1
|
Samantsidis GR, Karim S, Smith RC. Influence of blood feeding and infection on arthropod hemocytes. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101341. [PMID: 39938680 DOI: 10.1016/j.cois.2025.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Blood feeding provides essential nutrients for development and reproduction in hematophagous arthropods yet also initiates significant other physiological alterations in immune function. Immune cells, or hemocytes, are integral components of the arthropod innate immune system with notable roles in defining vector competence. Evidence suggests that both blood feeding and infection drive substantial changes in hemocyte phenotypes, including proliferation, immune activation, and differentiation, which directly and indirectly influence pathogen infection outcomes. These dynamics have fueled extensive research into hemocyte biology in recent years, which aided by emerging single-cell technologies and methods of phagocyte depletion, have provided novel molecular insights into hemocyte populations and additional support for their important contributions to parasite, virus, and bacterial infections. Despite this progress, many aspects of arthropod immune cell biology remain unclear. Focusing on mosquitoes and ticks as two of the most prominent and well-studied arthropod vectors, this review summarizes the effects of blood feeding and infection on mosquito and tick hemocytes, highlighting hemocyte classifications, and the known mechanisms by which hemocytes can have positive or negative impacts on vector-borne pathogen infection.
Collapse
Affiliation(s)
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Ryan C Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Li JH, Liu XH, Gao HT, Liang GR, Zhao T, Li CX. Not for nothing, microplastics can (potentially) reduce the risk of mosquito-to-human transmission of arboviruses. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138166. [PMID: 40209412 DOI: 10.1016/j.jhazmat.2025.138166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
The impact of microplastic pollution has emerged as a significant global ecological concern. Various organisms have exhibited alterations in behavior or metabolic activities following exposure to microplastics (MPs). Mosquitoes, as crucial disease vectors, are particularly susceptible MPs exposure in the environment. Recent studies have demonstrated that MPs ingested by mosquitoes can be detected in vivo, potentially being transmitted during their different life cycles. However, it remains unclear whether MPs in vivo could affect mosquito infection with arboviruses. In this study, we identified that the physical adsorption effect of MPs is also effective against arboviruses, enabling the adsorption of Zika virus particles onto their surfaces. We established an exposure model by feeding adult Aedes albopictus (Skuse, 1895) (Diptera: Culicidae) with 1 μm MPs at concentrations of 5 and 50 μg/mL in 8 % sucrose solution. The transmission rate of ZIKV and population transmission rate in the laboratorial Ae. albopictus exposure model began to decrease from day 7, showing statistically significant differences compared to the control group on days 10 and 14 (**, p < 0.01), significantly affecting their vector efficiency. This phenomenon is not solely dependent on the physical adsorption of MPs to arboviruses. Transcriptome analysis indicated that exposure to MPs influenced the expression levels of genes associated with mosquito virus infection, altering the function of relevant pathways, which consequently reduces their capability to transmit arbovirus. These findings suggest that exposure to MPs significantly affects the vector efficiency of mosquitoes, providing novel perspectives for the ecological risk assessment of MPs.
Collapse
Affiliation(s)
- Jian-Hang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Hui Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - He-Ting Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guo-Rui Liang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Teng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Chun-Xiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
3
|
Cabezas-Cruz A, Piloto-Sardiñas E, Tonnerre P, Lucas-Torres C, Obregon D. Cross-species immune activation and immunobiotics: a new frontier in vector-borne pathogen control. Trends Parasitol 2025; 41:290-300. [PMID: 40055101 DOI: 10.1016/j.pt.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 04/05/2025]
Abstract
The persistent global burden of vector-borne diseases (VBDs) needs innovative control strategies, as traditional methods are compromised by acaricides and drug resistance and variable vaccine efficacy. We propose a dual-action strategy using cross-species immune activation: human microbiota triggers the production of natural antibodies that directly target pathogens in the host and modulate vector immunity by interacting with vector microbiota. The human microbiota also modulates cytokine responses, enhancing immune defenses in both host and vector. These mechanisms can be further optimized by identifying immunobiotics - specific gut microbes that stimulate protective immune responses against VBDs. This approach offers a sustainable framework to bridge the gap between host and vector immunity, introducing a novel method to combat VBDs.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France.
| | - Elianne Piloto-Sardiñas
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France; Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas, Mayabeque 32700, Cuba
| | - Pierre Tonnerre
- Institut de Recherche Saint-Louis, Université Paris-Cité, Inserm U976, Team ATIP-Avenir, Paris, France
| | - Covadonga Lucas-Torres
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Route de Saclay, 91120 Palaiseau, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1H 2W1, Canada
| |
Collapse
|
4
|
Char AB, Trammell CE, Fawcett S, Chauhan M, Debebe Y, Céspedes N, Paslay RA, Ahlers LRH, Patel D, Luckhart S, Goodman AG. Sustained antiviral insulin signaling during West Nile virus infection results in viral mutations. Front Cell Infect Microbiol 2024; 14:1492403. [PMID: 39664493 PMCID: PMC11631865 DOI: 10.3389/fcimb.2024.1492403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024] Open
Abstract
Arthropod-borne viruses or arboviruses, including West Nile virus (WNV), dengue virus (DENV), and Zika virus (ZIKV) pose significant threats to public health. It is imperative to develop novel methods to control these mosquito-borne viral infections. We previously showed that insulin/insulin-like growth factor-1 signaling (IIS)-dependent activation of ERK and JAK-STAT signaling has significant antiviral activity in insects and human cells. Continuous immune pressure can lead to adaptive mutations of viruses during infection. We aim to elucidate how IIS-signaling in mosquitoes selects for West Nile virus escape variants, to help formulate future transmission blocking strategies. We hypothesize that passage of WNV under activation of IIS will induce adaptive mutations or escape variants in the infecting virus. To test our hypothesis, WNV was serially passaged through Culex quinquefasciatus Hsu cells in the presence or absence of bovine insulin to activate IIS antiviral pressure. We sequenced WNV genes encoding for E, NS2B, NS3, and NS5 and identified variants in E and NS5 arising from IIS antiviral pressure. In parallel to the genetic analyses, we also report differences in the levels of virus replication and Akt activation in human cells and mosquitoes using virus passaged in the presence or absence of insulin. Finally, using adult Culex quinquefasciatus, we demonstrated the enhancement of immune response gene expression in virus-infected mosquitoes fed on insulin, compared to control. Notably, virus collected from insulin-fed mosquitoes contained a non-synonymous mutation in NS3. These results contribute towards achieving our long-term goal of manipulating mosquito IIS-dependent antiviral immunity to reduce WNV or other flavivirus transmission to mammalian hosts.
Collapse
Affiliation(s)
- Aditya B. Char
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Deptartment of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Stephen Fawcett
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Manish Chauhan
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Yared Debebe
- Department of Entomology, Plant Pathology, and Nematology, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - Ryder A. Paslay
- Department of Entomology, Plant Pathology, and Nematology, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - Laura R. H. Ahlers
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, ID, United States
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Menezes A, Peixoto M, Silva M, Costa-Bartuli E, Oliveira CL, Walter-Nuno AB, Kistenmacker NDC, Pereira J, Ramos I, Paiva-Silva GO, Atella GC, Zancan P, Sola-Penna M, Gomes FM. Western diet consumption by host vertebrate promotes altered gene expression on Aedes aegypti reducing its lifespan and increasing fertility following blood feeding. Parasit Vectors 2024; 17:12. [PMID: 38184590 PMCID: PMC10770904 DOI: 10.1186/s13071-023-06095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The high prevalence of metabolic syndrome in low- and middle-income countries is linked to an increase in Western diet consumption, characterized by a high intake of processed foods, which impacts the levels of blood sugar and lipids, hormones, and cytokines. Hematophagous insect vectors, such as the yellow fever mosquito Aedes aegypti, rely on blood meals for reproduction and development and are therefore exposed to the components of blood plasma. However, the impact of the alteration of blood composition due to malnutrition and metabolic conditions on mosquito biology remains understudied. METHODS In this study, we investigated the impact of whole-blood alterations resulting from a Western-type diet on the biology of Ae. aegypti. We kept C57Bl6/J mice on a high-fat, high-sucrose (HFHS) diet for 20 weeks and followed biological parameters, including plasma insulin and lipid levels, insulin tolerance, and weight gain, to validate the development of metabolic syndrome. We further allowed Ae. aegypti mosquitoes to feed on mice and tracked how altered host blood composition modulated parameters of vector capacity. RESULTS Our findings identified that HFHS-fed mice resulted in reduced mosquito longevity and increased fecundity upon mosquito feeding, which correlated with alteration in the gene expression profile of nutrient sensing and physiological and metabolic markers as studied up to several days after blood ingestion. CONCLUSIONS Our study provides new insights into the overall effect of alterations of blood components on mosquito biology and its implications for the transmission of infectious diseases in conditions where the frequency of Western diet-induced metabolic syndromes is becoming more frequent. These findings highlight the importance of addressing metabolic health to further understand the spread of mosquito-borne illnesses in endemic areas.
