1
|
DiGiannivittorio P, Schutz K, Hinkel LA, Wargo MJ. Sphingosylphosphorylcholine (SPC) is a substrate for the Pseudomonas aeruginosa phospholipase C/sphingomyelinase, PlcH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645745. [PMID: 40196467 PMCID: PMC11974790 DOI: 10.1101/2025.03.27.645745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Sphingolipids are critical to eukaryotic cell membrane structure and function and play important roles in a variety of host processes that impact infection. Thus, it is not surprising that many pathogens can perturb host sphingolipid homeostasis, often to promote pathogenesis. Pseudomonas aeruginosa is a common opportunistic pathogen that, among many virulence factors, secretes the dual-functioning hemolytic phospholipase C/sphingomyelinase, PlcH. PlcH contributes to P. aeruginosa pathogenesis in several ways and plcH mutants are defective in nearly every infection model, wherein PlcH has been shown to hydrolyze both phosphatidylcholine and sphingomyelin, resulting in inflammation and rupture of host cell membranes. Here, we demonstrate that PlcH can also hydrolyze sphingosylphosphocholine (SPC, also known as lysosphingomyelin), an important host signaling sphingolipid responsible for regulating cellular and tissue responses such as inflammation and endothelial barrier function. PlcH hydrolyzes sphingomyelin to generate phosphocholine and ceramide, and analogously, here we demonstrate that PlcH hydrolyzes SPC to sphingosine and putatively, phosphocholine. We provide evidence that SPC induction of PlcH is primarily regulated by the sphingosine-responsive SphR regulator and that resultant sphingosine liberated from SPC induces transcription from the other genes in the SphR regulon. This work introduces another way that P. aeruginosa can alter the host sphingolipidome, potentially a different mechanism to promote pathogenesis. The capacity for the hemolytic Clostridium perfringens alpha toxin to also cleave SPC suggests that SPC may be a common substrate for phosphocholine-specific phospholipases C.
Collapse
Affiliation(s)
- Pauline DiGiannivittorio
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont
| | - Kristin Schutz
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
| | - Lauren A. Hinkel
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont
| |
Collapse
|
2
|
Aggarwal S, Chakraborty A, Singh V, Lory S, Karalis K, Rahme LG. Revealing the impact of Pseudomonas aeruginosa quorum sensing molecule 2'-aminoacetophenone on human bronchial-airway epithelium and pulmonary endothelium using a human airway-on-a-chip. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644589. [PMID: 40196568 PMCID: PMC11974707 DOI: 10.1101/2025.03.21.644589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Pseudomonas aeruginosa (PA) causes severe respiratory infections utilizing multiple virulence functions. Our previous findings on PA quorum sensing (QS)-regulated small molecule, 2'-aminoacetophenone (2-AA), secreted by the bacteria in infected tissues, revealed its effect on immune and metabolic functions favouring a long-term presence of PA in the host. However, studies on 2-AA's specific effects on bronchial-airway epithelium and pulmonary endothelium remain elusive. To evaluate 2AA's spatiotemporal changes in the human airway, considering endothelial cells as the first point of contact when the route of lung infection is hematogenic, we utilized the microfluidic airway-on-chip lined by polarized human bronchial-airway epithelium and pulmonary endothelium. Using this platform, we performed RNA-sequencing to analyse responses of 2-AA-treated primary human pulmonary microvascular endothelium (HPMEC) and adjacent primary normal human bronchial epithelial (NHBE) cells from healthy female donors and potential cross-talk between these cells. Analyses unveiled specific signaling and biosynthesis pathways to be differentially regulated by 2-AA in epithelial cells, including HIF-1 and pyrimidine signaling, glycosaminoglycan, and glycosphingolipid biosynthesis, while in endothelial cells were fatty acid metabolism, phosphatidylinositol and estrogen receptor signaling, and proinflammatory signaling pathways. Significant overlap in both cell types in response to 2-AA was found in genes implicated in immune response and cellular functions. In contrast, we found that genes related to barrier permeability, cholesterol metabolism, and oxidative phosphorylation were differentially regulated upon exposure to 2-AA in the cell types studied. Murine in-vivo and additional in vitro cell culture studies confirmed cholesterol accumulation in epithelial cells. Results also revealed specific biomarkers associated with cystic fibrosis and idiopathic pulmonary fibrosis to be modulated by 2-AA in both cell types, with the cystic fibrosis transmembrane regulator expression to be affected only in endothelial cells. The 2-AA-mediated effects on healthy epithelial and endothelial primary cells within a microphysiological dynamic environment mimicking the human lung airway enhance our understanding of this QS signaling molecule. This study provides novel insights into their functions and potential interactions, paving the way for innovative, cell-specific therapeutic strategies to combat PA lung infections.
Collapse
|
3
|
Mackinder JR, Hinkel LA, Schutz K, Eckstrom K, Fisher K, Wargo MJ. Sphingosine induction of the Pseudomonas aeruginosa hemolytic phospholipase C/sphingomyelinase (PlcH). J Bacteriol 2024; 206:e0038223. [PMID: 38411048 PMCID: PMC10955842 DOI: 10.1128/jb.00382-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.
Collapse
Affiliation(s)
- Jacob R. Mackinder
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Lauren A. Hinkel
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, USA
| | - Kristin Schutz
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Kira Fisher
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Matthew J. Wargo
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
4
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
5
|
Stoikov I, Ivanov IN, Donchev D, Teneva D, Dobreva E, Hristova R, Sabtcheva S. Genomic Characterization of IMP-Producing Pseudomonas aeruginosa in Bulgaria Reveals the Emergence of IMP-100, a Novel Plasmid-Mediated Variant Coexisting with a Chromosomal VIM-4. Microorganisms 2023; 11:2270. [PMID: 37764114 PMCID: PMC10537328 DOI: 10.3390/microorganisms11092270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa infections represent a major public health concern and require comprehensive understanding of their genetic makeup. This study investigated the first occurrence of imipenemase (IMP)-carrying P. aeruginosa strains from Bulgaria. Whole genome sequencing identified a novel plasmid-mediated IMP-100 allele located in a a novel In4886 integron embedded in a putative Tn7700 transposon. Two other closely related chromosomal IMP variants, IMP-13 and IMP-84, were also detected. The IMP-producers were resistant to last-line drugs including cefiderocol (CFDC) (two out of three) and susceptible to colistin. The IMP-13/84 cassettes were situated in a In320 integron inserted in a Tn5051-like transposon as previously reported. Lastly, the p4782-IMP plasmid rendered the PA01 transformant resistant to CFDC, suggesting a transferable CFDC resistance. A variety of virulence factors associated with adhesion, antiphagocytosis, iron uptake, and quorum sensing, as well as secretion systems, toxins, and proteases, were confirmed, suggesting significant pathogenic potential consistent with the observed strong biofilm formation. The emergence of IMP-producing MDR P. aeruginosa is alarming as it remains unsusceptible even to last-generation drugs like CFDC. Newly detected IMP-100 was even located in a CFDC-resistant XDR strain.
Collapse
Affiliation(s)
- Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
- Laboratory for Clinical Microbiology, National Oncology Center, 6 Plovdivsko pole Str., 1797 Sofia, Bulgaria;
| | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Deana Teneva
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Elina Dobreva
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Rumyana Hristova
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (I.N.I.); (D.D.); (D.T.); (E.D.); (R.H.)
| | - Stefana Sabtcheva
- Laboratory for Clinical Microbiology, National Oncology Center, 6 Plovdivsko pole Str., 1797 Sofia, Bulgaria;
| |
Collapse
|
6
|
Sánchez-Jiménez A, Llamas MA, Marcos-Torres FJ. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11895. [PMID: 37569271 PMCID: PMC10418997 DOI: 10.3390/ijms241511895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron. Expression of these virulence factors during infection is tightly regulated, which allows their production only when they are needed. This process optimizes host colonization and virulence. In this work, we review the intricate network of transcriptional regulators that control the expression of virulence factors in P. aeruginosa, including one- and two-component systems and σ factors. Because inhibition of virulence holds promise as a target for new antimicrobials, blocking the regulators that trigger the production of virulence determinants in P. aeruginosa is a promising strategy to fight this clinically relevant pathogen.
