1
|
Vargas J, Modrego A, Canabal H, Martin-Benito J. Semantic segmentation-based detection algorithm for challenging cryo-electron microscopy RNP samples. Front Mol Biosci 2024; 11:1473609. [PMID: 39411403 PMCID: PMC11473350 DOI: 10.3389/fmolb.2024.1473609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
In this study, we present a novel and robust methodology for the automatic detection of influenza A virus ribonucleoproteins (RNPs) in single-particle cryo-electron microscopy (cryo-EM) images. Utilizing a U-net architecture-a type of convolutional neural network renowned for its efficiency in biomedical image segmentation-our approach is based on a pretraining phase with a dataset annotated through visual inspection. This dataset facilitates the precise identification of filamentous RNPs, including the localization of the filaments and their terminal coordinates. A key feature of our method is the application of semantic segmentation techniques, enabling the automated categorization of micrograph pixels into distinct classifications of particle and background. This deep learning strategy allows to robustly detect these intricate particles, a crucial step in achieving high-resolution reconstructions in cryo-EM studies. To encourage collaborative advancements in the field, we have made our routines, the pretrained U-net model, and the training dataset publicly accessible. The reproducibility and accessibility of these resources aim to facilitate further research and validation in the realm of cryo-EM image analysis.
Collapse
Affiliation(s)
- J. Vargas
- Departamento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - A. Modrego
- Department of Macromolecular Structure, National Centre for Biotechnology, Madrid, Spain
| | - H. Canabal
- Departamento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - J. Martin-Benito
- Department of Macromolecular Structure, National Centre for Biotechnology, Madrid, Spain
| |
Collapse
|
2
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
3
|
Bhattacharya A, Bagheri N, Boxer SG. A Fluorogenic Pseudoinfection Assay to Probe Transfer and Distribution of Influenza Viral Contents to Target Vesicles. Anal Chem 2024; 96:13033-13041. [PMID: 39086018 PMCID: PMC12002090 DOI: 10.1021/acs.analchem.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fusion of enveloped viruses with endosomal membranes and subsequent release of the viral genome into the cytoplasm are crucial to the viral infection cycle. It is often modeled by performing fusion between virus particles and target lipid vesicles. We utilized fluorescence microscopy to characterize the kinetic aspects of the transfer of influenza viral ribonucleoprotein (vRNP) complexes to target vesicles and their spatial distribution within the fused volumes to gain deeper insight into the mechanistic aspects of endosomal escape. The fluorogenic RNA-binding dye QuantiFluor (Promega) was found to be well-suited for direct and sensitive microscopic observation of vRNPs which facilitated background-free detection and kinetic analysis of fusion events on a single particle level. To determine the extent to which the viral contents are transferred to the target vesicles through the fusion pore, we carried out virus-vesicle fusion in a side-by-side fashion. Measurement of the Euclidean distances between the centroids of superlocalized membrane and content dye signals within the fused volumes allowed determination of any symmetry (or the lack thereof) between them as expected in the event of transfer (or the lack thereof) of vRNPs, respectively. We found that, in the case of fusion between viruses and 100 nm target vesicles, ∼39% of the events led to transfer of viral contents to the target vesicles. This methodology provides a rapid, generic, and cell-free way to assess the inhibitory effects of antiviral drugs and therapeutics on the endosomal escape behavior of enveloped viruses.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Center for Innovation in Global Health, Stanford University, Stanford, California 94305, United States
| | - Nahal Bagheri
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Dick A, Mikirtumov V, Fuchs J, Krupp F, Olal D, Bendl E, Sprink T, Diebolder C, Kudryashev M, Kochs G, Roske Y, Daumke O. Structural characterization of Thogoto Virus nucleoprotein provides insights into viral RNA encapsidation and RNP assembly. Structure 2024; 32:1068-1078.e5. [PMID: 38749445 DOI: 10.1016/j.str.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 08/11/2024]
Abstract
Orthomyxoviruses, such as influenza and thogotoviruses, are important human and animal pathogens. Their segmented viral RNA genomes are wrapped by viral nucleoproteins (NPs) into helical ribonucleoprotein complexes (RNPs). NP structures of several influenza viruses have been reported. However, there are still contradictory models of how orthomyxovirus RNPs are assembled. Here, we characterize the crystal structure of Thogoto virus (THOV) NP and found striking similarities to structures of influenza viral NPs, including a two-lobed domain architecture, a positively charged RNA-binding cleft, and a tail loop important for trimerization and viral transcription. A low-resolution cryo-electron tomography reconstruction of THOV RNPs elucidates a left-handed double helical assembly. By providing a model for RNP assembly of THOV, our study suggests conserved NP assembly and RNA encapsidation modes for thogoto- and influenza viruses.
Collapse
Affiliation(s)
- Alexej Dick
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Vasilii Mikirtumov
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
| | - Ferdinand Krupp
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Daniel Olal
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Elias Bendl
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany
| | - Thiemo Sprink
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Core facility for Cryo-Electron Microscopy, Charité, Berlin, Germany
| | | | - Mikhail Kudryashev
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Straße 11, 79104 Freiburg, Germany.
| | - Yvette Roske
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| | - Oliver Daumke
- From Structural Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Lv L, Yang X, Zhang Y, Ren X, Zeng S, Zhang Z, Wang Q, Lv J, Gao P, Dorf ME, Li S, Zhao L, Fu B. hnRNPAB inhibits Influenza A virus infection by disturbing polymerase activity. Antiviral Res 2024; 228:105925. [PMID: 38944160 DOI: 10.1016/j.antiviral.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
Influenza A virus (IAV) continuously poses a considerable threat to global health through seasonal epidemics and recurring pandemics. IAV RNA-dependent RNA polymerases (FluPol) mediate the transcription of RNA and replication of the viral genome. Searching for targets that inhibit viral polymerase activity helps us develop better antiviral drugs. Here, we identified heterogeneous nuclear ribonucleoprotein A/B (hnRNPAB) as an anti-influenza host factor. hnRNPAB interacts with NP of IAV to inhibit the interaction between PB1 and NP, which is dependent on the 5-amino-acid peptide of the hnRNPAB C-terminal domain (aa 318-322). We further found that the 5-amino-acid peptide blocks the interaction between PB1 and NP to destroy the FluPol activity. In vivo studies demonstrate that hnRNPAB-deficient mice display higher viral burdens, enhanced cytokine production, and increased mortality after influenza infection. These data demonstrate that hnRNPAB perturbs FluPol complex conformation to inhibit IAV infection, providing insights into anti-influenza defense mechanisms.
Collapse
Affiliation(s)
- Linyue Lv
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xue Yang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Yuelan Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Ren
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Shaowei Zeng
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Zhuyou Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qinyang Wang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Jiaxi Lv
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Pengyue Gao
- Department of Immunology, Yangtze University Health Science Center, Jingzhou, 434023, China
| | - Martin E Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, 02115. USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bishi Fu
- Department of Rheumatology and Immunology, State Key Laboratory of Virology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
Carlero D, Fukuda S, Bocanegra R, Ando T, Martin-Benito J, Ibarra B. Conformational Dynamics of Influenza A Virus Ribonucleoprotein Complexes during RNA Synthesis. ACS NANO 2024; 18. [PMID: 39013014 PMCID: PMC11295199 DOI: 10.1021/acsnano.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 07/18/2024]
Abstract
Viral ribonucleoproteins (vRNPs) are the cornerstones of viral proliferation, as they form the macromolecular complexes that are responsible for the transcription and replication of most single-stranded RNA viruses. The influenza A virus (IAV) polymerase catalyzes RNA synthesis within the context of vRNPs where genomic viral RNA (vRNA) is packaged by the viral nucleoprotein (NP). We used high-speed atomic force microscopy and electron microscopy to study the conformational dynamics of individual IAV recombinant RNPs (rRNPs) during RNA synthesis. The rRNPs present an annular organization that allows for the real-time tracking of conformational changes in the NP-vRNA template caused by the advancing polymerase. We demonstrate that the rRNPs undergo a well-defined conformational cycle during RNA synthesis, which can be interpreted in light of previous transcription models. We also present initial estimations of the average RNA synthesis rate in the rRNP and its dependence on the nucleotide concentration and stability of the nascent RNA secondary structures. Furthermore, we provide evidence that rRNPs can perform consecutive cycles of RNA synthesis, accounting for their ability to recycle and generate multiple copies of RNA.
Collapse
Affiliation(s)
- Diego Carlero
- Centro
Nacional de Biotecnología Campus de Cantoblanco, 28049, Madrid, Spain
| | - Shingo Fukuda
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Rebeca Bocanegra
- Instituto
Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049, Madrid, Spain
- IMDEA
Nanociencia & CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad
de Nanobiotecnología”, 28049, Madrid, Spain
| | - Toshio Ando
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jaime Martin-Benito
- IMDEA
Nanociencia & CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad
de Nanobiotecnología”, 28049, Madrid, Spain
| | - Borja Ibarra
- Instituto
Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049, Madrid, Spain
- IMDEA
Nanociencia & CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad
de Nanobiotecnología”, 28049, Madrid, Spain
| |
Collapse
|
7
|
Martin-Solana E, Diaz-Lopez I, Mohamedi Y, Ventoso I, Fernandez JJ, Fernandez-Fernandez MR. Progressive alterations in polysomal architecture and activation of ribosome stalling relief factors in a mouse model of Huntington's disease. Neurobiol Dis 2024; 195:106488. [PMID: 38565397 PMCID: PMC7616275 DOI: 10.1016/j.nbd.2024.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Given their highly polarized morphology and functional singularity, neurons require precise spatial and temporal control of protein synthesis. Alterations in protein translation have been implicated in the development and progression of a wide range of neurological and neurodegenerative disorders, including Huntington's disease (HD). In this study we examined the architecture of polysomes in their native brain context in striatal tissue from the zQ175 knock-in mouse model of HD. We performed 3D electron tomography of high-pressure frozen and freeze-substituted striatal tissue from HD models and corresponding controls at different ages. Electron tomography results revealed progressive remodelling towards a more compacted polysomal architecture in the mouse model, an effect that coincided with the emergence and progression of HD related symptoms. The aberrant polysomal architecture is compatible with ribosome stalling phenomena. In fact, we also detected in the zQ175 model an increase in the striatal expression of the stalling relief factor EIF5A2 and an increase in the accumulation of eIF5A1, eIF5A2 and hypusinated eIF5A1, the active form of eIF5A1. Polysomal sedimentation gradients showed differences in the relative accumulation of 40S ribosomal subunits and in polysomal distribution in striatal samples of the zQ175 model. These findings indicate that changes in the architecture of the protein synthesis machinery may underlie translational alterations associated with HD, opening new avenues for understanding the progression of the disease.
