Lucero-Prisno DE. Vesicular Stomatitis Virus: Insights into Pathogenesis, Immune Evasion, and Technological Innovations in Oncolytic and Vaccine Development. Viruses 2024; 16:1933. [PMID: 39772239 PMCID: PMC11680291 DOI: 10.3390/v16121933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications. The virus demonstrates remarkable versatility through its rapid replication cycle, robust immune response induction, and natural neurotropism. Recent technological innovations in VSV engineering have led to enhanced safety protocols and improved therapeutic modifications, particularly in cancer treatment. Attenuation strategies have successfully addressed safety concerns while maintaining the therapeutic efficacy of the virus. The molecular and cellular interactions of VSV, particularly its immune modulation capabilities and tumor-selective properties, have proven valuable in the development of targeted therapeutic strategies. This review explores these aspects, while highlighting the continuing evolution of VSV-based therapeutic approaches in precision medicine.
Collapse
Affiliation(s)
- Mohamed Mustaf Ahmed
- Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu 252, Somalia
| | - Olalekan John Okesanya
- Department of Medical Laboratory Science, Neuropsychiatric Hospital, Aro, Abeokuta 110101, Nigeria;
| | | | - Adamu Muhammad Ibrahim
- Department of Immunology, School of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto 840001, Nigeria;
| | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK;
- Research and Innovation Office, Southern Leyte State University, Leyte 6500, Philippines
- Research and Development Office, Biliran Province State University, Biliran 6549, Philippines
| |
Collapse
|
4
|
Kiflu AB. The Immune Escape Strategy of Rabies Virus and Its Pathogenicity Mechanisms. Viruses 2024; 16:1774. [PMID: 39599888 PMCID: PMC11598914 DOI: 10.3390/v16111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
In contrast to most other rhabdoviruses, which spread by insect vectors, the rabies virus (RABV) is a very unusual member of the Rhabdoviridae family, since it has evolved to be fully adapted to warm-blooded hosts and spread directly between them. There are differences in the immune responses to laboratory-attenuated RABV and wild-type rabies virus infections. Various investigations showed that whilst laboratory-attenuated RABV elicits an innate immune response, wild-type RABV evades detection. Pathogenic RABV infection bypasses immune response by antagonizing interferon induction, which prevents downstream signal activation and impairs antiviral proteins and inflammatory cytokines production that could eliminate the virus. On the contrary, non-pathogenic RABV infection leads to immune activation and suppresses the disease. Apart from that, through recruiting leukocytes into the central nervous system (CNS) and enhancing the blood-brain barrier (BBB) permeability, which are vital factors for viral clearance and protection, cytokines/chemokines released during RABV infection play a critical role in suppressing the disease. Furthermore, early apoptosis of neural cells limit replication and spread of avirulent RABV infection, but street RABV strains infection cause delayed apoptosis that help them spread further to healthy cells and circumvent early immune exposure. Similarly, a cellular regulation mechanism called autophagy eliminates unused or damaged cytoplasmic materials and destroy microbes by delivering them to the lysosomes as part of a nonspecific immune defense mechanism. Infection with laboratory fixed RABV strains lead to complete autophagy and the viruses are eliminated. But incomplete autophagy during pathogenic RABV infection failed to destroy the viruses and might aid the virus in dodging detection by antigen-presenting cells, which could otherwise elicit adaptive immune activation. Pathogenic RABV P and M proteins, as well as high concentration of nitric oxide, which is produced during rabies virus infection, inhibits activities of mitochondrial proteins, which triggers the generation of reactive oxygen species, resulting in oxidative stress, contributing to mitochondrial malfunction and, finally, neuron process degeneration.
Collapse
Affiliation(s)
- Abraha Bahlbi Kiflu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China;
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Sui B, Zhao J, Wang J, Zheng J, Zhou R, Wu D, Zeng Z, Yuan Y, Fu Z, Zhao L, Zhou M. Lyssavirus matrix protein inhibits NLRP3 inflammasome assembly by binding to NLRP3. Cell Rep 2024; 43:114478. [PMID: 38985668 DOI: 10.1016/j.celrep.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Lyssavirus is a kind of neurotropic pathogen that needs to evade peripheral host immunity to enter the central nervous system to accomplish infection. NLRP3 inflammasome activation is essential for the host to defend against pathogen invasion. This study demonstrates that the matrix protein (M) of lyssavirus can inhibit both the priming step and the activation step of NLRP3 inflammasome activation. Specifically, M of lyssavirus can compete with NEK7 for binding to NLRP3, which restricts downstream apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. The serine amino acid at the 158th site of M among lyssavirus is critical for restricting ASC oligomerization. Moreover, recombinant lab-attenuated lyssavirus rabies (rabies lyssavirus [RABV]) with G158S mutation at M decreases interleukin-1β (IL-1β) production in bone-marrow-derived dendritic cells (BMDCs) to facilitate lyssavirus invasion into the brain thereby elevating pathogenicity in mice. Taken together, this study reveals a common mechanism by which lyssavirus inhibits NLRP3 inflammasome activation to evade host defenses.
Collapse
Affiliation(s)
- Baokun Sui
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiao Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxin Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonghui Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueming Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfang Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Donnelly CM, Stewart M, Roby JA, Sundaramoorthy V, Forwood JK. Structural Determination of the Australian Bat Lyssavirus Nucleoprotein and Phosphoprotein Complex. Viruses 2023; 16:33. [PMID: 38229694 PMCID: PMC7615531 DOI: 10.3390/v16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Australian bat lyssavirus (ABLV) shows similar clinical symptoms as rabies, but there are currently no protein structures available for ABLV proteins. In lyssaviruses, the interaction between nucleoprotein (N) and phosphoprotein (N) in the absence of RNA generates a complex (N0P) that is crucial for viral assembly, and understanding the interface between these two proteins has the potential to provide insight into a key feature: the viral lifecycle. In this study, we used recombinant chimeric protein expression and X-ray crystallography to determine the structure of ABLV nucleoprotein bound to residues 1-40 of its phosphoprotein chaperone. Comparison of our results with the recently generated structure of RABV CVS-11 N0P demonstrated a highly conserved interface in this complex. Because the N0P interface is conserved in the lyssaviruses of phylogroup I, it is an attractive therapeutic target for multiple rabies-causing viral species.
Collapse
Affiliation(s)
- Camilla M. Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3219, Australia;
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| | - Justin A. Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Vinod Sundaramoorthy
- Diagnostics, Surveillance and Response, Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3219, Australia;
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (C.M.D.); (J.A.R.)
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
7
|
Tanwattana N, Wanasen N, Jantraphakorn Y, Srisutthisamphan K, Chailungkarn T, Boonrungsiman S, Lumlertdacha B, Lekchareonsuk P, Kaewborisuth C. Human BST2 inhibits rabies virus release independently of cysteine-linked dimerization and asparagine-linked glycosylation. PLoS One 2023; 18:e0292833. [PMID: 37922253 PMCID: PMC10624315 DOI: 10.1371/journal.pone.0292833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/29/2023] [Indexed: 11/05/2023] Open
Abstract
The innate immune response is a first-line defense mechanism triggered by rabies virus (RABV). Interferon (IFN) signaling and ISG products have been shown to confer resistance to RABV at various stages of the virus's life cycle. Human tetherin, also known as bone marrow stromal cell antigen 2 (hBST2), is a multifunctional transmembrane glycoprotein induced by IFN that has been shown to effectively counteract many viruses through diverse mechanisms. Here, we demonstrate that hBST2 inhibits RABV budding by tethering new virions to the cell surface. It was observed that release of virus-like particles (VLPs) formed by RABV G (RABV-G VLPs), but not RABV M (RABV-G VLPs), were suppressed by hBST2, indicating that RABV-G has a specific effect on the hBST2-mediated restriction of RABV. The ability of hBST2 to prevent the release of RABV-G VLPs and impede RABV growth kinetics is retained even when hBST2 has mutations at dimerization and/or glycosylation sites, making hBST2 an antagonist to RABV, with multiple mechanisms possibly contributing to the hBST2-mediated suppression of RABV. Our findings expand the knowledge of host antiviral mechanisms that control RABV infection.
Collapse
Affiliation(s)
- Nathiphat Tanwattana
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Yuparat Jantraphakorn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thanathom Chailungkarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), KlongLuang, Pathum Thani, Thailand
| | - Boonlert Lumlertdacha
- Queen Saovabha Memorial Institute, Thai Red Cross Society, WHO Collaborating Center for Research and Training Prophylaxis on Rabies, Pathumwan, Bangkok, Thailand
| | - Porntippa Lekchareonsuk
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advance Studies in Agriculture and Food, KU Institute Studies, Kasetsart University, Bangkok, Thailand
| | - Challika Kaewborisuth
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok, Thailand
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| |
Collapse
|
8
|
Shepherd JG, Davis C, Streicker DG, Thomson EC. Emerging Rhabdoviruses and Human Infection. BIOLOGY 2023; 12:878. [PMID: 37372162 PMCID: PMC10294888 DOI: 10.3390/biology12060878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Rhabdoviridae is a large viral family, with members infecting a diverse range of hosts including, vertebrate species, arthropods, and plants. The predominant human pathogen within the family is Rabies lyssavirus, the main cause of human rabies. While rabies is itself a neglected disease, there are other, less well studied, rhabdoviruses known to cause human infection. The increasing application of next-generation sequencing technology to clinical samples has led to the detection of several novel or rarely detected rhabdoviruses associated with febrile illness. Many of these viruses have been detected in low- and middle-income countries where the extent of human infection and the burden of disease remain largely unquantified. This review describes the rhabdoviruses other than Rabies lyssavirus that have been associated with human infection. The discovery of the Bas Congo virus and Ekpoma virus is discussed, as is the re-emergence of species such as Le Dantec virus, which has recently been detected in Africa 40 years after its initial isolation. Chandipura virus and the lyssaviruses that are known to cause human rabies are also described. Given their association with human disease, the viruses described in this review should be prioritised for further study.