Collapse
Affiliation(s)
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Francisco Javier Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| |
Collapse
|
7
|
Singh V, Rai R, Mathew BJ, Chourasia R, Singh AK, Kumar A, Chaurasiya SK. Phospholipase C: underrated players in microbial infections. Front Cell Infect Microbiol 2023; 13:1089374. [PMID: 37139494 PMCID: PMC10149971 DOI: 10.3389/fcimb.2023.1089374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
During bacterial infections, one or more virulence factors are required to support the survival, growth, and colonization of the pathogen within the host, leading to the symptomatic characteristic of the disease. The outcome of bacterial infections is determined by several factors from both host as well as pathogen origin. Proteins and enzymes involved in cellular signaling are important players in determining the outcome of host-pathogen interactions. phospholipase C (PLCs) participate in cellular signaling and regulation by virtue of their ability to hydrolyze membrane phospholipids into di-acyl-glycerol (DAG) and inositol triphosphate (IP3), which further causes the activation of other signaling pathways involved in various processes, including immune response. A total of 13 PLC isoforms are known so far, differing in their structure, regulation, and tissue-specific distribution. Different PLC isoforms have been implicated in various diseases, including cancer and infectious diseases; however, their roles in infectious diseases are not clearly understood. Many studies have suggested the prominent roles of both host and pathogen-derived PLCs during infections. PLCs have also been shown to contribute towards disease pathogenesis and the onset of disease symptoms. In this review, we have discussed the contribution of PLCs as a determinant of the outcome of host-pathogen interaction and pathogenesis during bacterial infections of human importance.
Collapse
Affiliation(s)
- Vinayak Singh
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rupal Rai
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Bijina J. Mathew
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rashmi Chourasia
- Department of Chemistry, IES University, Bhopal, Madhya Pradesh, India
| | - Anirudh K. Singh
- School of Sciences, SAM Global University, Raisen, Madhya Pradesh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Shivendra K. Chaurasiya
- Molecular Signalling Lab, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
- *Correspondence: Shivendra K. Chaurasiya,
| |
Collapse
|
8
|
Constantino-Teles P, Jouault A, Touqui L, Saliba AM. Role of Host and Bacterial Lipids in Pseudomonas aeruginosa Respiratory Infections. Front Immunol 2022; 13:931027. [PMID: 35860265 PMCID: PMC9289105 DOI: 10.3389/fimmu.2022.931027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2α and sPLA2, are also activated during the infectious process and play important roles in P. aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of P. aeruginosa in the lungs and discuss how bacterial and host lipids can impact the outcome of P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Pamella Constantino-Teles
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Albane Jouault
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Alessandra Mattos Saliba,
| |
Collapse
|
9
|
Wolfmeier H, Wardell SJT, Liu LT, Falsafi R, Draeger A, Babiychuk EB, Pletzer D, Hancock REW. Targeting the Pseudomonas aeruginosa Virulence Factor Phospholipase C With Engineered Liposomes. Front Microbiol 2022; 13:867449. [PMID: 35369481 PMCID: PMC8971843 DOI: 10.3389/fmicb.2022.867449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Engineered liposomes composed of the naturally occurring lipids sphingomyelin (Sm) and cholesterol (Ch) have been demonstrated to efficiently neutralize toxins secreted by Gram-positive bacteria such as Streptococcus pneumoniae and Staphylococcus aureus. Here, we hypothesized that liposomes are capable of neutralizing cytolytic virulence factors secreted by the Gram-negative pathogen Pseudomonas aeruginosa. We used the highly virulent cystic fibrosis P. aeruginosa Liverpool Epidemic Strain LESB58 and showed that sphingomyelin (Sm) and a combination of sphingomyelin with cholesterol (Ch:Sm; 66 mol/% Ch and 34 mol/% Sm) liposomes reduced lysis of human bronchial and red blood cells upon challenge with the Pseudomonas secretome. Mass spectrometry of liposome-sequestered Pseudomonas proteins identified the virulence-promoting hemolytic phospholipase C (PlcH) as having been neutralized. Pseudomonas aeruginosa supernatants incubated with liposomes demonstrated reduced PlcH activity as assessed by the p-nitrophenylphosphorylcholine (NPPC) assay. Testing the in vivo efficacy of the liposomes in a murine cutaneous abscess model revealed that Sm and Ch:Sm, as single dose treatments, attenuated abscesses by >30%, demonstrating a similar effect to that of a mutant lacking plcH in this infection model. Thus, sphingomyelin-containing liposome therapy offers an interesting approach to treat and reduce virulence of complex infections caused by P. aeruginosa and potentially other Gram-negative pathogens expressing PlcH.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
| | - Samuel J. T. Wardell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Leo T. Liu
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Daniel Pletzer
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- *Correspondence: Daniel Pletzer,
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Robert E. W. Hancock,
| |
Collapse
|
10
|
Tran PM, Tang SS, Salgado-Pabón W. Staphylococcus aureus β-Toxin Exerts Anti-angiogenic Effects by Inhibiting Re-endothelialization and Neovessel Formation. Front Microbiol 2022; 13:840236. [PMID: 35185854 PMCID: PMC8851161 DOI: 10.3389/fmicb.2022.840236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Staphylococcus aureus causes severe, life-threatening infections that often are complicated by severe local and systemic pathologies with non-healing lesions. A classic example is S. aureus infective endocarditis (IE), where the secreted hemolysin β-toxin potentiates the disease via its sphingomyelinase and biofilm ligase activities. Although these activities dysregulate human aortic endothelial cell activation, β-toxin effect on endothelial cell function in wound healing has not been addressed. With the use of the ex vivo rabbit aortic ring model, we provide evidence that β-toxin prevents branching microvessel formation, highlighting its ability to interfere with tissue re-vascularization and vascular repair. We show that β-toxin specifically targets both human aortic endothelial cell proliferation and cell migration and inhibits human umbilical vein endothelial cell rearrangement into capillary-like networks in vitro. Proteome arrays specific for angiogenesis-related molecules provided evidence that β-toxin promotes an inhibitory profile in endothelial cell monolayers, specifically targeting production of TIMP-1, TIMP-4, and IGFBP-3 to counter the effect of a pro-angiogenic environment. Dysregulation in the production of these molecules is known to result in sprouting defects (including deficient cell proliferation, migration, and survival), vessel instability and/or vascular regression. When endothelial cells are grown under re-endothelialization/wound healing conditions, β-toxin decreases the pro-angiogenic molecule MMP-8 and increases the anti-angiogenic molecule endostatin. Altogether, the data indicate that β-toxin is an anti-angiogenic virulence factor and highlight a mechanism where β-toxin exacerbates S. aureus invasive infections by interfering with tissue re-vascularization and vascular repair.
Collapse
Affiliation(s)
- Phuong M. Tran
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Microbiology and Immunology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Sharon S. Tang
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
11
|
Monturiol-Gross L, Villalta-Romero F, Flores-Díaz M, Alape-Girón A. Bacterial phospholipases C with dual activity: phosphatidylcholinesterase and sphingomyelinase. FEBS Open Bio 2021; 11:3262-3275. [PMID: 34709730 PMCID: PMC8634861 DOI: 10.1002/2211-5463.13320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial phospholipases and sphingomyelinases are lipolytic esterases that are structurally and evolutionarily heterogeneous. These enzymes play crucial roles as virulence factors in several human and animal infectious diseases. Some bacterial phospholipases C (PLCs) have both phosphatidylcholinesterase and sphingomyelinase C activities. Among them, Listeria
monocytogenes PlcB, Clostridium perfringens PLC, and Pseudomonas aeruginosa PlcH are the most deeply understood. In silico predictions of substrates docking with these three bacterial enzymes provide evidence that they interact with different substrates at the same active site. This review discusses structural aspects, substrate specificity, and the mechanism of action of those bacterial enzymes on target cells and animal infection models to shed light on their roles in pathogenesis.