Collapse
Affiliation(s)
- Eva Martin-Solana
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain
| | - Irene Diaz-Lopez
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Yamina Mohamedi
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain
| | - Ivan Ventoso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jose-Jesus Fernandez
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC). Av. Vega 4-6, 33940 El Entrego, Asturias, Spain.
| | - Maria Rosario Fernandez-Fernandez
- Centro Nacional de Biotecnología (CNB-CSIC). Campus UAM, Darwin 3, 28049 Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA). Av. Hospital Universitario s/n, 33011 Oviedo, Asturias, Spain; Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC). Av. Vega 4-6, 33940 El Entrego, Asturias, Spain.
| |
Collapse
|
8
|
Yu DS, Wu XX, Weng TH, Cheng LF, Liu FM, Wu HB, Lu XY, Wu NP, Sun SL, Yao HP. Host proteins interact with viral elements and affect the life cycle of highly pathogenic avian influenza A virus H7N9. Heliyon 2024; 10:e28218. [PMID: 38560106 PMCID: PMC10981070 DOI: 10.1016/j.heliyon.2024.e28218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Host-virus interactions can significantly impact the viral life cycle and pathogenesis; however, our understanding of the specific host factors involved in highly pathogenic avian influenza A virus H7N9 (HPAI H7N9) infection is currently restricted. Herein, we designed and synthesized 65 small interfering RNAs targeting host genes potentially associated with various aspects of RNA virus life cycles. Afterward, HPAI H7N9 viruses were isolated and RNA interference was used to screen for host factors likely to be involved in the life cycle of HPAI H7N9. Moreover, the research entailed assessing the associations between host proteins and HPAI H7N9 proteins. Twelve key host proteins were identified: Annexin A (ANXA)2, ANXA5, adaptor related protein complex 2 subunit sigma 1 (AP2S1), adaptor related protein complex 3 subunit sigma 1 (AP3S1), ATP synthase F1 subunit alpha (ATP5A1), COPI coat complex subunit alpha (COP)A, COPG1, heat shock protein family A (Hsp70) member 1A (HSPA)1A, HSPA8, heat shock protein 90 alpha family class A member 1 (HSP90AA1), RAB11B, and RAB18. Co-immunoprecipitation revealed intricate interactions between viral proteins (hemagglutinin, matrix 1 protein, neuraminidase, nucleoprotein, polymerase basic 1, and polymerase basic 2) and these host proteins, presumably playing a crucial role in modulating the life cycle of HPAI H7N9. Notably, ANXA5, AP2S1, AP3S1, ATP5A1, HSP90A1, and RAB18, were identified as novel interactors with HPAI H7N9 proteins rather than other influenza A viruses (IAVs). These findings underscore the significance of host-viral protein interactions in shaping the dynamics of HPAI H7N9 infection, while highlighting subtle variations compared with other IAVs. Deeper understanding of these interactions holds promise to advance disease treatment and prevention strategies.
Collapse
Affiliation(s)
- Dong-Shan Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
- Department of Infectious Disease, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiao-Xin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Tian-Hao Weng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Lin-Fang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Fu-Min Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Hai-Bo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
- Department of Infectious Disease, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiang-Yun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Nan-Ping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, PR China
| | - Shui-Lin Sun
- Department of Infectious Disease, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, PR China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250021, PR China
| |
Collapse
|
9
|
Zhou Y, Li T, Zhang Y, Zhang N, Guo Y, Gao X, Peng W, Shu S, Zhao C, Cui D, Sun H, Sun Y, Liu J, Tang J, Zhang R, Pu J. BAG6 inhibits influenza A virus replication by inducing viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. PLoS Pathog 2024; 20:e1012110. [PMID: 38498560 PMCID: PMC10977894 DOI: 10.1371/journal.ppat.1012110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/28/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.
Collapse
Affiliation(s)
- Yong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfan Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuxin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyi Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenjing Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuankuo Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Daudén MI, Pérez-Ruiz M, Carrascosa JL, Cuervo A. Nucleic Acid Packaging in Viruses. Subcell Biochem 2024; 105:469-502. [PMID: 39738955 DOI: 10.1007/978-3-031-65187-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid. In this chapter we will first give an overview of the different strategies used for genome packaging to discuss later some specific virus models where the structures of the main proteins involved are presented and the biophysics underlying the packaging mechanism are discussed.
Collapse
Affiliation(s)
- María I Daudén
- Structural Biology Programme, Spanish National Cancer Research Centre, (CNIO), Madrid, Spain
| | - Mar Pérez-Ruiz
- Faculty of Health and Medical Sciences, Structural Biology of Molecular Machines Group, Protein Structure and Function Program, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - José L Carrascosa
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ana Cuervo
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
11
|
Li H, Wu Y, Li M, Guo L, Gao Y, Wang Q, Zhang J, Lai Z, Zhang X, Zhu L, Lan P, Rao Z, Liu Y, Liang H. An intermediate state allows influenza polymerase to switch smoothly between transcription and replication cycles. Nat Struct Mol Biol 2023; 30:1183-1192. [PMID: 37488357 DOI: 10.1038/s41594-023-01043-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Influenza polymerase (FluPol) transcribes viral mRNA at the beginning of the viral life cycle and initiates genome replication after viral protein synthesis. However, it remains poorly understood how FluPol switches between its transcription and replication states, especially given that the structural bases of these two functions are fundamentally different. Here we propose a mechanism by which FluPol achieves functional switching between these two states through a previously unstudied conformation, termed an 'intermediate state'. Using cryo-electron microscopy, we obtained a structure of the intermediate state of H5N1 FluPol at 3.7 Å, which is characterized by a blocked cap-binding domain and a contracted core region. Structural analysis results suggest that the intermediate state may allow FluPol to transition smoothly into either the transcription or replication state. Furthermore, we show that the formation of the intermediate state is required for both the transcription and replication activities of FluPol, leading us to conclude that the transcription and replication cycles of FluPol are regulated via this intermediate state.
Collapse
Affiliation(s)
- Huanhuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yixi Wu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Minke Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Lu Guo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaqi Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Quan Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jihua Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zhaohua Lai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Xing Zhang
- Departments of Biophysics and Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Lixin Zhu
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zihe Rao
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Yingfang Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
- Department of General Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Huanhuan Liang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
12
|
Modrego A, Carlero D, Arranz R, Martín-Benito J. CryoEM of Viral Ribonucleoproteins and Nucleocapsids of Single-Stranded RNA Viruses. Viruses 2023; 15:v15030653. [PMID: 36992363 PMCID: PMC10053253 DOI: 10.3390/v15030653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Single-stranded RNA viruses (ssRNAv) are characterized by their biological diversity and great adaptability to different hosts; traits which make them a major threat to human health due to their potential to cause zoonotic outbreaks. A detailed understanding of the mechanisms involved in viral proliferation is essential to address the challenges posed by these pathogens. Key to these processes are ribonucleoproteins (RNPs), the genome-containing RNA-protein complexes whose function is to carry out viral transcription and replication. Structural determination of RNPs can provide crucial information on the molecular mechanisms of these processes, paving the way for the development of new, more effective strategies to control and prevent the spread of ssRNAv diseases. In this scenario, cryogenic electron microscopy (cryoEM), relying on the technical and methodological revolution it has undergone in recent years, can provide invaluable help in elucidating how these macromolecular complexes are organized, packaged within the virion, or the functional implications of these structures. In this review, we summarize some of the most prominent achievements by cryoEM in the study of RNP and nucleocapsid structures in lipid-enveloped ssRNAv.
Collapse
Affiliation(s)
- Andrea Modrego
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Diego Carlero
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Rocío Arranz
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| | - Jaime Martín-Benito
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (R.A.); (J.M.-B.)
| |
Collapse
|
13
|
Chen J, Liu J, Chen Z, Feng D, Zhu C, Fan J, Zhang S, Zhang X, Xu J. Nonmuscle myosin IIA promotes the internalization of influenza A virus and regulates viral polymerase activity through interacting with nucleoprotein in human pulmonary cells. Virol Sin 2023; 38:128-141. [PMID: 36509386 PMCID: PMC10006312 DOI: 10.1016/j.virs.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), responsible for seasonal epidemics and recurring pandemics, represents a global threat to public health. Given the risk of a potential IAV pandemic, it is increasingly important to better understand virus-host interactions and develop new anti-viral strategies. Here, we reported nonmuscle myosin IIA (MYH9)-mediated regulation of IAV infection. MYH9 depletion caused a profound inhibition of IAV infection by reducing viral attachment and internalization in human lung epithelial cells. Surprisingly, overexpression of MYH9 also led to a significant reduction in viral productive infection. Interestingly, overexpression of MYH9 retained viral attachment, internalization, or uncoating, but suppressed the viral ribonucleoprotein (vRNP) activity in a minigenome system. Further analyses found that excess MYH9 might interrupt the formation of vRNP by interacting with the viral nucleoprotein (NP) and result in the reduction of the completed vRNP in the nucleus, thereby inhibiting subsequent viral RNA transcription and replication. Together, we discovered that MYH9 can interact with IAV NP protein and engage in the regulation of vRNP complexes, thereby involving viral replication. These findings enlighten new mechanistic insights into the complicated interface of host-IAV interactions, ultimately making it an attractive target for the generation of antiviral drugs.
