1
|
Ma C, Luo C, Deng F, Yu C, Chen Y, Zhong G, Zhan Y, Nie L, Huang Y, Xia Y, Cai Z, Xu K, Cai H, Wang F, Lu Z, Zeng X, Zhu Y, Liu S. Major vault protein directly enhances adaptive immunity induced by Influenza A virus or indirectly through innate immunity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167441. [PMID: 39069011 DOI: 10.1016/j.bbadis.2024.167441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
As we previously revealed, major vault protein (MVP) is a virus-induced host factor, and its expression is crucial for innate immune responses. Nevertheless, the function of MVP in adaptive immunity is poorly known. Here, we demonstrate that Mvp knockout mice had attenuated antibody responses and reduced survival after rechallenge with homologous influenza A virus (IAV) relative to wild-type mice. Analysis of B cell populations showed that MVP promoted germinal center (GC) responses to develop optimal antiviral humoral immunity. Although MVP-deficient T cells and dendritic cells (DCs) were not intrinsically damaged, MVP promoted activating effector T cells and T follicular helper responses and regulated specific DC subsets. These findings suggest that MVP directs an effective adaptive immune response against IAV by directly engaging in GC reactions or indirectly augmenting cellular immunity via innate immune pathways.
Collapse
Affiliation(s)
- Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yumeng Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gechang Zhong
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuxin Zhan
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zeng Cai
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huanhuan Cai
- Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Xiangtai Zeng
- Department of General Surgery, Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute of Myocardial Injury and Repair, Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430072, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, China; Department of General Surgery, Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
2
|
Gray JM, Major K, Castillo-Ruiz A, Shipley M, Gangappa S, Forger NG. The inflammatory response to birth requires MyD88 and is driven by both mother and offspring. Brain Behav Immun 2024; 115:617-630. [PMID: 37967662 PMCID: PMC11913035 DOI: 10.1016/j.bbi.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/15/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
Birth is an inflammatory event for the newborn, characterized by elevations in interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α peripherally and/or centrally, as well as changes in brain microglia. However, the mechanism(s) underlying these responses is unknown. Toll-like receptors (TLRs) play crucial roles in innate immunity and initiate inflammatory cascades upon recognition of endogenous or exogenous antigens. Most TLR signaling depends on the adaptor molecule myeloid differentiation primary response 88 (MyD88). We independently varied MyD88 gene status in mouse dams and their offspring to determine whether the inflammatory response to birth depends on MyD88 signaling and, if so, whether that signaling occurs in the offspring, the mother, or both. We find that the perinatal surges in plasma IL-6 and brain expression of TNF-α depend solely on MyD88 gene status of the offspring, whereas postnatal increases in plasma IL-10 and TNF-α depend on MyD88 in both the pup and dam. Interestingly, MyD88 genotype of the dam primarily drives differences in offspring brain microglial density and has robust effects on developmental neuronal cell death. Milk cytokines were evaluated as a possible source of postnatal maternal influence; although we found high levels of CXCL1/GROα and several other cytokines in ingested post-partum milk, their presence did not require MyD88. Thus, the inflammatory response previously described in the late-term fetus and newborn depends on MyD88 (and, by extension, TLRs), with signaling in both the dam and offspring contributing. Unexpectedly, naturally-occuring neuronal cell death in the newborn is modulated primarily by maternal MyD88 gene status.
Collapse
Affiliation(s)
- Jennifer M Gray
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Kharli Major
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - Michael Shipley
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
3
|
Congy-Jolivet N, Cenac C, Dellacasagrande J, Puissant-Lubrano B, Apoil PA, Guedj K, Abbas F, Laffont S, Sourdet S, Guyonnet S, Nourhashemi F, Guéry JC, Blancher A. Monocytes are the main source of STING-mediated IFN-α production. EBioMedicine 2022; 80:104047. [PMID: 35561451 PMCID: PMC9108881 DOI: 10.1016/j.ebiom.2022.104047] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type I interferon (IFN-I) production by plasmacytoid dendritic cells (pDCs) occurs during viral infection, in response to Toll-like receptor 7 (TLR7) stimulation and is more vigorous in females than in males. Whether this sex bias persists in ageing people is currently unknown. In this study, we investigated the effect of sex and aging on IFN-α production induced by PRR agonist ligands. METHODS In a large cohort of individuals from 19 to 97 years old, we measured the production of IFN-α and inflammatory cytokines in whole-blood upon stimulation with either R-848, ODN M362 CpG-C, or cGAMP, which activate the TLR7/8, TLR9 or STING pathways, respectively. We further characterized the cellular sources of IFN-α. FINDINGS We observed a female predominance in IFN-α production by pDCs in response to TLR7 or TLR9 ligands. The higher TLR7-driven IFN-α production in females was robustly maintained across ages, including the elderly. The sex-bias in TLR9-driven interferon production was lost after age 60, which correlated with the decline in circulating pDCs. By contrast, STING-driven IFN-α production was similar in both sexes, preserved with aging, and correlated with circulating monocyte numbers. Indeed, monocytes were the primary cellular source of IFN-α in response to cGAMP. INTERPRETATION We show that the sex bias in the TLR7-induced IFN-I production is strongly maintained through ages, and identify monocytes as the main source of IFN-I production via STING pathway. FUNDING This work was supported by grants from Région Occitanie/Pyrénées-Méditerranée (#12052910, Inspire Program #1901175), University Paul Sabatier, and the European Regional Development Fund (MP0022856).
Collapse
Affiliation(s)
- Nicolas Congy-Jolivet
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Bénédicte Puissant-Lubrano
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Pol André Apoil
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Kevin Guedj
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France
| | - Flora Abbas
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Sophie Laffont
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Sandrine Sourdet
- Gérontopôle de Toulouse, Département de Médecine Interne et Gérontologie Clinique, CHU de Toulouse, Toulouse, France
| | - Sophie Guyonnet
- Gérontopôle de Toulouse, Département de Médecine Interne et Gérontologie Clinique, CHU de Toulouse, Toulouse, France
| | - Fati Nourhashemi
- Gérontopôle de Toulouse, Département de Médecine Interne et Gérontologie Clinique, CHU de Toulouse, Toulouse, France; Maintain Aging Research team, CERPOP, INSERM, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France.