Collapse
Affiliation(s)
- Laura Monturiol-Gross
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fabian Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago, Costa Rica
| | - Marietta Flores-Díaz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Alberto Alape-Girón
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.,Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
12
|
Hattab J, Mosca F, Francesco CED, Aste G, Marruchella G, Guardiani P, Tiscar PG. Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples. Vet World 2021; 14:978-985. [PMID: 34083949 PMCID: PMC8167523 DOI: 10.14202/vetworld.2021.978-985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Pseudomonas aeruginosa is a relevant opportunistic and difficult to treat pathogen due to its widespread environmental diffusion, intrinsic resistance to many classes of antimicrobials, high ability to acquire additional resistance mechanisms, and wide range of pathogenic factors. The present study aimed to investigate the prevalence of P. aeruginosa in canine clinical samples, the antimicrobial susceptibility against antipseudomonal antibiotics, and the presence of extracellular pathogenic factors of the isolates, as well as their ability to produce biofilm. Materials and Methods: Overall, 300 clinical specimens from dogs with pyoderma or abscesses (n=58), otitis (n=59), and suspected bladder infection (n=183) were analyzed by standard bacteriological methods. P. aeruginosa isolates were tested for their antimicrobial susceptibility by disk and gradient diffusion methods to determine the minimum inhibitory concentrations. The ability of the isolates to produce biofilm was investigated by a microtiter plate assay, while virulence genes coding for elastase (lasB), exotoxin A (toxA), alkaline protease (aprA), hemolytic phospholipase C (plcH), and exoenzyme S (ExoS) were detected by polymerase chain reaction method. Results: A total of 24 isolates of P. aeruginosa were found in clinical specimens (urine n=3, skin/soft tissue n=6, and ear canal n=15). No resistance was found to ceftazidime, gentamicin, aztreonam, and imipenem (IMI), while low levels of resistance were found to enrofloxacin (ENR) (4.2%) and piperacillin-tazobactam (8.3%). However, 41.7% and 29.2% of the isolates showed intermediate susceptibility to ENR and IMI, respectively. Disk and gradient diffusion methods showed high concordance. The majority of the isolates revealed a weak (33.3%) or intermediate (45.8%) ability to form biofilm, while the strong biofilm producers (20.8%) derived exclusively from the ear canal samples. All isolates (100%) were positive for lasB, aprA, and plcH genes, while exoS and toxA were amplified in 21 (87.5%) and 22 (91.7%) isolates, respectively. Conclusion: In the present study, P. aeruginosa isolates from canine clinical samples were characterized by low levels of antimicrobial resistance against antipseudomonal drugs. However, the high presence of isolates with intermediate susceptibility for some categories of antibiotics, including carbapenems which are not authorized for veterinary use, could represent an early warning signal. Moreover, the presence of isolates with strong ability to produce biofilm represents a challenge for the interpretation of the antimicrobial susceptibility profile. In addition, the high prevalence of the extracellular pathogenic factors was indicative of the potential virulence of the isolates.
Collapse
Affiliation(s)
- Jasmine Hattab
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Francesco Mosca
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | | | - Giovanni Aste
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Giuseppe Marruchella
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | | | - Pietro Giorgio Tiscar
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| |
Collapse
|
13
|
Abstract
Proper management of polymicrobial infections in patients with cystic fibrosis (CF) has extended their life span. Information about the composition and dynamics of each patient’s microbial community aids in the selection of appropriate treatment of pulmonary exacerbations. We propose the cystic fibrosis rapid response (CFRR) as a fast approach to determine viral and microbial community composition and activity during CF pulmonary exacerbations. The CFRR potential is illustrated with a case study in which a cystic fibrosis fatal exacerbation was characterized by the presence of shigatoxigenic Escherichia coli. The incorporation of the CFRR within the CF clinic could increase the life span and quality of life of CF patients. Pulmonary exacerbations are the leading cause of death in cystic fibrosis (CF) patients. To track microbial dynamics during acute exacerbations, a CF rapid response (CFRR) strategy was developed. The CFRR relies on viromics, metagenomics, metatranscriptomics, and metabolomics data to rapidly monitor active members of the viral and microbial community during acute CF exacerbations. To highlight CFRR, a case study of a CF patient is presented, in which an abrupt decline in lung function characterized a fatal exacerbation. The microbial community in the patient’s lungs was closely monitored through the multi-omics strategy, which led to the identification of pathogenic shigatoxigenic Escherichia coli (STEC) expressing Shiga toxin. This case study illustrates the potential for the CFRR to deconstruct complicated disease dynamics and provide clinicians with alternative treatments to improve the outcomes of pulmonary exacerbations and expand the life spans of individuals with CF.
Collapse
|
14
|
Gimenez MR, Chandra G, Van Overvelt P, Voulhoux R, Bleves S, Ize B. Genome wide identification and experimental validation of Pseudomonas aeruginosa Tat substrates. Sci Rep 2018; 8:11950. [PMID: 30093651 PMCID: PMC6085387 DOI: 10.1038/s41598-018-30393-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
In bacteria, the twin-arginine translocation (Tat) pathway allows the export of folded proteins through the inner membrane. Proteins targeted to this system are synthesized with N-terminal signal peptides bearing a conserved twin-arginine motif. The Tat pathway is critical for many bacterial processes including pathogenesis and virulence. However, the full set of Tat substrates is unknown in many bacteria, and the reliability of in silico prediction methods largely uncertain. In this work, we performed a combination of in silico analysis and experimental validation to identify a core set of Tat substrates in the opportunistic pathogen Pseudomonas aeruginosa. In silico analysis predicted 44 putative Tat signal peptides in the P. aeruginosa PA14 proteome. We developed an improved amidase-based Tat reporter assay to show that 33 of these are real Tat signal peptides. In addition, in silico analysis of the full translated genome revealed a Tat candidate with a missassigned start codon. We showed that it is a new periplasmic protein in P. aeruginosa. Altogether we discovered and validated 34 Tat substrates. These show little overlap with Escherichia coli Tat substrates, and functional analysis points to a general role for the P. aeruginosa Tat system in the colonization of environmental niches and pathogenicity.
Collapse
Affiliation(s)
- Maxime Rémi Gimenez
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Perrine Van Overvelt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Romé Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Bérengère Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France.
| |
Collapse
|
15
|
Golovkine G, Reboud E, Huber P. Pseudomonas aeruginosa Takes a Multi-Target Approach to Achieve Junction Breach. Front Cell Infect Microbiol 2018; 7:532. [PMID: 29379773 PMCID: PMC5770805 DOI: 10.3389/fcimb.2017.00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which uses a number of strategies to cross epithelial and endothelial barriers at cell–cell junctions. In this review, we describe how the coordinated actions of P. aeruginosa's virulence factors trigger various molecular mechanisms to disarm the junctional gate responsible for tissue integrity.
Collapse
Affiliation(s)
- Guillaume Golovkine
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Emeline Reboud
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Philippe Huber
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
16
|
Okino N, Ito M. Molecular mechanism for sphingosine-induced Pseudomonas ceramidase expression through the transcriptional regulator SphR. Sci Rep 2016; 6:38797. [PMID: 27941831 PMCID: PMC5150637 DOI: 10.1038/srep38797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa, an opportunistic, but serious multidrug-resistant pathogen, secretes a ceramidase capable of cleaving the N-acyl linkage of ceramide to generate fatty acids and sphingosine. We previously reported that the secretion of P. aeruginosa ceramidase was induced by host-derived sphingolipids, through which phospholipase C-induced hemolysis was significantly enhanced. We herein investigated the gene(s) regulating sphingolipid-induced ceramidase expression and identified SphR, which encodes a putative AraC family transcriptional regulator. Disruption of the sphR gene in P. aeruginosa markedly decreased the sphingomyelin-induced secretion of ceramidase, reduced hemolytic activity, and resulted in the loss of sphingomyelin-induced ceramidase expression. A microarray analysis confirmed that sphingomyelin significantly induced ceramidase expression in P. aeruginosa. Furthermore, an electrophoretic mobility shift assay revealed that SphR specifically bound free sphingoid bases such as sphingosine, dihydrosphingosine, and phytosphingosine, but not sphingomyelin or ceramide. A β-galactosidase-assisted promoter assay showed that sphingosine activated ceramidase expression through SphR at a concentration of 100 nM. Collectively, these results demonstrated that sphingosine induces the secretion of ceramidase by promoting the mRNA expression of ceramidase through SphR, thereby enhancing hemolytic phospholipase C-induced cytotoxicity. These results facilitate understanding of the physiological role of bacterial ceramidase in host cells.