Collapse
Affiliation(s)
- James G. Shepherd
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| | - Chris Davis
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| | - Daniel G. Streicker
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Emma C. Thomson
- Centre for Virus Research, MRC-University of Glasgow, Glasgow G61 1QH, UK; (C.D.); (D.G.S.)
| |
Collapse
|
9
|
Donnelly CM, Vogel OA, Edwards MR, Taylor PE, Roby JA, Forwood JK, Basler CF. Henipavirus Matrix Protein Employs a Non-Classical Nuclear Localization Signal Binding Mechanism. Viruses 2023; 15:1302. [PMID: 37376602 DOI: 10.3390/v15061302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic species from the Henipavirus genus within the paramyxovirus family and are harbored by Pteropus Flying Fox species. Henipaviruses cause severe respiratory disease, neural symptoms, and encephalitis in various animals and humans, with human mortality rates exceeding 70% in some NiV outbreaks. The henipavirus matrix protein (M), which drives viral assembly and budding of the virion, also performs non-structural functions as a type I interferon antagonist. Interestingly, M also undergoes nuclear trafficking that mediates critical monoubiquitination for downstream cell sorting, membrane association, and budding processes. Based on the NiV and HeV M X-ray crystal structures and cell-based assays, M possesses a putative monopartite nuclear localization signal (NLS) (residues 82KRKKIR87; NLS1 HeV), positioned on an exposed flexible loop and typical of how many NLSs bind importin alpha (IMPα), and a putative bipartite NLS (244RR-10X-KRK258; NLS2 HeV), positioned within an α-helix that is far less typical. Here, we employed X-ray crystallography to determine the binding interface of these M NLSs and IMPα. The interaction of both NLS peptides with IMPα was established, with NLS1 binding the IMPα major binding site, and NLS2 binding as a non-classical NLS to the minor site. Co-immunoprecipitation (co-IP) and immunofluorescence assays (IFA) confirm the critical role of NLS2, and specifically K258. Additionally, localization studies demonstrated a supportive role for NLS1 in M nuclear localization. These studies provide additional insight into the critical mechanisms of M nucleocytoplasmic transport, the study of which can provide a greater understanding of viral pathogenesis and uncover a potential target for novel therapeutics for henipaviral diseases.
Collapse
Affiliation(s)
- Camilla M Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Olivia A Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan R Edwards
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Paige E Taylor
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Justin A Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Kim SY, Kwak JS, Jung W, Kim MS, Kim KH. Compensatory mutations in the matrix protein of viral hemorrhagic septicemia virus (VHSV) genotype IVa in response to artificial mutation of two amino acids (D62A E181A). Virus Res 2023; 326:199067. [PMID: 36754291 DOI: 10.1016/j.virusres.2023.199067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
The matrix (M) protein of rhabdoviruses locates between the inner line of the viral envelope and the nucleocapsids core and plays an important role in viral replication. In the present study, we aimed to rescue a mutant of VHSV genotype IVa that has artificial mutations in the M protein (M-D62A E181A). However, most rescued recombinant viruses unexpectedly showed non-targeted secondary mutations in the M protein. Therefore, this study was conducted to know whether the targeted artificial mutation can lead to specific non-targeted secondary mutations in the M protein and whether the secondary mutations are compensatory for the targeted artificial mutations. Experiments were conducted to rescue three kinds of M protein mutants (rVHSV-M-D62A, -E181A, and -D62A E181A), and rVHSV-M-E181A and rVHSV-M-D62A E181A without the secondary mutations were rescued only from IRF-9 gene-knockout EPC cells. Recombinant VHSVs having only targeted mutation(s) (rVHSV-M-D62A, -E181A, and -D62A E181A) showed slower CPE progression and retarded growth compared to rVHSV-wild. Although the sites of secondary mutations were changed in every transfection experiment to generate recombinant VHSVs, the positions of the secondary mutations were not random. Some amino acid residues in the M protein showed more frequent mutations than others, and the changed amino acid residues were always the same. EPC cells infected with rVHSV-M-D62A E181A showed significantly higher type I interferon response and NF-κB activity, and the inhibitory activity against type I interferon response and NF-κB activity in other recombinant VHSVs having secondary mutations in M gene were similar to those of rVHSV-wild. In conclusion, the present results showed that VHSV actively responded to the artificial mutation of M protein through the secondary mutations, and those secondary mutations occurred when the artificial mutations were deleterious to viral replication and protein stability. Furthermore, most secondary mutations in recombinant viruses compensated for the deleterious effect of the engineered mutations.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Norway
| | - Wonyeong Jung
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
11
|
Harding C, Larsen BB, Otto HW, Potticary AL, Kraberger S, Custer JM, Suazo C, Upham NS, Worobey M, Van Doorslaer K, Varsani A. Diverse DNA virus genomes identified in fecal samples of Mexican free-tailed bats (Tadarida brasiliensis) captured in Chiricahua Mountains of southeast Arizona (USA). Virology 2023; 580:98-111. [PMID: 36801670 DOI: 10.1016/j.virol.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
Bats (order Chiroptera) are some of the most abundant mammals on earth and their species ecology strongly influences zoonotic potential. While substantial research has been conducted on bat-associated viruses, particularly on those that can cause disease in humans and/or livestock, globally, limited research has focused on endemic bats in the USA. The southwest region of the US is of particular interest because of its high diversity of bat species. We identified 39 single-stranded DNA virus genomes in the feces of Mexican free-tailed bats (Tadarida brasiliensis) sampled in the Rucker Canyon (Chiricahua Mountains) of southeast Arizona (USA). Twenty-eight of these belong to the virus families Circoviridae (n = 6), Genomoviridae (n = 17), and Microviridae (n = 5). Eleven viruses cluster with other unclassified cressdnaviruses. Most of the viruses identified represent new species. Further research on identification of novel bat-associated cressdnaviruses and microviruses is needed to provide greater insights regarding their co-evolution and ecology relative to bats.
Collapse
Affiliation(s)
- Ciara Harding
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Ahva L Potticary
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; University of Georgia in the Department of Entomology, Athens, GA, 30602, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA
| | - Crystal Suazo
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Tempe, AZ, 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|
12
|
Zhou K, Si Z, Ge P, Tsao J, Luo M, Zhou ZH. Atomic model of vesicular stomatitis virus and mechanism of assembly. Nat Commun 2022; 13:5980. [PMID: 36216930 PMCID: PMC9549855 DOI: 10.1038/s41467-022-33664-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhu Si
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Peng Ge
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Departments of Chemistry and Biochemistry and Biological Chemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Jun Tsao
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - Ming Luo
- The Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Dhulipala S, Uversky VN. Looking at the Pathogenesis of the Rabies Lyssavirus Strain Pasteur Vaccins through a Prism of the Disorder-Based Bioinformatics. Biomolecules 2022; 12:1436. [PMID: 36291645 PMCID: PMC9599798 DOI: 10.3390/biom12101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
Rabies is a neurological disease that causes between 40,000 and 70,000 deaths every year. Once a rabies patient has become symptomatic, there is no effective treatment for the illness, and in unvaccinated individuals, the case-fatality rate of rabies is close to 100%. French scientists Louis Pasteur and Émile Roux developed the first vaccine for rabies in 1885. If administered before the virus reaches the brain, the modern rabies vaccine imparts long-lasting immunity to the virus and saves more than 250,000 people every year. However, the rabies virus can suppress the host's immune response once it has entered the cells of the brain, making death likely. This study aimed to make use of disorder-based proteomics and bioinformatics to determine the potential impact that intrinsically disordered protein regions (IDPRs) in the proteome of the rabies virus might have on the infectivity and lethality of the disease. This study used the proteome of the Rabies lyssavirus (RABV) strain Pasteur Vaccins (PV), one of the best-understood strains due to its use in the first rabies vaccine, as a model. The data reported in this study are in line with the hypothesis that high levels of intrinsic disorder in the phosphoprotein (P-protein) and nucleoprotein (N-protein) allow them to participate in the creation of Negri bodies and might help this virus to suppress the antiviral immune response in the host cells. Additionally, the study suggests that there could be a link between disorder in the matrix (M) protein and the modulation of viral transcription. The disordered regions in the M-protein might have a possible role in initiating viral budding within the cell. Furthermore, we checked the prevalence of functional disorder in a set of 37 host proteins directly involved in the interaction with the RABV proteins. The hope is that these new insights will aid in the development of treatments for rabies that are effective after infection.