| | - Antoine Blancher
- Laboratoire d'Immunologie, CHU de Toulouse, Institut Fédératif de Biologie, Hôpital Purpan, Toulouse, France; Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), INSERM UMR1291, CNRS, Université de Toulouse, Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
4
|
Kyaw T, Loveland P, Kanellakis P, Cao A, Kallies A, Huang AL, Peter K, Toh BH, Bobik A. Alarmin-activated B cells accelerate murine atherosclerosis after myocardial infarction via plasma cell-immunoglobulin-dependent mechanisms. Eur Heart J 2021; 42:938-947. [PMID: 33338208 DOI: 10.1093/eurheartj/ehaa995] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/30/2020] [Accepted: 11/29/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS Myocardial infarction (MI) accelerates atherosclerosis and greatly increases the risk of recurrent cardiovascular events for many years, in particular, strokes and MIs. Because B cell-derived autoantibodies produced in response to MI also persist for years, we investigated the role of B cells in adaptive immune responses to MI. METHODS AND RESULTS We used an apolipoprotein-E-deficient (ApoE-/-) mouse model of MI-accelerated atherosclerosis to assess the importance of B cells. One week after inducing MI in atherosclerotic mice, we depleted B cells using an anti-CD20 antibody. This treatment prevented subsequent immunoglobulin G accumulation in plaques and MI-induced accelerated atherosclerosis. In gain of function experiments, we purified spleen B cells from mice 1 week after inducing MI and transferred these cells into atherosclerotic ApoE-/- mice, which greatly increased immunoglobulin G (IgG) accumulation in plaque and accelerated atherosclerosis. These B cells expressed many cytokines that promote humoural immunity and in addition, they formed germinal centres within the spleen where they differentiated into antibody-producing plasma cells. Specifically deleting Blimp-1 in B cells, the transcriptional regulator that drives their terminal differentiation into antibody-producing plasma cells prevented MI-accelerated atherosclerosis. Alarmins released from infarcted hearts were responsible for activating B cells via toll-like receptors and deleting MyD88, the canonical adaptor protein for inflammatory signalling downstream of toll-like receptors, prevented B-cell activation and MI-accelerated atherosclerosis. CONCLUSION Our data implicate early B-cell activation and autoantibodies as a central cause for accelerated atherosclerosis post-MI and identifies novel therapeutic strategies towards preventing recurrent cardiovascular events such as MI and stroke.
Collapse
Affiliation(s)
- Tin Kyaw
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Paula Loveland
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, Melbourne, Vic 3000, Australia
| | - Alex L Huang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Cardiology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Cardiology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia.,Department of Immunology, Central Clinical School, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia.,Department of Immunology, Central Clinical School, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| |
Collapse
|
5
|
Abstract
B cell subsets differ in development, tissue distribution, and mechanisms of activation. In response to infections, however, all can differentiate into extrafollicular plasmablasts that rapidly provide highly protective antibodies, indicating that these plasmablasts are the main humoral immune response effectors. Yet, the effectiveness of this response type depends on the presence of antigen-specific precursors in the circulating mature B cell pool, a pool that is generated initially through the stochastic processes of B cell receptor assembly. Importantly, germinal centers then mold the repertoire of this B cell pool to be increasingly responsive to pathogens by generating a broad array of antimicrobial memory B cells that act as highly effective precursors of extrafollicular plasmablasts. Such B cell repertoire molding occurs in two ways: continuously via the chronic germinal centers of mucosal lymphoid tissues, driven by the presence of the microbiome, and via de novo generated germinal centers following acute infections. For effectively evaluating humoral immunity as a correlate of immune protection, it might be critical to measure memory B cell pools in addition to antibody titers.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Immunology and Infectious Diseases and Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, USA;
| |
Collapse
|
6
|
Gabriele L, Fragale A, Romagnoli G, Parlato S, Lapenta C, Santini SM, Ozato K, Capone I. Type I IFN-dependent antibody response at the basis of sex dimorphism in the outcome of COVID-19. Cytokine Growth Factor Rev 2020; 58:66-74. [PMID: 33071044 PMCID: PMC7543933 DOI: 10.1016/j.cytogfr.2020.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic, induces severe pneumonia mainly in elderly males. Epidemiological data clearly indicate sex-based differences in disease outcomes, with men accounting for about 70 % of deaths, despite similar susceptibility to infection. It is well known that females are endowed with higher capacity to produce antibodies, which correlates with viral clearance and disease resolution in the context of SARS-Cov-2 infection. Many X-linked immune genes escape X inactivation showing biallelic expression in female immune cells, particularly in plasmacytoid dendritic cells (pDCs). PDCs are more active in females and endowed with high capability to induce IFN-α-mediated B cell activation and differentiation into antibody-producing plasma cells throughout epigenetic mechanisms linked to trained immunity. Thus, we hypothesize that following SARS-CoV-2 infection, epigenetic modifications of X-linked genes involved in pDC-mediated type I IFN (IFN-I) signaling occurs more effectively in females, for inducing neutralizing antibody response as an immune correlate driving sex-biased disease outcome.
Collapse
Affiliation(s)
- Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Alessandra Fragale
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giulia Romagnoli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Parlato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Lapenta
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Maria Santini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Imerio Capone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
7
|
Insights into Sensing of Murine Retroviruses. Viruses 2020; 12:v12080836. [PMID: 32751803 PMCID: PMC7472155 DOI: 10.3390/v12080836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Retroviruses are major causes of disease in animals and human. Better understanding of the initial host immune response to these viruses could provide insight into how to limit infection. Mouse retroviruses that are endemic in their hosts provide an important genetic tool to dissect the different arms of the innate immune system that recognize retroviruses as foreign. Here, we review what is known about the major branches of the innate immune system that respond to mouse retrovirus infection, Toll-like receptors and nucleic acid sensors, and discuss the importance of these responses in activating adaptive immunity and controlling infection.
Collapse
|
8
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
9
|
Laffont S, Guéry JC. Deconstructing the sex bias in allergy and autoimmunity: From sex hormones and beyond. Adv Immunol 2019; 142:35-64. [PMID: 31296302 DOI: 10.1016/bs.ai.2019.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Men and women differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections. Mechanisms responsible for this sexual dimorphism are still poorly documented and probably multifactorial. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in the enhanced susceptibility of women to develop immunological disorders, such as allergic asthma or systemic lupus erythematosus (SLE). We choose to more specifically discuss the impact of sex hormones on the development and function of immune cell populations directly involved in type-2 immunity, and the role of the X-linked Toll like receptor 7 (TLR7) in anti-viral immunity and in SLE. We will also elaborate on the recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in the immune cells of women, and how this may contribute to endow woman immune system with enhanced responsiveness to RNA-virus and susceptibility to SLE.
Collapse
Affiliation(s)
- Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
10
|
Stress Response Protein BolA Influences Fitness and Promotes Salmonella enterica Serovar Typhimurium Virulence. Appl Environ Microbiol 2018; 84:AEM.02850-17. [PMID: 29439986 DOI: 10.1128/aem.02850-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/01/2018] [Indexed: 11/20/2022] Open
Abstract
The intracellular pathogen Salmonella enterica serovar Typhimurium has emerged as a major cause of foodborne illness, representing a severe clinical and economic concern worldwide. The capacity of this pathogen to efficiently infect and survive inside the host depends on its ability to synchronize a complex network of virulence mechanisms. Therefore, the identification of new virulence determinants has become of paramount importance in the search of new targets for drug development. BolA-like proteins are widely conserved in all kingdoms of life. In Escherichia coli, this transcription factor has a critical regulatory role in several mechanisms that are tightly related to bacterial virulence. Therefore, in the present work we used the well-established infection model Galleria mellonella to evaluate the role of BolA protein in S Typhimurium virulence. We have shown that BolA is an important player in S Typhimurium pathogenesis. Specifically, the absence of BolA leads to a defective virulence capacity that is most likely related to the remarkable effect of this protein on S Typhimurium evasion of the cellular response. Furthermore, it was demonstrated that BolA has a critical role in bacterial survival under harsh conditions since BolA conferred protection against acidic and oxidative stress. Hence, we provide evidence that BolA is a determining factor in the ability of Salmonella to survive and overcome host defense mechanisms, and this is an important step in progress to an understanding of the pathways underlying bacterial virulence.IMPORTANCE BolA has been described as an important protein for survival in the late stages of bacterial growth and under harsh environmental conditions. High levels of BolA in stationary phase and under stresses have been connected with a plethora of phenotypes, strongly suggesting its important role as a master regulator. Here, we show that BolA is a determining factor in the ability of Salmonella to survive and overcome host defense mechanisms, and this is an important step in progress to an understanding of the pathways underlying bacterial virulence. This work constitutes a relevant step toward an understanding of the role of BolA protein and may have an important impact on future studies in other organisms. Therefore, this study is of utmost importance for understanding the genetic and molecular bases involved in the regulation of Salmonella virulence and may contribute to future industrial and public health care applications.