Collapse
Affiliation(s)
- Nozomu Okino
- The Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- The Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
17
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
18
|
Osherov N, Ben-Ami R. Modulation of Host Angiogenesis as a Microbial Survival Strategy and Therapeutic Target. PLoS Pathog 2016; 12:e1005479. [PMID: 27078259 PMCID: PMC4831739 DOI: 10.1371/journal.ppat.1005479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ronen Ben-Ami
- Infectious Disease Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Department of Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
19
|
Grøftehauge MK, Truan D, Vasil A, Denny PW, Vasil ML, Pohl E. Crystal Structure of a Hidden Protein, YcaC, a Putative Cysteine Hydrolase from Pseudomonas aeruginosa, with and without an Acrylamide Adduct. Int J Mol Sci 2015; 16:15971-84. [PMID: 26184183 PMCID: PMC4519933 DOI: 10.3390/ijms160715971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022] Open
Abstract
As part of the ongoing effort to functionally and structurally characterize virulence factors in the opportunistic pathogen Pseudomonas aeruginosa, we determined the crystal structure of YcaC co-purified with the target protein at resolutions of 2.34 and 2.56 Å without a priori knowledge of the protein identity or experimental phases. The three-dimensional structure of YcaC adopts a well-known cysteine hydrolase fold with the putative active site residues conserved. The active site cysteine is covalently bound to propionamide in one crystal form, whereas the second form contains an S-mercaptocysteine. The precise biological function of YcaC is unknown; however, related prokaryotic proteins have functions in antibacterial resistance, siderophore production and NADH biosynthesis. Here, we show that YcaC is exceptionally well conserved across both bacterial and fungal species despite being non-ubiquitous. This suggests that whilst YcaC may not be part of an integral pathway, the function could confer a significant evolutionary advantage to microbial life.
Collapse
Affiliation(s)
- Morten K Grøftehauge
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
| | - Daphne Truan
- Swiss Light Source, Paul Scherrer Institute, Villigen CH-5232, Switzerland.
| | - Adriana Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Paul W Denny
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
- School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees TS17 6BH, UK.
| | - Michael L Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Ehmke Pohl
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
20
|
Kondakova T, D'Heygère F, Feuilloley MJ, Orange N, Heipieper HJ, Duclairoir Poc C. Glycerophospholipid synthesis and functions in Pseudomonas. Chem Phys Lipids 2015; 190:27-42. [PMID: 26148574 DOI: 10.1016/j.chemphyslip.2015.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/25/2022]
Abstract
The genus Pseudomonas is one of the most heterogeneous groups of eubacteria, presents in all major natural environments and in wide range of associations with plants and animals. The wide distribution of these bacteria is due to the use of specific mechanisms to adapt to environmental modifications. Generally, bacterial adaptation is only considered under the aspect of genes and protein expression, but lipids also play a pivotal role in bacterial functioning and homeostasis. This review resumes the mechanisms and regulations of pseudomonal glycerophospholipid synthesis, and the roles of glycerophospholipids in bacterial metabolism and homeostasis. Recently discovered specific pathways of P. aeruginosa lipid synthesis indicate the lineage dependent mechanisms of fatty acids homeostasis. Pseudomonas glycerophospholipids ensure structure functions and play important roles in bacterial adaptation to environmental modifications. The lipidome of Pseudomonas contains a typical eukaryotic glycerophospholipid--phosphatidylcholine -, which is involved in bacteria-host interactions. The ability of Pseudomonas to exploit eukaryotic lipids shows specific and original strategies developed by these microorganisms to succeed in their infectious process. All compiled data provide the demonstration of the importance of studying the Pseudomonas lipidome to inhibit the infectious potential of these highly versatile germs.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - François D'Heygère
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45071 Orléans, France
| | - Marc J Feuilloley
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Nicole Orange
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Cécile Duclairoir Poc
- Normandie University of Rouen, Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, 55 rue St. Germain, 27000 Evreux, France.
| |
Collapse
|
21
|
Guan YY, Liu HJ, Luan X, Xu JR, Lu Q, Liu YR, Gao YG, Zhao M, Chen HZ, Fang C. Raddeanin A, a triterpenoid saponin isolated from Anemone raddeana, suppresses the angiogenesis and growth of human colorectal tumor by inhibiting VEGFR2 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:103-110. [PMID: 25636878 DOI: 10.1016/j.phymed.2014.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
Raddeanin A (RA) is an active triterpenoid saponin from a traditional Chinese medicinal herb, Anemone raddeana Regel. It was previously reported that RA possessed attractive antitumor activity through inhibiting proliferation and inducing apoptosis of multiple cancer cells. However, whether RA can inhibit angiogenesis, an essential step in cancer development, remains unknown. In this study, we found that RA could significantly inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration, and tube formation. RA also dramatically reduced angiogenesis in chick embryo chorioallantoic membrane (CAM), restrained the trunk angiogenesis in zebrafish, and suppressed angiogenesis and growth of human HCT-15 colorectal cancer xenograft in mice. Western blot assay showed that RA suppressed VEGF-induced phosphorylation of VEGFR2 and its downstream protein kinases including PLCγ1, JAK2, FAK, Src, and Akt. Molecular docking simulation indicated that RA formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. Our study firstly provides the evidence that RA has high antiangiogenic potency and explores its molecular basis, demonstrating that RA is a potential agent or lead candidate for antiangiogenic cancer therapy.
Collapse
Affiliation(s)
- Ying-Yun Guan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Hai-Jun Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xin Luan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jian-Rong Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ya-Rong Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Yun-Ge Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Mei Zhao
- Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318, China.
| | - Hong-Zhuan Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.
| |
Collapse
|
22
|
Jackson AA, Daniels EF, Hammond JH, Willger SD, Hogan DA. Global regulator Anr represses PlcH phospholipase activity in Pseudomonas aeruginosa when oxygen is limiting. MICROBIOLOGY-SGM 2014; 160:2215-2225. [PMID: 25073853 DOI: 10.1099/mic.0.081158-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemolytic phospholipase C (PlcH) is a potent virulence and colonization factor that is expressed at high levels by Pseudomonas aeruginosa within the mammalian host. The phosphorylcholine liberated from phosphatidylcholine and sphingomyelin by PlcH is further catabolized into molecules that both support growth and further induce plcH expression. We have shown previously that the catabolism of PlcH-released choline leads to increased activity of Anr, a global transcriptional regulator that promotes biofilm formation and virulence. Here, we demonstrated the presence of a negative feedback loop in which Anr repressed plcH transcription and we proposed that this regulation allowed for PlcH levels to be maintained in a way that promotes productive host-pathogen interactions. Evidence for Anr-mediated regulation of PlcH came from data showing that growth at low oxygen (1%) repressed PlcH abundance and plcH transcription in the WT, and that plcH transcription was enhanced in an Δanr mutant. The plcH promoter featured an Anr consensus sequence that was conserved across all P. aeruginosa genomes and mutation of conserved nucleotides within the Anr consensus sequence increased plcH expression under hypoxic conditions. The Anr-regulated transcription factor Dnr was not required for this effect. The loss of Anr was not sufficient to completely derepress plcH transcription as GbdR, a positive regulator of plcH, was required for expression. Overexpression of Anr was sufficient to repress plcH transcription even at 21 % oxygen. Anr repressed plcH expression and phospholipase C activity in a cell culture model for P. aeruginosa-epithelial cell interactions.