Collapse
Affiliation(s)
- Alexandre Menezes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilia Peixoto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melissa Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emylle Costa-Bartuli
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cinara Lima Oliveira
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Beatriz Walter-Nuno
- Laboratório de Bioquímica e Biologia Molecular de Artrópodes Hematófagos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Nathan da Cruz Kistenmacker
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jessica Pereira
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Laboratório de Bioquímica e Biologia Molecular de Artrópodes Hematófagos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geórgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Zancan
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Sola-Penna
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Tom A, Kumar NP, Kumar A, Saini P. Interactions between Leishmania parasite and sandfly: a review. Parasitol Res 2023; 123:6. [PMID: 38052752 DOI: 10.1007/s00436-023-08043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Leishmaniasis transmission cycles are maintained and sustained in nature by the complex crosstalk of the Leishmania parasite, sandfly vector, and the mammalian hosts (human, as well as zoonotic reservoirs). Regardless of the vast research on human host-parasite interaction, there persists a substantial knowledge gap on the parasite's development and modulation in the vector component. This review focuses on some of the intriguing aspects of the Leishmania-sandfly interface, beginning with the uptake of the intracellular amastigotes from an infected host to the development of the parasite within the sandfly's alimentary canal, followed by the transmission of infective metacyclic stages to another potential host. Upon ingestion of the parasite, the sandfly hosts an intricate repertoire of immune barriers, either to evade the parasite or to ensure its homeostatic coexistence with the vector gut microbiome. Sandfly salivary polypeptides and Leishmania exosomes are co-egested with the parasite inoculum during the infected vector bite. This has been attributed to the modulation of the parasite infection and subsequent clinical manifestation in the host. While human host-based studies strive to develop effective therapeutics, a greater understanding of the vector-parasite-microbiome and human host interactions could help us to identify the targets and to develop strategies for effectively preventing the transmission of leishmaniasis.
Collapse
Affiliation(s)
- Anns Tom
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - N Pradeep Kumar
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India
| | - Ashwani Kumar
- ICMR- Vector Control Research Centre, Puducherry, India
| | - Prasanta Saini
- ICMR-Vector Control Research Centre (Field Station), Kottayam, Kerala, India.
| |
Collapse
|
7
|
Viglietta M, Bellone R, Blisnick AA, Failloux AB. Vector Specificity of Arbovirus Transmission. Front Microbiol 2021; 12:773211. [PMID: 34956136 PMCID: PMC8696169 DOI: 10.3389/fmicb.2021.773211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
More than 25% of human infectious diseases are vector-borne diseases (VBDs). These diseases, caused by pathogens shared between animals and humans, are a growing threat to global health with more than 2.5 million annual deaths. Mosquitoes and ticks are the main vectors of arboviruses including flaviviruses, which greatly affect humans. However, all tick or mosquito species are not able to transmit all viruses, suggesting important molecular mechanisms regulating viral infection, dissemination, and transmission by vectors. Despite the large distribution of arthropods (mosquitoes and ticks) and arboviruses, only a few pairings of arthropods (family, genus, and population) and viruses (family, genus, and genotype) successfully transmit. Here, we review the factors that might limit pathogen transmission: internal (vector genetics, immune responses, microbiome including insect-specific viruses, and coinfections) and external, either biotic (adult and larvae nutrition) or abiotic (temperature, chemicals, and altitude). This review will demonstrate the dynamic nature and complexity of virus–vector interactions to help in designing appropriate practices in surveillance and prevention to reduce VBD threats.
Collapse
Affiliation(s)
- Marine Viglietta
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Rachel Bellone
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Adrien Albert Blisnick
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| | - Anna-Bella Failloux
- Unit of Arboviruses and Insect Vectors, Institut Pasteur, Sorbonne Université, Paris, France
| |
Collapse
|
8
|
Interactions of the Intracellular Bacterium Cardinium with Its Host, the House Dust Mite Dermatophagoides farinae, Based on Gene Expression Data. mSystems 2021; 6:e0091621. [PMID: 34726490 PMCID: PMC8562489 DOI: 10.1128/msystems.00916-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dermatophagoides farinae is inhabited by an intracellular bacterium, Cardinium. Using correlations between host and symbiont gene expression profiles, we identified several important molecular pathways that potentially regulate/facilitate their interactions. The expression of Cardinium genes collectively explained 95% of the variation in the expression of mite genes assigned to pathways for phagocytosis, apoptosis, the MAPK signaling cascade, endocytosis, the tumor necrosis factor (TNF) pathway, the transforming growth factor beta (TGF-β) pathway, lysozyme, and the Toll/Imd pathway. In addition, expression of mite genes explained 76% of the variability in Cardinium gene expression. In particular, the expression of the Cardinium genes encoding the signaling molecules BamD, LepA, SymE, and VirD4 was either positively or negatively correlated with the expression levels of mite genes involved in endocytosis, phagocytosis, and apoptosis. We also found that Cardinium possesses a complete biosynthetic pathway for lipoic acid and may provide lipoate, but not biotin, to mites. Cardinium gene expression collectively explained 84% of the variation in expression related to several core mite metabolic pathways, and, most notably, a negative correlation was observed between bacterial gene expression and expression of mite genes assigned to the glycolysis and citric acid cycle pathways. Furthermore, we showed that Cardinium gene expression is correlated with expression levels of genes associated with terpenoid backbone biosynthesis. This pathway is important for the synthesis of pheromones, thus providing an opportunity for Cardinium to influence mite reproductive behavior to facilitate transmission of the bacterium. Overall, our study provided correlational gene expression data that can be useful for future research on mite-Cardinium interactions. IMPORTANCE The molecular mechanisms of mite-symbiont interactions and their impacts on human health are largely unknown. Astigmatid mites, such as house dust and stored-product mites, are among the most significant allergen sources worldwide. Although mites themselves are the main allergen sources, recent studies have indicated that mite-associated microbiomes may have implications for allergen production and human health. The major medically important house dust mite, D. farinae, is known to harbor a highly abundant intracellular bacterium belonging to the genus Cardinium. Expression analysis of the mite and symbiont genes can identify key mite molecular pathways that facilitate interactions with this endosymbiont and possibly shed light on how this bacterium affects mite allergen production and physiology in general.
Collapse
|
9
|
Toviwek B, Phuangsawai O, Konsue A, Hannongbua S, Riley J, Mutter N, Anderson M, Webster L, Hallyburton I, Read KD, Gleeson MP. Preparation, biological & cheminformatics-based assessment of N 2,N 4-diphenylpyrimidine-2,4-diamine as potential Kinase-targeted antimalarials. Bioorg Med Chem 2021; 46:116348. [PMID: 34479064 DOI: 10.1016/j.bmc.2021.116348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 11/25/2022]
Abstract
Twenty eight new N2,N4-diphenylpyrimidine-2,4-diamines have been prepared in order to expand our understanding of the anti-malarial SAR of the scaffold. The aim of the study was to make structural modifications to improve the overall potency, selectivity and solubility of the series by varying the anilino groups attached to the 2- and 4-position. We evaluated the activity of the compounds against Plasmodium falciparum (Pf) 3D7, cytotoxicity against HepG2, % inhibition at a panel of 10 human kinases, solubility, permeability and lipophilicity, and human and rat in vitro clearance. 11 was identified as a potent anti-malarial with an IC50 of 0.66 µM at the 3D7 strain and a selectivity (SI) of ~ 40 in terms of cytotoxicity against the HepG2 cell line. It also displayed low experimental logD7.4 (2.27), reasonable solubility (124 µg/ml), good metabolic stability, but low permeability. A proteo-chemometric workflow was employed to identify putative Pf targets of the most promising compounds. Ligand-based similarity searching of the ChEMBL database led to the identification of most probable human targets. These were then used as input for sequence-based searching of the Pf proteome. Homology modelling and molecular docking were used to evaluate whether compounds could indeed bind to these targets with valid binding modes. In vitro biological testing against close human analogs of these targets was subsequently undertaken. This allowed us to identify potential Pf targets and human anti-targets that could be exploited in future development.
Collapse
Affiliation(s)
- Borvornwat Toviwek
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand; Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Oraphan Phuangsawai
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Adchatawut Konsue
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Jennifer Riley
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Nicole Mutter
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Mark Anderson
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Lauren Webster
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Irene Hallyburton
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kevin D Read
- Drug Discovery Unit, Divison of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
10
|
Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathog 2021; 17:e1009870. [PMID: 34473801 PMCID: PMC8412342 DOI: 10.1371/journal.ppat.1009870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.
Collapse
|
11
|
Rodriguez AM, Hambly MG, Jandu S, Simão-Gurge R, Lowder C, Lewis EE, Riffell JA, Luckhart S. Histamine Ingestion by Anopheles stephensi Alters Important Vector Transmission Behaviors and Infection Success with Diverse Plasmodium Species. Biomolecules 2021; 11:719. [PMID: 34064869 PMCID: PMC8151525 DOI: 10.3390/biom11050719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
An estimated 229 million people worldwide were impacted by malaria in 2019. The vectors of malaria parasites (Plasmodium spp.) are Anopheles mosquitoes, making their behavior, infection success, and ultimately transmission of great importance. Individuals with severe malaria can exhibit significantly increased blood concentrations of histamine, an allergic mediator in humans and an important insect neuromodulator, potentially delivered to mosquitoes during blood-feeding. To determine whether ingested histamine could alter Anopheles stephensi biology, we provisioned histamine at normal blood levels and at levels consistent with severe malaria and monitored blood-feeding behavior, flight activity, antennal and retinal responses to host stimuli and lifespan of adult female Anopheles stephensi. To determine the effects of ingested histamine on parasite infection success, we quantified midgut oocysts and salivary gland sporozoites in mosquitoes infected with Plasmodium yoelii and Plasmodium falciparum. Our data show that provisioning An. stephensi with histamine at levels consistent with severe malaria can enhance mosquito behaviors and parasite infection success in a manner that would be expected to amplify parasite transmission to and from human hosts. Such knowledge could be used to connect clinical interventions by reducing elevated histamine to mitigate human disease pathology with the delivery of novel lures for improved malaria control.