Collapse
|
11
|
Abstract
Retroviruses are genome invaders that have shared a long history of coevolution with vertebrates and their immune system. Found endogenously in genomes as traces of past invasions, retroviruses are also considerable threats to human health when they exist as exogenous viruses such as HIV. The immune response to retroviruses is engaged by germline-encoded sensors of innate immunity that recognize viral components and damage induced by the infection. This response develops with the induction of antiviral effectors and launching of the clonal adaptive immune response, which can contribute to protective immunity. However, retroviruses efficiently evade the immune response, owing to their rapid evolution. The failure of specialized immune cells to respond, a form of neglect, may also contribute to inadequate antiretroviral immune responses. Here, we discuss the mechanisms by which immune responses to retroviruses are mounted at the molecular, cellular, and organismal levels. We also discuss how intrinsic, innate, and adaptive immunity may cooperate or conflict during the generation of immune responses.
Collapse
Affiliation(s)
- Asier Sáez-Cirión
- HIV Inflammation and Persistence, Institut Pasteur, 75015 Paris, France;
| | - Nicolas Manel
- Immunity and Cancer Department, INSERM U932, Institut Curie, PSL Research University, 75005 Paris, France;
| |
Collapse
|
12
|
Littwitz-Salomon E, Dittmer U, Sutter K. Insufficient natural killer cell responses against retroviruses: how to improve NK cell killing of retrovirus-infected cells. Retrovirology 2016; 13:77. [PMID: 27821119 PMCID: PMC5100108 DOI: 10.1186/s12977-016-0311-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/27/2016] [Indexed: 12/23/2022] Open
Abstract
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Ulf Dittmer
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital in Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
13
|
Abstract
In the last 20 years research in Immunology underwent fundamental changes. Most importantly, the identification of the key role of innate immune pattern recognition receptors (PRRs) that recognize evolutionarily conserved molecular patterns on infectious pathogens. This results in priming of innate immune cells, which in turn activate and direct the adaptive immune response. Progress in innate immune recognition instigated the current working hypothesis, that recognition of endogenous ligands by PRRs results in innate immune cell activation (autoinflammation) or activation of adaptive cells, with self-reactive antigen receptors (autoimmunity). In particular, nucleic acid-sensing innate immune receptors seem to be prime candidates for a mechanistic understanding of autoreactive activation of the immune system. However, it remains uncertain what the actual source of nucleic acid ligands is and what other signals are needed to drive activation of autoreactive innate immune cells and break self-tolerance of the adaptive immune system. Here, I will review our present understanding about whether the infection with exogenous retroviruses or the reactivation of endogenous retroviruses might play an etiological role in certain autoimmune conditions of humans and murine experimental models.
Collapse
Affiliation(s)
- Philipp Yu
- Institute of Immunology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
14
|
Gibbert K, Francois S, Sigmund AM, Harper MS, Barrett BS, Kirchning CJ, Lu M, Santiago ML, Dittmer U. Friend retrovirus drives cytotoxic effectors through Toll-like receptor 3. Retrovirology 2014; 11:126. [PMID: 25539593 PMCID: PMC4299798 DOI: 10.1186/s12977-014-0126-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/05/2014] [Indexed: 12/24/2022] Open
Abstract
Background Pathogen recognition drives host defense towards viral infections. Specific groups rather than single members of the protein family of pattern recognition receptors (PRRs) such as membrane spanning Toll-like receptors (TLRs) and cytosolic helicases might mediate sensing of replication intermediates of a specific virus species. TLR7 mediates host sensing of retroviruses and could significantly influence retrovirus-specific antibody responses. However, the origin of efficient cell-mediated immunity towards retroviruses is unknown. Double-stranded RNA intermediates produced during retroviral replication are good candidates for immune stimulatory viral products. Thus, we considered TLR3 as primer of cell-mediated immunity against retroviruses in vivo. Results Infection of mice deficient in TLR3 (TLR3−/−) with Friend retrovirus (FV) complex revealed higher viral loads during acute retroviral infection compared to wild type mice. TLR3−/− mice exhibited significantly lower expression levels of type I interferons (IFNs) and IFN-stimulated genes like Pkr or Ifi44, as well as reduced numbers of activated myeloid dendritic cells (DCs) (CD86+ and MHC-II+). DCs generated from FV-infected TLR3−/− mice were less capable of priming virus-specific CD8+ T cell proliferation. Moreover, cytotoxicity of natural killer (NK) cells as well as CD8+ T cells were reduced in vitro and in vivo, respectively, in FV-infected TLR3-/- mice. Conclusions TLR3 mediates antiretroviral cytotoxic NK cell and CD8+ T cell activity in vivo. Our findings qualify TLR3 as target of immune therapy against retroviral infections.
Collapse
Affiliation(s)
- Kathrin Gibbert
- Institute for Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sandra Francois
- Institute for Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Anna M Sigmund
- Institute for Medical Microbiology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Michael S Harper
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.
| | - Bradley S Barrett
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.
| | - Carsten J Kirchning
- Institute for Medical Microbiology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Mengji Lu
- Institute for Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Mario L Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.
| | - Ulf Dittmer
- Institute for Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
15
|
Class switch recombination and somatic hypermutation of virus-neutralizing antibodies are not essential for control of friend retrovirus infection. J Virol 2014; 89:1468-73. [PMID: 25378499 DOI: 10.1128/jvi.02293-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptor 7 and Myd88 are required for antiretroviral antibody and germinal center responses, but whether somatic hypermutation and class-switch recombination are required for antiretroviral immunity has not been examined. Mice deficient in activation-induced cytidine deaminase (AID) resisted Friend virus infection, produced virus-neutralizing antibodies, and controlled viremia. Passive transfer demonstrated that immune IgM from AID-deficient mice contributes to Friend virus control in the presence of virus-specific CD4+ T cells.