Collapse
Affiliation(s)
- Surya Dhulipala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
14
|
Negative Regulatory Role of the Spring Viremia of Carp Virus Matrix Protein in the Host Interferon Response by Targeting the MAVS/TRAF3 Signaling Axis. J Virol 2022; 96:e0079122. [PMID: 35913215 PMCID: PMC9400495 DOI: 10.1128/jvi.00791-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is a severe infectious pathogen that causes high rates of mortality in cyprinids and other fish species. Despite numerous investigations of SVCV infection, the underlying molecular mechanisms remain poorly understood. In this study, we found that the SVCV matrix protein (SVCV-M) played an inhibitory role in the host interferon (IFN) response by targeting the MAVS/TRAF3 signaling axis, thereby uncovering a previously unrecognized mechanism of SVCV escape from host innate antiviral immunity. Mechanistically, SVCV-M was located at the mitochondria independent of MAVS, which allowed SVCV-M to build an arena for competition with the MAVS platform. A microscale thermophoresis assay showed that SVCV-M had a high affinity for TRAF3, as indicated by a lower equilibrium dissociation constant (KD) value than that of MAVS with TRAF3. Therefore, the association of MAVS with TRAF3 was competitively impaired by SVCV-M in a dose-dependent manner. Accordingly, SVCV-M showed a potent ability to inhibit the K63-linked polyubiquitination of TRAF3. This inhibition was accompanied by the impairment of the IFN response, as shown by the marked decline in IFN-φ1-promoter (pro) luciferase reporter activity. By constructing truncated TRAF3 and SVCV-M proteins, the RING finger, zinc finger, and coiled-coil domains of TRAF3 and the hydrophobic-pocket-like structure formed by the α2-, α3-, and α4-helices of SVCV-M may be the major target and antagonistic modules responsible for the protein-protein interaction between the TRAF3 and SVCV-M proteins. These findings highlighted the intervention of SVCV-M in host innate immunity, thereby providing new insights into the extensive participation of viral matrix proteins in multiple biological activities. IMPORTANCE The matrix protein of SVCV (SVCV-M) is an indispensable structural element for nucleocapsid condensation and virion formation during viral morphogenesis, and it connects the core nucleocapsid particle to the outer membrane within the mature virus. Previous studies have emphasized the architectural role of SVCV-M in viral construction; however, the potential nonstructural functions of SVCV-M in viral replication and virus-host interactions remain poorly understood. In this study, we identified the inhibitory role of the SVCV-M protein in host IFN production by competitively recruiting TRAF3 from the MAVS signaling complex and impairing TRAF3 activation via inhibition of K63-linked polyubiquitination. This finding provided new insights into the regulatory role of SVCV-M in host innate immunity, which highlighted the broader functionality of rhabdovirus matrix protein apart from being a structural protein. This study also revealed a previously unrecognized mechanism underlying SVCV immune evasion by inhibiting the IFN response by targeting the MAVS/TRAF3 signaling axis.
Collapse
|
15
|
Jenni S, Horwitz JA, Bloyet LM, Whelan SPJ, Harrison SC. Visualizing molecular interactions that determine assembly of a bullet-shaped vesicular stomatitis virus particle. Nat Commun 2022; 13:4802. [PMID: 35970826 PMCID: PMC9378655 DOI: 10.1038/s41467-022-32223-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a negative-strand RNA virus with a non-segmented genome, closely related to rabies virus. Both have characteristic bullet-like shapes. We report the structure of intact, infectious VSV particles determined by cryogenic electron microscopy. By compensating for polymorphism among viral particles with computational classification, we obtained a reconstruction of the shaft ("trunk") at 3.5 Å resolution, with lower resolution for the rounded tip. The ribonucleoprotein (RNP), genomic RNA complexed with nucleoprotein (N), curls into a dome-like structure with about eight gradually expanding turns before transitioning into the regular helical trunk. Two layers of matrix (M) protein link the RNP with the membrane. Radial inter-layer subunit contacts are fixed within single RNA-N-M1-M2 modules, but flexible lateral and axial interactions allow assembly of polymorphic virions. Together with published structures of recombinant N in various states, our results suggest a mechanism for membrane-coupled self-assembly of VSV and its relatives.
Collapse
Affiliation(s)
- Simon Jenni
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Joshua A Horwitz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Molecular Pharmacology and Virology Group, PureTech Health LLC, Boston, MA, 02210, USA
| | - Louis-Marie Bloyet
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Sean P J Whelan
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Laboratory of Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Besson B, Eun H, Kim S, Windisch MP, Bourhy H, Grailhe R. Optimization of BRET saturation assays for robust and sensitive cytosolic protein-protein interaction studies. Sci Rep 2022; 12:9987. [PMID: 35705637 PMCID: PMC9200754 DOI: 10.1038/s41598-022-12851-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) saturation is a method of studying protein–protein interaction (PPI) upon quantification of the dependence of the BRET signal on the acceptor/donor (A:D) expression ratio. In this study, using the very bright Nluc/YFP BRET pair acquired respectively with microplate reader and automated confocal microscopy, we significantly improved BRET saturation assay by extending A:D expression detection range and normalizing A:D expression with a new BRET-free probe. We next found that upon using variable instead of fixed amount of donor molecules co-expressed with increasing acceptor concentrations, BRET saturation assay robustness can be further improved when studying cytosolic protein, although the relative amounts of dimers (BRETmax) and the relative dimer affinity (BRET50) remain similar. Altogether, we show that our method can be applied to many PPI networks, involving the NF-κB pathway, high-affinity nanobody, rabies virus-host interactions, mTOR complex and JAK/STAT signaling. Altogether our approach paves the way for robust PPI validation and characterization in living cells.
Collapse
Affiliation(s)
- Benoit Besson
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea.,Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, 28 rue du docteur Roux, 75015, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75015, Paris, France
| | - Hyeju Eun
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Seonhee Kim
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Marc P Windisch
- Applied Molecular Virology, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea
| | - Herve Bourhy
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, 28 rue du docteur Roux, 75015, Paris, France
| | - Regis Grailhe
- Technology Development Platform, Institut Pasteur Korea, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-400, Republic of Korea.
| |
Collapse
|
17
|
Jia D, Liu H, Zhang J, Wan W, Wang Z, Zhang X, Chen Q, Wei T. Polyamine-metabolizing enzymes are activated to promote the proper assembly of rice stripe mosaic virus in insect vectors. STRESS BIOLOGY 2022; 2:10. [PMID: 37676339 PMCID: PMC10441986 DOI: 10.1007/s44154-021-00032-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/30/2021] [Indexed: 09/08/2023]
Abstract
Both viruses and host cells compete for intracellular polyamines for efficient propagation. Currently, how the key polyamine-metabolizing enzymes, including ornithine decarboxylase 1 (ODC1) and its antizyme 1 (OAZ1), are activated to co-ordinate viral propagation and polyamine biosynthesis remains unknown. Here, we report that the matrix protein of rice stripe mosaic virus (RSMV), a cytorhabdovirus, directly hijacks OAZ1 to ensure the proper assembly of rigid bacilliform non-enveloped virions in leafhopper vector. Viral matrix protein effectively competes with ODC1 to bind to OAZ1, and thus, the ability of OAZ1 to target and mediate the degradation of ODC1 is significantly inhibited during viral propagation, which finally promotes polyamines production. Thus, OAZ1 and ODC1 are activated to synergistically promote viral persistent propagation and polyamine biosynthesis in viruliferous vectors. Our data suggest that it is a novel mechanism for rhabdovirus to exploit OAZ1 for facilitating viral assembly.
Collapse
Affiliation(s)
- Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Huan Liu
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Jian Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Wenqiang Wan
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Zongwen Wang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Xiaofeng Zhang
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
18
|
Michels JJ, Brzezinski M, Scheidt T, Lemke EA, Parekh SH. Role of Solvent Compatibility in the Phase Behavior of Binary Solutions of Weakly Associating Multivalent Polymers. Biomacromolecules 2022; 23:349-364. [PMID: 34866377 PMCID: PMC8753604 DOI: 10.1021/acs.biomac.1c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Condensate formation of biopolymer solutions, prominently those of various intrinsically disordered proteins (IDPs), is often driven by "sticky" interactions between associating residues, multivalently present along the polymer backbone. Using a ternary mean-field "stickers-and-spacers" model, we demonstrate that if sticker association is of the order of a few times the thermal energy, a delicate balance between specific binding and nonspecific polymer-solvent interactions gives rise to a particularly rich ternary phase behavior under physiological circumstances. For a generic system represented by a solution comprising multiassociative scaffold and client polymers, the difference in solvent compatibility between the polymers modulates the nature of isothermal liquid-liquid phase separation (LLPS) between associative and segregative. The calculations reveal regimes of dualistic phase behavior, where both types of LLPS occur within the same phase diagram, either associated with the presence of multiple miscibility gaps or a flip in the slope of the tie-lines belonging to a single coexistence region.
Collapse
Affiliation(s)
- Jasper J. Michels
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Mateusz Brzezinski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tom Scheidt
- Institute
for Molecular Biology, Johannes Gutenberg
University, Ackermannweg
4, 55128 Mainz, Germany
| | - Edward A. Lemke
- Institute
for Molecular Biology, Johannes Gutenberg
University, Ackermannweg
4, 55128 Mainz, Germany
| | - Sapun H. Parekh
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Biomedical Engineering, The University
of Texas at Austin, 107
West Dean Keeton Street Stop C0800, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Wang Y, Wang G, Bai J, Zhang Y, Wang Y, Wen S, Li L, Yang Z, Hong N. A novel Actinidia cytorhabdovirus characterized using genomic and viral protein interaction features. MOLECULAR PLANT PATHOLOGY 2021; 22:1271-1287. [PMID: 34288324 PMCID: PMC8435229 DOI: 10.1111/mpp.13110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A novel cytorhabdovirus, tentatively named Actinidia virus D (AcVD), was identified from kiwifruit (Actinidia chinensis) in China using high-throughput sequencing technology. The genome of AcVD consists of 13,589 nucleotides and is organized into seven open reading frames (ORFs) in its antisense strand, coding for proteins in the order N-P-P3-M-G-P6-L. The ORFs were flanked by a 3' leader sequence and a 5' trailer sequence and are separated by conserved intergenic junctions. The genome sequence of AcVD was 44.6%-51.5% identical to those of reported cytorhabdoviruses. The proteins encoded by AcVD shared the highest sequence identities, ranging from 27.3% (P6) to 44.5% (L), with the respective proteins encoded by reported cytorhabdoviruses. Phylogenetic analysis revealed that AcVD clustered together with the cytorhabdovirus Wuhan insect virus 4. The subcellular locations of the viral proteins N, P, P3, M, G, and P6 in epidermal cells of Nicotiana benthamiana leaves were determined. The M protein of AcVD uniquely formed filament structures and was associated with microtubules. Bimolecular fluorescence complementation assays showed that three proteins, N, P, and M, self-interact, protein N plays a role in the formation of cytoplasm viroplasm, and protein M recruits N, P, P3, and G to microtubules. In addition, numerous paired proteins interact in the nucleus. This study presents the first evidence of a cytorhabdovirus infecting kiwifruit plants and full location and interaction maps to gain insight into viral protein functions.