Collapse
Affiliation(s)
- Anna M. Rodriguez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Sandeep Jandu
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; (S.J.); (J.A.R.)
| | - Raquel Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA; (S.J.); (J.A.R.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843-3051, USA; (A.M.R.); (M.G.H.); (R.S.-G.); (C.L.); (E.E.L.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843-3051, USA
| |
Collapse
|
12
|
Oliveira FC, Silva RJ, Ribeiro M, Guirelli PM, Castro AS, Gomes AO, Franco PS, Teixeira SC, Mineo JR, Barbosa BF, Ferro EAV. ERK1/2 phosphorylation and IL-6 production are involved in the differential susceptibility to Toxoplasma gondii infection in three types of human (cyto/ syncytio/ extravillous) trophoblast cells. Tissue Cell 2021; 72:101544. [PMID: 33892398 DOI: 10.1016/j.tice.2021.101544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/16/2022]
Abstract
During pregnancy, Toxoplasma gondii can triggers serious manifestations and potentially affect the fetal development. In this scenario, differences in susceptibility of trophoblast cells to T. gondii infection might be evaluated in order to establish new therapeutic approaches capable of interfering in the control of fetal infection by T. gondii. This study aimed to evaluate the susceptibility of cytotrophoblast, syncytiotrophoblast and extravillous trophoblast cells to T. gondii infection. Our data demonstrate that HTR-8/SVneo cells (extravillous trophoblast cells) present higher susceptibility to T. gondii infection when compared to syncytiotrophoblast and cytotrophoblast cells, whereas syncytiotrophoblast was the cell type more resistant to the parasite infection. Also, cytotrophoblast and syncytiotrophoblast cells produced significantly more IL-6 than HTR-8/SVneo cells. On the other hand, HTR-8/SVneo cells showed higher ERK1/2 phosphorylation than cytotrophoblast and syncytiotrophoblast cells. ERK1/2 inhibition reduced T. gondii infection and increased IL-6 production in HTR-8/SVneo cells. Thus, it is plausible to conclude that the greater susceptibility of HTR-8/SVneo cells to infection by T. gondii is related to a higher ERK1/2 phosphorylation and lower levels of IL-6 in these cells compared to other cells, suggesting that these mediators may be important to favor the parasite infection in this type of trophoblastic population.
Collapse
Affiliation(s)
- Fernanda C Oliveira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil
| | - Rafaela J Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil
| | - Pamela M Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil
| | - Andressa S Castro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil
| | - Angelica O Gomes
- Laboratory of Cell Biology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, 38025-180, Uberaba, MG, Brazil
| | - Priscila S Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil
| | - Samuel C Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil
| | - José R Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Science, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Bellisa F Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil
| | - Eloisa A V Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Federal University of Uberlândia, 38405-320, Uberlândia, MG, Brazil.
| |
Collapse
|
13
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Evidence for Divergent Selection on Immune Genes between the African Malaria Vectors, Anopheles coluzzii and A. gambiae. INSECTS 2020; 11:insects11120893. [PMID: 33352887 PMCID: PMC7767042 DOI: 10.3390/insects11120893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022]
Abstract
Simple Summary A comparison of the genomes of the African malaria vectors, Anopheles gambiae and A. coluzzii, revealed that immune genes are highly diverged. Although these two species frequently co-occur within a single site, they occur in distinct larval habitats. Our results taken in the context of known differences in the larval habitats occupied by these taxa support the hypothesis that observed genetic divergence may be driven by immune response to microbial agents specific to these habitats. Strict within species mating may have subsequently evolved in part to maintain immunocompetence which might be compromised by dysregulation of immune pathways in hybrids. We conclude that the evolution of immune gene divergence among this important group of species may serve as a useful model to explore ecological speciation in general. Abstract During their life cycles, microbes infecting mosquitoes encounter components of the mosquito anti-microbial innate immune defenses. Many of these immune responses also mediate susceptibility to malaria parasite infection. In West Africa, the primary malaria vectors are Anopheles coluzzii and A. gambiae sensu stricto, which is subdivided into the Bamako and Savanna sub-taxa. Here, we performed whole genome comparisons of the three taxa as well as genotyping of 333 putatively functional SNPs located in 58 immune signaling genes. Genome data support significantly higher differentiation in immune genes compared with a randomly selected set of non-immune genes among the three taxa (permutation test p < 0.001). Among the 58 genes studied, the majority had one or more segregating mutations (72.9%) that were significantly diverged among the three taxa. Genes detected to be under selection include MAP2K4 and Raf. Despite the genome-wide distribution of immune genes, a high level of linkage disequilibrium (r2 > 0.8) was detected in over 27% of SNP pairs. We discuss the potential role of immune gene divergence as adaptations to the different larval habitats associated with A. gambiae taxa and as a potential force driving ecological speciation in this group of mosquitoes.
Collapse
|
15
|
Insulin Potentiates JAK/STAT Signaling to Broadly Inhibit Flavivirus Replication in Insect Vectors. Cell Rep 2020; 29:1946-1960.e5. [PMID: 31722209 PMCID: PMC6871768 DOI: 10.1016/j.celrep.2019.10.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that more than half of the world’s population is at risk for vector-borne diseases, including arboviruses. Because many arboviruses are mosquito borne, investigation of the insect immune response will help identify targets to reduce the spread of arboviruses. Here, we use a genetic screening approach to identify an insulin-like receptor as a component of the immune response to arboviral infection. We determine that vertebrate insulin reduces West Nile virus (WNV) replication in Drosophila melanogaster as well as WNV, Zika, and dengue virus titers in mosquito cells. Mechanistically, we show that insulin signaling activates the JAK/STAT, but not RNAi, pathway via ERK to control infection in Drosophila cells and Culex mosquitoes through an integrated immune response. Finally, we validate that insulin priming of adult female Culex mosquitoes through a blood meal reduces WNV infection, demonstrating an essential role for insulin signaling in insect antiviral responses to human pathogens. The world’s population is at risk for infection with several flaviviruses. Ahlers et al. use a living library of insects to determine that an insulin-like receptor controls West Nile virus infection. Insulin signaling is antiviral via the JAK/STAT pathway in both fly and mosquito models and against a range of flaviviruses.
Collapse
|
16
|
Liu WQ, Chen SQ, Bai HQ, Wei QM, Zhang SN, Chen C, Zhu YH, Yi TW, Guo XP, Chen SY, Yin MJ, Sun CF, Liang SH. The Ras/ERK signaling pathway couples antimicrobial peptides to mediate resistance to dengue virus in Aedes mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008660. [PMID: 32866199 PMCID: PMC7485967 DOI: 10.1371/journal.pntd.0008660] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/11/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Aedes mosquitoes can transmit dengue and several other severe vector-borne viral diseases, thereby influencing millions of people worldwide. Insects primarily control and clear the viral infections via their innate immune systems. Mitogen-Activated Protein Kinases (MAPKs) and antimicrobial peptides (AMPs) are both evolutionarily conserved components of the innate immune systems. In this study, we investigated the role of MAPKs in Aedes mosquitoes following DENV infection by using genetic and pharmacological approaches. We demonstrated that knockdown of ERK, but not of JNK or p38, significantly enhances the viral replication in Aedes mosquito cells. The Ras/ERK signaling is activated in both the cells and midguts of Aedes mosquitoes following DENV infection, and thus plays a role in restricting the viral infection, as both genetic and pharmacological activation of the Ras/ERK pathway significantly decreases the viral titers. In contrast, inhibition of the Ras/ERK pathway enhances DENV infection. In addition, we identified a signaling crosstalk between the Ras/ERK pathway and DENV-induced AMPs in which defensin C participates in restricting DENV infection in Aedes mosquitoes. Our results reveal that the Ras/ERK signaling pathway couples AMPs to mediate the resistance of Aedes mosquitoes to DENV infection, which provides a new insight into understanding the crosstalk between MAPKs and AMPs in the innate immunity of mosquito vectors during the viral infection.
Collapse
Affiliation(s)
- Wen-Quan Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Si-Qi Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao-Qiang Bai
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qi-Mei Wei
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng-Nan Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi-Han Zhu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tang-Wei Yi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Pu Guo
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Si-Yuan Chen
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng-Jie Yin
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen-Feng Sun
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shao-Hui Liang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- * E-mail:
| |
Collapse
|
17
|
Di-Blasi T, Telleria EL, Marques C, Couto RDM, da Silva-Neves M, Jancarova M, Volf P, Tempone AJ, Traub-Csekö YM. Lutzomyia longipalpis TGF-β Has a Role in Leishmania infantum chagasi Survival in the Vector. Front Cell Infect Microbiol 2019; 9:71. [PMID: 30972305 PMCID: PMC6445956 DOI: 10.3389/fcimb.2019.00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/04/2019] [Indexed: 01/10/2023] Open
Abstract
Despite the increasing number of studies concerning insect immunity, Lutzomyia longipalpis immune responses in the presence of Leishmania infantum chagasi infection has not been widely investigated. The few available studies analyzed the role of the Toll and IMD pathways involved in response against Leishmania and microbial infections. Nevertheless, effector molecules responsible for controlling sand fly infections have not been identified. In the present study we investigated the role a signal transduction pathway, the Transforming Growth Factor-beta (TGF-β) pathway, on the interrelation between L. longipalpis and L. i. chagasi. We identified an L. longipalpis homolog belonging to the multifunctional cytokine TGF-β gene family (LlTGF-β), which is closely related to the activin/inhibin subfamily and potentially involved in responses to infections. We investigated this gene expression through the insect development and in adult flies infected with L. i. chagasi. Our results showed that LlTGF-β was expressed in all L. longipalpis developmental stages and was upregulated at the third day post L. i. chagasi infection, when protein levels were also higher as compared to uninfected insects. At this point blood digestion is finished and parasites are in close contact with the insect gut. In addition, we investigated the role of LlTGF-β on L. longipalpis infection by L. i. chagasi using either gene silencing by RNAi or pathway inactivation by addition of the TGF-β receptor inhibitor SB431542. The blockage of the LlTGF-β pathway increased significantly antimicrobial peptides expression and nitric oxide levels in the insect gut, as expected. Both methods led to a decreased L. i. chagasi infection. Our results show that inactivation of the L. longipalpis TGF-β signal transduction pathway reduce L. i. chagasi survival, therefore suggesting that under natural conditions the parasite benefits from the insect LlTGF-β pathway, as already seen in Plamodium infection of mosquitoes.