Collapse
Affiliation(s)
- Jian Chen
- Clinical Center for Bio-Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Shanghai, 200032, China; Center for Infectious Disease Research, Science of Life Sciences, Westlake University, Hangzhou, 310024, China; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jian Liu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Zhilu Chen
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Daobin Feng
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jun Fan
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Shuye Zhang
- Clinical Center for Bio-Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Shanghai, 200032, China; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| | - Xiaoyan Zhang
- Clinical Center for Bio-Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Shanghai, 200032, China; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China.
| | - Jianqing Xu
- Clinical Center for Bio-Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Shanghai, 200032, China; Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China. ORCID%
| |
Collapse
|
14
|
p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathog 2022; 18:e1010295. [PMID: 35180274 PMCID: PMC8920271 DOI: 10.1371/journal.ppat.1010295] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 01/20/2022] [Indexed: 11/19/2022] Open
Abstract
Many cellular genes and networks induced in human lung epithelial cells infected with the influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in response to influenza A virus (IAV) infection, which is independent of p53. Silencing, pharmacological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indicating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degradation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 peptide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo. Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase complex and activating the host innate immune response, which may aid the design of desperately needed new antiviral therapeutics. Influenza A virus (IAV) poses a continuous threat to public health and economic stability. The ribonucleoprotein (RNP) of IAV is responsible for the transcription and replication of the viral RNA. These processes require interplay between host factors and RNP components. Here, we report that p21 can be activated by IAV infection and is controlled by a p53-independent pathway. We demonstrate that p21 directly binds to the viral polymerase acidic protein and limits IAV polymerase activity through disrupting the formation of the ribonucleoprotein complex. Additionally, p21 activation promotes IRF3 activation by blocking K48-linked polyubiquitination degradation of HO-1, thereby activating the type I interferon pathway. We further identify an 8-amino-acid peptide of p21 as the minimum motif that effectively inhibits IAV replication and presents therapeutic efficacy both in vitro and in vivo. Thus, our studies not only identify p21 as an antiviral protein, but also provide mechanistic insight to facilitate drug development.
Collapse
|
15
|
Pyle JD, Whelan SPJ, Bloyet LM. Structure and function of negative-strand RNA virus polymerase complexes. Enzymes 2021; 50:21-78. [PMID: 34861938 DOI: 10.1016/bs.enz.2021.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Viruses with negative-strand RNA genomes (NSVs) include many highly pathogenic and economically devastating disease-causing agents of humans, livestock, and plants-highlighted by recent Ebola and measles virus epidemics, and continuously circulating influenza virus. Because of their protein-coding orientation, NSVs face unique challenges for efficient gene expression and genome replication. To overcome these barriers, NSVs deliver a large and multifunctional RNA-dependent RNA polymerase into infected host cells. NSV-encoded polymerases contain all the enzymatic activities required for transcription and replication of their genome-including RNA synthesis and mRNA capping. Here, we review the structures and functions of NSV polymerases with a focus on key domains responsible for viral replication and gene expression. We highlight shared and unique features among polymerases of NSVs from the Mononegavirales, Bunyavirales, and Articulavirales orders.
Collapse
Affiliation(s)
- Jesse D Pyle
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States; Ph.D. Program in Virology, Harvard Medical School, Boston, MA, United States
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
16
|
Tang YS, Xu S, Chen YW, Wang JH, Shaw PC. Crystal structures of influenza nucleoprotein complexed with nucleic acid provide insights into the mechanism of RNA interaction. Nucleic Acids Res 2021; 49:4144-4154. [PMID: 33784403 PMCID: PMC8053115 DOI: 10.1093/nar/gkab203] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/05/2023] Open
Abstract
The nucleoprotein (NP) of influenza virus is the core component of the ribonucleoprotein (RNP) and performs multiple structural and functional roles. Structures of the influenza A, B and D NP molecules have been solved previously, but structural information on how NP interacts with RNA remains elusive. Here we present the crystal structure of an obligate monomer of H5N1 NP in complex with RNA nucleotides to 2.3 Å, and a C-terminal truncation of this mutant, also in complex with RNA nucleotides, to 3 Å. In both structures, three nucleotides were identified near two positive grooves of NP suggested to be important for RNA binding. Structural evidence supports that conformational changes of flexible loops and the C-terminal tail both play important roles in the binding of RNA. Based on the structure, we propose a mechanism by which NP captures RNA by flexible loops and transfers it onto the positive binding grooves. Binding of RNA by NP is a crucial step for template re-encapsidation during transcription and replication and cRNP formation. Our structures thus provide insights into the molecular virology of the influenza virus.
Collapse
Affiliation(s)
- Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shutong Xu
- Department of Medical Oncology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Wai Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jia-Huai Wang
- Department of Medical Oncology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Zheng W, Cui L, Li M, Li Y, Fan W, Yang L, Li J, Sun L, Liu W. Nucleoprotein phosphorylation site (Y385) mutation confers temperature sensitivity to influenza A virus due to impaired nucleoprotein oligomerization at a lower temperature. SCIENCE CHINA. LIFE SCIENCES 2021; 64:633-643. [PMID: 32803713 DOI: 10.1007/s11427-020-1727-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 10/23/2022]
Abstract
Mutations in viral proteins can lead to the cold adaption of influenza A virus and the cold-adapted virus is an important vaccination instrument. Here, we identify a novel strain of influenza A virus with cold sensitivity conferred by a mutation at a phosphorylation site within the nucleoprotein (NP). The highly conserved tyrosine 385 residue (Y385) of NP was identified as a phosphorylation site by mass spectrometry. The constructive NP phosphorylation mimicked by Y385E mutation was fatal for virus replication, while the continuous Y385 dephosphorylation mimicked by Y385F mutation had little impact on virus replication in vitro. Notably, the Y385F virus showed much lower replicative capacity in turbinates of mice compared with the wild type virus. Moreover, the replication of Y385F virus was significantly reduced in both A549 and MDCK cells grown at 33°C, when compared to that at 37°C. These results indicated that the Y385F mutation led to cold sensitivity of virus. We further found that the cold sensitivity of Y385F virus could be attributed to diminished NP oligomerization rather than any changes in intracellular localization. Taken together, these findings suggest that the phosphorylation of NP may be a critical factor that regulates the temperature sensitivity of influenza A virus.
Collapse
Affiliation(s)
- Weinan Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Minghui Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, China
- Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
18
|
Modeling the
Influenza A
NP-vRNA-Polymerase Complex in Atomic Detail. Biomolecules 2021; 11:biom11010124. [PMID: 33477938 PMCID: PMC7833383 DOI: 10.3390/biom11010124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
Seasonal flu is an acute respiratory disease that exacts a massive toll on human populations, healthcare systems and economies. The disease is caused by an enveloped Influenza virus containing eight ribonucleoprotein (RNP) complexes. Each RNP incorporates multiple copies of nucleoprotein (NP), a fragment of the viral genome (vRNA), and a viral RNA-dependent RNA polymerase (POL), and is responsible for packaging the viral genome and performing critical functions including replication and transcription. A complete model of an Influenza RNP in atomic detail can elucidate the structural basis for viral genome functions, and identify potential targets for viral therapeutics. In this work we construct a model of a complete Influenza A RNP complex in atomic detail using multiple sources of structural and sequence information and a series of homology-modeling techniques, including a motif-matching fragment assembly method. Our final model provides a rationale for experimentally-observed changes to viral polymerase activity in numerous mutational assays. Further, our model reveals specific interactions between the three primary structural components of the RNP, including potential targets for blocking POL-binding to the NP-vRNA complex. The methods developed in this work open the possibility of elucidating other functionally-relevant atomic-scale interactions in additional RNP structures and other biomolecular complexes.
Collapse
|
19
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
20
|
Piasecka J, Jarmolowicz A, Kierzek E. Organization of the Influenza A Virus Genomic RNA in the Viral Replication Cycle-Structure, Interactions, and Implications for the Emergence of New Strains. Pathogens 2020; 9:pathogens9110951. [PMID: 33203084 PMCID: PMC7696059 DOI: 10.3390/pathogens9110951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
The influenza A virus is a human pathogen causing respiratory infections. The ability of this virus to trigger seasonal epidemics and sporadic pandemics is a result of its high genetic variability, leading to the ineffectiveness of vaccinations and current therapies. The source of this variability is the accumulation of mutations in viral genes and reassortment enabled by its segmented genome. The latter process can induce major changes and the production of new strains with pandemic potential. However, not all genetic combinations are tolerated and lead to the assembly of complete infectious virions. Reports have shown that viral RNA segments co-segregate in particular circumstances. This tendency is a consequence of the complex and selective genome packaging process, which takes place in the final stages of the viral replication cycle. It has been shown that genome packaging is governed by RNA–RNA interactions. Intersegment contacts create a network, characterized by the presence of common and strain-specific interaction sites. Recent studies have revealed certain RNA regions, and conserved secondary structure motifs within them, which may play functional roles in virion assembly. Growing knowledge on RNA structure and interactions facilitates our understanding of the appearance of new genome variants, and may allow for the prediction of potential reassortment outcomes and the emergence of new strains in the future.