Collapse
Affiliation(s)
- Yanxiang Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| | - Jianyu Bai
- Laboratory of Fruit Trees DiseaseInstitute of Economic ForestryXinjiang Academy of Forestry SciencesUrumqiChina
| | - Yongle Zhang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Wang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shaohua Wen
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liu Li
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zuokun Yang
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
20
|
Hegazy AM, Chen N, Lin H, Babu V S, Li F, Yang Y, Qin Z, Shi F, Li J, Lin L. Induction of apoptosis in SSN-1cells by Snakehead Fish Vesiculovirus (SHVV) via Matrix protein dependent intrinsic pathway. FISH & SHELLFISH IMMUNOLOGY 2021; 113:24-34. [PMID: 33757800 DOI: 10.1016/j.fsi.2021.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
An increasing important area in immunology is the process cell death mechanism, enabling the immune system triggered thru extrinsic or intrinsic signals to effectively remove unwanted or virus infected cells called apoptosis. A recently isolated infectious Snakehead fish vesiculovirus (SHVV), comprising negative strand RNA and encoded viral matrix (M) proteins, is responsible for causing cytopathic effects in infected fish cells. However, the mechanism by which viral M protein mediates apoptosis has not been elucidated. Therefore, in the present experiments, it was investigated the regulatory potential of apoptosis signals during SHVV infection. By employing the model of SHVV infection in SSN-1 cells, the accelerated apoptosis pathway involves an intrinsic pathway requiring the activation of caspase-9 but not caspase-3 or -8. In the groups of infection (SHVV) or treatment (hydrogen peroxide) were induced apoptotic morphological changes and indicated the activation of the main caspases, i.e.; executioner caspase-3, initiators caspase-8 and caspase-9 using colorimetric assays. Turning to the role of viral M protein when it was overexpressed in SSN-1 cells, it was indicated that the viral M gene alone has the ability to induce apoptosis. To elucidate the mechanism of apoptosis in SSN-1 cells, the activation inhibitors of main caspases were used showing that inhibiting of caspase-3 or caspase-8 activation did not seize induction of apoptosis in virus-infected SSN-1 cells. However, the inhibiting of caspase-9 activation reduced significantly the apoptosis initiation process and sharply the expression of viral M gene, suggesting that SHVV plays a major role in the early induction of apoptosis by caspase-9. Interestingly, there were also differences in the mitochondrial membrane potential after the apoptotic induction of caspases, which confirm that caspase-9 is primarily responsible for the cleavage of caspases during apoptosis. Taken together, these findings can therefore be assumed that viral M protein induces apoptosis via the intrinsic apoptotic pathway in SHVV infecting SSN-1 cells.
Collapse
Affiliation(s)
- Abeer M Hegazy
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Central Laboratory of Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzuo Lin
- Faculty of Science, University of British Columbia, Vancouver, British Columbia, V6T1W9, Canada
| | - Sarath Babu V
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Feng Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Youcheng Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
21
|
Zhang S, Huang A, Zhou X, Li Z, Dietzgen RG, Zhou C, Cao M. Natural Defect of a Plant Rhabdovirus Glycoprotein Gene: A Case Study of Virus-Plant Coevolution. PHYTOPATHOLOGY 2021; 111:227-236. [PMID: 32648524 DOI: 10.1094/phyto-05-20-0191-fi] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven isolates of a putative cytorhabdovirus (family Rhabdoviridae, order Mononegavirales) designated as citrus-associated rhabdovirus (CiaRV) were identified in citrus, passion fruit, and paper bush from the same geographical area in China. CiaRV, bean-associated cytorhabdovirus (Brazil), and papaya virus E (Ecuador) should be taxonomically classified in the species Papaya cytorhabdovirus. Due to natural mutations, the glycoprotein (G) and P4 genes were impaired in citrus-infecting isolates of CiaRV, resulting in an atypical rhabdovirus genome organization of 3' leader-N-P-P3-M-L-5' trailer. The P3 protein of CiaRV shared a common origin with begomoviral movement proteins (family Geminiviridae). Secondary structure analysis and trans-complementation of movement-deficient tomato mosaic virus and potato virus X mutants by CiaRV P3 supported its function in viral cell-to-cell trafficking. The wide geographical dispersal of CiaRV and related viruses suggests an efficient transmission mechanism, as well as an underlying risk to global agriculture. Both the natural phenomenon and experimental analyses demonstrated presence of the "degraded" type of CiaRV in citrus, in parallel to "undegraded" types in other host plant species. This case study shows a plant virus losing the function of an important but nonessential gene, likely due to host shift and adaption, which deepened our understanding of course of natural viral diversification.
Collapse
Affiliation(s)
- Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Aijun Huang
- National Navel Orange Research Center, College of Life Science, Gannan Normal University, Ganzhou, China
| | - Xin Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
22
|
Tseng HH, Huang WR, Cheng CY, Chiu HC, Liao TL, Nielsen BL, Liu HJ. Aspirin and 5-Aminoimidazole-4-carboxamide Riboside Attenuate Bovine Ephemeral Fever Virus Replication by Inhibiting BEFV-Induced Autophagy. Front Immunol 2020; 11:556838. [PMID: 33329515 PMCID: PMC7732683 DOI: 10.3389/fimmu.2020.556838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Recent study in our laboratory has demonstrated that BEFV-induced autophagy via activation of the PI3K/Akt/NF-κB and Src/JNK pathways and suppression of the PI3K-AKt-mTORC1 pathway is beneficial for virus replication. In the current study, we found that both aspirin and 5-aminoimidazole-4-carboxamide-1-β-riboside (AICAR) siginificantly attenuated virus replication by inhibiting BEFV-induced autophagy via suppressing the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways as well as inducing reversion of the BEFV-suppressed PI3K-Akt-mTORC1 pathway. AICAR reversed the BEFV-activated PI3K/Akt/NF-κB and Src/JNK pathways at the early to late stages of infection and induced reversion of the BEFV-suppressed PI3K-AKt-mTORC1 pathway at the late stage of infection. Our findings reveal that inhibition of BEFV-induced autophagy by AICAR is independent of AMPK. Furthermore, we found that AICAR transcriptionally downregulates the ATG related genes ULK1, Beclin 1, and LC3 and enhances Atg7 degradation by the proteasome pathway. Aspirin suppresses virus replication by inhibiting BEFV-induced autophagy. It directly suppressed the NF-κB pathway and reversed the BEFV-activated Src/JNK pathway at the early stage of infection and reversed the BEFV-suppressed PI3K/Akt/mTOR pathway at the late stage of infection. The current study provides mechanistic insights into the effects of aspirin and AICAR on BEFV replication through suppression of BEFV-induced autophagy.
Collapse
Affiliation(s)
- Hsu-Hung Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Chuan Chiu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Riedel C, Hennrich AA, Conzelmann KK. Components and Architecture of the Rhabdovirus Ribonucleoprotein Complex. Viruses 2020; 12:v12090959. [PMID: 32872471 PMCID: PMC7552012 DOI: 10.3390/v12090959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Rhabdoviruses, as single-stranded, negative-sense RNA viruses within the order Mononegavirales, are characterised by bullet-shaped or bacteroid particles that contain a helical ribonucleoprotein complex (RNP). Here, we review the components of the RNP and its higher-order structural assembly.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Correspondence:
| | - Alexandru A. Hennrich
- Max von Pettenkofer-Institute Virology, Faculty of Medicine, and Gene Center, LMU Munich, 81377 Munich, Germany; (A.A.H.); (K.-K.C.)
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute Virology, Faculty of Medicine, and Gene Center, LMU Munich, 81377 Munich, Germany; (A.A.H.); (K.-K.C.)
| |
Collapse
|
24
|
Marquis KA, Becker RL, Weiss AN, Morris MC, Ferran MC. The VSV matrix protein inhibits NF-κB and the interferon response independently in mouse L929 cells. Virology 2020; 548:117-123. [PMID: 32838932 DOI: 10.1016/j.virol.2020.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
The matrix (M) protein of vesicular stomatitis virus (VSV) plays a key role in immune evasion. While VSV has been thought to suppress the interferon (IFN) response primarily by inhibiting host cell transcription and translation, our recent findings indicate that the M protein also targets NF-κB activation. Therefore, the M protein may utilize two distinct mechanisms to limit expression of antiviral genes, inhibiting both host gene expression and NF-κB activation. Here we characterize a recently reported mutation in the M protein [M(D52G)] of VSV isolate 22-20, which suppressed IFN mRNA and protein production despite activating NF-κB. 22-20 inhibited reporter gene expression from multiple promoters, suggesting that 22-20 suppressed the IFN response via M-mediated inhibition of host cell transcription. We propose that suppression of the IFN response and regulation of NF-κB are independent, genetically separable functions of the VSV M protein.