Collapse
Affiliation(s)
- Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.,Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Christiane Marques
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rodrigo de Macedo Couto
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monique da Silva-Neves
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Magdalena Jancarova
- Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Volf
- Parasitology Department, Faculty of Science, Charles University, Prague, Czechia
| | - Antonio Jorge Tempone
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Gouignard N, Cherrier F, Brito-Fravallo E, Pain A, Zmarlak NM, Cailliau K, Genève C, Vernick KD, Dissous C, Mitri C. Dual role of the Anopheles coluzzii Venus Kinase Receptor in both larval growth and immunity. Sci Rep 2019; 9:3615. [PMID: 30837655 PMCID: PMC6401105 DOI: 10.1038/s41598-019-40407-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/12/2019] [Indexed: 11/24/2022] Open
Abstract
Vector-borne diseases and especially malaria are responsible for more than half million deaths annually. The increase of insecticide resistance in wild populations of Anopheles malaria vectors emphasises the need for novel vector control strategies as well as for identifying novel vector targets. Venus kinase receptors (VKRs) constitute a Receptor Tyrosine Kinase (RTK) family only found in invertebrates. In this study we functionally characterized Anopheles VKR in the Gambiae complex member, Anophelescoluzzii. Results showed that Anopheles VKR can be activated by L-amino acids, with L-arginine as the most potent agonist. VKR was not required for the fecundity of A. coluzzii, in contrast to reports from other insects, but VKR function is required in both Anopheles males and females for development of larval progeny. Anopheles VKR function is also required for protection against infection by Plasmodium parasites, thus identifying a novel linkage between reproduction and immunity in Anopheles. The insect specificity of VKRs as well as the essential function for reproduction and immunity suggest that Anopheles VKR could be a potentially druggable target for novel vector control strategies.
Collapse
Affiliation(s)
- Nadège Gouignard
- CIIL- Institut Biologie de Lille, Inserm U1019, CNRS UMR 8204, Institut Pasteur Lille, Lille, France.,Department of Basic Science & Craniofacial Biology, New York University, College of Dentistry, New York, USA
| | - Floriane Cherrier
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France.,Oncogenesis of Lymphoma unit, INSERM U1053 - BaRITOn, Bordeaux, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France.,Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR, 3756 IP CNRS, Paris, France
| | - Natalia Marta Zmarlak
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Katia Cailliau
- Team "Signal Division Regulation", CNRS UMR 8576, University of Lille, Lille, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Kenneth D Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Colette Dissous
- CIIL- Institut Biologie de Lille, Inserm U1019, CNRS UMR 8204, Institut Pasteur Lille, Lille, France.
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, UMR2000, Paris, France.
| |
Collapse
|
19
|
Sharma A, Nuss AB, Gulia-Nuss M. Insulin-Like Peptide Signaling in Mosquitoes: The Road Behind and the Road Ahead. Front Endocrinol (Lausanne) 2019; 10:166. [PMID: 30984106 PMCID: PMC6448002 DOI: 10.3389/fendo.2019.00166] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin signaling is a conserved pathway in all metazoans. This pathway contributed toward primordial metazoans responding to a greater diversity of environmental signals by modulating nutritional storage, reproduction, and longevity. Most of our knowledge of insulin signaling in insects comes from the vinegar fly, Drosophila melanogaster, where it has been extensively studied and shown to control several physiological processes. Mosquitoes are the most important vectors of human disease in the world and their control constitutes a significant area of research. Recent studies have shown the importance of insulin signaling in multiple physiological processes such as reproduction, innate immunity, lifespan, and vectorial capacity in mosquitoes. Although insulin-like peptides have been identified and functionally characterized from many mosquito species, a comprehensive review of this pathway in mosquitoes is needed. To fill this gap, our review provides up-to-date knowledge of this subfield.
Collapse
Affiliation(s)
- Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Andrew B. Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV, United States
- *Correspondence: Andrew B. Nuss
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Monika Gulia-Nuss
| |
Collapse
|
20
|
Souvannaseng L, Hun LV, Baker H, Klyver JM, Wang B, Pakpour N, Bridgewater JM, Napoli E, Giulivi C, Riehle MA, Luckhart S. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. PLoS Pathog 2018; 14:e1007418. [PMID: 30496310 PMCID: PMC6264519 DOI: 10.1371/journal.ppat.1007418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies, including strategies to block parasite sporogony in key mosquito vector species. MAPK signaling pathways regulated by extracellular signal-regulated kinases (ERKs) and the stress-activated protein kinases (SAPKs) c-Jun N-terminal kinases (JNKs) and p38 MAPKs are highly conserved across eukaryotes, including mosquito vectors of the human malaria parasite Plasmodium falciparum. Some of these pathways in mosquitoes have been investigated in detail, but the mechanisms of integration of parasite development and mosquito fitness by JNK signaling have not been elucidated. To this end, we engineered midgut-specific overexpression of MAPK phosphatase 4 (MKP4), which targets the SAPKs, and used two potent and specific JNK small molecule inhibitors (SMIs) to assess the effects of JNK signaling manipulations on Anopheles stephensi fecundity, lifespan, intermediary metabolism, and P. falciparum development. MKP4 overexpression and SMI treatment reduced the proportion of P. falciparum-infected mosquitoes and decreased oocyst loads relative to controls. SMI-treated mosquitoes exhibited no difference in lifespan compared to controls, whereas genetically manipulated mosquitoes exhibited extended longevity. Metabolomics analyses of SMI-treated mosquitoes revealed insights into putative resistance mechanisms and the physiology behind lifespan extension, suggesting for the first time that P. falciparum-induced JNK signaling reduces mosquito longevity and increases susceptibility to infection, in contrast to previously published reports, likely via a critical interplay between the invertebrate host and parasite for nutrients that play essential roles during sporogonic development. Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies. One strategy is to develop a Plasmodium-resistant mosquito through the manipulation of key signaling pathways and processes in the mosquito midgut, a critical tissue for parasite development. MAPK signaling pathways are highly conserved among eukaryotes and regulate development of the human malaria parasite Plasmodium falciparum in the mosquito vector. Here, we investigated how manipulation of Anopheles stephensi JNK signaling affects development of P. falciparum and key mosquito life history traits. We used multiple, complementary approaches to demonstrate that malaria parasite infection activates mosquito JNK signaling for its own benefit at a cost to host lifespan. Notably, these combined effects derive from networked signaling with other transduction pathways and alterations to intermediary metabolism in the mosquito host.
Collapse
Affiliation(s)
- Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
- Department of Pathobiology, St. George's University, School of Veterinary Medicine, True Blue, St. George, Grenada, West Indies
| | - Lewis Vibul Hun
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Heather Baker
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - John M. Klyver
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Jordan M. Bridgewater
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Eleonora Napoli
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
- M.I.N.D. Institute, Sacramento, CA, United States of America
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail:
| |
Collapse
|
21
|
Transcriptome profiling of whitefly guts in response to Tomato yellow leaf curl virus infection. Virol J 2018; 15:14. [PMID: 29338737 PMCID: PMC5771010 DOI: 10.1186/s12985-018-0926-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Plant viruses in agricultural crops are of great concern worldwide, and over 75% of them are transmitted from infected to healthy plants by insect vectors. Tomato yellow leaf curl virus (TYLCV) is a begomovirus, which is the largest and most economically important group of plant viruses, transmitted by the whitefly Bemisia tabaci. The circulation of TYLCV in the insect involves complex insect-virus interactions, whereas the molecular mechanisms of these interactions remain ambiguous. The insect gut as a barrier for viral entry and dissemination is thought to regulate the vector specificity. However, due to its tiny size, information for the responses of whitefly gut to virus infection is limited. METHODS We investigated the transcriptional response of the gut of B. tabaci Middle East-Asia Minor 1 species to TYLCV infection using Illumina sequencing. RESULTS A total of 5207 differentially expressed genes (DEGs) between viruliferous and non-viruliferous whitefly guts were identified. Enrichment analyses showed that cargo receptor and ATP-binding cassette (ABC) transporters were enriched in DEGs, and might help the virus to cross gut barrier. TYLCV could perturb cell cycle and DNA repair as a possible result of its replication in the whitefly. Our data also demonstrated that TYLCV can activate whitefly defense responses, such as antimicrobial peptides. Meanwhile, a number of genes involved in intracellular signaling were activated by TYLCV infection. CONCLUSIONS Our results reveal the complex insect-virus relationship in whitefly gut and provide substantial molecular information for the role of insect midguts in virus transmission.