Collapse
|
21
|
Jang WS, Lim DH, Nam J, Mihn DC, Sung HW, Lim CS, Kim J. Development of a multiplex isothermal amplification molecular diagnosis method for on-site diagnosis of influenza. PLoS One 2020; 15:e0238615. [PMID: 32915821 PMCID: PMC7485819 DOI: 10.1371/journal.pone.0238615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 01/30/2023] Open
Abstract
Influenza, which is an acute respiratory disease caused by the influenza virus, represents a worldwide public health and economic problem owing to the significant morbidity and mortality caused by its seasonal epidemics and pandemics. Sensitive and convenient methodologies for the detection of influenza viruses are important for clinical care and infection control as well as epidemiological investigations. Here, we developed a multiplex reverse transcription loop-mediated isothermal amplification (RT-LAMP) with quencher/fluorescence oligonucleotides connected by a 5' backward loop (LF or LB) primer for the detection of two subtypes of influenza viruses: Influenza A (A/H1 and A/H3) and influenza B. The detection limits of the multiplex RT-LAMP assay were 103 copies and 102 copies of RNA for influenza A and influenza B, respectively. The sensitivities of the multiplex influenza A/B/IC RT-LAMP assay were 94.62% and 97.50% for influenza A and influenza B clinical samples, respectively. The specificities of the multiplex influenza A/B/IC RT-LAMP assay were 100% for influenza A, influenza B, and healthy clinical samples. In addition, the multiplex influenza A/B/IC RT-LAMP assay had no cross-reactivity with other respiratory viruses.
Collapse
Affiliation(s)
- Woong Sik Jang
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Da Hye Lim
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeonghun Nam
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Do-CiC Mihn
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Haan Woo Sung
- Department of Veterinary Microbiology, College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeeyong Kim
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
22
|
Fodor E, Te Velthuis AJW. Structure and Function of the Influenza Virus Transcription and Replication Machinery. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038398. [PMID: 31871230 DOI: 10.1101/cshperspect.a038398] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transcription and replication of the influenza virus RNA genome is catalyzed by the viral heterotrimeric RNA-dependent RNA polymerase in the context of viral ribonucleoprotein (vRNP) complexes. Atomic resolution structures of the viral RNA synthesis machinery have offered insights into the initiation mechanisms of viral transcription and genome replication, and the interaction of the viral RNA polymerase with host RNA polymerase II, which is required for the initiation of viral transcription. Replication of the viral RNA genome by the viral RNA polymerase depends on host ANP32A, and host-specific sequence differences in ANP32A underlie the poor activity of avian influenza virus polymerases in mammalian cells. A failure to faithfully copy the viral genome segments can lead to the production of aberrant viral RNA products, such as defective interfering (DI) RNAs and mini viral RNAs (mvRNAs). Both aberrant RNA types have been implicated in innate immune responses against influenza virus infection. This review discusses recent insights into the structure-function relationship of the viral RNA polymerase and its role in determining host range and virulence.
Collapse
Affiliation(s)
- Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Aartjan J W Te Velthuis
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 2QQ, United Kingdom
| |
Collapse
|
23
|
A panel of anti-influenza virus nucleoprotein antibodies selected from phage-displayed synthetic antibody libraries with rapid diagnostic capability to distinguish diverse influenza virus subtypes. Sci Rep 2020; 10:13318. [PMID: 32770098 PMCID: PMC7414213 DOI: 10.1038/s41598-020-70135-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Immunoassays based on sandwich immuno-complexes of capture and detection antibodies simultaneously binding to the target analytes have been powerful technologies in molecular analyses. Recent developments in single molecule detection technologies enable the detection limit of the sandwich immunoassays approaching femtomolar (10-15 M), driving the needs of developing sensitive and specific antibodies for ever-increasingly broad applications in detecting and quantifying biomarkers. The key components underlying the sandwich immunoassays are antibody-based affinity reagents, for which the conventional sources are mono- or poly-clonal antibodies from immunized animals. The downsides of the animal-based antibodies as affinity reagents arise from the requirement of months of development timespan and limited choices of antibody candidates due to immunodominance of humoral immune responses in animals. Hence, developing animal antibodies capable of distinguishing highly related antigens could be challenging. To overcome the limitation imposed by the animal immune systems, we developed an in vitro methodology based on phage-displayed synthetic antibody libraries for diverse antibodies as affinity reagents against closely related influenza virus nucleoprotein (NP) subtypes, aiming to differentiating avian influenza virus (H5N1) from seasonal influenza viruses (H1N1 and H3N2), for which the NPs are closely related by 90-94% in terms of pairwise amino acid sequence identity. We applied the methodology to attain, within four weeks, a panel of IgGs with distinguishable specificities against a group of representative NPs with pairwise amino acid sequence identities up to more than 90%, and the antibodies derived from the antibody libraries without further affinity refinement had comparable affinity of mouse antibodies to the NPs with the detection limit less than 1 nM of viral NP from lysed virus with sandwich ELISA. The panel of IgGs were capable of rapidly distinguishing infections due to virulent avian influenza virus from infections of seasonal flu, in responding to a probable emergency scenario where avian influenza virus would be transmissible among humans overlapping with the seasonal influenza infections. The results indicate that the in vitro antibody development methodology enables developing diagnostic antibodies that would not otherwise be available from animal-based antibody technologies.
Collapse
|
24
|
Tsai SK, Shih CH, Chang HW, Teng KH, Hsu WE, Lin HJ, Lin HY, Huang CH, Chen HW, Wang LC. Replication of a Dog-Origin H6N1 Influenza Virus in Cell Culture and Mice. Viruses 2020; 12:v12070704. [PMID: 32629810 PMCID: PMC7412498 DOI: 10.3390/v12070704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 12/30/2022] Open
Abstract
The world’s first natural avian-origin H6N1 influenza A virus infection case in dogs was confirmed in Taiwan in 2014. The H6N1 virus in chickens has been endemic in Taiwan since 1972. Whether the dog H6N1 virus has interspecies transmission potential is the key issue we aim to understand. Following one virus passage in embryonated eggs and two further passages in MDCK cells, we obtained two virus derivatives, E01EE (PB1 739E and PB2 627E) and E01GK (PB1 739G and PB2 627K), respectively. The pathogenicity of E01EE and E01GK was investigated using plaque assay, growth dynamic analysis and cell viability quantification in cells from different animal species. The impact of amino acid mutation on PB1 739 and PB2 627 on viral ribonucleoprotein (RNP) activity was also analyzed. Further mouse infection experiments were performed. The results showed that both E01EE and E01GK decreased cell relative viability of canine MDCK cells, human A549 cells and chicken DF1 cells. E01Gk caused greater cellular harm in MDCK and A549 cells and had significantly higher virus titers in all of the cells compared to E01EE. The PB2 627K but not PB1 739G was the critical mutation that influenced the viral RNP activity. Both E01EE and E01GK caused mice pneumonia and considerable virus shedding, especially E01GK. This report verifies PB2 E627K mutation in virulence and spotlights the potential for the dog H6N1 virus to extend interspecies transmission.
Collapse
Affiliation(s)
- Shou-Kuan Tsai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (S.-K.T.); (H.-J.L)
| | - Cheng-Hsin Shih
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.S.); (H.-W.C.); (K.-H.T.); (W.-E.H.); (H.-Y.L.); (H.-W.C.)
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.S.); (H.-W.C.); (K.-H.T.); (W.-E.H.); (H.-Y.L.); (H.-W.C.)
| | - Kuang-Huan Teng
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.S.); (H.-W.C.); (K.-H.T.); (W.-E.H.); (H.-Y.L.); (H.-W.C.)
| | - Wei-En Hsu
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.S.); (H.-W.C.); (K.-H.T.); (W.-E.H.); (H.-Y.L.); (H.-W.C.)
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; (S.-K.T.); (H.-J.L)
| | - Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.S.); (H.-W.C.); (K.-H.T.); (W.-E.H.); (H.-Y.L.); (H.-W.C.)
| | | | - Hui-Wen Chen
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.S.); (H.-W.C.); (K.-H.T.); (W.-E.H.); (H.-Y.L.); (H.-W.C.)
| | - Lih-Chiann Wang
- School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan; (C.-H.S.); (H.-W.C.); (K.-H.T.); (W.-E.H.); (H.-Y.L.); (H.-W.C.)