Collapse
Affiliation(s)
- Kaitlin A Marquis
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | | | - Amanda N Weiss
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Matthew C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY, 14621, USA
| | - Maureen C Ferran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA.
| |
Collapse
|
25
|
Wang H, Liu Y, Mo L, Huo C, Wang Z, Zhong P, Jia D, Zhang X, Chen Q, Chen H, Wei T. A Neuron-Specific Antiviral Mechanism Modulates the Persistent Infection of Rice Rhabdoviruses in Leafhopper Vectors. Front Microbiol 2020; 11:513. [PMID: 32362876 PMCID: PMC7180231 DOI: 10.3389/fmicb.2020.00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Many plant rhabdoviruses are neurotropic and can persistently infect the central nervous system (CNS) of their insect vectors without causing significant cytopathology. The mechanisms by which the insect CNS resists infection by plant rhabdoviruses are largely unknown. Here, we report that the neural factor Hikaru genki homolog of the leafhopper Nephotettix cincticeps (NcHig) limits the spread of the nucleorhabdovirus rice yellow stunt virus (RYSV) in vector CNS. NcHig is predominantly expressed in the CNS of N. cincticeps, and the knockdown of NcHig expression by RNA interference enhances RYSV infection of the CNS. Furthermore, immuno-blockade of NcHig function by microinjection of N. cincticeps with NcHig antibody also enhances viral infection of the CNS. Thus, we conclude that the neuron-specific factor NcHig can control RYSV propagation in the CNS. Interestingly, we find the Hig homolog of the leafhopper Recilia dorsalis also has antiviral activity during the persistent infection of the cytorhabdovirus rice stripe mosaic virus (RSMV) in vector CNS. We further determine that RYSV and RSMV matrix proteins specifically interact with the complement control protein (CCP) domains of Higs. Thus, the matrix protein-binding ability of Hig is potentially essential for its antiviral activity in rice leafhoppers. Our results demonstrate an evolutionarily conserved antiviral mechanism for Hig to mediate the persistent infection of rice rhabdoviruses in the CNS of leafhopper vectors.
Collapse
Affiliation(s)
- Haitao Wang
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ye Liu
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lining Mo
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenyang Huo
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziyao Wang
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Panpan Zhong
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongsheng Jia
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Zhang
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyan Chen
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taiyun Wei
- Fujian Province Key Laboratory of Plant Virology, Vector-Borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Sonthonnax F, Besson B, Bonnaud E, Jouvion G, Merino D, Larrous F, Bourhy H. Lyssavirus matrix protein cooperates with phosphoprotein to modulate the Jak-Stat pathway. Sci Rep 2019; 9:12171. [PMID: 31434934 PMCID: PMC6704159 DOI: 10.1038/s41598-019-48507-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Phosphoprotein (P) and matrix protein (M) cooperate to undermine the immune response to rabies virus (RABV) infections. While P is involved in the modulation of the Jak-Stat pathway through the cytoplasmic retention of interferon (IFN)-activated STAT1 (pSTAT1), M interacts with the RelAp43-p105-ABIN2-TPL2 complex, to efficiently inhibit the nuclear factor-κB (NF-κB) pathway. Using transfections, protein-complementation assays, reverse genetics and DNA ChIP, we identified a role of M protein in the control of Jak-Stat signaling pathway, in synergy with the P protein. In unstimulated cells, both M and P proteins were found to interact with JAK1. Upon type-I IFN stimulation, the M switches toward pSTAT1 interaction, which results in an enhanced capacity of P protein to interact with pSTAT1 and restrain it in the cytoplasm. Furthermore, the role for M-protein positions 77, 100, 104 and 110 was also demonstrated in interaction with both JAK1 and pY-STAT1, and confirmed in vivo. Together, these data indicate that M protein cooperates with P protein to restrain in parallel, and sequentially, NF-κB and Jak-Stat pathways.
Collapse
Affiliation(s)
- Florian Sonthonnax
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Benoit Besson
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.,Université Paris-Diderot, Sorbonne-Paris Cité, Cellule Pasteur, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Emilie Bonnaud
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Grégory Jouvion
- Unité de Neuropathologie expérimentale, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - David Merino
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Florence Larrous
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Hervé Bourhy
- Unité Lyssavirus, Epidémiologie et Neuropathologie, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| |
Collapse
|
27
|
Cryo EM structure of the rabies virus ribonucleoprotein complex. Sci Rep 2019; 9:9639. [PMID: 31270364 PMCID: PMC6610074 DOI: 10.1038/s41598-019-46126-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022] Open
Abstract
Rabies virus is an important zoonotic pathogen. Its bullet shaped particle contains a helical nucleocapsid. We used cryo-electron tomography and subsequent subtomogram averaging to determine the structure of its ribonucleoprotein. The resulting electron density map allowed for confident fitting of the N-protein crystal structure, indicating that interactions between neighbouring N-proteins are only mediated by N- and C-terminal protruding subdomains (aa 1-27 and aa 355-372). Additional connecting densities, likely stabilizing the ribonucleoprotein complex, are present between neighbouring M-protein densities on the same helical turn and between M- and N-protein densities located on neighbouring helical turns, but not between M-proteins of different turns, as is observed for the related Vesicular stomatitis virus (VSV). This insight into the architecture of the rabies virus nucleocapsid highlights the surprising structural divergence of large biological assemblies even if the building blocks - here exemplified by VSV M- and N-protein - are structurally closely related.
Collapse
|
28
|
Status of antiviral therapeutics against rabies virus and related emerging lyssaviruses. Curr Opin Virol 2019; 35:1-13. [PMID: 30753961 DOI: 10.1016/j.coviro.2018.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Rabies virus (RABV) constitutes a major social and economic burden associated with 60 000 deaths annually worldwide. Although pre-exposure and post-exposure treatment options are available, they are efficacious only when initiated before the onset of clinical symptoms. Aggravating the problem, the current RABV vaccine does not cross-protect against the emerging zoonotic phylogroup II lyssaviruses. A requirement for an uninterrupted cold chain and high cost of the immunoglobulin component of rabies prophylaxis generate an unmet need for the development of RABV-specific antivirals. We discuss desirable anti-RABV drug profiles, past efforts to address the problem and inhibitor candidates identified, and examine how the rapidly expanding structural insight into RABV protein organization has illuminated novel druggable target candidates and paved the way to structure-aided drug optimization. Special emphasis is given to the viral RNA-dependent RNA polymerase complex as a promising target for direct-acting broad-spectrum RABV inhibitors.
Collapse
|
29
|
Tang X, Qin Y, Sheng X, Xing J, Zhan W. Generation, characterization and application of monoclonal antibodies against matrix protein of hirame novirhabdovirus (HIRRV) in flounder. DISEASES OF AQUATIC ORGANISMS 2018; 128:203-213. [PMID: 29862978 DOI: 10.3354/dao03222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hirame novirhabdovirus (HIRRV) causes severe disease in fish cultures, resulting in great economic loss in Asia and Europe. In this study, the matrix protein (M) of HIRRV was recombinantly expressed as the immunogen to produce monoclonal antibodies (MAbs) using hybridoma cell fusion technology, and 3 MAbs were produced and characterized by indirect ELISA, Western blotting and immunofluorescence assay (IFA). Western blotting and mass spectrometric analysis showed that the MAbs could specifically react with the nature M protein of HIRRV. The MAbs were employed to detect virions in HIRRV-infected epithelioma papulosum cyprini (EPC) cells and flounder Paralichthys olivaceus by IFA and immunohistochemistry (IHC). In the virus-infected EPC cells, the virions were mainly located in the cytoplasm, whereas in flounder, HIRRV was present in all 10 tested tissues, and the positive signals in spleen, head-kidney and heart were higher than in other tissues, consistent with the results obtained by RT-PCR. Moreover, strong positive signals were observed in the endothelial cells of blood vessels, but only the leukocytes were infected by HIRRV in the whole blood cells. These results indicate that the high susceptibility to HIRRV of leukocytes and endothelial cells may facilitate the spread of HIRRV and finally cause systemic infection in flounder. This study provides a foundation for further studies on rapid diagnosis of HIRRV and its infection mechanisms.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | | | | | | | | |
Collapse
|
30
|
Kordyukova LV, Shtykova EV, Baratova LA, Svergun DI, Batishchev OV. Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. J Biomol Struct Dyn 2018; 37:671-690. [PMID: 29388479 DOI: 10.1080/07391102.2018.1436089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Eleonora V Shtykova
- b Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences , Moscow , Russian Federation.,c Semenov Institute of Chemical Physics , Russian Academy of Sciences , Moscow , Russian Federation
| | - Lyudmila A Baratova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | | | - Oleg V Batishchev
- e Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow , Russian Federation.,f Moscow Institute of Physics and Technology , Dolgoprudniy , Russian Federation
| |
Collapse
|
31
|
Besson B, Sonthonnax F, Duchateau M, Ben Khalifa Y, Larrous F, Eun H, Hourdel V, Matondo M, Chamot-Rooke J, Grailhe R, Bourhy H. Regulation of NF-κB by the p105-ABIN2-TPL2 complex and RelAp43 during rabies virus infection. PLoS Pathog 2017; 13:e1006697. [PMID: 29084252 PMCID: PMC5679641 DOI: 10.1371/journal.ppat.1006697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/09/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
At the crossroad between the NF-κB and the MAPK pathways, the ternary complex composed of p105, ABIN2 and TPL2 is essential for the host cell response to pathogens. The matrix protein (M) of field isolates of rabies virus was previously shown to disturb the signaling induced by RelAp43, a NF-κB protein close to RelA/p65. Here, we investigated how the M protein disturbs the NF-κB pathway in a RelAp43-dependant manner and the potential involvement of the ternary complex in this mechanism. Using a tandem affinity purification coupled with mass spectrometry approach, we show that RelAp43 interacts with the p105-ABIN2-TPL2 complex and we observe a strong perturbation of this complex in presence of M protein. M protein interaction with RelAp43 is associated with a wide disturbance of NF-κB signaling, involving a modulation of IκBα-, IκBβ-, and IκBε-RelAp43 interaction and a favored interaction of RelAp43 with the non-canonical pathway (RelB and p100/p52). Monitoring the interactions between host and viral proteins using protein-fragment complementation assay and bioluminescent resonance energy transfer, we further show that RelAp43 is associated to the p105-ABIN2-TPL2 complex as RelAp43-p105 interaction stabilizes the formation of a complex with ABIN2 and TPL2. Interestingly, the M protein interacts not only with RelAp43 but also with TPL2 and ABIN2. Upon interaction with this complex, M protein promotes the release of ABIN2, which ultimately favors the production of RelAp43-p50 NF-κB dimers. The use of recombinant rabies viruses further indicates that this mechanism leads to the control of IFNβ, TNF and CXCL2 expression during the infection and a high pathogenicity profile in rabies virus infected mice. All together, our results demonstrate the important role of RelAp43 and M protein in the regulation of NF-κB signaling. Rabies virus is a recurring zoonosis responsible for about 60,000 deaths per year. A key feature of rabies virus is its stealth, allowing it to spread within the host and escape the immune response. To do so, rabies virus developed several mechanisms, including a thorough interference with cell signaling pathways. Here, we focused our attention on the molecular aspects of rabies virus escape to the NF-κB pathway through the interaction between the M protein and the NF-κB protein RelAp43. Monitoring close range interactions, we found that RelAp43 plays an important role in the stabilization of the p105-ABIN2-TPL2 complex, which is essential in the regulation of both NF-κB and MAPK pathways, and we brought a new insight on the dynamics within the host protein complex. These results were confirmed in living cells and in mice. Overall, our data suggest that rabies virus interference with the p105-ABIN2-TPL2 complex is a cornerstone of its stealth strategy to escape the immune response.