Collapse
|
22
|
Glennon EKK, Torrevillas BK, Morrissey SF, Ejercito JM, Luckhart S. Abscisic acid induces a transient shift in signaling that enhances NF-κB-mediated parasite killing in the midgut of Anopheles stephensi without reducing lifespan or fecundity. Parasit Vectors 2017; 10:333. [PMID: 28705245 PMCID: PMC5508651 DOI: 10.1186/s13071-017-2276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022] Open
Abstract
Background Abscisic acid (ABA) is naturally present in mammalian blood and circulating levels can be increased by oral supplementation. We showed previously that oral ABA supplementation in a mouse model of Plasmodium yoelii 17XNL infection reduced parasitemia and gametocytemia, spleen and liver pathology, and parasite transmission to the mosquito Anopheles stephensi fed on these mice. Treatment of cultured Plasmodium falciparum with ABA at levels detected in our model had no effects on asexual growth or gametocyte formation in vitro. However, ABA treatment of cultured P. falciparum immediately prior to mosquito feeding significantly reduced oocyst development in A. stephensi via ABA-dependent synthesis of nitric oxide (NO) in the mosquito midgut. Results Here we describe the mechanisms of effects of ABA on mosquito physiology, which are dependent on phosphorylation of TGF-β-activated kinase 1 (TAK1) and associated with changes in homeostatic gene expression and activity of kinases that are central to metabolic regulation in the midgut epithelium. Collectively, the timing of these effects suggests a transient physiological shift that enhances NF-κB-dependent innate immunity without significantly altering mosquito lifespan or fecundity. Conclusions ABA is a highly conserved regulator of immune and metabolic homeostasis within the malaria vector A. stephensi with potential as a transmission-blocking supplemental treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2276-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Center for Infectious Disease Research, Seattle, WA, USA
| | - Brandi K Torrevillas
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.,Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Shannon F Morrissey
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA
| | - Jadrian M Ejercito
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Department of Entomology, University of California at Riverside, Riverside, CA, USA
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA. .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA. .,Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
23
|
Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism. Biochem J 2016; 473:3487-3503. [PMID: 27496548 DOI: 10.1042/bcj20160271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/05/2016] [Indexed: 01/20/2023]
Abstract
Insulin-like peptides (ILPs) play important roles in growth and metabolic homeostasis, but have also emerged as key regulators of stress responses and immunity in a variety of vertebrates and invertebrates. Furthermore, a growing literature suggests that insulin signaling-dependent metabolic provisioning can influence host responses to infection and affect infection outcomes. In line with these studies, we previously showed that knockdown of either of two closely related, infection-induced ILPs, ILP3 and ILP4, in the mosquito Anopheles stephensi decreased infection with the human malaria parasite Plasmodium falciparum through kinetically distinct effects on parasite death. However, the precise mechanisms by which ILP3 and ILP4 control the response to infection remained unknown. To address this knowledge gap, we used a complementary approach of direct ILP supplementation into the blood meal to further define ILP-specific effects on mosquito biology and parasite infection. Notably, we observed that feeding resulted in differential effects of ILP3 and ILP4 on blood-feeding behavior and P. falciparum development. These effects depended on ILP-specific regulation of intermediary metabolism in the mosquito midgut, suggesting a major contribution of ILP-dependent metabolic shifts to the regulation of infection resistance and parasite transmission. Accordingly, our data implicate endogenous ILP signaling in balancing intermediary metabolism for the host response to infection, affirming this emerging tenet in host-pathogen interactions with novel insights from a system of significant public health importance.
Collapse
|
24
|
Phosphorylated and Nonphosphorylated PfMAP2 Are Localized in the Nucleus, Dependent on the Stage of Plasmodium falciparum Asexual Maturation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1645097. [PMID: 27525262 PMCID: PMC4976173 DOI: 10.1155/2016/1645097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/16/2016] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum mitogen-activated protein (MAP) kinases, a family of enzymes central to signal transduction processes including inflammatory responses, are a promising target for antimalarial drug development. Our study shows for the first time that the P. falciparum specific MAP kinase 2 (PfMAP2) is colocalized in the nucleus of all of the asexual erythrocytic stages of P. falciparum and is particularly elevated in its phosphorylated form. It was also discovered that PfMAP2 is expressed in its highest quantity during the early trophozoite (ring form) stage and significantly reduced in the mature trophozoite and schizont stages. Although the phosphorylated form of the kinase is always more prevalent, its ratio relative to the nonphosphorylated form remained constant irrespective of the parasites' developmental stage. We have also shown that the TSH motif specifically renders PfMAP2 genetically divergent from the other plasmodial MAP kinase activation sites using Neighbour Joining analysis. Furthermore, TSH motif-specific designed antibody is crucial in determining the location of the expression of the PfMAP2 protein. However, by using immunoelectron microscopy, PPfMAP2 were detected ubiquitously in the parasitized erythrocytes. In summary, PfMAP2 may play a far more important role than previously thought and is a worthy candidate for research as an antimalarial.
Collapse
|
25
|
Carvalho TG, Morahan B, John von Freyend S, Boeuf P, Grau G, Garcia-Bustos J, Doerig C. The ins and outs of phosphosignalling in Plasmodium: Parasite regulation and host cell manipulation. Mol Biochem Parasitol 2016; 208:2-15. [PMID: 27211241 DOI: 10.1016/j.molbiopara.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/15/2022]
Abstract
Signal transduction and kinomics have been rapidly expanding areas of investigation within the malaria research field. Here, we provide an overview of phosphosignalling pathways that operate in all stages of the Plasmodium life cycle. We review signalling pathways in the parasite itself, in the cells it invades, and in other cells of the vertebrate host with which it interacts. We also discuss the potential of these pathways as novel targets for antimalarial intervention.
Collapse
Affiliation(s)
- Teresa Gil Carvalho
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Belinda Morahan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Simona John von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Philippe Boeuf
- Burnet Institute, Melbourne, Victoria 3004, Australia; The University of Melbourne, Department of Medicine, Melbourne, Victoria 3010, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria 3010, Australia
| | - Georges Grau
- Vascular Immunology Unit, Department of Pathology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jose Garcia-Bustos
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia
| | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
26
|
TgERK7 is involved in the intracellular proliferation of Toxoplasma gondii. Parasitol Res 2016; 115:3419-24. [DOI: 10.1007/s00436-016-5103-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 04/28/2016] [Indexed: 11/25/2022]
|
27
|
Pietri JE, Pietri EJ, Potts R, Riehle MA, Luckhart S. Plasmodium falciparum suppresses the host immune response by inducing the synthesis of insulin-like peptides (ILPs) in the mosquito Anopheles stephensi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:134-44. [PMID: 26165161 PMCID: PMC4536081 DOI: 10.1016/j.dci.2015.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 05/12/2023]
Abstract
The insulin-like peptides (ILPs) and their respective signaling and regulatory pathways are highly conserved across phyla. In invertebrates, ILPs regulate diverse physiological processes, including metabolism, reproduction, behavior, and immunity. We previously reported that blood feeding alone induced minimal changes in ILP expression in Anopheles stephensi. However, ingestion of a blood meal containing human insulin or Plasmodium falciparum, which can mimic insulin signaling, leads to significant increases in ILP expression in the head and midgut, suggesting a potential role for AsILPs in the regulation of P. falciparum sporogonic development. Here, we show that soluble P. falciparum products, but not LPS or zymosan, directly induced AsILP expression in immortalized A. stephensi cells in vitro. Further, AsILP expression is dependent on signaling by the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) and phosphatidylinositol 3'-kinase (PI3K)/Akt branches of the insulin/insulin-like growth factor signaling (IIS) pathway. Inhibition of P. falciparum-induced ILPs in vivo decreased parasite development through kinetically distinct effects on mosquito innate immune responses. Specifically, knockdown of AsILP4 induced early expression of immune effector genes (1-6 h after infection), a pattern associated with significantly reduced parasite abundance prior to invasion of the midgut epithelium. In contrast, knockdown of AsILP3 increased later expression of the same genes (24 h after infection), a pattern that was associated with significantly reduced oocyst development. These data suggest that P. falciparum parasites alter the expression of mosquito AsILPs to dampen the immune response and facilitate their development in the mosquito vector.
Collapse
Affiliation(s)
- Jose E Pietri
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Eduardo J Pietri
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Rashaun Potts
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Michael A Riehle
- Department of Entomology, 410 Forbes, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz 2015. [PMID: 25185005 PMCID: PMC4156458 DOI: 10.1590/0074-0276130597] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Joel Vega-Rodríguez
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| |
Collapse
|
29
|
Wang B, Pakpour N, Napoli E, Drexler A, Glennon EKK, Surachetpong W, Cheung K, Aguirre A, Klyver JM, Lewis EE, Eigenheer R, Phinney BS, Giulivi C, Luckhart S. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection. Parasit Vectors 2015; 8:424. [PMID: 26283222 PMCID: PMC4539710 DOI: 10.1186/s13071-015-1016-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023] Open
Abstract
Background Fruit flies and mammals protect themselves against infection by mounting immune and metabolic responses that must be balanced against the metabolic needs of the pathogens. In this context, p38 mitogen-activated protein kinase (MAPK)-dependent signaling is critical to regulating both innate immunity and metabolism during infection. Accordingly, we asked to what extent the Asian malaria mosquito Anopheles stephensi utilizes p38 MAPK signaling during infection with the human malaria parasite Plasmodium falciparum. Methods A. stephensi p38 MAPK (AsP38 MAPK) was identified and patterns of signaling in vitro and in vivo (midgut) were analyzed using phospho-specific antibodies and small molecule inhibitors. Functional effects of AsP38 MAPK inhibition were assessed using P. falciparum infection, quantitative real-time PCR, assays for reactive oxygen species and survivorship under oxidative stress, proteomics, and biochemical analyses. Results The genome of A. stephensi encodes a single p38 MAPK that is activated in the midgut in response to parasite infection. Inhibition of AsP38 MAPK signaling significantly reduced P. falciparum sporogonic development. This phenotype was associated with AsP38 MAPK regulation of mitochondrial physiology and stress responses in the midgut epithelium, a tissue critical for parasite development. Specifically, inhibition of AsP38 MAPK resulted in reduction in mosquito protein synthesis machinery, a shift in glucose metabolism, reduced mitochondrial metabolism, enhanced production of mitochondrial reactive oxygen species, induction of an array of anti-parasite effector genes, and decreased resistance to oxidative stress-mediated damage. Hence, P. falciparum-induced activation of AsP38 MAPK in the midgut facilitates parasite infection through a combination of reduced anti-parasite immune defenses and enhanced host protein synthesis and bioenergetics to minimize the impact of infection on the host and to maximize parasite survival, and ultimately, transmission. Conclusions These observations suggest that, as in mammals, innate immunity and mitochondrial responses are integrated in mosquitoes and that AsP38 MAPK-dependent signaling facilitates mosquito survival during parasite infection, a fact that may attest to the relatively longer evolutionary relationship of these parasites with their invertebrate compared to their vertebrate hosts. On a practical level, improved understanding of the balances and trade-offs between resistance and metabolism could be leveraged to generate fit, resistant mosquitoes for malaria control. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1016-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Wang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Anna Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Win Surachetpong
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Kong Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Alejandro Aguirre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - John M Klyver
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Edwin E Lewis
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - Richard Eigenheer
- Genome and Biomedical Sciences Center, University of California Davis, Davis, CA, USA.
| | - Brett S Phinney
- Genome and Biomedical Sciences Center, University of California Davis, Davis, CA, USA.