- Correspondence:
| |
Collapse
|
25
|
Defective Influenza A Virus RNA Products Mediate MAVS-Dependent Upregulation of Human Leukocyte Antigen Class I Proteins. J Virol 2020; 94:JVI.00165-20. [PMID: 32321802 PMCID: PMC7307169 DOI: 10.1128/jvi.00165-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/16/2020] [Indexed: 01/14/2023] Open
Abstract
Human leukocyte antigens (HLAs) are cell surface proteins that regulate innate and adaptive immune responses to viral infection by engaging with receptors on immune cells. Many viruses have evolved ways to evade host immune responses by modulating HLA expression and/or processing. Here, we provide evidence that aberrant RNA products of influenza virus genome replication can trigger retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS)-dependent remodeling of the cell surface, increasing surface presentation of HLA proteins known to inhibit the activation of an immune cell known as a natural killer (NK) cell. While this HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein, which limits RIG-I activation and interferon production by the infected cell. Influenza A virus (IAV) increases the presentation of class I human leukocyte antigen (HLA) proteins that limit antiviral responses mediated by natural killer (NK) cells, but molecular mechanisms for these processes have not yet been fully elucidated. We observed that infection with A/Fort Monmouth/1/1947(H1N1) IAV significantly increased the presentation of HLA-B, -C, and -E on lung epithelial cells. Virus entry was not sufficient to induce HLA upregulation because UV-inactivated virus had no effect. Aberrant internally deleted viral RNAs (vRNAs) known as mini viral RNAs (mvRNAs) and defective interfering RNAs (DI RNAs) expressed from an IAV minireplicon were sufficient for inducing HLA upregulation. These defective RNAs bind to retinoic acid-inducible gene I (RIG-I) and initiate mitochondrial antiviral signaling (MAVS) protein-dependent antiviral interferon (IFN) responses. Indeed, MAVS was required for HLA upregulation in response to IAV infection or ectopic mvRNA/DI RNA expression. The effect was partially due to paracrine signaling, as we observed that IAV infection or mvRNA/DI RNA-expression stimulated production of IFN-β and IFN-λ1 and conditioned media from these cells elicited a modest increase in HLA surface levels in naive epithelial cells. HLA upregulation in response to aberrant viral RNAs could be prevented by the Janus kinase (JAK) inhibitor ruxolitinib. While HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein; we determined that NS1 limits cell-intrinsic and paracrine mechanisms of HLA upregulation. Taken together, our findings indicate that aberrant IAV RNAs stimulate HLA presentation, which may aid viral evasion of innate immunity. IMPORTANCE Human leukocyte antigens (HLAs) are cell surface proteins that regulate innate and adaptive immune responses to viral infection by engaging with receptors on immune cells. Many viruses have evolved ways to evade host immune responses by modulating HLA expression and/or processing. Here, we provide evidence that aberrant RNA products of influenza virus genome replication can trigger retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS)-dependent remodeling of the cell surface, increasing surface presentation of HLA proteins known to inhibit the activation of an immune cell known as a natural killer (NK) cell. While this HLA upregulation would seem to be advantageous to the virus, it is kept in check by the viral nonstructural 1 (NS1) protein, which limits RIG-I activation and interferon production by the infected cell.
Collapse
|
26
|
Audi A, Soudani N, Dbaibo G, Zaraket H. Depletion of Host and Viral Sphingomyelin Impairs Influenza Virus Infection. Front Microbiol 2020; 11:612. [PMID: 32425895 PMCID: PMC7203554 DOI: 10.3389/fmicb.2020.00612] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Influenza A virus (IAV) is a major human respiratory pathogen causing annual epidemics as well as periodic pandemics. A complete understanding of the virus pathogenesis and host factors involved in the viral lifecycle is crucial for developing novel therapeutic approaches. Sphingomyelin (SM) is the most abundant membrane sphingolipid. It preferentially associates with cholesterol to form distinct domains named lipid rafts. Sphingomyelinases, including acid sphingomyelinase (ASMase), catalyzes the hydrolysis of membrane SM and consequently transform lipid rafts into ceramide-enriched membrane platforms. In this study, we investigated the effect of SM hydrolysis on IAV propagation. Depleting plasma membrane SM by exogenous bacterial SMase (bSMase) impaired virus infection and reduced virus entry, whereas exogenous SM enhanced infection. Moreover, the depletion of virus envelope SM also reduced virus infectivity and impaired its attachment and internalization. Nonetheless, inhibition of ASMase by desipramine did not affect IAV infection. Similarly, virus replication was not impaired in Niemann-Pick disease type A (NPA) cells, which lack functional ASMase. IAV infection in A549 cells was associated with suppression of ASMase activity starting at 6 h post-infection. Our data reveals that intact cellular and viral envelope SM is required for efficient IAV infection. Therefore, SM metabolism can be a potential target for therapeutic intervention against influenza virus infection.
Collapse
Affiliation(s)
- Amani Audi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadia Soudani
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Ghassan Dbaibo
- Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hassan Zaraket
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Center for Infectious Diseases Research, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
27
|
Makau JN, Watanabe K, Otaki H, Mizuta S, Ishikawa T, Kamatari YO, Nishida N. A Quinolinone Compound Inhibiting the Oligomerization of Nucleoprotein of Influenza A Virus Prevents the Selection of Escape Mutants. Viruses 2020; 12:v12030337. [PMID: 32204549 PMCID: PMC7150793 DOI: 10.3390/v12030337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of resistance to currently available anti-influenza drugs has heightened the need for antivirals with novel mechanisms of action. The influenza A virus (IAV) nucleoprotein (NP) is highly conserved and essential for the formation of viral ribonucleoprotein (vRNP), which serves as the template for replication and transcription. Recently, using in silico screening, we identified an antiviral compound designated NUD-1 (a 4-hydroxyquinolinone derivative) as a potential inhibitor of NP. In this study, we further analyzed the interaction between NUD-1 and NP and found that the compound interferes with the oligomerization of NP, which is required for vRNP formation, leading to the suppression of viral transcription, protein synthesis, and nuclear export of NP. We further assessed the selection of resistant variants by serially passaging a clinical isolate of the 2009 H1N1 pandemic influenza virus in the presence of NUD-1 or oseltamivir. NUD-1 did not select for resistant variants after nine passages, whereas oseltamivir selected for resistant variants after five passages. Our data demonstrate that NUD-1 interferes with the oligomerization of NP and less likely induces drug-resistant variants than oseltamivir; hence, it is a potential lead compound for the development of novel anti-influenza drugs.
Collapse
Affiliation(s)
- Juliann Nzembi Makau
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (J.N.M.); (N.N.)
| | - Ken Watanabe
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (J.N.M.); (N.N.)
- Department of Lifestyle Design, Faculty of Human Ecology, Yasuda Women’s University, 6-13-1 Yasuhigashi, Asaminami ward, Hiroshima 731-0153, Japan
- Correspondence: ; Tel.: +81-82-878-9139
| | - Hiroki Otaki
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (H.O.); (S.M.)
| | - Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (H.O.); (S.M.)
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan;
| | - Yuji O. Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan;
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; (J.N.M.); (N.N.)
| |
Collapse
|
28
|
Structural insights into influenza A virus ribonucleoproteins reveal a processive helical track as transcription mechanism. Nat Microbiol 2020; 5:727-734. [PMID: 32152587 DOI: 10.1038/s41564-020-0675-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
The influenza virus genome consists of eight viral ribonucleoproteins (vRNPs), each consisting of a copy of the polymerase, one of the genomic RNA segments and multiple copies of the nucleoprotein arranged in a double helical conformation. vRNPs are macromolecular machines responsible for messenger RNA synthesis and genome replication, that is, the formation of progeny vRNPs. Here, we describe the structural basis of the transcription process. The mechanism, which we call the 'processive helical track', is based on the extreme flexibility of the helical part of the vRNP that permits a sliding movement between both antiparallel nucleoprotein-RNA strands, thereby allowing the polymerase to move over the genome while bound to both RNA ends. Accordingly, we demonstrate that blocking this movement leads to inhibition of vRNP transcriptional activity. This mechanism also reveals a critical role of the nucleoprotein in maintaining the double helical structure throughout the copying process to make the RNA template accessible to the polymerase.
Collapse
|
29
|
Bissaro M, Sturlese M, Moro S. Exploring the RNA-Recognition Mechanism Using Supervised Molecular Dynamics (SuMD) Simulations: Toward a Rational Design for Ribonucleic-Targeting Molecules? Front Chem 2020; 8:107. [PMID: 32175307 PMCID: PMC7057144 DOI: 10.3389/fchem.2020.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 11/30/2022] Open
Abstract
Although proteins have represented the molecular target of choice in the development of new drug candidates, the pharmaceutical importance of ribonucleic acids has gradually been growing. The increasing availability of structural information has brought to light the existence of peculiar three-dimensional RNA arrangements, which can, contrary to initial expectations, be recognized and selectively modulated through small chemical entities or peptides. The application of classical computational methodologies, such as molecular docking, for the rational development of RNA-binding candidates is, however, complicated by the peculiarities characterizing these macromolecules, such as the marked conformational flexibility, the singular charges distribution, and the relevant role of solvent molecules. In this work, we have thus validated and extended the applicability domain of SuMD, an all-atoms molecular dynamics protocol that allows to accelerate the sampling of molecular recognition events on a nanosecond timescale, to ribonucleotide targets of pharmaceutical interest. In particular, we have proven the methodological ability by reproducing the binding mode of viral or prokaryotic ribonucleic complexes, as well as that of artificially engineered aptamers, with an impressive degree of accuracy.
Collapse
Affiliation(s)
- Maicol Bissaro
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
30
|
Kumar S, Yeo D, Harur Muralidharan N, Lai SK, Tong C, Tan BH, Sugrue RJ. Impaired Nuclear Export of the Ribonucleoprotein Complex and Virus-Induced Cytotoxicity Combine to Restrict Propagation of the A/Duck/Malaysia/02/2001 (H9N2) Virus in Human Airway Cells. Cells 2020; 9:cells9020355. [PMID: 32028682 PMCID: PMC7072679 DOI: 10.3390/cells9020355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 01/02/2023] Open
Abstract
In humans, (A549) cells impaired H9N2 virus nuclear export of the ribonucleoprotein (RNP) complex contrasted with the early and efficient nuclear export of the H1N1/WSN and pH1N1 virus RNP complexes. Although nuclear export of the RNP complex occurred via the nuclear pore complex, H9N2 virus infection also induced modifications in the nuclear envelope and induced cell cytotoxicity. Reduced PA protein levels in H9N2 virus-infected A549 cells occurred, and this phenomenon was independent of virus infection. Silencing the H1N1/WSN PA protein expression leads to impaired nuclear export of RNP complexes, suggesting that the impaired nuclear export of the H9N2 virus RNP complex may be one of the consequences of reduced PA protein levels. Early and efficient export of the RNP complex occurred in H9N2 virus-infected avian (CEF) cells, although structural changes in the nuclear envelope also occurred. Collectively our data suggest that a combination of delayed nuclear export and virus-induced cell cytotoxicity restricts H9N2 virus transmission in A549 cells. However, the early and efficient export of the RNP complex mitigated the effects of virus-induced cytotoxicity on H9N2 virus transmission in CEF cells. Our findings highlight the multi-factorial nature of host-adaptation of the polymerase proteins of avian influenza viruses in non-avian cell environments.