Collapse
|
16
|
Thorborn G, Ploquin MJ, Eksmond U, Pike R, Bayer W, Dittmer U, Hasenkrug KJ, Pepper M, Kassiotis G. Clonotypic composition of the CD4+ T cell response to a vectored retroviral antigen is determined by its speed. THE JOURNAL OF IMMUNOLOGY 2014; 193:1567-77. [PMID: 25000983 DOI: 10.4049/jimmunol.1400667] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanisms whereby different vaccines may expand distinct Ag-specific T cell clonotypes or induce disparate degrees of protection are incompletely understood. We found that several delivery modes of a model retroviral Ag, including natural infection, preferentially expanded initially rare high-avidity CD4(+) T cell clonotypes, known to mediate protection. In contrast, the same Ag vectored by human adenovirus serotype 5 induced clonotypic expansion irrespective of avidity, eliciting a predominantly low-avidity response. Nonselective clonotypic expansion was caused by relatively weak adenovirus serotype 5-vectored Ag presentation and was reproduced by replication-attenuated retroviral vaccines. Mechanistically, the potency of Ag presentation determined the speed and, consequently, completion of the CD4(+) T cell response. Whereas faster completion retained the initial advantage of high-avidity clonotypes, slower completion permitted uninhibited accumulation of low-avidity clonotypes. These results highlighted the importance of Ag presentation patterns in determining the clonotypic composition of vaccine-induced T cell responses and ultimately the efficacy of vaccination.
Collapse
Affiliation(s)
- Georgina Thorborn
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Mickaël J Ploquin
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Urszula Eksmond
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Rebecca Pike
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen 45147, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen 45147, Germany
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98195; and
| | - George Kassiotis
- Division of Immunoregulation, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
17
|
Abstract
Major conceptual roadblocks impede the development of an HIV-1 vaccine that can stimulate a potent neutralizing antibody response. Animal models that support HIV-1 replication and allow for host genetic manipulation would be an ideal platform for testing various immunological hypotheses, but progress on this research front has been slow and disappointing. In contrast, many valuable concepts emerged from more than 50 years of studying the Friend retrovirus model. This was recently exemplified by the identification of an innate restriction gene, Apobec3, that could promote the retrovirus-specific neutralizing antibody response. Here we review both classical and recent data on humoral immunity against Friend retrovirus infection, and highlight the potential of this model for unraveling novel aspects of the retrovirus-specific antibody response that may guide HIV-1 vaccine development efforts.
Collapse
|
18
|
Elftman MD, Gonzalez-Hernandez MB, Kamada N, Perkins C, Henderson KS, Núñez G, Wobus CE. Multiple effects of dendritic cell depletion on murine norovirus infection. J Gen Virol 2013; 94:1761-1768. [PMID: 23636823 DOI: 10.1099/vir.0.052134-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are permissive to murine norovirus (MNV) infection in vitro and in vivo. However, their roles during infection in vivo are not well defined. To determine the role of DCs during infection, conventional DCs were depleted from CD11c-DTR mice and infected with a persistent MNV strain. Viral titres in the intestine and secondary lymphoid organs were determined at early time points during infection, and anti-MNV antibody responses were analysed later during infection. Depletion of conventional DCs resulted in increased viral loads in intestinal tissues, impaired generation of antibody responses, and a failure of MNV to efficiently infect lymphoid tissues. These data suggest that DCs play multiple roles in MNV pathogenesis, in both innate immunity and the efficient generation of adaptive immune responses against MNV, as well as by promoting the dissemination of MNV to secondary lymphoid tissues. This is the first study to probe the roles of DCs in controlling and/or facilitating a norovirus infection in vivo and provides the basis for further studies aimed at defining mechanisms by which DCs control MNV replication and promote viral dissemination.
Collapse
Affiliation(s)
- Michael D Elftman
- Department of Biomedical and Diagnostic Sciences, University of Detroit Mercy School of Dentistry, Detroit, Michigan 48208, USA.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Mariam B Gonzalez-Hernandez
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Nobuhiko Kamada
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Cheryl Perkins
- Molecular Diagnostics Research, Animal Diagnostic Services, Charles River Laboratories, Wilmington, Massachusetts 01887, USA
| | - Kenneth S Henderson
- Molecular Diagnostics Research, Animal Diagnostic Services, Charles River Laboratories, Wilmington, Massachusetts 01887, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
19
|
Toll-like receptor 7 inhibits early acute retroviral infection through rapid lymphocyte responses. J Virol 2013; 87:7357-66. [PMID: 23616654 DOI: 10.1128/jvi.00788-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early events during retroviral infection play a critical role in determining the course of infection and pathogenesis, but the mechanisms that regulate this phase of infection are poorly understood. Toll-like receptor 7 (TLR7) is required for promoting germinal center reactions and virus-specific neutralizing antibodies at later time points postinfection, but TLR7's role in early acute infection has not been determined. By infecting TLR7-deficient mice with a retroviral pathogen, Friend virus (FV), I determined that TLR7 potently inhibits retroviral replication during the first 5 days of infection and is required for rapid secretion of virus-specific IgM and interleukin-10 (IL-10) in response to infection. Although the IgM response was nonneutralizing, plasmas from wild-type mice but not TLR7-deficient mice inhibited FV replication when passively transferred to infected mice, suggesting an indirect mechanism of antibody function. Interestingly, IL-10 was secreted primarily by CD4 T cells, and IL-10-deficient mice also exhibited accelerated early virus spread, demonstrating that this response inhibits acute infection. Surprisingly, TLR7-deficient mice exhibited normal or elevated secretion of proinflammatory cytokines during acute infection, revealing the existence of a TLR7-independent retrovirus-sensing pathway that drives inflammatory cytokine secretion. Together, these results establish a previously unappreciated role for lymphocytes in mediating rapid TLR7-dependent inhibition of early retroviral infection through nonneutralizing IgM and IL-10.
Collapse
|
20
|
Abstract
HIV-1-specific antibodies and CD8(+) cytotoxic T cells are detected in most HIV-1-infected people, yet HIV-1 infection is not eradicated. Contributing to the failure to mount a sterilizing immune response may be the inability of antigen-presenting dendritic cells (DCs) to sense HIV-1 during acute infection, and thus the inability to effectively prime naive, HIV-1-specific T cells. Recent findings related to DC-expressed innate immune factors including SAMHD1, TREX1, and TRIM5 provide a molecular basis for understanding why DCs fail to adequately sense invasion by this deadly pathogen and suggest experimental approaches to improve T cell priming to HIV-1 in prophylactic vaccination protocols.
Collapse
Affiliation(s)
- Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
21
|
Innate immune recognition of HIV-1. Immunity 2012; 37:389-98. [PMID: 22999945 DOI: 10.1016/j.immuni.2012.08.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 02/01/2023]
Abstract
In contrast to the extraordinary body of knowledge gained over the past three decades on the virology, pathogenesis, and immunology of HIV-1 infection, innate sensors that detect HIV-1 had remained elusive until recently. By virtue of integration, retroviridae makes up a substantial portion of our genome. Thus, immune strategies that deal with endogenous retroviruses are, by necessity, those of self-preservation and not of virus elimination. Some of the principles of such strategies may also apply for defense against exogenous retroviruses including HIV-1. Here, I highlight several sensors that have recently been revealed to be capable of recognizing distinct features of HIV-1 infection, while taking into account the host-retrovirus relationship that converges on avoiding pathogenic inflammatory consequences.