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA. .,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, CA, USA.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
30
|
Xu J, Morisseau C, Hammock BD. Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:42-52. [PMID: 25173592 PMCID: PMC4252830 DOI: 10.1016/j.ibmb.2014.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 05/27/2023]
Abstract
In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35 kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
31
|
Pietri JE, Cheung KW, Luckhart S. Knockdown of mitogen-activated protein kinase (MAPK) signalling in the midgut of Anopheles stephensi mosquitoes using antisense morpholinos. INSECT MOLECULAR BIOLOGY 2014; 23:558-65. [PMID: 24866718 PMCID: PMC4159403 DOI: 10.1111/imb.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Arthropod-borne infectious diseases are responsible for nearly 1.5 million deaths annually across the globe, with malaria responsible for >50% of these deaths. Recent efforts to enhance malaria control have focused on developing genetically modified Anopheles mosquitoes that are resistant to malaria parasite infection by manipulating proteins that are essential to the immune response. Although this approach has shown promise, the lack of efficient genetic tools in the mosquito makes it difficult to investigate innate immunity using reverse genetics. Current gene knockdown strategies based on small interfering RNA are typically labourious, inefficient, and require extensive training. In the present study, we describe the use of morpholino antisense oligomers to knockdown MEK-ERK signalling in the midgut of Anopheles stephensi through a simple feeding protocol. Anti-MEK morpholino provided in a saline meal was readily ingested by female mosquitoes with minimal toxicity and resulted in knockdown of total MEK protein levels 3-4 days after morpholino feeding. Further, anti-MEK morpholino feeding attenuated inducible phosphorylation of the downstream kinase ERK and, as predicted by previous work, reduced parasite burden in mosquitoes infected with Plasmodium falciparum. To our knowledge, this is the first example of morpholino use for target protein knockdown via feeding in an insect vector. Our results suggest this method is not only efficient for studies of individual proteins, but also for studies of phenotypic control by complex cell signalling networks. As such, our protocol is an effective alternative to current methods for gene knockdown in arthropods.
Collapse
Affiliation(s)
- Jose E. Pietri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Kong W. Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616
| |
Collapse
|
32
|
Severo MS, Levashina EA. Mosquito defenses against Plasmodium parasites. CURRENT OPINION IN INSECT SCIENCE 2014; 3:30-36. [PMID: 32846668 DOI: 10.1016/j.cois.2014.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 06/11/2023]
Abstract
Malaria, the human infectious disease caused by Plasmodium parasites, is transmitted by the bite of the mosquito Anopheles gambiae. Mosquitoes actively detect Plasmodium and mount efficient responses that eliminate the majority of invading parasites. Such responses include hemocyte-mediated defenses, activation of the complement-like system, melanization, and immune signaling cascades. This review aims to summarize our current knowledge of the mosquito immune responses to Plasmodium and to highlight the remaining gaps in our understanding of these events.
Collapse
Affiliation(s)
- Maiara S Severo
- Vector Biology Unit, Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena A Levashina
- Vector Biology Unit, Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
33
|
Pakpour N, Riehle MA, Luckhart S. Effects of ingested vertebrate-derived factors on insect immune responses. CURRENT OPINION IN INSECT SCIENCE 2014; 3:1-5. [PMID: 25401083 PMCID: PMC4228800 DOI: 10.1016/j.cois.2014.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During the process of blood feeding insect vectors are exposed to an array of vertebrate-derived blood factors ranging from byproducts of blood meal digestion to naturally occurring products in the blood including growth hormones, cytokines and factors derived from blood-borne pathogens themselves. In this review, we examine the ability of these ingested vertebrate blood factors to alter the innate pathogen defenses of insect vectors. The ability of these factors to modify the immune responses of insect vectors offers new intriguing targets for blocking or reducing transmission of human disease-causing pathogens.
Collapse
Affiliation(s)
- Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, 95616
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, Arizona 85721
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, 95616
| |
Collapse
|
34
|
Murdock CC, Blanford S, Luckhart S, Thomas MB. Ambient temperature and dietary supplementation interact to shape mosquito vector competence for malaria. JOURNAL OF INSECT PHYSIOLOGY 2014; 67:37-44. [PMID: 24911425 PMCID: PMC4107084 DOI: 10.1016/j.jinsphys.2014.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 05/23/2023]
Abstract
The extent to which environmental factors influence the ability of Anopheles mosquitoes to transmit malaria parasites remains poorly explored. Environmental variation, such as change in ambient temperature, will not necessarily influence the rates of host and parasite processes equivalently, potentially resulting in complex effects on infection outcomes. As proof of principle, we used Anopheles stephensi and the rodent malaria parasite, Plasmodium yoelii, to examine the effects of a range of constant temperatures on one aspect of host defense (detected as alterations in expression of nitric oxide synthase gene - NOS) to parasite infection. We experimentally boosted mosquito midgut immunity to infection through dietary supplementation with the essential amino acid l-Arginine (l-Arg), which increases midgut nitric oxide (NO) levels by infection-induced NOS catalysis in A. stephensi. At intermediate temperatures, supplementation reduced oocyst prevalence, oocyst intensity, and sporozoite prevalence suggesting that the outcome of parasite infection was potentially dependent upon the rate of NOS-mediated midgut immunity. At low and high temperature extremes, however, infection was severely constrained irrespective of supplementation. The effects of l-Arg appeared to be mediated by NO-dependent negative feedback on NOS expression, as evidenced by depressed NOS expression in l-Arg treated groups at temperatures where supplementation decreased parasite infection. These results suggest the need to consider the direct (e.g. effects of mosquito body temperature on parasite physiology) and indirect effects (e.g. mediated through changes in mosquito physiology/immunity) of environmental factors on mosquito-malaria interactions in order to understand natural variation in vector competence.
Collapse
Affiliation(s)
- Courtney C Murdock
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| | - Simon Blanford
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, United States.
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, Merkle Lab, Orchard Road, University Park, PA 16802, United States.
| |
Collapse
|
35
|
Brenton AA, Souvannaseng L, Cheung K, Anishchenko M, Brault AC, Luckhart S. Engineered single nucleotide polymorphisms in the mosquito MEK docking site alter Plasmodium berghei development in Anopheles gambiae. Parasit Vectors 2014; 7:287. [PMID: 24957684 PMCID: PMC4077580 DOI: 10.1186/1756-3305-7-287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/13/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Susceptibility to Plasmodium infection in Anopheles gambiae has been proposed to result from naturally occurring polymorphisms that alter the strength of endogenous innate defenses. Despite the fact that some of these mutations are known to introduce non-synonymous substitutions in coding sequences, these mutations have largely been used to rationalize knockdown of associated target proteins to query the effects on parasite development in the mosquito host. Here, we assay the effects of engineered mutations on an immune signaling protein target that is known to control parasite sporogonic development. By this proof-of-principle work, we have established that naturally occurring mutations can be queried for their effects on mosquito protein function and on parasite development and that this important signaling pathway can be genetically manipulated to enhance mosquito resistance. METHODS We introduced SNPs into the A. gambiae MAPK kinase MEK to alter key residues in the N-terminal docking site (D-site), thus interfering with its ability to interact with the downstream kinase target ERK. ERK phosphorylation levels in vitro and in vivo were evaluated to confirm the effects of MEK D-site mutations. In addition, overexpression of various MEK D-site alleles was used to assess P. berghei infection in A. gambiae. RESULTS The MEK D-site contains conserved lysine residues predicted to mediate protein-protein interaction with ERK. As anticipated, each of the D-site mutations (K3M, K6M) suppressed ERK phosphorylation and this inhibition was significant when both mutations were present. Tissue-targeted overexpression of alleles encoding MEK D-site polymorphisms resulted in reduced ERK phosphorylation in the midgut of A. gambiae. Furthermore, as expected, inhibition of MEK-ERK signaling due to D-site mutations resulted in reduction in P. berghei development relative to infection in the presence of overexpressed catalytically active MEK. CONCLUSION MEK-ERK signaling in A. gambiae, as in model organisms and humans, depends on the integrity of conserved key residues within the MEK D-site. Disruption of signal transmission via engineered SNPs provides a purposeful proof-of-principle model for the study of naturally occurring mutations that may be associated with mosquito resistance to parasite infection as well as an alternative genetic basis for manipulation of this important immune signaling pathway.
Collapse
Affiliation(s)
- Ashley A Brenton
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Kong Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Michael Anishchenko
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd, 80521 Fort Collins, CO, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd, 80521 Fort Collins, CO, USA
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| |
Collapse
|
36
|
Wang L, Delahunty C, Prieto JH, Rahlfs S, Jortzik E, Yates JR, Becker K. Protein S-nitrosylation in Plasmodium falciparum. Antioxid Redox Signal 2014; 20:2923-35. [PMID: 24256207 PMCID: PMC4039001 DOI: 10.1089/ars.2013.5553] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Due to its life in different hosts and environments, the human malaria parasite Plasmodium falciparum is exposed to oxidative and nitrosative challenges. Nitric oxide (NO) and NO-derived reactive nitrogen species can constitute nitrosative stress and play a major role in NO-related signaling. However, the mode of action of NO and its targets in P. falciparum have hardly been characterized. Protein S-nitrosylation (SNO), a posttranslational modification of protein cysteine thiols, has emerged as a principal mechanism by which NO exerts diverse biological effects. Despite its potential importance, SNO has hardly been studied in human malaria parasites. Using a biotin-switch approach coupled to mass spectrometry, we systemically studied SNO in P. falciparum cell extracts. RESULTS We identified 319 potential targets of SNO that are widely distributed throughout various cellular pathways. Glycolysis in the parasite was found to be a major target, with glyceraldehyde-3-phosphate dehydrogenase being strongly inhibited by S-nitrosylation of its active site cysteine. Furthermore, we show that P. falciparum thioredoxin 1 (PfTrx1) can be S-nitrosylated at its nonactive site cysteine (Cys43). Mechanistic studies indicate that PfTrx1 possesses both denitrosylating and transnitrosylating activities mediated by its active site cysteines and Cys43, respectively. INNOVATION This work provides first insights into the S-nitrosoproteome of P. falciparum and suggests that the malaria parasite employs the thioredoxin system to deal with nitrosative challenges. CONCLUSION Our results indicate that SNO may influence a variety of metabolic processes in P. falciparum and contribute to our understanding of NO-related signaling processes and cytotoxicity in the parasites.