Collapse
Affiliation(s)
- Sriram Kumar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (S.K.); (D.Y.); (N.H.M.); (S.K.L.); (C.T.)
| | - Dawn Yeo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (S.K.); (D.Y.); (N.H.M.); (S.K.L.); (C.T.)
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore;
| | - Nisha Harur Muralidharan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (S.K.); (D.Y.); (N.H.M.); (S.K.L.); (C.T.)
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (S.K.); (D.Y.); (N.H.M.); (S.K.L.); (C.T.)
| | - Cathlyn Tong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (S.K.); (D.Y.); (N.H.M.); (S.K.L.); (C.T.)
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore;
| | - Richard J. Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (S.K.); (D.Y.); (N.H.M.); (S.K.L.); (C.T.)
- Correspondence:
| |
Collapse
|
31
|
Pham T, Nguyen HL, Phan-Toai T, Nguyen H. Investigation of Binding Affinity between Potential Antiviral Agents and PB2 Protein of Influenza A: Non-equilibrium Molecular Dynamics Simulation Approach. Int J Med Sci 2020; 17:2031-2039. [PMID: 32788882 PMCID: PMC7415388 DOI: 10.7150/ijms.46231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
The PB2 protein of the influenza virus RNA polymerase is a major virulence determinant of influenza viruses. It binds to the cap structure at the 5' end of host mRNA to generate short capped RNA fragments that are used as primers for viral transcription named cap-snatching. A large number of the compounds were shown to bind the minimal cap-binding domain of PB2 to inhibit the cap-snatching machinery. However, their binding in the context of an extended form of the PB2 protein has remained elusive. A previous study reported some promising compounds including azaindole and hydroxymethyl azaindole, which were analyzed here to predict binding affinity to PB2 protein using the steered molecular dynamics (SMD) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods. The results show that the rupture force (Fmax) value of three complexes is in agreement with the binding free energy value (ΔGbind) estimated by the MM-PBSA method, whereas for the non-equilibrium pulling work (Wpull) value a small difference between A_PB2-4 and A_PB2-12 was observed. The binding affinity results indicate the A_PB2-12 complex is more favorable than the A_PB2-4 and A_PB2-16 complexes, which means the inhibitor (12) has the potential to be further developed as anti-influenza agents in the treatment of influenza A.
Collapse
Affiliation(s)
- Tri Pham
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.,VNUHCM-University of Technology, Ho Chi Minh City, Vietnam
| | - Hoang Linh Nguyen
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam.,VNUHCM-University of Technology, Ho Chi Minh City, Vietnam
| | - Tuyn Phan-Toai
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| | - Hung Nguyen
- Institute for Computational Science and Technology, Ho Chi Minh City, Vietnam
| |
Collapse
|
32
|
Woodring JL, Lu SH, Krasnova L, Wang SC, Chen JB, Chou CC, Huang YC, Cheng TJR, Wu YT, Chen YH, Fang JM, Tsai MD, Wong CH. Disrupting the Conserved Salt Bridge in the Trimerization of Influenza A Nucleoprotein. J Med Chem 2019; 63:205-215. [PMID: 31769665 DOI: 10.1021/acs.jmedchem.9b01244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiviral drug resistance in influenza infections has been a major threat to public health. To develop a broad-spectrum inhibitor of influenza to combat the problem of drug resistance, we previously identified the highly conserved E339...R416 salt bridge of the nucleoprotein trimer as a target and compound 1 as an inhibitor disrupting the salt bridge with an EC50 = 2.7 μM against influenza A (A/WSN/1933). We have further modified this compound via a structure-based approach and performed antiviral activity screening to identify compounds 29 and 30 with EC50 values of 110 and 120 nM, respectively, and without measurable host cell cytotoxicity. Compared to the clinically used neuraminidase inhibitors, these two compounds showed better activity profiles against drug-resistant influenza A strains, as well as influenza B, and improved survival of influenza-infected mice.
Collapse
Affiliation(s)
- Jennifer L Woodring
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Shao-Hung Lu
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | | | - Jhih-Bin Chen
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Chiu-Chun Chou
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Yi-Chou Huang
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | | | | | | | - Jim-Min Fang
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | | | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
33
|
Serna M. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Front Mol Biosci 2019; 6:33. [PMID: 31157234 PMCID: PMC6529575 DOI: 10.3389/fmolb.2019.00033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/24/2019] [Indexed: 01/23/2023] Open
Abstract
Electron microscopy of frozen hydrated samples (cryo-EM) is a powerful structural technique that allows the direct study of functional macromolecular complexes in an almost physiological environment. Protein macromolecular complexes are dynamic structures that usually hold together by an intricate network of protein-protein interactions that can be weak and transient. Moreover, a standard feature of many of these complexes is that they behave as nanomachines able to undergo functionally relevant conformational changes in one or several complex components. Among all the other main structural biology techniques, only cryo-EM has the potential of successfully dealing at the same time with both sample heterogeneity and inherent flexibility. The cryo-EM field is currently undergoing a revolution thanks to groundbreaking technical developments that have brought within our reach the possibility of solving the structure of biological complexes at atomic resolution. These technical developments have been mostly focused on new direct electron detector technology and improved sample preparation methods leading to better image quality. This fact has in turn required the development of new and better image processing algorithms to make the most of the higher quality data. The aim of this review is to provide a brief overview of some reported examples of single particle analysis strategies designed to find different conformational and compositional states within target macromolecular complex and specifically to deal with it to reach higher resolution information. Different image processing methodologies specifically aimed to symmetric or pseudo-symmetric protein complexes will also be discussed.
Collapse
Affiliation(s)
- Marina Serna
- Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
34
|
Wu X, Wang J, Wang S, Wu F, Chen Z, Li C, Cheng G, Qin FXF. Inhibition of Influenza A Virus Replication by TRIM14 via Its Multifaceted Protein-Protein Interaction With NP. Front Microbiol 2019; 10:344. [PMID: 30873142 PMCID: PMC6401474 DOI: 10.3389/fmicb.2019.00344] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 02/08/2019] [Indexed: 01/12/2023] Open
Abstract
Influenza A virus (IAV) is a worldwide ongoing health threat causing diseases in both humans and animals. The interaction between IAV and host is a dynamic and evolving process that influences the pathogenicity and host specificity of the virus. TRIM14, a member of tripartite motif (TRIM) family, has been demonstrated to possess a strong capability of regulating type I interferon and NF-κB induction in host defense against viral infection. In this study, we found that TRIM14 could restrict the replication of IAV in a type I interferon and NF-κB independent manner. Mechanistically, different domains of TRIM14 could selectively interact with the viral nucleoprotein (NP), resulting in disparate influences on the RNP formation and viral replication. In particular, the PRYSPRY domain of TRIM14 exhibited a potent inhibitory activity on NP protein stability and IAV replication. On the contrary, the ΔS2 domain could rather antagonize the function of PRYSPRY domain and promote the IAV RNP formation by stabilizing NP. At the biochemical level, TRIM14-NP interaction could induce the K48-linked ubiquitination and proteasomal degradation of NP. Moreover, due to the rapid degradation of newly synthesized NP, TRIM14 could effectively block the translocation of NP from cytoplasm to nucleus thus further restrain the propagation of IAV in host cells. Taken together, our study has unraveled a previously unknown mechanism of TRIM14 mediated inhibition on RNP formation and influenza virus replication, and provides a new paradigm of complex and multifaceted host-pathogen interaction between ISG and viral protein.
Collapse
Affiliation(s)
- Xiangwei Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingfeng Wang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Wang
- Department of Pathology, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Fei Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhigao Chen
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunfeng Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Genhong Cheng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - F. Xiao-Feng Qin
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Pazo A, Pérez-González A, Oliveros JC, Huarte M, Chavez JP, Nieto A. hCLE/RTRAF-HSPC117-DDX1-FAM98B: A New Cap-Binding Complex That Activates mRNA Translation. Front Physiol 2019; 10:92. [PMID: 30833903 PMCID: PMC6388641 DOI: 10.3389/fphys.2019.00092] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/25/2019] [Indexed: 11/29/2022] Open
Abstract
hCLE/C14orf166/RTRAF, DDX1, and HSPC117 are components of cytoplasmic mRNA-transporting granules kinesin-associated in dendrites. They have also been found in cytoplasmic ribosome-containing RNA granules that transport specific mRNAs halted for translation until specific neuronal signals renders them accessible to the translation machinery. hCLE associates to DDX1, HSPC117, and FAM98B in HEK293T cells and all four proteins bind to cap analog-containing resins. Competition and elution experiments indicate that binding of hCLE complex to cap resins is independent of eIF4E; the cap-binding factor needed for translation. Purified hCLE free of its associated proteins binds cap with low affinity suggesting that its interacting proteins modulate its cap association. hCLE silencing reduces hCLE accumulation and that of its interacting proteins and decreases mRNA translation. hCLE-associated RNAs have been isolated and sequenced; RNAs involved in mRNA translation are specifically associated. The data suggest that RNA granules may co-transport RNAs encoding proteins involved in specific functions together with RNAs that encode proteins needed for the translation of these specific RNAs and indicate an important role for hCLE modulating mRNA translation.