Collapse
Affiliation(s)
- Angelyca A Jackson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Emily F Daniels
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Sven D Willger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 208 Vail Building, Hanover, NH 03755, USA
| |
Collapse
|
23
|
Beaufort N, Corvazier E, Mlanaoindrou S, de Bentzmann S, Pidard D. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: implication of matrilysis and receptor cleavage. PLoS One 2013; 8:e75708. [PMID: 24069438 PMCID: PMC3777978 DOI: 10.1371/journal.pone.0075708] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/19/2013] [Indexed: 12/19/2022] Open
Abstract
Within the vasculature, uncontrolled pericellular proteolysis can lead to disruption of cell-to-cell and cell-to-matrix interactions and subsequent detachment-induced cell apoptosis, or anoikis, contributing to inflammatory vascular diseases, with the endothelium as the major target. Most studies so far have focused on endogenous proteinases. However, during bloodstream infections, bacterial proteinases may also trigger endothelial anoikis. We thus investigated the potential apoptotic activity of the proteinases secreted by the haematotropic opportunistic pathogen, Pseudomonas aeruginosa, and particularly its predominant metalloproteinase, LasB. For this, we used the secretome of the LasB-expressing pseudomonal strain, PAO1, and compared it with that from the isogenic, LasB-deficient strain (PAO1∆lasB), as well as with purified LasB. Secretomes were tested for apoptotic activity on cultured human endothelial cells derived from the umbilical vein or from the cerebral microvasculature. We found that the PAO1 secretome readily induced endothelial cell anoikis, as did secretomes of LasB-positive clinical pseudomonal isolates, while the PAO1∆lasB secretome had only a limited impact on endothelial adherence and viability. Notably, purified LasB reproduced most of the effects of the LasB-containing secretomes, and these were drastically reduced in the presence of the LasB-selective inhibitor, phosphoramidon. A precocious and extensive LasB-dependent degradation of several proteins associated with the endothelial extracellular matrix, fibronectin and von Willebrand factor, was observed by immunofluorescence and/or immunoblotting analysis of cell cultures. Moreover, the PAO1 secretome, but not that from PAO1∆lasB, specifically induced rapid endoproteolysis of two major interendothelial junction components, VE-cadherin and occludin, as well as of the anti-anoikis, integrin-associated urokinase receptor, uPAR. Taken as a prototype for exogenous haemorrhagic proteinases, pseudomonal LasB thus appears to induce endothelial anoikis not only via matrilysis, as observed for many pro-apoptotic proteinases, but also via cleavage of some essential cell-to-cell and cell-to-matrix adhesion receptors implicated in the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Elisabeth Corvazier
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Saouda Mlanaoindrou
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Sophie de Bentzmann
- CNRS, UMR 7255-LISM, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Dominique Pidard
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
- * E-mail:
| |
Collapse
|
24
|
Jackson AA, Gross MJ, Daniels EF, Hampton TH, Hammond JH, Vallet-Gely I, Dove SL, Stanton BA, Hogan DA. Anr and its activation by PlcH activity in Pseudomonas aeruginosa host colonization and virulence. J Bacteriol 2013; 195:3093-104. [PMID: 23667230 PMCID: PMC3697539 DOI: 10.1128/jb.02169-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/29/2013] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa hemolytic phospholipase C (PlcH) degrades phosphatidylcholine (PC), an abundant lipid in cell membranes and lung surfactant. A ΔplcHR mutant, known to be defective in virulence in animal models, was less able to colonize epithelial cell monolayers and was defective in biofilm formation on plastic when grown in lung surfactant. Microarray analyses found that strains defective in PlcH production had lower levels of Anr-regulated transcripts than the wild type. PC degradation stimulated the Anr regulon in an Anr-dependent manner under conditions where Anr activity was submaximal because of the presence of oxygen. Two PC catabolites, choline and glycine betaine (GB), were sufficient to stimulate Anr activity, and their catabolism was required for Anr activation. The addition of choline or GB to glucose-containing medium did not alter Anr protein levels, growth rates, or respiratory activity, and Anr activation could not be attributed to the osmoprotectant functions of GB. The Δanr mutant was defective in virulence in a mouse pneumonia model. Several lines of evidence indicate that Anr is important for the colonization of biotic and abiotic surfaces in both P. aeruginosa PAO1 and PA14 and that increases in Anr activity resulted in enhanced biofilm formation. Our data suggest that PlcH activity promotes Anr activity in oxic environments and that Anr activity contributes to virulence, even in the acute infection phase, where low oxygen tensions are not expected. This finding highlights the relationships among in vivo bacterial metabolism, the activity of the oxygen-sensitive regulator Anr, and virulence.
Collapse
Affiliation(s)
- Angelyca A. Jackson
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Maegan J. Gross
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Emily F. Daniels
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Thomas H. Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - John H. Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Isabelle Vallet-Gely
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire, USA
| |
Collapse
|
25
|
Wargo MJ. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2112-20. [PMID: 23354714 PMCID: PMC3623244 DOI: 10.1128/aem.03565-12] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most sequenced bacteria possess mechanisms to import choline and glycine betaine (GB) into the cytoplasm. The primary role of choline in bacteria appears to be as the precursor to GB, and GB is thought to primarily act as a potent osmoprotectant. Choline and GB may play accessory roles in shaping microbial communities, based on their limited availability and ability to enhance survival under stress conditions. Choline and GB enrichment near eukaryotes suggests a role in the chemical relationships between these two kingdoms, and some of these interactions have been experimentally demonstrated. While many bacteria can convert choline to GB for osmoprotection, a variety of soil- and water-dwelling bacteria have catabolic pathways for the multistep conversion of choline, via GB, to glycine and can thereby use choline and GB as sole sources of carbon and nitrogen. In these choline catabolizers, the GB intermediate represents a metabolic decision point to determine whether GB is catabolized or stored as an osmo- and stress protectant. This minireview focuses on this decision point in Pseudomonas aeruginosa, which aerobically catabolizes choline and can use GB as an osmoprotectant and a nutrient source. P. aeruginosa is an experimentally tractable and ecologically relevant model to study the regulatory pathways controlling choline and GB homeostasis in choline-catabolizing bacteria. The study of P. aeruginosa associations with eukaryotes and other bacteria also makes this a powerful model to study the impact of choline and GB, and their associated regulatory and catabolic pathways, on host-microbe and microbe-microbe relationships.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Microbiology and Molecular Genetics and The Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont, USA.
| |
Collapse
|
26
|
Wargo MJ. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection. PLoS One 2013; 8:e56850. [PMID: 23457628 PMCID: PMC3572970 DOI: 10.1371/journal.pone.0056850] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/15/2013] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa can acquire and metabolize a variety of molecules including choline, an abundant host-derived molecule. In P. aeruginosa, choline is oxidized to glycine betaine which can be used as an osmoprotectant, a sole source of carbon and nitrogen, and as an inducer of the virulence factor, hemolytic phospholipase C (PlcH) via the transcriptional regulator GbdR. The primary objective was to determine the contribution of choline conversion to glycine betaine to P. aeruginosa survival during mouse lung infection. A secondary objective was to gain insight into the relative contributions of the different roles of glycine betaine to P. aeruginosa survival during infection. Using a model of acute murine pneumonia, we determined that deletion of the choline oxidase system (encoded by betBA) decreased P. aeruginosa survival in the mouse lung. Deletion of the glycine betaine demethylase genes (gbcA-B), required for glycine betaine catabolism, did not impact P. aeruginosa survival in the lung. Thus, the defect of the betBA mutant was not due to a requirement for glycine betaine catabolism or dependence on a downstream metabolite. Deletion of betBA decreased the abundance of plcH transcript during infection, which suggested a role for PlcH in the betBA survival defect. To test the contribution of plcH to the betBA mutant phenotype a betBAplcHR double deletion mutant was generated. The betBA and betBAplcHR double mutant had a small but significant survival defect compared to the plcHR single mutant, suggesting that regulation of plcH expression is not the only role for glycine betaine during infection. The conclusion was that choline acquisition and its oxidation to glycine betaine contribute to P. aeruginosa survival in the mouse lung. While defective plcH induction can explain a portion of the betBA mutant phenotype, the exact mechanisms driving the betBA mutant survival defect remain unknown.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Microbiology and Molecular Genetics and The Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont, United States of America.