Collapse
|
22
|
Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 2012; 37:867-79. [PMID: 23142781 DOI: 10.1016/j.immuni.2012.07.018] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/17/2012] [Indexed: 01/12/2023]
Abstract
The genome of vertebrates contains endogenous retroviruses (ERVs) that are largely nonfunctional relicts of ancestral germline infection by exogenous retroviruses. However, in some mouse strains ERVs are actively involved in disease. Here we report that nucleic acid-recognizing Toll-like receptors 3, 7, and 9 (TLR 3, TLR7, and TLR9) are essential for the control of ERVs. Loss of TLR7 function caused spontaneous retroviral viremia that coincided with the absence of ERV-specific antibodies. Importantly, additional TLR3 and TLR9 deficiency led to acute T cell lymphoblastic leukemia, underscoring a prominent role for TLR3 and TLR9 in surveillance of ERV-induced tumors. Experimental ERV infection induced a TLR3-, TLR7-, and TLR9-dependent group of "acute-phase" genes previously described in HIV and SIV infections. Our study suggests that in addition to their role in innate immunity against exogenous pathogens, nucleic acid-recognizing TLRs contribute to the immune control of activated ERVs and ERV-induced tumors.
Collapse
|
23
|
Kane M, Golovkina T. Realities of virus sensing. Microbes Infect 2012; 14:1017-25. [DOI: 10.1016/j.micinf.2012.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022]
|
24
|
Abstract
The discovery of host-encoded gene products that sense molecular patterns in infectious microbes, and the demonstration of their role in triggering innate and adaptive immune responses, has been a key milestone in our understanding of immunology. Twenty-three years after Janeway first outlined the fundamental concepts of the 'pattern recognition' model, and 15 years since the identification of Toll-like receptors (TLRs) as pattern recognition receptors (PRRs), new insights continue to be revealed, and questions remain. For example, innate immune responses to microbes that are mediated by PRRs have historically been viewed as the domain of innate immune cell populations such as dendritic cells and macrophages. New evidence, however, has pointed to the role of B-cell-intrinsic TLR activation in shaping antibody responses. These studies have revealed that TLRs regulate a complex transcriptional network that controls multiple steps in the development of antigen-specific antibodies. This review covers these recent developments regarding the role of TLRs in B-cell gene expression and function in vitro and in vivo, and highlights the remaining challenges in the field, with particular emphasis on the role of TLRs in antibody responses to viral infection. A more complete understanding of how TLRs regulate antibody responses will lead to improved vaccine design.
Collapse
Affiliation(s)
- Edward P Browne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
25
|
Pone EJ, Xu Z, White CA, Zan H, Casali P. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front Biosci (Landmark Ed) 2012; 17:2594-615. [PMID: 22652800 DOI: 10.2741/4073] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) are a family of conserved pattern recognition receptors (PRRs). Engagement of B cell TLRs by microbe-associated molecular patterns (MAMPs) induces T-independent (TI) antibody responses and plays an important role in the early stages of T-dependent (TD) antibody responses before specific T cell help becomes available. The role of B cell TLRs in the antibody response is magnified by the synergy of B cell receptor (BCR) crosslinking and TLR engagement in inducing immunoglobulin (Ig) class switch DNA recombination (CSR), which crucially diversifies the antibody biological effector functions. Dual BCR/TLR engagement induces CSR to all Ig isotypes, as directed by cytokines, while TLR engagement alone induces marginal CSR. Integration of BCR and TLR signaling results in activation of the canonical and non-canonical NF-κB pathways, induction of activation-induced cytidine deaminase (AID) and germline transcription of IgH switch (S) regions. A critical role of B cell TLRs in CSR and the antibody response is emphasized by the emergence of several TLR ligands as integral components of vaccines that greatly boost humoral immunity in a B cell-intrinsic fashion.
Collapse
Affiliation(s)
- Egest J Pone
- Institute for Immunology, School of Medicine, University of California, Irvine, CA 92697-4120, USA
| | | | | | | | | |
Collapse
|
26
|
Jabara HH, McDonald DR, Janssen E, Massaad MJ, Ramesh N, Borzutzky A, Rauter I, Benson H, Schneider L, Baxi S, Recher M, Notarangelo LD, Wakim R, Dbaibo G, Dasouki M, Al-Herz W, Barlan I, Baris S, Kutukculer N, Ochs HD, Plebani A, Kanariou M, Lefranc G, Reisli I, Fitzgerald KA, Golenbock D, Manis J, Keles S, Ceja R, Chatila TA, Geha RS. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol 2012; 13:612-20. [PMID: 22581261 PMCID: PMC3362684 DOI: 10.1038/ni.2305] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 04/11/2012] [Indexed: 12/13/2022]
Abstract
The adaptors DOCK8 and MyD88 have been linked to serological memory. Here we report that DOCK8-deficient patients had impaired antibody responses and considerably fewer CD27(+) memory B cells. B cell proliferation and immunoglobulin production driven by Toll-like receptor 9 (TLR9) were considerably lower in DOCK8-deficient B cells, but those driven by the costimulatory molecule CD40 were not. In contrast, TLR9-driven expression of AICDA (which encodes the cytidine deaminase AID), the immunoglobulin receptor CD23 and the costimulatory molecule CD86 and activation of the transcription factor NF-κB, the kinase p38 and the GTPase Rac1 were intact. DOCK8 associated constitutively with MyD88 and the tyrosine kinase Pyk2 in normal B cells. After ligation of TLR9, DOCK8 became tyrosine-phosphorylated by Pyk2, bound the Src-family kinase Lyn and linked TLR9 to a Src-kinase Syk-transcription factor STAT3 cascade essential for TLR9-driven B cell proliferation and differentiation. Thus, DOCK8 functions as an adaptor in a TLR9-MyD88 signaling pathway in B cells.
Collapse
Affiliation(s)
- Haifa H Jabara
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Izquierdo-Useros N, Lorizate M, Contreras FX, Rodriguez-Plata MT, Glass B, Erkizia I, Prado JG, Casas J, Fabriàs G, Kräusslich HG, Martinez-Picado J. Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 2012; 10:e1001315. [PMID: 22545022 PMCID: PMC3335875 DOI: 10.1371/journal.pbio.1001315] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/16/2012] [Indexed: 12/17/2022] Open
Abstract
HIV-1 is internalized into mature dendritic cells (mDCs) via an as yet undefined mechanism with subsequent transfer of stored, infectious virus to CD4+ T lymphocytes. Thus, HIV-1 subverts a DC antigen capture mechanism to promote viral spread. Here, we show that gangliosides in the HIV-1 membrane are the key molecules for mDC uptake. HIV-1 virus-like particles and liposomes mimicking the HIV-1 lipid composition were shown to use a common internalization pathway and the same trafficking route within mDCs. Hence, these results demonstrate that gangliosides can act as viral attachment factors, in addition to their well known function as cellular receptors for certain viruses. Furthermore, the sialyllactose molecule present in specific gangliosides was identified as the determinant moiety for mDC HIV-1 uptake. Thus, sialyllactose represents a novel molecular recognition pattern for mDC capture, and may be crucial both for antigen presentation leading to immunity against pathogens and for succumbing to subversion by HIV-1.