Collapse
Affiliation(s)
- Alejandra Pazo
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Alicia Pérez-González
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | | | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan Pablo Chavez
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Amelia Nieto
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
36
|
Wei X, Liu Z, Wang J, Yang R, Yang J, Guo Y, Tan H, Chen H, Liu Q, Liu L. The interaction of cellular protein ANP32A with influenza A virus polymerase component PB2 promotes vRNA synthesis. Arch Virol 2019; 164:787-798. [PMID: 30666459 DOI: 10.1007/s00705-018-04139-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
Abstract
The subunits PA, PB1, and PB2 of influenza A virus RNA polymerase are essential for efficient viral RNA synthesis and virus replication because of their role in recruiting multiple nuclear proteins. ANP32A is an acidic leucine-rich nuclear phosphoprotein 32 (ANP32) family member and a crucial cellular protein that determines the species specificity of the influenza virus RNA polymerase activity. However, how ANP32A modulates polymerase activity remains largely unknown. In this study, we showed that viral RNA synthesis was increased in A549 cells overexpressing ANP32A and decreased after treatment with ANP32A RNAi. This decrease in RNA synthesis was reversed by rescued ANP32A expression. The results of docking modeling, co-immunoprecipitation, and yeast two-hybrid assays showed that PB2 was the only subunit of the three that interacted with ANP32A. The C-terminal portion of ANP32A and the middle domains (residues 307-534) of PB2 were required for PB2-ANP32A interaction. Glu189 and Glu196 in ANP32A and Gly450 and Gln447 in PB2 were essential for interaction between ANP32A and PB2. These residues were located in conserved regions of the ANP32A or PB2 protein sequences. These data suggest that ANP32A is recruited to the polymerase through direct interaction with PB2 via critical amino acid residue interactions and promotes viral RNA synthesis. Our findings might provide new insights into the molecular mechanisms underlying influenza virus RNA synthesis and replication in infected human cells.
Collapse
Affiliation(s)
- Xiuli Wei
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhixin Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jingjie Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Ruiping Yang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jing Yang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yang Guo
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Huabing Tan
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, 443000, China
| | - Long Liu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
- Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
37
|
Te Velthuis AJW, Long JC, Bauer DLV, Fan RLY, Yen HL, Sharps J, Siegers JY, Killip MJ, French H, Oliva-Martín MJ, Randall RE, de Wit E, van Riel D, Poon LLM, Fodor E. Mini viral RNAs act as innate immune agonists during influenza virus infection. Nat Microbiol 2018; 3:1234-1242. [PMID: 30224800 PMCID: PMC6203953 DOI: 10.1038/s41564-018-0240-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
The molecular processes that determine the outcome of influenza virus infection in humans are multifactorial and involve a complex interplay between host, viral and bacterial factors1. However, it is generally accepted that a strong innate immune dysregulation known as 'cytokine storm' contributes to the pathology of infections with the 1918 H1N1 pandemic or the highly pathogenic avian influenza viruses of the H5N1 subtype2-4. The RNA sensor retinoic acid-inducible gene I (RIG-I) plays an important role in sensing viral infection and initiating a signalling cascade that leads to interferon expression5. Here, we show that short aberrant RNAs (mini viral RNAs (mvRNAs)), produced by the viral RNA polymerase during the replication of the viral RNA genome, bind to and activate RIG-I and lead to the expression of interferon-β. We find that erroneous polymerase activity, dysregulation of viral RNA replication or the presence of avian-specific amino acids underlie mvRNA generation and cytokine expression in mammalian cells. By deep sequencing RNA samples from the lungs of ferrets infected with influenza viruses, we show that mvRNAs are generated during infection in vivo. We propose that mvRNAs act as the main agonists of RIG-I during influenza virus infection.
Collapse
Affiliation(s)
- Aartjan J W Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | - Joshua C Long
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - David L V Bauer
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Rebecca L Y Fan
- School of Public Health, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hui-Ling Yen
- School of Public Health, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jane Sharps
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jurre Y Siegers
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Marian J Killip
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, UK
| | - Hollie French
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | - Richard E Randall
- Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, UK
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Debby van Riel
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Leo L M Poon
- School of Public Health, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Non-Uniform and Non-Random Binding of Nucleoprotein to Influenza A and B Viral RNA. Viruses 2018; 10:v10100522. [PMID: 30257455 PMCID: PMC6213415 DOI: 10.3390/v10100522] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/17/2018] [Accepted: 09/22/2018] [Indexed: 12/20/2022] Open
Abstract
The genomes of influenza A and B viruses have eight, single-stranded RNA segments that exist in the form of a viral ribonucleoprotein complex in association with nucleoprotein (NP) and an RNA-dependent RNA polymerase complex. We previously used high-throughput RNA sequencing coupled with crosslinking immunoprecipitation (HITS-CLIP) to examine where NP binds to the viral RNA (vRNA) and demonstrated for two H1N1 strains that NP binds vRNA in a non-uniform, non-random manner. In this study, we expand on those initial observations and describe the NP-vRNA binding profile for a seasonal H3N2 and influenza B virus. We show that, similar to H1N1 strains, NP binds vRNA in a non-uniform and non-random manner. Each viral gene segment has a unique NP binding profile with areas that are enriched for NP association as well as free of NP-binding. Interestingly, NP-vRNA binding profiles have some conservation between influenza A viruses, H1N1 and H3N2, but no correlation was observed between influenza A and B viruses. Our study demonstrates the conserved nature of non-uniform NP binding within influenza viruses. Mapping of the NP-bound vRNA segments provides information on the flexible NP regions that may be involved in facilitating assembly.
Collapse
|
39
|
Li Y, Sun L, Zheng W, Madina Mahesutihan, Li J, Bi Y, Wang H, Liu W, Luo TR. Phosphorylation and dephosphorylation of threonine 188 in nucleoprotein is crucial for the replication of influenza A virus. Virology 2018; 520:30-38. [PMID: 29775781 DOI: 10.1016/j.virol.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 10/16/2022]
Abstract
Nucleoprotein (NP) is a major component of the viral ribonucleoprotein (vRNP) complex that is responsible for viral replication, transcription and packaging of influenza A virus. Phosphorylation of NP plays an important role during viral infection. In the present study, we identified threonine 188 (T188) as a novel phosphorylated residue in the NP of influenza A virus by using mass spectrometry. T188 is located within nuclear export signal 2 (NES2) which is chromosome region maintenance 1 (CRM1)-independent. We observed that the phosphorylation and dephosphorylation of residue T188 regulated viral replication by controlling NES2-dependent NP nuclear export and the polymerase activity of the vRNP complex. Our findings provide further insights for understanding the replication of influenza A virus.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weinan Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Madina Mahesutihan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heran Wang
- International Department, Beijing National Day School, Beijing 100039, China
| | - Wenjun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ting Rong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
40
|
Conserved secondary structures predicted within the 5′ packaging signal region of influenza A virus PB2 segment. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
41
|
Abstract
Influenza is a negative-sense single-stranded RNA virus with segmented genome. Each segment is encapsidated by a ribonucleoprotein (RNP) complex composed of RNA-dependent RNA polymerase (RdRP) and multiple copies of nucleoprotein (NP). The RNP complex plays a crucial role in viral life cycle, supporting and regulating transcription and replication of viral genome in infected cells. The structural characterization of RdRP and RNP in recent years has shed light on its functions and mechanism of action. In this review, we summarize current understanding on the structure of RNP complex, as well as the structure of each subunit. Crucial functions of RNP are also discussed.
Collapse
Affiliation(s)
- Chun-Yeung Lo
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China.
| |
Collapse
|
42
|
Abstract
Negative-sense single-stranded RNA virus (NSRV) is featured by their ribonucleoprotein (RNP) complex composed by viral polymerase and genomic RNA enwrapped by nucleocapsid protein (NP). The RNP is packaged in virions and plays a central role throughout virus lifecycle. In the past decade, structural biology presents molecular insights into NPs encoded by most representative NSRVs, helping to understand the mechanism of RNP formation. Interestingly, works initiated from structural biology also reveal unexpected biological functions of virus NP beyond a structural protein. All these further the knowledge of virus NP and provide great potential for the discovery of antiviral agents to target virus RNP formation. In this chapter, we will summarize the structures and functions of viral NPs, as well as the attempt of NP-targeted antiviral development.
Collapse
Affiliation(s)
- Zhiyong Lou
- MOE Key Laboratory of Protein Science, School of Medicine, Tsinghua University, Beijing, China.
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
43
|
Binding affinity of the L-742,001 inhibitor to the endonuclease domain of A/H1N1/PA influenza virus variants: Molecular simulation approaches. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Role of influenza A virus NP acetylation on viral growth and replication. Nat Commun 2017; 8:1259. [PMID: 29097654 PMCID: PMC5668263 DOI: 10.1038/s41467-017-01112-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/17/2017] [Indexed: 12/29/2022] Open
Abstract
Lysine acetylation is a post-translational modification known to regulate protein functions. Here we identify several acetylation sites of the influenza A virus nucleoprotein (NP), including the lysine residues K77, K113 and K229. Viral growth of mutant virus encoding K229R, mimicking a non-acetylated NP lysine residue, is severely impaired compared to wildtype or the mutant viruses encoding K77R or K113R. This attenuation is not the result of decreased polymerase activity, altered protein expression or disordered vRNP co-segregation but rather caused by impaired particle release. Interestingly, release deficiency is also observed mimicking constant acetylation at this site (K229Q), whereas virus encoding NP-K113Q could not be generated. However, mimicking NP hyper-acetylation at K77 and K229 severely diminishes viral polymerase activity, while mimicking NP hypo-acetylation at these sites has no effect on viral replication. These results suggest that NP acetylation at K77, K113 and K229 impacts multiple steps in viral replication of influenza A viruses. Post-translational modifications of influenza A virus proteins can regulate virus replication, but the effect of nucleoprotein (NP) acetylation is not known. Here, Giese et al. identify four NP lysine residues that are acetylated in infected cells and study their role in polymerase activity and virion release.