Collapse
Affiliation(s)
- Benoit Besson
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Florian Sonthonnax
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Magalie Duchateau
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | | | - Florence Larrous
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| | - Hyeju Eun
- Technology Development Platform, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Rep. of Korea
| | - Véronique Hourdel
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Mariette Matondo
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Julia Chamot-Rooke
- Unité de Spectrométrie de Masse Structurale et Protéomique, Plateforme Protéomique, CNRS USR 2000 Spectrométrie de masse pour la biologie, Paris, France
| | - Regis Grailhe
- Technology Development Platform, 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Rep. of Korea
| | - Hervé Bourhy
- Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| |
Collapse
|
32
|
Role of Viral Hemorrhagic Septicemia Virus Matrix (M) Protein in Suppressing Host Transcription. J Virol 2017; 91:JVI.00279-17. [PMID: 28747493 DOI: 10.1128/jvi.00279-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the Northern Hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antiviral gene expression. By systematically screening each of the six VHSV structural and nonstructural genes, we identified matrix protein (M) as the virus' most potent antihost protein. Only M of VHSV genotype IV sublineage b (VHSV-IVb) suppressed mitochondrial antiviral signaling protein (MAVS) and type I IFN-induced gene expression in a dose-dependent manner. M also suppressed the constitutively active simian virus 40 (SV40) promoter and globally decreased cellular RNA levels. Chromatin immunoprecipitation (ChIP) studies illustrated that M inhibited RNA polymerase II (RNAP II) recruitment to gene promoters and decreased RNAP II C-terminal domain (CTD) Ser2 phosphorylation during VHSV infection. However, transcription directed by RNAP I to III was suppressed by M. To identify regions of functional importance, M proteins from a variety of VHSV strains were tested in cell-based transcriptional inhibition assays. M of a particular VHSV-Ia strain, F1, was significantly less potent than IVb M at inhibiting SV40/luciferase (Luc) expression yet differed by just 4 amino acids. Mutation of D62 to alanine alone, or in combination with an E181-to-alanine mutation (D62A E181A), dramatically reduced the ability of IVb M to suppress host transcription. Introducing either M D62A or D62A E181A mutations into VHSV-IVb via reverse genetics resulted in viruses that replicated efficiently but exhibited less cytotoxicity and reduced antitranscriptional activities, implicating M as a primary regulator of cytopathicity and host transcriptional suppression.IMPORTANCE Viruses must suppress host antiviral responses to replicate and spread between hosts. In these studies, we identified the matrix protein of the deadly fish novirhabdovirus VHSV as a critical mediator of host suppression during infection. Our studies indicated that M alone could block cellular gene expression at very low expression levels. We identified several subtle mutations in M that were less potent at suppressing host transcription. When these mutations were engineered back into recombinant viruses, the resulting viruses replicated well but elicited less toxicity in infected cells and activated host innate immune responses more robustly. These data demonstrated that VHSV M plays an important role in mediating both virus-induced cell toxicity and viral replication. Our data suggest that its roles in these two processes can be separated to design effective attenuated viruses for vaccine candidates.
Collapse
|
33
|
Zan J, Liu S, Sun DN, Mo KK, Yan Y, Liu J, Hu BL, Gu JY, Liao M, Zhou JY. Rabies Virus Infection Induces Microtubule Depolymerization to Facilitate Viral RNA Synthesis by Upregulating HDAC6. Front Cell Infect Microbiol 2017; 7:146. [PMID: 28491824 PMCID: PMC5405082 DOI: 10.3389/fcimb.2017.00146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Rabies virus (RABV) is the cause of rabies, and is associated with severe neurological symptoms, high mortality rate, and a serious threat to human health. Although cellular tubulin has recently been identified to be incorporated into RABV particles, the effects of RABV infection on the microtubule cytoskeleton remain poorly understood. In this study, we show that RABV infection induces microtubule depolymerization as observed by confocal microscopy, which is closely associated with the formation of the filamentous network of the RABV M protein. Depolymerization of microtubules significantly increases viral RNA synthesis, while the polymerization of microtubules notably inhibits viral RNA synthesis and prevents the viral M protein from inducing the formation of the filamentous network. Furthermore, the histone deacetylase 6 (HDAC6) expression level progressively increases during RABV infection, and the inhibition of HDAC6 deacetylase activity significantly decreases viral RNA synthesis. In addition, the expression of viral M protein alone was found to significantly upregulate HDAC6 expression, leading to a substantial reduction in its substrate, acetylated α-tubulin, eventually resulting in microtubule depolymerization. These results demonstrate that HDAC6 plays a positive role in viral transcription and replication by inducing microtubule depolymerization during RABV infection.
Collapse
Affiliation(s)
- Jie Zan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Song Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Dong-Nan Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Kai-Kun Mo
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Juan Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Bo-Li Hu
- Institute of Immunology, Nanjing Agricultural UniversityNanjing, China
| | - Jin-Yan Gu
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang UniversityHangzhou, China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Ji-Yong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang UniversityHangzhou, China
| |
Collapse
|
34
|
Abstract
Viruses are the most abundant biological entities on earth and show remarkable diversity of genome sequences, replication and expression strategies, and virion structures. Evolutionary genomics of viruses revealed many unexpected connections but the general scenario(s) for the evolution of the virosphere remains a matter of intense debate among proponents of the cellular regression, escaped genes, and primordial virus world hypotheses. A comprehensive sequence and structure analysis of major virion proteins indicates that they evolved on about 20 independent occasions, and in some of these cases likely ancestors are identifiable among the proteins of cellular organisms. Virus genomes typically consist of distinct structural and replication modules that recombine frequently and can have different evolutionary trajectories. The present analysis suggests that, although the replication modules of at least some classes of viruses might descend from primordial selfish genetic elements, bona fide viruses evolved on multiple, independent occasions throughout the course of evolution by the recruitment of diverse host proteins that became major virion components.
Collapse
|
35
|
The matrix protein of rabies virus binds to RelAp43 to modulate NF-κB-dependent gene expression related to innate immunity. Sci Rep 2016; 6:39420. [PMID: 28000711 PMCID: PMC5175135 DOI: 10.1038/srep39420] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 02/08/2023] Open
Abstract
The matrix (M) protein of wild isolates of rabies virus such as Tha (M-Tha) was previously shown to be able to interact with RelAp43, a protein of the NF-κB family, and to efficiently suppress NF-κB-dependent reporter gene expression, in contrast with the vaccine strain SAD. Here, we analyze the mechanisms involved in RelAp43-M protein interaction. We demonstrate that the central part of M-Tha, and the specific C-terminal region of RelAp43 are required for this interaction. Four differences in the corresponding amino acid sequences of the M-Tha and M-SAD are shown to be crucial for RelAp43 interaction and subsequent modulation of innate immune response. Furthermore, the capacity of M-Tha to interact with RelAp43 was shown to be crucial for the control of the expression of four genes (IFN, TNF, IL8 and CXCL2) during viral infection. These findings reveal that RelAp43 is a potent regulator of transcription of genes involved in innate immune response during rabies virus infection and that the M protein of wild isolates of rabies virus is a viral immune-modulatory factor playing an important role in this RelAp43-mediated host innate immunity response in contrast to M protein of vaccine strains, which have lost this property.
Collapse
|
36
|
Abstract
A central dogma of molecular biology is that the sequence of a protein dictates its particular fold and the fold dictates its function. Indeed, the sequence → structure → function hypothesis has been a guiding principle by which scientists approach molecular biology. Every student knows that the genome encodes information for the progression from primary sequence to secondary, tertiary, and ultimately quaternary structure. Yet with a growing number of proteins, a fifth level has been identified: rearrangement of existing structures into distinct forms. Recent observations indicate that replication of Ebola virus depends on this fifth level. We believe other viruses with compact genomes and rapid evolution under selective pressure will be a rich source of examples of polypeptides that rearrange to gain added functions. In this review, we describe mechanisms by which viral, prokaryotic, and eukaryotic polypeptides have adopted alternate structures to control or gain function.