| |
Collapse
|
27
|
Ibarguren M, Sot J, Montes LR, Vasil AI, Vasil ML, Goñi FM, Alonso A. Recruitment of a phospholipase C/sphingomyelinase into non-lamellar lipid droplets during hydrolysis of lipid bilayers. Chem Phys Lipids 2012; 166:12-7. [PMID: 23253877 DOI: 10.1016/j.chemphyslip.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 01/05/2023]
Abstract
When giant unilamellar vesicles (GUVs) composed of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and cholesterol are treated with PlcHR(2), a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa, the initial stages of lipid hydrolysis do not cause large changes in vesicle morphology (Ibarguren et al., 2011). However, when hydrolysis progresses confocal fluorescence microscopy reveals the formation of lipid aggregates, whose morphology is not compatible with that of bilayers. Smaller vesicles or droplets can also be seen inside the GUV. Our studies indicate that these aggregates or droplets are enriched in the non-lamellar lipid ceramide, an end-product of PlcHR(2) reaction. Moreover, the aggregates/droplets appear enriched in the hydrolytic enzyme PlcHR(2). At a final stage GUVs containing the enzyme-enriched droplets disintegrate and vanish from the microscope field. The observed non-lamellar enzyme-rich structures may be related to intermediates in the process of aggregation and fusion although the experimental design prevents vesicle free diffusion in the aqueous medium, thus actual aggregation or fusion cannot be observed.
Collapse
Affiliation(s)
- Maitane Ibarguren
- Unidad de Biofísica (Centro Mixto CSIS-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Barrio Sarriena s/n, 48940 Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
High-level over-expression, purification, and crystallization of a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Protein Expr Purif 2012. [PMID: 23201280 PMCID: PMC3601568 DOI: 10.1016/j.pep.2012.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hemolytic phospholipase C/sphingomyelinase PlcH from the
opportunistic pathogen Pseudomonas aeruginosa represents the
founding member of a growing family of virulence factors identified in a wide range of
bacterial and fungal pathogens. In P. aeruginosa PlcH is
co-expressed with a 17 kDa chaperone (PlcR2) and secreted as a fully
folded heterodimer (PlcHR2) of approximately 95 kDa, by the twin
arginine translocase (TAT) via the cytoplasmic membrane and through the outer membrane, by
the Xcp (TypeII) secretory system. PlcHR2 has been shown to be an important virulence
factor in model P. aeruginosa infections and is selectively
cytotoxic, at picomolar concentrations to mammalian endothelial cells. Here we report how
the various challenges starting from protein overexpression in the native organism
P. aeruginosa, the use of detergents in the crystallization and
data collection using the most advanced μ-focus synchrotron beam lines were overcome.
Native diffraction data of this heterodimeric protein complex were collected up to a
resolution of 4 Å, whereas needle-shaped crystals of
l-selenomethionine substituted PlcHR2 with a maximum
diameter of 10 micron were used to collect data sets with a maximum resolution of
2.75 Å.
Collapse
|
29
|
Identification and evaluation of twin-arginine translocase inhibitors. Antimicrob Agents Chemother 2012; 56:6223-34. [PMID: 23006747 DOI: 10.1128/aac.01575-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocase (TAT) in some bacterial pathogens, including Pseudomonas aeruginosa, Burkholderia pseudomallei, and Mycobacterium tuberculosis, contributes to pathogenesis by translocating extracellular virulence determinants across the inner membrane into the periplasm, thereby allowing access to the Xcp (type II) secretory system for further export in Gram-negative organisms, or directly to the outside surface of the cell, as in M. tuberculosis. TAT-mediated secretion appreciably contributes to virulence in both animal and plant models of bacterial infection. Consequently, TAT function is an attractive target for small-molecular-weight compounds that alone or in conjunction with extant antimicrobial agents could become novel therapeutics. The TAT-transported hemolytic phospholipase C (PlcH) of P. aeruginosa and its multiple orthologs produced by the above pathogens can be detected by an accurate and reproducible colorimetric assay using a synthetic substrate that detects phospholipase C activity. Such an assay could be an effective indicator of TAT function. Using carefully constructed recombinant strains to precisely control the expression of PlcH, we developed a high-throughput screening (HTS) assay to evaluate, in duplicate, >80,000 small-molecular-weight compounds as possible TAT inhibitors. Based on additional TAT-related functional assays, purified PlcH protein inhibition experiments, and repeat experiments of the initial screening assay, 39 compounds were selected from the 122 initial hits. Finally, to evaluate candidate inhibitors for TAT specificity, we developed a TAT titration assay that determines whether inhibition of TAT-mediated secretion can be overcome by increasing the levels of TAT expression. The compounds N-phenyl maleimide and Bay 11-7082 appear to directly affect TAT function based on this approach.
Collapse
|
30
|
Histologic and Biomechanical Evaluation of Biologic Meshes following Colonization with Pseudomonas aeruginosa. J Surg Res 2012; 175:e35-42. [DOI: 10.1016/j.jss.2011.10.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/30/2011] [Accepted: 10/27/2011] [Indexed: 11/21/2022]
|
31
|
Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2012; 2:12. [PMID: 22919604 PMCID: PMC3417661 DOI: 10.3389/fcimb.2012.00012] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/31/2012] [Indexed: 12/17/2022] Open
Abstract
One key aspect of the virulence of Staphylococcus aureus lies in its ability to target the host cell membrane with a large number of membrane-damaging toxins and peptides. In this review, we describe the hemolysins, the bi-component leukocidins (which include the Panton Valentine leukocidin, LukAB/GH, and LukED), and the cytolytic peptides (phenol soluble modulins). While at first glance, all of these factors might appear redundant, it is now clear that some of these factors play specific roles in certain S. aureus life stages and diseases or target specific cell types or species. In this review, we present an update of the literature on toxin receptors and their cell type and species specificities. Furthermore, we review epidemiological studies and animal models illustrating the role of these membrane-damaging factors in various diseases. Finally, we emphasize the interplay of these factors with the host immune system and highlight all their non-lytic functions.
Collapse
Affiliation(s)
- François Vandenesch
- Bacterial Pathogenesis and Innate Immunity Laboratory, INSERM U851 "Immunity, Infection and Vaccination," Lyon, France
| | | | | |
Collapse
|
32
|
Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011; 12:1000-17. [PMID: 21366518 PMCID: PMC3319919 DOI: 10.2174/138945011795677809] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/21/2010] [Indexed: 01/18/2023]
Abstract
The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening.
Collapse
Affiliation(s)
- Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | |
Collapse
|
33
|
Kanther M, Sun X, Mühlbauer M, Mackey LC, Flynn EJ, Bagnat M, Jobin C, Rawls JF. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract. Gastroenterology 2011; 141:197-207. [PMID: 21439961 PMCID: PMC3164861 DOI: 10.1053/j.gastro.2011.03.042] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 02/15/2011] [Accepted: 03/04/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS The nuclear factor κ-light-chain enhancer of activated B cells (NF-κB) transcription factor pathway is activated in response to diverse microbial stimuli to regulate expression of genes involved in immune responses and tissue homeostasis. However, the temporal and spatial activation of NF-κB in response to microbial signals have not been determined in whole living organisms, and the molecular and cellular details of these responses are not well understood. We used in vivo imaging and molecular approaches to analyze NF-κB activation in response to the commensal microbiota in transparent gnotobiotic zebrafish. METHODS We used DNA microarrays, in situ hybridization, and quantitative reverse transcription polymerase chain reaction analyses to study the effects of the commensal microbiota on gene expression in gnotobiotic zebrafish. Zebrafish PAC2 and ZFL cells were used to study the NF-κB signaling pathway in response to bacterial stimuli. We generated transgenic zebrafish that express enhanced green fluorescent protein under transcriptional control of NF-κB, and used them to study patterns of NF-κB activation during development and microbial colonization. RESULTS Bacterial stimulation induced canonical activation of the NF-κB pathway in zebrafish cells. Colonization of germ-free transgenic zebrafish with a commensal microbiota activated NF-κB and led to up-regulation of its target genes in intestinal and extraintestinal tissues of the digestive tract. Colonization with the bacterium Pseudomonas aeruginosa was sufficient to activate NF-κB, and this activation required a functional flagellar apparatus. CONCLUSIONS In zebrafish, transcriptional activity of NF-κB is spatially and temporally regulated by specific microbial factors. The observed patterns of NF-κB-dependent responses to microbial colonization indicate that cells in the gastrointestinal tract respond robustly to the microbial environment.