Collapse
|
45
|
Chen W, Xu Q, Zhong Y, Yu H, Shu J, Ma T, Li Z. Genetic variation and co-evolutionary relationship of RNA polymerase complex segments in influenza A viruses. Virology 2017; 511:193-206. [PMID: 28866238 DOI: 10.1016/j.virol.2017.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
Abstract
The RNA polymerase complex (RNApc) in influenza A viruses (IVs) is composed of the PB2, PB1 and PA subunits, which are encoded by the three longest genome segments (Seg1-3) and are responsible for the replication of vRNAs and transcription of viral mRNAs. However, the co-evolutionary relationships of the three segments from the known 126 subtypes IVs are unclear. In this study, we performed a detailed analysis based on a total number of 121,191 nucleotide sequences. Three segment sequences were aligned before the repeated, incomplete and mixed sequences were removed for homologous and phylogenetic analyses. Subsequently, the estimated substitution rates and TMRCAs (Times for Most Recent Common Ancestor) were calculated by 175 representative IVs. Tracing the cladistic distribution of three segments from these IVs, co-evolutionary patterns and trajectories could be inferred. The further correlation analysis of six internal protein coding segments reflect the RNApc segments have the closer correlation than others during continuous reassortments. This global approach facilitates the establishment of a fast antiviral strategy and monitoring of viral variation.
Collapse
Affiliation(s)
- Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Qi Xu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yaogang Zhong
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
46
|
Lee N, Le Sage V, Nanni AV, Snyder DJ, Cooper VS, Lakdawala SS. Genome-wide analysis of influenza viral RNA and nucleoprotein association. Nucleic Acids Res 2017; 45:8968-8977. [PMID: 28911100 PMCID: PMC5587783 DOI: 10.1093/nar/gkx584] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/28/2017] [Indexed: 12/23/2022] Open
Abstract
Influenza A virus (IAV) genomes are composed of eight single-stranded RNA segments that are coated by viral nucleoprotein (NP) molecules. Classically, the interaction between NP and viral RNA (vRNA) is depicted as a uniform pattern of ‘beads on a string’. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP), we identified the vRNA binding profiles of NP for two H1N1 IAV strains in virions. Contrary to the prevailing model for vRNA packaging, NP does not bind vRNA uniformly in the A/WSN/1933 and A/California/07/2009 strains, but instead each vRNA segment exhibits a unique binding profile, containing sites that are enriched or poor in NP association. Intriguingly, both H1N1 strains have similar yet distinct NP binding profiles despite extensive sequence conservation. Peaks identified by HITS-CLIP were verified as true NP binding sites based on insensitivity to DNA antisense oligonucleotide-mediated RNase H digestion. Moreover, nucleotide content analysis of NP peaks revealed that these sites are relatively G-rich and U-poor compared to the genome-wide nucleotide content, indicating an as-yet unidentified sequence bias for NP association in vivo. Taken together, our genome-wide study of NP–vRNA interaction has implications for the understanding of influenza vRNA architecture and genome packaging.
Collapse
Affiliation(s)
- Nara Lee
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Valerie Le Sage
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Adalena V Nanni
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Dan J Snyder
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Vaughn S Cooper
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Seema S Lakdawala
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, 450 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
47
|
Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Curr Top Med Chem 2017; 17:2271-2285. [PMID: 28240183 DOI: 10.2174/1568026617666170224122508] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 01/25/2023]
Abstract
Prevention and treatment of influenza virus infection is an ongoing unmet medical need. Each year, thousands of deaths and millions of hospitalizations are attributed to influenza virus infection, which poses a tremendous health and economic burden to the society. Aside from the annual influenza season, influenza viruses also lead to occasional influenza pandemics as a result of emerging or re-emerging influenza strains. Influenza viruses are RNA viruses that exist in quasispecies, meaning that they have a very diverse genetic background. Such a feature creates a grand challenge in devising therapeutic intervention strategies to inhibit influenza virus replication, as a single agent might not be able to inhibit all influenza virus strains. Both classes of currently approved anti-influenza drugs have limitations: the M2 channel blockers amantadine and rimantadine are no longer recommended for use in the U.S. due to predominant drug resistance, and resistance to the neuraminidase inhibitor oseltamivir is continuously on the rise. In pursuing the next generation of antiviral drugs with broad-spectrum activity and higher genetic barrier of drug resistance, the influenza virus nucleoprotein (NP) stands out as a high-profile drug target. This review summarizes recent developments in designing inhibitors targeting influenza NP and their mechanisms of action.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Hannah Sneyd
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Raphael Dekant
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| |
Collapse
|
48
|
Flatt JW, Greber UF. Viral mechanisms for docking and delivering at nuclear pore complexes. Semin Cell Dev Biol 2017; 68:59-71. [PMID: 28506891 DOI: 10.1016/j.semcdb.2017.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022]
Abstract
Some viruses possess the remarkable ability to transport their genomes across nuclear pore complexes (NPCs) for replication inside the host cell's intact nuclear compartment. Viral mechanisms for crossing the restrictive NPC passageway are highly complex and astonishingly diverse, requiring in each case stepwise interaction between incoming virus particles and components of the nuclear transport machinery. Exactly how a large viral genome loaded with accessory proteins is able to pass through the relatively narrow central channel of the NPC without causing catastrophic structural damage is not yet fully understood. It appears likely, however, that the overall structure of the NPC changes in response to the cargo. Translocation may result in nucleic acids being misdelivered to the cytoplasm. Here we consider in detail the diverse strategies that viruses have evolved to target and subvert NPCs during infection. For decades, this process has both captivated and confounded researchers in the fields of virology, cell biology, and structural biology.
Collapse
Affiliation(s)
- Justin W Flatt
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
49
|
Myaing MZ, Jumat MR, Huong TN, Tan BH, Sugrue RJ. Truncated forms of the PA protein containing only the C-terminal domains are associated with the ribonucleoprotein complex within H1N1 influenza virus particles. J Gen Virol 2017; 98:906-921. [PMID: 28141511 DOI: 10.1099/jgv.0.000721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have examined the expression profile of the influenza virus PA protein in pH1N1/2009 virus-infected cells. Immunoblotting analysis of virus-infected MDCK cells revealed the presence of full-length PA protein from 8 h post-infection, together with the simultaneous appearance of PA protein species of approximately 50, 35/39 and 20/25 kDa (collectively referred to as PA*). PA* was also detected in H1N1/WSN-virus-infected cells, indicating that its presence was not virus-specific, and it was also observed in virus-infected A549 and chick embryo fibroblast (CEF) cells, indicating that its presence was not cell-type-specific. PA* was detected in cells expressing the recombinant PA protein, indicating that the PA* formation occurred in the absence of virus infection. These data collectively indicated that PA* formation is an intrinsic property of PA gene expression. The association of PA* with purified influenza virus particles was demonstrated by immunoblotting, and a protease protection assay provided evidence that PA* was packaged into virus particles. The ribonucleoprotein (RNP) complex was isolated from purified influenza virus particles using glycerol gradient centrifugation, which demonstrated that PA* was associated with the RNP complex. To the best of our knowledge, this is the first report to demonstrate that PA protein species containing only segments of the C-terminal domain form during influenza virus infection. Furthermore, these truncated PA protein species are subsequently packaged into virus particles as part of the functional RNP complex.
Collapse
Affiliation(s)
- Myint Zu Myaing
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Muhammad Raihan Jumat
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
50
|
Davis AM, Ramirez J, Newcomb LL. Identification of influenza A nucleoprotein body domain residues essential for viral RNA expression expose antiviral target. Virol J 2017; 14:22. [PMID: 28173821 PMCID: PMC5294902 DOI: 10.1186/s12985-017-0694-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background Influenza A virus is controlled with yearly vaccination while emerging global pandemics are kept at bay with antiviral medications. Unfortunately, influenza A viruses have emerged resistance to approved influenza antivirals. Accordingly, there is an urgent need for novel antivirals to combat emerging influenza A viruses resistant to current treatments. Conserved viral proteins are ideal targets because conserved protein domains are present in most, if not all, influenza subtypes, and are presumed less prone to evolve viable resistant versions. The threat of an antiviral resistant influenza pandemic justifies our study to identify and characterize antiviral targets within influenza proteins that are highly conserved. Influenza A nucleoprotein (NP) is highly conserved and plays essential roles throughout the viral lifecycle, including viral RNA synthesis. Methods Using NP crystal structure, we targeted accessible amino acids for substitution. To characterize the NP proteins, reconstituted viral ribonucleoproteins (vRNPs) were expressed in 293 T cells, RNA was isolated, and reverse transcription – quantitative PCR (RT-qPCR) was employed to assess viral RNA expressed from reconstituted vRNPs. Location was confirmed using cellular fractionation and western blot, along with observation of NP-GFP fusion proteins. Nucleic acid binding, oligomerization, and vRNP formation, were each assessed with native gel electrophoresis. Results Here we report characterization of an accessible and conserved five amino acid region within the NP body domain that plays a redundant but essential role in viral RNA synthesis. Our data demonstrate substitutions in this domain did not alter NP localization, oligomerization, or ability to bind nucleic acids, yet resulted in a defect in viral RNA expression. To define this region further, single and double amino acid substitutions were constructed and investigated. All NP single substitutions were functional, suggesting redundancy, yet different combinations of two amino acid substitutions resulted in a significant defect in RNA expression, confirming these accessible amino acids in the NP body domain play an important role in viral RNA synthesis. Conclusions The identified conserved and accessible NP body domain represents a viable antiviral target to counter influenza replication and this research will contribute to the well-informed design of novel therapies to combat emerging influenza viruses.
Collapse
Affiliation(s)
- Alicia M Davis
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA.,Present Address: Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Jose Ramirez
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA.,Present Address: Tufts University School of Medicine, Boston, MA, USA
| | - Laura L Newcomb
- Department of Biology, California State University San Bernardino, San Bernardino, CA, USA.
| |
Collapse
|