Collapse
Affiliation(s)
- Lihui Wang
- 1 Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University , Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Drexler AL, Pietri JE, Pakpour N, Hauck E, Wang B, Glennon EKK, Georgis M, Riehle MA, Luckhart S. Human IGF1 regulates midgut oxidative stress and epithelial homeostasis to balance lifespan and Plasmodium falciparum resistance in Anopheles stephensi. PLoS Pathog 2014; 10:e1004231. [PMID: 24968248 PMCID: PMC4072789 DOI: 10.1371/journal.ppat.1004231] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/20/2014] [Indexed: 01/03/2023] Open
Abstract
Insulin and insulin-like growth factor signaling (IIS) regulates cell death, repair, autophagy, and renewal in response to stress, damage, and pathogen challenge. Therefore, IIS is fundamental to lifespan and disease resistance. Previously, we showed that insulin-like growth factor 1 (IGF1) within a physiologically relevant range (0.013-0.13 µM) in human blood reduced development of the human parasite Plasmodium falciparum in the Indian malaria mosquito Anopheles stephensi. Low IGF1 (0.013 µM) induced FOXO and p70S6K activation in the midgut and extended mosquito lifespan, whereas high IGF1 (0.13 µM) did not. In this study the physiological effects of low and high IGF1 were examined in detail to infer mechanisms for their dichotomous effects on mosquito resistance and lifespan. Following ingestion, low IGF1 induced phosphorylation of midgut c-Jun-N-terminal kinase (JNK), a critical regulator of epithelial homeostasis, but high IGF1 did not. Low and high IGF1 induced midgut mitochondrial reactive oxygen species (ROS) synthesis and nitric oxide (NO) synthase gene expression, responses which were necessary and sufficient to mediate IGF1 inhibition of P. falciparum development. However, increased ROS and apoptosis-associated caspase-3 activity returned to baseline levels following low IGF1 treatment, but were sustained with high IGF1 treatment and accompanied by aberrant expression of biomarkers for mitophagy, stem cell division and proliferation. Low IGF1-induced ROS are likely moderated by JNK-induced epithelial cytoprotection as well as p70S6K-mediated growth and inhibition of apoptosis over the lifetime of A. stephensi to facilitate midgut homeostasis and enhanced survivorship. Hence, mitochondrial integrity and homeostasis in the midgut, a key signaling center for IIS, can be targeted to coordinately optimize mosquito fitness and anti-pathogen resistance for improved control strategies for malaria and other vector-borne diseases.
Collapse
Affiliation(s)
- Anna L. Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Jose E. Pietri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Eric Hauck
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Elizabeth K. K. Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Martha Georgis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
38
|
Jain S, Rana V, Shrinet J, Sharma A, Tridibes A, Sunil S, Bhatnagar RK. Blood feeding and Plasmodium infection alters the miRNome of Anopheles stephensi. PLoS One 2014; 9:e98402. [PMID: 24866389 PMCID: PMC4035286 DOI: 10.1371/journal.pone.0098402] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022] Open
Abstract
Blood feeding is an integral process required for physiological functions and propagation of the malaria vector Anopheles. During blood feeding, presence of the malaria parasite, Plasmodium in the blood induces several host effector molecules including microRNAs which play important roles in the development and maturation of the parasite within the mosquito. The present study was undertaken to elucidate the dynamic expression of miRNAs during gonotrophic cycle and parasite development in Anopheles stephensi. Using next generation sequencing technology, we identified 126 miRNAs of which 17 were novel miRNAs. The miRNAs were further validated by northern hybridization and cloning. Blood feeding and parasitized blood feeding in the mosquitoes revealed regulation of 13 and 16 miRNAs respectively. Expression profiling of these miRNAs revealed that significant miRNAs were down-regulated upon parasitized blood feeding with a repertoire of miRNAs showing stage specific up-regulation. Expression profiles of significantly modulated miRNAs were further validated by real time PCR. Target prediction of regulated miRNAs revealed overlapping targeting by different miRNAs. These targets included several metabolic pathways including metabolic, redox homeostasis and protein processing machinery components. Our analysis revealed tight regulation of specific miRNAs post blood feeding and parasite infection in An. stephensi. Such regulated expression suggests possible role of these miRNAs during gonotrophic cycle in mosquito. Another set of miRNAs were also significantly regulated at 42 h and 5 days post infection indicating parasite stage-specific role of host miRNAs. This study will result in better understanding of the role of miRNAs during gonotrophic cycle and parasite development in mosquito and can probably facilitate in devising novel malaria control strategies at vector level.
Collapse
Affiliation(s)
- Shanu Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vandita Rana
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Jatin Shrinet
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anil Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Adak Tridibes
- National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Sujatha Sunil
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (RKB); (SS)
| | - Raj K. Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail: (RKB); (SS)
| |
Collapse
|
39
|
Campbell CO, Santiago DN, Guida WC, Manetsch R, Adams JH. In silico characterization of an atypical MAPK phosphatase of Plasmodium falciparum as a suitable target for drug discovery. Chem Biol Drug Des 2014; 84:158-68. [PMID: 24605883 DOI: 10.1111/cbdd.12315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/26/2022]
Abstract
Plasmodium falciparum, the causative agent of malaria, contributes to significant morbidity and mortality worldwide. Forward genetic analysis of the blood-stage asexual cycle identified the putative phosphatase from PF3D7_1305500 as an important element of intraerythrocytic development expressed throughout the life cycle. Our preliminary evaluation identified it as an atypical mitogen-activated protein kinase phosphatase. Additional bioinformatic analysis delineated a conserved signature motif and three residues with potential importance to functional activity of the atypical dual-specificity phosphatase domain. A homology model of the dual-specificity phosphatase domain was developed for use in high-throughput in silico screening of the available library of antimalarial compounds from ChEMBL-NTD. Seven compounds from this set with predicted affinity to the active site were tested against in vitro cultures, and three had reduced activity against a ∆PF3D7_1305500 parasite, suggesting PF3D7_1305500 is a potential target of the selected compounds. Identification of these compounds provides a novel starting point for a structure-based drug discovery strategy that moves us closer toward the discovery of new classes of clinical antimalarial drugs. These data suggest that mitogen-activated protein kinase phosphatases represent a potentially new class of P. falciparum drug target.
Collapse
|
40
|
DuBuc TQ, Traylor-Knowles N, Martindale MQ. Initiating a regenerative response; cellular and molecular features of wound healing in the cnidarian Nematostella vectensis. BMC Biol 2014; 12:24. [PMID: 24670243 PMCID: PMC4229989 DOI: 10.1186/1741-7007-12-24] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/12/2014] [Indexed: 11/17/2022] Open
Abstract
Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities.
Collapse
Affiliation(s)
| | | | - Mark Q Martindale
- University of Florida, Whitney Marine Laboratory, 9505 Oceanshore Boulevard, St, Augustine, FL 32080, USA.
| |
Collapse
|
41
|
Innate immunity in disease: insights from mathematical modeling and analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 844:227-43. [PMID: 25480644 DOI: 10.1007/978-1-4939-2095-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The acute inflammatory response is a complex defense mechanism that has evolved to respond rapidly to injury, infection, and other disruptions in homeostasis. This robust responsiveness to biological stress likely endows the host with increased fitness, but over-robust or inadequate inflammation predisposes the host to various diseases. Importantly, well-compartmentalized inflammation is generally beneficial, but spillover of inflammation into the blood is a hallmark-and likely also a driver-of self-maintaining inflammation. The blood is also a key entry point and immunological interface for vectors of parasitic diseases, diseases that themselves incite systemic inflammation. The complex role of inflammation in health and disease has made this biological system difficult to understand comprehensively and modulate rationally for therapeutic purposes. Consequently, systems approaches have been applied in order to characterize dynamical properties and identify key control points in inflammation. This process begins with the collection of high-dimensional, experimental, and clinical data, followed by data reduction and data-driven modeling that finally informs mechanistic computational models for analysis, prediction, and rational modulation. These studies have suggested that the overall architecture of the inflammatory response includes a multiscale positive feedback from inflammation → tissue damage → inflammation, which is often inadequately controlled by negative feedback from anti-inflammatory mediators. Given the importance of the blood interface for the inflammatory response, and the accessibility of this compartment both as an immunological sampling reservoir for vectors as well as for diagnosis and therapy, we suggest that any rational efforts at modulating inflammation via the blood compartment must involve computational modeling.
Collapse
|
42
|
ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc Natl Acad Sci U S A 2013; 110:15025-30. [PMID: 23980175 DOI: 10.1073/pnas.1303193110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and restricts disparate arboviruses in Drosophila intestines, providing insight into the molecular determinants of the antiviral "midgut barrier." Wild-type flies are refractory to oral infection by arboviruses, including Sindbis virus and vesicular stomatitis virus, but this innate restriction can be overcome chemically by oral administration of an ERK pathway inhibitor or genetically via the specific loss of ERK in Drosophila intestinal epithelial cells. In addition, we found that vertebrate insulin, which activates ERK in the mosquito gut during a blood meal, restricts viral infection in Drosophila cells and against viral invasion of the insect gut epithelium. We find that ERK's antiviral signaling activity is likely conserved in Aedes mosquitoes, because genetic or pharmacologic manipulation of the ERK pathway affects viral infection of mosquito cells. These studies demonstrate that ERK signaling has a broadly antiviral role in insects and suggest that insects take advantage of cross-species signals in the meal to trigger antiviral immunity.