Collapse
Affiliation(s)
- Michelle Kanther
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC
| | - Xiaolun Sun
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Marcus Mühlbauer
- Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Lantz C. Mackey
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC
| | - Edward J. Flynn
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC
| | - Michel Bagnat
- Department of Cell Biology, Duke University Medical School, Durham, NC
| | - Christian Jobin
- Department of Medicine, University of North Carolina, Chapel Hill, NC,Department of Pharmacology, University of North Carolina, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| | - John F. Rawls
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
34
|
Wargo MJ, Gross MJ, Rajamani S, Allard JL, Lundblad LKA, Allen GB, Vasil ML, Leclair LW, Hogan DA. Hemolytic phospholipase C inhibition protects lung function during Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 2011; 184:345-54. [PMID: 21562128 DOI: 10.1164/rccm.201103-0374oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
RATIONALE The opportunistic pathogen Pseudomonas aeruginosa causes both acute and chronic lung infections and is particularly problematic in patients with cystic fibrosis and those undergoing mechanical ventilation. Decreased lung function contributes significantly to morbidity and mortality during P. aeruginosa infection, and damage inflicted by P. aeruginosa virulence factors contributes to lung function decline. OBJECTIVES We sought to describe direct contribution of a bacterial phospholipase C/sphingomyelinase, PlcHR, to alteration of host lung physiology and characterize a potential therapeutic for protection of lung function. METHODS We infected C57Bl/6 mice with P. aeruginosa wild-type or isogenic plcHR deletion strains and measured lung function using computer-controlled ventilators. For in vivo testing, miltefosine was delivered intraperitoneally 1 hour after infection. Infection and respiratory endpoints were at 24 hours after infection. MEASUREMENTS AND MAIN RESULTS P. aeruginosa wild-type infection caused significant lung function impairment, whereas the effects of a ΔplcHR strain infection were much less severe. Surfactometry analysis of bronchoalveolar lavage fluid indicated that PlcHR decreased pulmonary surfactant function. Miltefosine has structural similarity to the PC and sphingomyelin substrates of PlcHR, and we found that it inhibits the cleavage of these choline-containing lipids in vitro. Miltefosine administration after P. aeruginosa infection limited the negative effects of PlcHR activity on lung function. CONCLUSIONS We have directly linked production of a single virulence factor in P. aeruginosa with effects on lung function, and demonstrated that the inhibitor miltefosine protects lung function from PlcHR-dependent surfactant dysfunction.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ibarguren M, López DJ, Montes LR, Sot J, Vasil AI, Vasil ML, Goñi FM, Alonso A. Imaging the early stages of phospholipase C/sphingomyelinase activity on vesicles containing coexisting ordered-disordered and gel-fluid domains. J Lipid Res 2011; 52:635-45. [PMID: 21252263 DOI: 10.1194/jlr.m012591] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The binding and early stages of activity of a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa on giant unilamellar vesicles (GUV) have been monitored using fluorescence confocal microscopy. Both the lipids and the enzyme were labeled with specific fluorescent markers. GUV consisted of a mixture of phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, and cholesterol in equimolar ratios, to which 5-10 mol% of the enzyme end-product ceramide and/or diacylglycerol were occasionally added. Morphological examination of the GUV in the presence of enzyme reveals that, although the enzyme diffuses rapidly throughout the observation chamber, detectable enzyme binding appears to be a slow, random process, with new bound-enzyme-containing vesicles appearing for several minutes. Enzyme binding to the vesicles appears to be a cooperative process. After the initial cluster of bound enzyme is detected, further binding and catalytic activity follow rapidly. After the activity has started, the enzyme is not released by repeated washing, suggesting a "scooting" mechanism for the hydrolytic activity. The enzyme preferentially binds the more disordered domains, and, in most cases, the catalytic activity causes the disordering of the other domains. Simultaneously, peanut- or figure-eight-shaped vesicles containing two separate lipid domains become spherical. At a further stage of lipid hydrolysis, lipid aggregates are formed and vesicles disintegrate.
Collapse
Affiliation(s)
- Maitane Ibarguren
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Milligan-McClellan K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF, Guillemin K, Kim CH. Study of host-microbe interactions in zebrafish. Methods Cell Biol 2011; 105:87-116. [PMID: 21951527 PMCID: PMC4700925 DOI: 10.1016/b978-0-12-381320-6.00004-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
All animals are ecosystems, home to diverse microbial populations. Animal-associated microbes play important roles in the normal development and physiology of their hosts, but can also be agents of infectious disease. Traditionally, mice have been used to study pathogenic and beneficial associations between microbes and vertebrate animals. The zebrafish is emerging as a valuable new model system for host-microbe interaction studies, affording researchers with the opportunity to survey large populations of hosts and to visualize microbe-host associations at a cellular level in living animals. This chapter provides detailed protocols for the analysis of zebrafish-associated microbial communities, the derivation and husbandry of germ-free zebrafish, and the modeling of infectious disease in different stages of zebrafish development via different routes of inoculation. These protocols offer a starting point for researchers to address a multitude of questions about animals' coexistence with microorganisms.
Collapse
|
37
|
López DJ, Collado MI, Ibarguren M, Vasil AI, Vasil ML, Goñi FM, Alonso A. Multiple phospholipid substrates of phospholipase C/sphingomyelinase HR2 from Pseudomonas aeruginosa. Chem Phys Lipids 2011; 164:78-82. [DOI: 10.1016/j.chemphyslip.2010.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 01/08/2023]
|
38
|
Chan J, Mably JD. Dissection of cardiovascular development and disease pathways in zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:111-53. [PMID: 21377626 DOI: 10.1016/b978-0-12-384878-9.00004-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The use of animal models in medicine has contributed significantly to the development of drug treatments and surgical procedures for the last century, in particular for cardiovascular disease. In order to model human disease in an animal, an appreciation of the strengths and limitations of the system are required to interpret results and design the logical sequence of steps toward clinical translation. As the world's population ages, cardiovascular disease will become even more prominent and further progress will be essential to stave off what seems destined to become a massive public health issue. Future treatments will require the imaginative application of current models as well as the generation of new ones. In this review, we discuss the resources available for modeling cardiovascular disease in zebrafish and the varied attributes of this system. We then discuss current zebrafish disease models and their potential that has yet to be exploited.