Collapse
Affiliation(s)
- Hal Wasserman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037;
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037; .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
37
|
Ghanem A, Conzelmann KK. G gene-deficient single-round rabies viruses for neuronal circuit analysis. Virus Res 2016; 216:41-54. [DOI: 10.1016/j.virusres.2015.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 12/11/2022]
|
38
|
Reuter G, Boros Á, Pál J, Kapusinszky B, Delwart E, Pankovics P. Detection and genome analysis of a novel (dima)rhabdovirus (Riverside virus) from Ochlerotatus sp. mosquitoes in Central Europe. INFECTION GENETICS AND EVOLUTION 2016; 39:336-341. [PMID: 26883377 DOI: 10.1016/j.meegid.2016.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 11/19/2022]
Abstract
During an investigation for potential arboviruses present in mosquitoes in Hungary (Central Europe) three highly similar virus strains of a novel rhabdovirus (family Rhabdoviridae) called Riverside virus (RISV, KU248085-KU248087) were detected and genetically characterized from Ochlerotatus sp. mosquito pools collected from 3 geographical locations using viral metagenomic and RT-PCR methods. The ssRNA(-) genome of RISVs follows the general genome layout of rhabdoviruses (3'-N-P-M-G-L-5') with two alternatives, small ORFs in the P and G genes (Px and Gx). The genome of RISVs contains some unusual features such as the large P proteins, the short M proteins with the absence of N-terminal region together with the undetectable "Late budding" motif and the overlap of P and M genes. The unusually long 3' UTRs of the M genes of RISVs probably contain a remnant transcription termination signal which is suggesting the presence of an ancestral gene. The phylogenetic analysis and sequence comparisons show that the closest known relative of RISVs is the recently identified partially sequenced mosquito-borne rhabdovirus, North Creek virus (NOCRV), from Australia. The RISVs and NOCRV form a distinct, basally rooted lineage in the dimarhabdovirus supergroup. The host species range of RISVs is currently unknown, although the presence of these viruses especially in Ochlerotatus sp. mosquitoes which are known to be fierce biting pests of humans and warm-blooded animals and abundant and widespread in Hungary could hold some potential medical and/or veterinary risks.
Collapse
Affiliation(s)
- Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; University of Pécs, Pécs, Hungary.
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; University of Pécs, Pécs, Hungary
| | | | | | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; University of Pécs, Pécs, Hungary
| |
Collapse
|
39
|
Tracking the Fate of Genetically Distinct Vesicular Stomatitis Virus Matrix Proteins Highlights the Role for Late Domains in Assembly. J Virol 2015; 89:11750-60. [PMID: 26339059 DOI: 10.1128/jvi.01371-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Vesicular stomatitis virus (VSV) assembly requires condensation of the viral ribonucleoprotein (RNP) core with the matrix protein (M) during budding from the plasma membrane. The RNP core comprises the negative-sense genomic RNA completely coated by the nucleocapsid protein (N) and associated by a phosphoprotein (P) with the large polymerase protein (L). To study the assembly of single viral particles, we tagged M and P with fluorescent proteins. We selected from a library of viruses with insertions in the M gene a replication-competent virus containing a fluorescent M and combined that with our previously described virus containing fluorescent P. Virus particles containing those fusions maintained the same bullet shape appearance as wild-type VSV but had a modest increase in particle length, reflecting the increased genome size. Imaging of the released particles revealed a variation in the amount of M and P assembled into the virions, consistent with a flexible packaging mechanism. We used the recombinants to further study the importance of the late domains in M, which serve to recruit the endosomal sorting complex required for transport (ESCRT) machinery during budding. Mutations in late domains resulted in the accumulation of virions that failed to pinch off from the plasma membrane. Imaging of single virions released from cells that were coinfected with M tagged with enhanced green fluorescent protein and M tagged with mCherry variants in which the late domains of one virus were inactivated by mutation showed a strong bias against the incorporation of the late-domain mutant into the released virions. In contrast, the intracellular expression and membrane association of the two variants were unaltered. These studies provide new tools for imaging particle assembly and enhance our resolution of existing models for assembly of VSV. IMPORTANCE Assembly of vesicular stomatitis virus (VSV) particles requires the separate trafficking of the viral replication machinery, a matrix protein (M) and a glycoprotein, to the plasma membrane. The matrix protein contains a motif termed a "late domain" that engages the host endosomal sorting complex required for transport (ESCRT) machinery to facilitate the release of viral particles. Inactivation of the late domains through mutation results in the accumulation of virions arrested at the point of release. In the study described here, we developed new tools to study VSV assembly by fusing fluorescent proteins to M and to a constituent of the replication machinery, the phosphoprotein (P). We used those tools to show that the late domains of M are required for efficient incorporation into viral particles and that the particles contain a variable quantity of M and P.
Collapse
|
40
|
Characterization of the Interaction between the Matrix Protein of Vesicular Stomatitis Virus and the Immunoproteasome Subunit LMP2. J Virol 2015; 89:11019-29. [PMID: 26311888 DOI: 10.1128/jvi.01753-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The matrix protein (M) of vesicular stomatitis virus (VSV) is involved in virus assembly, budding, gene regulation, and cellular pathogenesis. Using a yeast two-hybrid system, the M globular domain was shown to interact with LMP2, a catalytic subunit of the immunoproteasome (which replaces the standard proteasome catalytic subunit PSMB6). The interaction was validated by coimmunoprecipitation of M and LMP2 in VSV-infected cells. The sites of interaction were characterized. A single mutation of M (I96A) which significantly impairs the interaction between M and LMP2 was identified. We also show that M preferentially binds to the inactive precursor of LMP2 (bearing an N-terminal propeptide which is cleaved upon LMP2 maturation). Furthermore, taking advantage of a sequence alignment between LMP2 and its proteasome homolog, PSMB6 (which does not bind to M), we identified a mutation (L45R) in the S1 pocket where the protein substrate binds prior to cleavage and a second one (D17A) of a conserved residue essential for the catalytic activity, resulting in a reduction of the level of binding to M. The combination of both mutations abolishes the interaction. Taken together, our data indicate that M binds to LMP2 before its incorporation into the immunoproteasome. As the immunoproteasome promotes the generation of major histocompatibility complex (MHC) class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells, we suggest that M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. IMPORTANCE The immunoproteasome promotes the generation of MHC class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells. Here, we report on the association of vesicular stomatitis virus (VSV) matrix protein (M) with LMP2, one of the immunoproteasome-specific catalytic subunits. M preferentially binds to the LMP2 inactive precursor. The M-binding site on LMP2 is facing inwards in the immunoproteasome and is therefore not accessible to M after its assembly. Hence, M binds to LMP2 before its incorporation into the immunoproteasome. We suggest that VSV M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. Modulating this M-induced immunoproteasome impairment might be relevant in order to optimize VSV for oncolytic virotherapy.
Collapse
|
41
|
Redondo N, Madan V, Alvarez E, Carrasco L. Impact of Vesicular Stomatitis Virus M Proteins on Different Cellular Functions. PLoS One 2015; 10:e0131137. [PMID: 26091335 PMCID: PMC4474437 DOI: 10.1371/journal.pone.0131137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Three different matrix (M) proteins termed M1, M2 and M3 have been described in cells infected with vesicular stomatitis virus (VSV). Individual expression of VSV M proteins induces an evident cytopathic effect including cell rounding and detachment, in addition to a partial inhibition of cellular protein synthesis, likely mediated by an indirect mechanism. Analogous to viroporins, M1 promotes the budding of new virus particles; however, this process does not produce an increase in plasma membrane permeability. In contrast to M1, M2 and M3 neither interact with the cellular membrane nor promote the budding of double membrane vesicles at the cell surface. Nonetheless, all three species of M protein interfere with the transport of cellular mRNAs from the nucleus to the cytoplasm and also modulate the redistribution of the splicing factor. The present findings indicate that all three VSV M proteins share some activities that interfere with host cell functions.
Collapse
Affiliation(s)
- Natalia Redondo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, Spain
- * E-mail:
| | - Vanesa Madan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Enrique Alvarez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
42
|
Radzimanowski J, Effantin G, Weissenhorn W. Conformational plasticity of the Ebola virus matrix protein. Protein Sci 2014; 23:1519-27. [PMID: 25159197 DOI: 10.1002/pro.2541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022]
Abstract
Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40.
Collapse
Affiliation(s)
- Jens Radzimanowski
- University Grenoble Alpes, UVHCI, F-38000, Grenoble, France; CNRS, UVHCI, F-38000, Grenoble, France
| | | | | |
Collapse
|
43
|
Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1 • Nup98). Proc Natl Acad Sci U S A 2014; 111:9127-32. [PMID: 24927547 DOI: 10.1073/pnas.1409076111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.