Collapse
Affiliation(s)
- Nuria Izquierdo-Useros
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- * E-mail: (NI-U); (ML); (H-GK); (JM-P)
| | - Maier Lorizate
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- * E-mail: (NI-U); (ML); (H-GK); (JM-P)
| | | | - Maria T. Rodriguez-Plata
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bärbel Glass
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Itziar Erkizia
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Julia G. Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josefina Casas
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC)/CSIC, Barcelona, Spain
| | - Gemma Fabriàs
- Department of Biomedicinal Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC)/CSIC, Barcelona, Spain
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Heidelberg, Germany
- * E-mail: (NI-U); (ML); (H-GK); (JM-P)
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail: (NI-U); (ML); (H-GK); (JM-P)
| |
Collapse
|
28
|
Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervonsky AV, Golovkina TV. Successful transmission of a retrovirus depends on the commensal microbiota. Science 2011; 334:245-9. [PMID: 21998394 DOI: 10.1126/science.1210718] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To establish chronic infections, viruses must develop strategies to evade the host's immune responses. Many retroviruses, including mouse mammary tumor virus (MMTV), are transmitted most efficiently through mucosal surfaces rich in microbiota. We found that MMTV, when ingested by newborn mice, stimulates a state of unresponsiveness toward viral antigens. This process required the intestinal microbiota, as antibiotic-treated mice or germ-free mice did not transmit infectious virus to their offspring. MMTV-bound bacterial lipopolysaccharide triggered Toll-like receptor 4 and subsequent interleukin-6 (IL-6)-dependent induction of the inhibitory cytokine IL-10. Thus, MMTV has evolved to rely on the interaction with the microbiota to induce an immune evasion pathway. Together, these findings reveal the fundamental importance of commensal microbiota in viral infections.
Collapse
Affiliation(s)
- Melissa Kane
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Browne EP. Toll-like receptor 7 controls the anti-retroviral germinal center response. PLoS Pathog 2011; 7:e1002293. [PMID: 21998589 PMCID: PMC3188541 DOI: 10.1371/journal.ppat.1002293] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 08/15/2011] [Indexed: 12/03/2022] Open
Abstract
The development of vaccines that can enhance immunity to viral pathogens is an important goal. However, the innate molecular pathways that regulate the strength and quality of the immune response remain largely uncharacterized. To define the role of Toll-like receptor (TLR) signaling in control of a model retroviral pathogen, Friend virus (FV), I generated mice in which the TLR signaling adapter Myd88 was selectively deleted in dendritic cell (DC) or in B cell lineages. Deletion of Myd88 in DCs had little effect on immune control of FV, while B cell specific deletion of Myd88 caused a dramatic increase in viral infectious centers and a significantly reduced antibody response, indicating that B cell-intrinsic TLR signaling plays a crucial role, while TLR signaling in DCs is less important. I then identified the single-stranded RNA sensing protein TLR7 as being required for antibody-mediated control of FV by analyzing mice deficient in TLR7. Remarkably, B cells in infected TLR7-deficient mice upregulated CD69 and CD86 early in infection, but failed to develop into germinal center B cells. CD4 T cell responses were also attenuated in the absence of TLR7, but CD8 responses were TLR7 independent, suggesting the existence of additional pathways for detection of retroviral particles. Together these results demonstrate that the vertebrate immune system detects retroviruses in vivo via TLR7 and that this pathway regulates a key checkpoint controlling development of germinal center B cells. Viral infection triggers potent pathogen-specific immune responses involving antibodies that neutralize viral particles and CD8 T cells that directly kill infected cells. Vaccines also trigger immune responses, but current vaccines for retroviruses such as HIV-1, are inadequate. Defining the genes and pathways that regulate this response will identify new targets for therapies that can enhance the immune response to infection or to prophylactic vaccines. Using mouse genetics, I have demonstrated that a host protein, Toll-like receptor seven (TLR7) recognizes retroviruses and regulates the antibody response to infection. TLR7 is a member of an ancient family of genes that detect microbes and initiate inflammation, but its role in antibody responses has not been clearly defined. I have discovered that TLR7 controls a specific step in the antibody response called the germinal center reaction. Germinal centers regulate the development of antibodies that protect against viral infection, and manipulation of TLR7 and its signaling pathway in B cells could be a viable strategy for enhancing immunity to viruses.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B7-2 Antigen/genetics
- B7-2 Antigen/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Friend murine leukemia virus/metabolism
- Friend murine leukemia virus/pathogenicity
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/virology
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88/genetics
- Myeloid Differentiation Factor 88/metabolism
- Retroviridae Infections/immunology
- Signal Transduction
- Toll-Like Receptor 7/genetics
- Toll-Like Receptor 7/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Edward P Browne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
| |
Collapse
|
30
|
Abstract
Sensing pathogens is an essential first step in the initiation of a host response to infection. In this issue of Immunity, Kane et al. (2011) used mouse models to demonstrate that Toll-like receptor 7 is required for the generation of an antibody response to infection by retroviruses.
Collapse
Affiliation(s)
- Rachel A Liberatore
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
31
|
Kane M, Case LK, Wang C, Yurkovetskiy L, Dikiy S, Golovkina TV. Innate immune sensing of retroviral infection via Toll-like receptor 7 occurs upon viral entry. Immunity 2011; 35:135-45. [PMID: 21723157 PMCID: PMC3519935 DOI: 10.1016/j.immuni.2011.05.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 03/02/2011] [Accepted: 03/30/2011] [Indexed: 12/21/2022]
Abstract
Innate immune sensors are required for induction of pathogen-specific immune responses. Retroviruses are notorious for their ability to evade immune defenses and establish long-term persistence in susceptible hosts. However, some infected animals are able to develop efficient virus-specific immune responses, and thus can be employed for identification of critical innate virus-sensing mechanisms. With mice from two inbred strains that control retroviruses via adaptive immune mechanisms, we found that of all steps in viral replication, the ability to enter the host cell was sufficient to induce antivirus humoral immune responses. Virus sensing occurred in endosomes via a MyD88-Toll-like receptor 7-dependent mechanism and stimulated virus-neutralizing immunity independently of type I interferons. Thus, efficient adaptive immunity to retroviruses is induced in vivo by innate sensing of the early stages of retroviral infection.