Collapse
Affiliation(s)
- Joanne Chan
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
39
|
Costas MJ, Pinto RM, Cordero PM, Cabezas A, Alves-Pereira I, Cameselle JC, Ribeiro JM. CGDEase, a Pseudomonas fluorescens protein of the PLC/APase superfamily with CDP-ethanolamine and (dihexanoyl)glycerophosphoethanolamine hydrolase activity induced by osmoprotectants under phosphate-deficient conditions. Mol Microbiol 2010; 78:1556-76. [PMID: 21143324 DOI: 10.1111/j.1365-2958.2010.07425.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel enzyme, induced by choline, ethanolamine, glycine betaine or dimethylglycine, was released at low temperature and phosphate from Pseudomonas fluorescens (CECT 7229) suspensions at low cell densities. It is a CDP-ethanolamine pyrophosphatase/(dihexanoyl)glycerophosphoethanolamine phosphodiesterase (CGDEase) less active on choline derivatives, and inactive on long-chain phospholipids, CDP-glycerol and other NDP-X compounds. The reaction pattern was typical of phospholipase C (PLC), as either phosphoethanolamine or phosphocholine was produced. Peptide-mass analyses, gene cloning and expression provided a molecular identity for CGDEase. Bioinformatic studies assigned it to the PLC branch of the phospholipase C/acid phosphatase (PLC/APase) superfamily, revealed an irregular phylogenetic distribution of close CGDEase relatives, and suggested their genes are not in operons or conserved contexts. A theoretical CGDEase structure was supported by mutagenesis of two predicted active-site residues, which yielded essentially inactive mutants. Biological relevance is supported by comparisons with CGDEase relatives, induction by osmoprotectants (not by osmotic stress itself) and repression by micromolar phosphate. The low bacterial density requirement was related to phosphate liberation from lysed bacteria in denser populations, rather than to a classical quorum-sensing effect. The results fit better a CGDEase role in phosphate scavenging than in osmoprotection.
Collapse
Affiliation(s)
- María Jesús Costas
- Departamento de Bioquímica y Biología Molecular y Genética, Universidad de Extremadura, Badajoz E-06006, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 2010; 6:e1000834. [PMID: 20368969 PMCID: PMC2848557 DOI: 10.1371/journal.ppat.1000834] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/25/2010] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter baumannii is a common pathogen whose recent resistance to drugs has emerged as a major health problem. Ethanol has been found to increase the virulence of A. baumannii in Dictyostelium discoideum and Caenorhabditis elegans models of infection. To better understand the causes of this effect, we examined the transcriptional profile of A. baumannii grown in the presence or absence of ethanol using RNA-Seq. Using the Illumina/Solexa platform, a total of 43,453,960 reads (35 nt) were obtained, of which 3,596,474 mapped uniquely to the genome. Our analysis revealed that ethanol induces the expression of 49 genes that belong to different functional categories. A strong induction was observed for genes encoding metabolic enzymes, indicating that ethanol is efficiently assimilated. In addition, we detected the induction of genes encoding stress proteins, including upsA, hsp90, groEL and lon as well as permeases, efflux pumps and a secreted phospholipase C. In stationary phase, ethanol strongly induced several genes involved with iron assimilation and a high-affinity phosphate transport system, indicating that A. baumannii makes a better use of the iron and phosphate resources in the medium when ethanol is used as a carbon source. To evaluate the role of phospholipase C (Plc1) in virulence, we generated and analyzed a deletion mutant for plc1. This strain exhibits a modest, but reproducible, reduction in the cytotoxic effect caused by A. baumannii on epithelial cells, suggesting that phospholipase C is important for virulence. Overall, our results indicate the power of applying RNA-Seq to identify key modulators of bacterial pathogenesis. We suggest that the effect of ethanol on the virulence of A. baumannii is multifactorial and includes a general stress response and other specific components such as phospholipase C. Acinetobacter baumannii has recently emerged as a frequent opportunistic pathogen. In the presence of ethanol A. baumannii increases its pathogenicity towards Dictyostelium discoideum and Caenorhabditis elegans, and community-acquired infections of A. baumannii are associated with alcoholism. Ethanol negatively affects both epithelial cells and alters the bacterial physiology. To explore the underlying basis for the increased virulence of A. baumannii in the presence of ethanol we examined the transcriptional profile of this bacterium using the novel methodology known as RNA-Seq. We show that ethanol induces the expression of a phospholipase C, which contributes to A. baumannii cytotoxicity. We also show that many proteins related to stress were induced and that ethanol is efficiently assimilated as a carbon source leading to induction in stationary phase of two different Fe uptake systems and a phosphate transport system. Interestingly, a previous study showed that a mutant in the high-affinity phosphate uptake system was avirulent. Our work contributes to the understanding of A. baumannii pathogenesis and provides a powerful approach that can be extended to other pathogenic bacteria.
Collapse
Affiliation(s)
- Laura Camarena
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Universidad Nacional Autónoma de México, Inst. Inv. Biomédicas, México, D.F., México
| | - Vincent Bruno
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ghia Euskirchen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Stanford Univeristy School of Medicine, Stanford, California, United States of America
| | - Sebastian Poggio
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Michael Snyder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Stanford Univeristy School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Host-microbe interactions in the developing zebrafish. Curr Opin Immunol 2010; 22:10-9. [PMID: 20153622 DOI: 10.1016/j.coi.2010.01.006] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/08/2010] [Accepted: 01/15/2010] [Indexed: 02/08/2023]
Abstract
The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use of this vertebrate model to investigate the molecular and cellular foundations of host-microbe relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing embryonic and larval stages, when the advantages of the zebrafish model are maximized. A comprehensive understanding of these host-microbe interactions requires appreciation of the developmental context into which a microbe is introduced, as well as the effects of that microbial challenge on host ontogeny. In this review, we discuss how in vivo imaging and genetic analysis in zebrafish has advanced our knowledge of host-microbe interactions in the context of a developing vertebrate host. We focus on recent insights into immune cell ontogeny and function, commensal microbial relationships in the intestine, and microbial pathogenesis in zebrafish hosts.
Collapse
|
42
|
End-products diacylglycerol and ceramide modulate membrane fusion induced by a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:59-64. [PMID: 19891956 DOI: 10.1016/j.bbamem.2009.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 01/17/2023]
Abstract
A phospholipase C/sphingomyelinase from Pseudomonas aeruginosa has been assayed on vesicles containing phosphatidylcholine, sphingomyelin, phosphatidylethanolamine and cholesterol at equimolar ratios. The enzyme activity modifies the bilayer chemical composition giving rise to diacylglycerol (DAG) and ceramide (Cer). Assays of enzyme activity, enzyme-induced aggregation and fusion have been performed. Ultrastructural evidence of vesicle fusion at various stages of the process is presented, based on cryo-EM observations. The two enzyme lipidic end-products, DAG and Cer, have opposite effects on the bilayer physical properties; the former abolishes lateral phase separation, while the latter generates a new gel phase [Sot et al., FEBS Lett. 582, 3230-3236 (2008)]. Addition of either DAG, or Cer, or both to the liposome mixture causes an increase in enzyme binding to the bilayers and a decrease in lag time of hydrolysis. These two lipids also have different effects on the enzyme activity, DAG enhancing enzyme-induced vesicle aggregation and fusion, Cer inhibiting the hydrolytic activity. These effects are explained in terms of the different physical properties of the two lipids. DAG increases bilayers fluidity and decreases lateral separation of lipids, thus increasing enzyme activity and substrate accessibility to the enzyme. Cer has the opposite effect mainly because of its tendency to sequester sphingomyelin, an enzyme substrate, into rigid domains, presumably less accessible to the enzyme.
Collapse
|
43
|
Milhas D, Clarke CJ, Hannun YA. Sphingomyelin metabolism at the plasma membrane: implications for bioactive sphingolipids. FEBS Lett 2009; 584:1887-94. [PMID: 19857494 DOI: 10.1016/j.febslet.2009.10.058] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 12/24/2022]
Abstract
The plasma membrane (PM) is a major resource for production of bioactive lipids and contains a large proportion of the cellular sphingomyelin (SM) content. Consequently, the regulation of SM levels at the PM by enzymes such as sphingomyelinase (SMase) and SM synthase 2 (SMS2) can have profound effects - both on biophysical properties of the membrane, but also on cellular signaling. Over the past 20 years, there has been considerable research into the physiological and cellular functions associated with regulation of SM levels, notably with regards to the production of ceramide. In this review, we will summarize this research with particular focus on the SMases and SMS2. We will outline what biological functions are associated with SM metabolism/production at the PM, and discuss what we believe are major challenges that need to be addressed in future studies.
Collapse
Affiliation(s)
- Delphine Milhas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|