Collapse
|
44
|
Leyrat C, Renner M, Harlos K, Huiskonen JT, Grimes JM. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus. Structure 2013; 22:136-48. [PMID: 24316400 PMCID: PMC3887258 DOI: 10.1016/j.str.2013.10.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022]
Abstract
The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca2+ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca2+ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses. M is a calcium binding protein Calcium stabilizes the structure of M M forms an obligate dimer in solution M self-assembles in the presence of lipids The Paramyxoviruses and the Filoviruses have a common ancestor
Collapse
Affiliation(s)
- Cedric Leyrat
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Max Renner
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Karl Harlos
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Juha T Huiskonen
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jonathan M Grimes
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
| |
Collapse
|
45
|
Luco S, Delmas O, Vidalain PO, Tangy F, Weil R, Bourhy H. RelAp43, a member of the NF-κB family involved in innate immune response against Lyssavirus infection. PLoS Pathog 2012; 8:e1003060. [PMID: 23271966 PMCID: PMC3521698 DOI: 10.1371/journal.ppat.1003060] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 10/14/2012] [Indexed: 12/24/2022] Open
Abstract
NF-κB transcription factors are crucial for many cellular processes. NF-κB is activated by viral infections to induce expression of antiviral cytokines. Here, we identified a novel member of the human NF-κB family, denoted RelAp43, the nucleotide sequence of which contains several exons as well as an intron of the RelA gene. RelAp43 is expressed in all cell lines and tissues tested and exhibits all the properties of a NF-κB protein. Although its sequence does not include a transactivation domain, identifying it as a class I member of the NF-κB family, it is able to potentiate RelA-mediated transactivation and stabilize dimers comprising p50. Furthermore, RelAp43 stimulates the expression of HIAP1, IRF1, and IFN-β - three genes involved in cell immunity against viral infection. It is also targeted by the matrix protein of lyssaviruses, the agents of rabies, resulting in an inhibition of the NF-κB pathway. Taken together, our data provide the description of a novel functional member of the NF-κB family, which plays a key role in the induction of anti-viral innate immune response. The homeostasis of living cells is tightly regulated by signaling pathways, most of them being pleiotropic, which makes their understanding crucial in biology. One of them, the NF-κB pathway, includes a family of transcription factors involved in cell survival, proliferation, differentiation, and cell immunity. In this study, we identified a novel human member of the NF-κB family that we named RelAp43. It shares all the main characteristics of the already known NF-κB family members. Moreover, we demonstrated that RelAp43 induced specifically the expression of genes involved in the innate immune response against viruses. Interestingly, we showed that RelAp43 is specifically targeted by the matrix protein of rabies virus, which contributes to the pathogenesis of the virus and its escape from innate immune response. Taken together, our data provide the description of a novel functional member of the NF-κB family, which is involved in the induction of innate immune response against virus infection.
Collapse
Affiliation(s)
- Sophie Luco
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Olivier Delmas
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
- * E-mail:
| | | | - Frédéric Tangy
- Institut Pasteur, Unité de Génomique virale et vaccination, Paris, France
| | - Robert Weil
- Institut Pasteur, Unité de Signalisation moléculaire et Activation cellulaire, Paris, France
| | - Hervé Bourhy
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, Paris, France
| |
Collapse
|
46
|
Intraviral protein interactions of Chandipura virus. Arch Virol 2012; 157:1949-57. [PMID: 22763614 DOI: 10.1007/s00705-012-1389-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
Chandipura virus (CHPV) is an emerging rhabdovirus responsible for several outbreaks of fatal encephalitis among children in India. The characteristic structure of the virus is a result of extensive and specific interplay among its five encoded proteins. The revelation of interactions among CHPV proteins can help in gaining insight into viral architecture and pathogenesis. In the current study, we carried out comprehensive yeast two-hybrid (Y2H) analysis to elucidate intraviral protein-protein interactions. All of the interactions identified by Y2H were assessed for reliability by GST pull-down and ELISA. A total of eight interactions were identified among four viral proteins. Five of these interactions are being reported for the first time for CHPV. Among these, the glycoprotein (G)-nucleocapsid (N) interaction could be considered novel, as this has not been reported for any members of the family Rhabdoviridae. This study provides a framework within which the roles of the identified protein interactions can be explored further for understanding the biology of this virus at the molecular level.
Collapse
|
47
|
The nucleocapsid of vesicular stomatitis virus. SCIENCE CHINA-LIFE SCIENCES 2012; 55:291-300. [PMID: 22566085 DOI: 10.1007/s11427-012-4307-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
The nucleocapsid of vesicular stomatitis virus serves as the genomic template for transcription and replication. The viral genomic RNA is sequestered in the nucleocapsid in every step of the virus replication cycle. The structure of the nucleocapsid and the entire virion revealed how the viral genomic RNA is encapsidated and packaged in the virus. A unique mechanism for viral RNA synthesis is derived from the structure of the nuleocapsid and its interactions with the viral RNA-dependent RNA polymerase.
Collapse
|
48
|
Obiang L, Raux H, Ouldali M, Blondel D, Gaudin Y. Phenotypes of vesicular stomatitis virus mutants with mutations in the PSAP motif of the matrix protein. J Gen Virol 2012; 93:857-865. [DOI: 10.1099/vir.0.039800-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicular stomatitis virus (VSV) matrix protein (M) has a flexible amino-terminal part that recruits cellular partners. It contains a dynamin-binding site that is required for efficient virus assembly, and two motifs, 24PPPY27 and 37PSAP40, that constitute potential late domains. Late domains are present in proteins of several enveloped viruses and are involved in the ultimate step of the budding process (i.e. fission between viral and cellular membranes). In baby hamster kidney (BHK)-21 cells, it has been demonstrated that the 24PPPY27 motif binds the Nedd4 (neuronal precursor cell-expressed developmentally downregulated 4) E3 ubiquitin ligase for efficient virus budding and that the 37PSAP40 motif, although conserved among M proteins of vesiculoviruses, does not possess late-domain activity. In this study, we have re-examined the contribution of the PSAP motif to VSV budding. First, we demonstrate that VSV M indeed binds TSG101 [tumour susceptibility gene 101; a component of the ESCRT1 (endosomal sorting complex required for transport 1)] through its PSAP motif. Second, we analysed the phenotype of several recombinant mutants. We show that a double mutant with point mutations in both the PSAP and the PPPY motifs is impaired compared with a single mutant in the PPPY motif, indicating that the PSAP motif partially compensates for the lack of the PPPY motif. Mutants’ phenotypes depend on cell lines: in CERA (chicken embryo-related, Alger clone) cells, a recombinant virus with a single mutation in the PSAP motif was impaired compared with the wild type, and a mutant with a single mutation in the dynamin-binding motif was much less impaired in Vero cells than in BSR (clones of BHK-21) cells. These results have implications for the VSV budding pathway that will be discussed.
Collapse
Affiliation(s)
- Linda Obiang
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Hélène Raux
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Malika Ouldali
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Danielle Blondel
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Yves Gaudin
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
49
|
Martin KM, Dietzgen RG, Wang R, Goodin MM. Lettuce necrotic yellows cytorhabdovirus protein localization and interaction map, and comparison with nucleorhabdoviruses. J Gen Virol 2012; 93:906-914. [PMID: 22190014 DOI: 10.1099/vir.0.038034-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Lettuce necrotic yellows virus (LNYV), Sonchus yellow net virus (SYNV) and Potato yellow dwarf virus (PYDV) are members of the family Rhabdoviridae that infect plants. LNYV is a cytorhabdovirus that replicates in the cytoplasm, while SYNV and PYDV are nucleorhabdoviruses that replicate in the nuclei of infected cells. LNYV and SYNV share a similar genome organization with a gene order of nucleoprotein (N), phosphoprotein (P), putative movement protein (Mv), matrix protein (M), glycoprotein (G) and polymerase (L). PYDV contains an additional predicted gene of unknown function located between N and P. In order to gain insight into the associations of viral structural and non-structural proteins and the mechanisms by which they may function, we constructed protein localization and interaction maps. Subcellular localization was determined by transiently expressing the viral proteins fused to green or red fluorescent protein in leaf epidermal cells of Nicotiana benthamiana. Protein interactions were tested in planta by using bimolecular fluorescence complementation. All three viruses showed Mv to be localized at the cell periphery and the G protein to be membrane associated. Comparing the interaction maps revealed that only the N-P and M-M interactions are common to all three viruses. Associations unique to only one virus include P-M for LNYV, G-Mv for SYNV and M-Mv, M-G and N-M for PYDV. The cognate N-P proteins of all three viruses interacted and exhibited characteristic changes in localization when co-expressed.
Collapse
Affiliation(s)
- Kathleen M Martin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia Qld 4072, Australia
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Renyuan Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Michael M Goodin
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
50
|
Molecular determinants of arenavirus Z protein homo-oligomerization and L polymerase binding. J Virol 2011; 85:12304-14. [PMID: 21957305 DOI: 10.1128/jvi.05691-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The arenavirus Z is a zinc-binding RING protein that has been implicated in multiple functions during the viral life cycle. These roles of Z involve interactions with viral and cellular proteins that remain incompletely understood. In this regard, Z inhibits viral RNA transcription and replication through direct interaction with the viral L polymerase. Here, we defined the L-binding domain of Tacaribe virus (TCRV) Z protein and the structural requirements mediating Z homo-oligomerization. By using site-directed mutagenesis, coimmunoprecipitation, and functional assays, we showed that residues R37, N39, W44, L50, and Y57, located around the zinc coordination site I, play a critical role in the Z-L interaction. We also found that Z protein from either TCRV or the pathogenic Junin virus (JUNV) self-associates into oligomeric forms in mammalian cells. Importantly, mutation of the myristoylation site, the strictly conserved residue G at position 2, severely impaired the ability of both TCRV Z and JUNV Z to self-interact as well as their capacity to accumulate at the plasma membrane, strongly suggesting that Z homo-oligomerization is associated with its myristoylation and cell membrane targeting. In contrast, disruption of the RING structure or substitution of W44 or N39, which are critical for L protein recognition, did not affect Z self-binding. Overall, the data presented here indicate that homo-oligomerization is not a requirement for Z-L interaction or Z-mediated polymerase activity inhibition.
Collapse
|