Collapse
Affiliation(s)
- Melissa Kane
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Laure K. Case
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Christine Wang
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Leonid Yurkovetskiy
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Stanislav Dikiy
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| | - Tatyana V. Golovkina
- Department of Microbiology, University of Chicago, 920 E. 58 Street, Chicago, IL 60637, USA
| |
Collapse
|
32
|
Bila C, Oberhauser V, Ammann CG, Ejaz A, Huber G, Schimmer S, Messer R, Pekna M, von Laer D, Dittmer U, Hasenkrug KJ, Stoiber H, Bánki Z. Complement opsonization enhances friend virus infection of B cells and thereby amplifies the virus-specific CD8+ T cell response. J Virol 2011; 85:1151-5. [PMID: 21047954 PMCID: PMC3019994 DOI: 10.1128/jvi.01821-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/25/2010] [Indexed: 11/20/2022] Open
Abstract
B cells are one of the targets of Friend virus (FV) infection, a well-established mouse model often used to study retroviral infections in vivo. Although B cells may be effective in stimulating cytotoxic T lymphocyte responses, studies involving their role in FV infection have mainly focused on neutralizing antibody production. Here we show that polyclonal activation of B cells promotes their infection with FV both in vitro and in vivo. Furthermore, we demonstrate that complement opsonization of Friend murine leukemia virus (F-MuLV) enhances infection of B cells, which correlates with increased potency of B cells to activate FV-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Custodio Bila
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Verena Oberhauser
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Christoph G. Ammann
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Asim Ejaz
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Georg Huber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Simone Schimmer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Ron Messer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Marcela Pekna
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Dorothee von Laer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Ulf Dittmer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Kim J. Hasenkrug
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Zoltán Bánki
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
33
|
Abstract
Mucosal surfaces are exploited as a portal of entry into hosts by a wide variety of microorganisms. Over the past decade, an advanced understanding of the immune system of the gastrointestinal and the respiratory mucosae has been gained. However, despite the fact that many viruses are transmitted sexually through the genital tract, the immune system of the male and female genital mucosae has received much less attention. Here, I describe and highlight differences in the innate and adaptive immune systems of the genital and intestinal mucosae, and discuss some of the challenges we face in the development of successful vaccines against sexually transmitted viral pathogens.
Collapse
|
34
|
TLR-mediated preterm birth in response to pathogenic agents. Infect Dis Obstet Gynecol 2010; 2010. [PMID: 20827416 PMCID: PMC2933901 DOI: 10.1155/2010/378472] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022] Open
Abstract
The incidence of preterm birth in developed countries has risen in the past decades. Underlying causes for this enigmatic pregnancy complication are numerous, yet infectious agents that induce dysregulation of immunity at the maternal-fetal interface pose one of the most probable causes of preterm birth. This paper highlights two factors regarding maternal infections that trigger unscheduled inflammatory sequences that are deleterious to the maternal-fetal balance necessary to maintain pregnancy. Firstly, we discuss the role of Toll-like receptors (TLRs) as sentinels of uterine immunity in the context of response to pathogens. We highlight the idea that particular TLR activations lead to differential immune cascades that induce preterm birth. Secondly, two alternative routes of pathogenic entry may prove to be critical for inducing preterm birth via a cytokine storm or a secondary and currently unknown cell-mediated mechanism of uterine inflammation. This paper summarizes pathways that underlie activation of adverse and diverse immune responses to foreign agents that may result in preterm birth.
Collapse
|
35
|
Toll-like receptor 4-mediated activation of p38 mitogen-activated protein kinase is a determinant of respiratory virus entry and tropism. J Virol 2010; 84:11359-73. [PMID: 20702616 DOI: 10.1128/jvi.00804-10] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses exert a heavy toll of morbidity and mortality worldwide. Despite this burden there are few specific treatments available for respiratory virus infections. Since many viruses utilize host cell enzymatic machinery such as protein kinases for replication, we determined whether pharmacological inhibition of kinases could, in principle, be used as a broad antiviral strategy for common human respiratory virus infections. A panel of green fluorescent protein (GFP)-expressing recombinant respiratory viruses, including an isolate of H1N1 influenza virus (H1N1/Weiss/43), was used to represent a broad range of virus families responsible for common respiratory infections (Adenoviridae, Paramyxoviridae, Picornaviridae, and Orthomyxoviridae). Kinase inhibitors were screened in a high-throughput assay that detected virus infection in human airway epithelial cells (1HAEo-) using a fluorescent plate reader. Inhibition of p38 mitogen-activated protein kinase (MAPK) signaling was able to significantly inhibit replication by all viruses tested. Therefore, the pathways involved in virus-mediated p38 and extracellular signal-regulated kinase (ERK) MAPK activation were investigated using bronchial epithelial cells and primary fibroblasts derived from MyD88 knockout mouse lungs. Influenza virus, which activated p38 MAPK to approximately 10-fold-greater levels than did respiratory syncytial virus (RSV) in 1HAEo- cells, was internalized about 8-fold faster and more completely than RSV. We show for the first time that p38 MAPK is a determinant of virus infection that is dependent upon MyD88 expression and Toll-like receptor 4 (TLR4) ligation. Imaging of virus-TLR4 interactions showed significant clustering of TLR4 at the site of virus-cell interaction, triggering phosphorylation of downstream targets of p38 MAPK, suggesting the need for a signaling receptor to activate virus internalization.
Collapse
|
36
|
Oliveira AC, de Alencar BC, Tzelepis F, Klezewsky W, da Silva RN, Neves FS, Cavalcanti GS, Boscardin S, Nunes MP, Santiago MF, Nóbrega A, Rodrigues MM, Bellio M. Impaired innate immunity in Tlr4(-/-) mice but preserved CD8+ T cell responses against Trypanosoma cruzi in Tlr4-, Tlr2-, Tlr9- or Myd88-deficient mice. PLoS Pathog 2010; 6:e1000870. [PMID: 20442858 PMCID: PMC2861687 DOI: 10.1371/journal.ppat.1000870] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 03/23/2010] [Indexed: 01/12/2023] Open
Abstract
The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-γ secreting CD8+ T cells specific for H-2Kb-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2−/−, Tlr4−/−, Tlr9−/− or Myd88−/− mice generated both specific cytotoxic responses and IFN-γ secreting CD8+ T cells at levels comparable to WT mice, although the frequency of IFN-γ+CD4+ cells was diminished in infected Myd88−/− mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-γ, TNF-α and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4−/− mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi. Innate and acquired immune responses are triggered during infection with T. cruzi, the etiologic agent of Chagas' disease, and are critical for host survival. Parasite burden is usually controlled by the time the adaptive response becomes operational. Nevertheless, T. cruzi manages to subsist within intracellular niches and establishes a chronic infection, leading to the development of cardiomyopathy in approximately one-third of infected individuals. Recently, Toll-like receptors (TLRs) have been shown to recognize T. cruzi molecules and mice lacking MyD88, the key adaptor for most TLRs, are extremely susceptible to infection. Although TLRs are known to link innate and adaptive responses, their role in the establishment of crucial effector mechanisms mediated by CD8+ T cells during T. cruzi infection has not yet been determined. We analyzed the induction of IFN-γ and cytotoxic activity in vivo in TLR2-, TLR4-, TLR9- or MyD88-deficient mice during infection, and found intact responses compared to WT mice. We also demonstrated that TLR4 is required for optimal production of inflammatory cytokines and nitric oxide and, consequently, for a better control of parasitemia levels. Understanding how TLR activation leads to resistance to infection might contribute to the development of better strategies to improve immune responses against this pathogen.