Collapse
|
43
|
Immunogenic and antioxidant effects of a pathogen-associated prenyl pyrophosphate in Anopheles gambiae. PLoS One 2013; 8:e73868. [PMID: 23967351 PMCID: PMC3742518 DOI: 10.1371/journal.pone.0073868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/31/2013] [Indexed: 01/31/2023] Open
Abstract
Despite efficient vector transmission, Plasmodium parasites suffer great bottlenecks during their developmental stages within Anopheles mosquitoes. The outcome depends on a complex three-way interaction between host, parasite and gut bacteria. Although considerable progress has been made recently in deciphering Anopheles effector responses, little is currently known regarding the underlying microbial immune elicitors. An interesting candidate in this sense is the pathogen-derived prenyl pyrophosphate and designated phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), found in Plasmodium and most eubacteria but not in higher eukaryotes. HMBPP is the most potent stimulant known of human Vγ9Vδ2 T cells, a unique lymphocyte subset that expands during several infections including malaria. In this study, we show that Vγ9Vδ2 T cells proliferate when stimulated with supernatants from intraerythrocytic stages of Plasmodium falciparum cultures, suggesting that biologically relevant doses of phosphoantigens are excreted by the parasite. Next, we used Anopheles gambiae to investigate the immune- and redox- stimulating effects of HMBPP. We demonstrate a potent activation in vitro of all but one of the signaling pathways earlier implicated in the human Vγ9Vδ2 T cell response, as p38, JNK and PI3K/Akt but not ERK were activated in the A. gambiae 4a3B cell line. Additionally, both HMBPP and the downstream endogenous metabolite isopentenyl pyrophosphate displayed antioxidant effects by promoting cellular tolerance to hydrogen peroxide challenge. When provided in the mosquito blood meal, HMBPP induced temporal changes in the expression of several immune genes. In contrast to meso-diaminopimelic acid containing peptidoglycan, HMBPP induced expression of dual oxidase and nitric oxide synthase, two key determinants of Plasmodium infection. Furthermore, temporal fluctuations in midgut bacterial numbers were observed. The multifaceted effects observed in this study indicates that HMBPP is an important elicitor in common for both Plasmodium and gut bacteria in the mosquito.
Collapse
|
44
|
Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes Infect 2013; 15:775-87. [PMID: 23774695 DOI: 10.1016/j.micinf.2013.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/22/2022]
Abstract
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.
Collapse
|
45
|
Price I, Ermentrout B, Zamora R, Wang B, Azhar N, Mi Q, Constantine G, Faeder JR, Luckhart S, Vodovotz Y. In vivo, in vitro, and in silico studies suggest a conserved immune module that regulates malaria parasite transmission from mammals to mosquitoes. J Theor Biol 2013; 334:173-86. [PMID: 23764028 DOI: 10.1016/j.jtbi.2013.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/24/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Human malaria can be caused by the parasite Plasmodium falciparum that is transmitted by female Anopheles mosquitoes. "Immunological crosstalk" between the mammalian and anopheline hosts for Plasmodium functions to control parasite numbers. Key to this process is the mammalian cytokine transforming growth factor-β1 (TGF-β1). In mammals, TGF-β1 regulates inducible nitric oxide (NO) synthase (iNOS) both positively and negatively. In some settings, high levels of NO activate latent TGF-β1, which in turn suppresses iNOS expression. In the mosquito, ingested TGF-β1 induces A. stephensi NOS (AsNOS), which limits parasite development and which in turn is suppressed by activation of the mosquito homolog of the mitogen-activated protein kinases MEK and ERK. Computational models linking TGF-β1, AsNOS, and MEK/ERK were developed to provide insights into this complex biology. An initial Boolean model suggested that, as occurs in mammalian cells, MEK/ERK and AsNOS would oscillate upon ingestion of TGF-β1. An ordinary differential equation (ODE) model further supported the hypothesis of TGF-β1-induced multiphasic behavior of MEK/ERK and AsNOS. To achieve this multiphasic behavior, the ODE model was predicated on the presence of constant levels of TGF-β1 in the mosquito midgut. Ingested TGF-β1, however, did not exhibit this behavior. Accordingly, we hypothesized and experimentally verified that ingested TGF-β1 induces the expression of the endogenous mosquito TGF-β superfamily ligand As60A. Computational simulation of these complex, cross-species interactions suggested that TGF-β1 and NO-mediated induction of As60A expression together may act to maintain multiphasic AsNOS expression via MEK/ERK-dependent signaling. We hypothesize that multiphasic behavior as represented in this model allows the mosquito to balance the conflicting demands of parasite killing and metabolic homeostasis in the face of damaging inflammation.
Collapse
Affiliation(s)
- Ian Price
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Drexler A, Nuss A, Hauck E, Glennon E, Cheung K, Brown M, Luckhart S. Human IGF1 extends lifespan and enhances resistance to Plasmodium falciparum infection in the malaria vector Anopheles stephensi. ACTA ACUST UNITED AC 2013; 216:208-17. [PMID: 23255191 DOI: 10.1242/jeb.078873] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The highly conserved insulin/insulin-like growth factor (IGF) signaling (IIS) pathway regulates metabolism, development, lifespan and immunity across a wide range of organisms. Previous studies have shown that human insulin ingested in the blood meal can activate mosquito IIS, resulting in attenuated lifespan and increased malaria parasite infection. Because human IGF1 is present at higher concentrations in blood than insulin and is functionally linked with lifespan and immune processes, we predicted that human IGF1 ingested in a blood meal would affect lifespan and malaria parasite infection in the mosquito Anopheles stephensi. Here we demonstrate that physiological levels of ingested IGF1, like insulin, can persist intact in the blood-filled midgut for up to 30 h and disseminate into the mosquito body, and that both peptides activate IIS in mosquito cells and midgut. At these same levels, ingested IGF1 alone extended average mosquito lifespan by 23% compared with controls and, more significantly, when ingested in infected blood meals, reduced the prevalence of Plasmodium falciparum-infected mosquitoes by >20% and parasite load by 35-50% compared with controls. Thus, the effects of ingested IGF1 on mosquito lifespan and immunity are opposite to those of ingested insulin. These results offer the first evidence that insect cells can functionally discriminate between mammalian insulin and IGF1. Further, in light of previous success in genetically targeting IIS to alter mosquito lifespan and malaria parasite transmission, this study indicates that a more complete understanding of the IIS-activating ligands in blood can be used to optimize transgenic strategies for malaria control.
Collapse
Affiliation(s)
- Anna Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host. PLoS Pathog 2013; 9:e1003180. [PMID: 23468624 PMCID: PMC3585164 DOI: 10.1371/journal.ppat.1003180] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022] Open
Abstract
The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the midgut is necessary for the maintenance of midgut health as reflected in energy homeostasis and tissue repair and renewal. Malaria is a major public health problem in the world and various strategies are under development for control, including vaccines and transgenic mosquitoes that block parasite transmission. We previously reported that overexpression of the major signaling protein Akt in the midgut of female Anopheles stephensi mosquitoes could impart resistance to infection with the most important human malaria parasite and also reduce the duration of mosquito infectivity to human hosts. However, to use this strategy for malaria transmission control in endemic areas, we must understand the mechanism by which parasites are killed to ensure that transmission of other human pathogens (e.g., viruses, nematodes) is not unexpectedly enhanced and to allow the design of rational, preventive interventions. Here, we report that overexpression of a constitutively active Akt in the mosquito midgut alters important cellular, and in particular, mitochondrial processes – in a manner similar to Akt control of these processes in mammalian cells – to generate high levels of toxic compounds that kill parasites within hours after infection. However, the same alterations in mitochondrial processes that result in parasite killing ultimately reduce mosquito infective lifespan for transmission, indicating that mitochondrial dynamics in the mosquito midgut could be targeted for multi-faceted genetic control of mosquito biology to reduce malaria transmission.
Collapse
|
48
|
Lombardo F, Ghani Y, Kafatos FC, Christophides GK. Comprehensive genetic dissection of the hemocyte immune response in the malaria mosquito Anopheles gambiae. PLoS Pathog 2013; 9:e1003145. [PMID: 23382679 PMCID: PMC3561300 DOI: 10.1371/journal.ppat.1003145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 12/05/2012] [Indexed: 11/18/2022] Open
Abstract
Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca²⁺ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens.
Collapse
Affiliation(s)
- Fabrizio Lombardo
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (GKC); (FL)
| | - Yasmeen Ghani
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Fotis C. Kafatos
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - George K. Christophides
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (GKC); (FL)
| |
Collapse
|
49
|
Pakpour N, Akman-Anderson L, Vodovotz Y, Luckhart S. The effects of ingested mammalian blood factors on vector arthropod immunity and physiology. Microbes Infect 2013; 15:243-54. [PMID: 23370408 DOI: 10.1016/j.micinf.2013.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 12/11/2022]
Abstract
The blood feeding behavior of disease-transmitting arthropods creates a unique intersection between vertebrate and invertebrate physiology. Here, we review host blood-derived factors that persist through blood digestion to affect the lifespan, reproduction, and immune responses of some of the most common arthropod vectors of human disease.
Collapse
Affiliation(s)
- Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616, United States.
| | | | | | | |
Collapse
|
50
|
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of Peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne) 2013; 4:193. [PMID: 24379806 PMCID: PMC3863949 DOI: 10.3389/fendo.2013.00193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022] Open
Abstract
Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized ("orphan") receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, USA
- *Correspondence: Kevin J. Vogel, Department of Entomology, The University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA e-mail:
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, USA
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, USA
| |
Collapse
|