Collapse
Affiliation(s)
- Ana-Carolina Oliveira
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna C. de Alencar
- Centro Interdisciplinar de Terapia Gênica (CINTERGEN), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Fanny Tzelepis
- Centro Interdisciplinar de Terapia Gênica (CINTERGEN), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Weberton Klezewsky
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel N. da Silva
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabieni S. Neves
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele S. Cavalcanti
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marise P. Nunes
- Instituto Osvaldo Cruz (IOC/FIOCRUZ) Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo F. Santiago
- Instituto de Biofísica Carlos Chagas Filho (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alberto Nóbrega
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício M. Rodrigues
- Centro Interdisciplinar de Terapia Gênica (CINTERGEN), Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Maria Bellio
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
37
|
Bánki Z, Posch W, Ejaz A, Oberhauser V, Willey S, Gassner C, Stoiber H, Dittmer U, Dierich MP, Hasenkrug KJ, Wilflingseder D. Complement as an endogenous adjuvant for dendritic cell-mediated induction of retrovirus-specific CTLs. PLoS Pathog 2010; 6:e1000891. [PMID: 20442876 PMCID: PMC2861708 DOI: 10.1371/journal.ppat.1000891] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 04/01/2010] [Indexed: 12/24/2022] Open
Abstract
Previous studies have demonstrated the involvement of complement (C) in induction of efficient CTL responses against different viral infections, but the exact role of complement in this process has not been determined. We now show that C opsonization of retroviral particles enhances the ability of dendritic cells (DCs) to induce CTL responses both in vitro and in vivo. DCs exposed to C-opsonized HIV in vitro were able to stimulate CTLs to elicit antiviral activity significantly better than non-opsonized HIV. Furthermore, experiments using the Friend virus (FV) mouse model illustrated that the enhancing role of complement on DC-mediated CTL induction also occurred in vivo. Our results indicate that complement serves as natural adjuvant for DC-induced expansion and differentiation of specific CTLs against retroviruses.
Collapse
Affiliation(s)
- Zoltán Bánki
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Tirol, Austria
| | - Wilfried Posch
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Tirol, Austria
| | - Asim Ejaz
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Tirol, Austria
| | - Verena Oberhauser
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Tirol, Austria
| | - Suzanne Willey
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Christoph Gassner
- Central Institute for Blood Transfusion & Immunological Department, Innsbruck, Tirol, Austria
| | - Heribert Stoiber
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Tirol, Austria
| | - Ulf Dittmer
- Institute of Virology, University of Duisburg-Essen, Essen, Germany
| | - Manfred P. Dierich
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Tirol, Austria
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Doris Wilflingseder
- Department of Hygiene, Microbiology and Social Medicine, Division of Virology, Innsbruck Medical University, Innsbruck, Tirol, Austria
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To summarize recent progress in the development of adjuvants with a special focus on adjuvants that enhance B-cell responses to protein-based vaccines. Both established and new experimental approaches are described and also briefly we discuss how adjuvants and virus-based vaccines interact with the immune system. RECENT FINDINGS Two new adjuvants were recently approved for human applications and many others are in preclinical or clinical testing. Significant advances were made to describe the mechanism of action of adjuvants. For example, aluminum hydroxide salts were shown to engage Nalp3, a member of the cytosolic NOD-like receptors and activation of B cells via invariant natural killer cell presentation of alpha-galactosylceramide was described. The effects of Toll-like receptor ligands on B-cell differentiation were further characterized and a peptide derived from IPS-1, a cytosolic signaling molecule, was shown to provide adjuvant effect. Stimulation of protective antibodies against HIV-1 may require extensive antibody affinity maturation, thus long-term exposure or repeated administration of antigen may be needed to induce effective B-cell responses. SUMMARY Advances in our understanding of how specific signaling pathways link innate and adaptive immunity provides a basis for the design of improved adjuvants to promote broad and potent B-cell responses.
Collapse
|
39
|
Biasin M, Piacentini L, Lo Caputo S, Naddeo V, Pierotti P, Borelli M, Trabattoni D, Mazzotta F, Shearer GM, Clerici M. TLR activation pathways in HIV-1-exposed seronegative individuals. THE JOURNAL OF IMMUNOLOGY 2010; 184:2710-7. [PMID: 20124101 DOI: 10.4049/jimmunol.0902463] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLRs trigger innate immunity that recognizes conserved motifs of invading pathogens, resulting in cellular activation and release of inflammatory factors. The influence of TLR activation on resistance to HIV-1 infection has not been investigated in HIV-1 exposed seronegative (ESN) individuals. PBMCs isolated from heterosexually ESN individuals were stimulated with agonists specific for TLR3 (poly I:C), TLR4 (LPS), TLR7 (imiquimod), and TLR7/8 (ssRNA40). We evaluated expression of factors involved in TLR signaling cascades, production of downstream effector immune mediators, and TLR-expression in CD4+ and CD14+ cells. Results were compared with those obtained in healthy controls (HCs). ESN individuals showed: 1) comparable percentages of CD14+/TLR4+ and CD4+/TLR8+ CD14+/TLR8+ cells; 2) higher responsiveness to poly I:C, LPS, imiquimod, and ssRNA40 stimulation, associated with significantly increased production of IL-1beta, IL-6, TNF-alpha, and CCL3; 3) augmented expression of mRNA specific for other targets (CCL2, CSF3, CSF2, IL-1alpha, IL-8, IL-10, IL-12, cyclooxygenase 2) demonstrated by broader TLRs pathway expression analyses; and 4) increased MyD88/MyD88s(short) ratio, mainly following TLR7/8 stimulation. We also compared TLR-agonist-stimulated cytokine/chemokine production in CD14+ PBMCs and observed decreased IFN-beta production in ESN individuals compared with HCs upon TLR7/8-agonist stimulation. These data suggest that TLR stimulation in ESN individuals results in a more robust release of immunologic factors that can influence the induction of stronger adaptive antiviral immune responses and might represent a virus-exposure-induced innate immune protective phenotype against HIV-1.
Collapse
Affiliation(s)
- Mara Biasin
- Cattedra di Immunologia, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Twenty years after the proposal that pattern recognition receptors detect invasion by microbial pathogens, the field of immunology has witnessed several discoveries that have elucidated receptors and signaling pathways of microbial recognition systems and how they control the generation of T and B lymphocyte-mediated immune responses. However, there are still many fundamental questions that remain poorly understood, even though sometimes the answers are assumed to be known. Here, we discuss some of these questions, including the mechanisms by which pathogen-specific innate immune recognition activates antigen-specific adaptive immune responses and the roles of different types of innate immune recognition in host defense from infection and injury.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | | |
Collapse
|
41
|
Ranjan P, Bowzard JB, Schwerzmann JW, Jeisy-Scott V, Fujita T, Sambhara S. Cytoplasmic nucleic acid sensors in antiviral immunity. Trends Mol Med 2009; 15:359-68. [PMID: 19665430 DOI: 10.1016/j.molmed.2009.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 12/17/2022]
Abstract
The innate immune system uses pattern recognition receptors (PRRs) to sense invading microbes and initiate a rapid protective response. PRRs bind and are activated by structural motifs, such as nucleic acids or bacterial and fungal cell wall components, collectively known as pathogen-associated molecular patterns. PRRs that recognize pathogen-derived nucleic acids are present in vesicular compartments and in the cytosol of most cell types. Here, we review recent studies of these cytosolic sensors, focusing on the nature of the ligands for DNA-dependent activator of interferon (DAI)-regulatory factors, absent in melanoma 2 (AIM2), and the retinoic acid-inducible gene I-like helicase (RLH) family of receptors, the basis of ligand recognition and the signaling pathways triggered by the activation of these receptors. An increased understanding of these molecular aspects of innate immunity will guide the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Priya Ranjan
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | |
Collapse
|