1
|
Bujdoš D, Walter J, O'Toole PW. aurora: a machine learning gwas tool for analyzing microbial habitat adaptation. Genome Biol 2025; 26:66. [PMID: 40122838 PMCID: PMC11930000 DOI: 10.1186/s13059-025-03524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
A primary goal of microbial genome-wide association studies is identifying genomic variants associated with a particular habitat. Existing tools fail to identify known causal variants if the analyzed trait shaped the phylogeny. Furthermore, due to inclusion of allochthonous strains or metadata errors, the stated sources of strains in public databases are often incorrect, and strains may not be adapted to the habitat from which they were isolated. We describe a new tool, aurora, that identifies autochthonous strains and the genes associated with habitats while acknowledging the potential role of the habitat adaptation trait in shaping phylogeny.
Collapse
Affiliation(s)
- Dalimil Bujdoš
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
2
|
Rooke JL, Goodall ECA, Pullela K, Da Costa R, Martinelli N, Smith C, Mora M, Cunningham AF, Henderson IR. Genome-wide fitness analysis of Salmonella enterica reveals aroA mutants are attenuated due to iron restriction in vitro. mBio 2024; 15:e0331923. [PMID: 39287440 PMCID: PMC11481492 DOI: 10.1128/mbio.03319-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Salmonella enterica is a globally disseminated pathogen that is the cause of over 100 million infections per year. The resulting diseases are dependent upon host susceptibility and the infecting serovar. As S. enterica serovar Typhimurium induces a typhoid-like disease in mice, this model has been used extensively to illuminate various aspects of Salmonella infection and host responses. Due to the severity of infection in this model, researchers often use strains of mice resistant to infection or attenuated Salmonella. Despite decades of research, many aspects of Salmonella infection and fundamental biology remain poorly understood. Here, we use a transposon insertion sequencing technique to interrogate the essential genomes of widely used isogenic wild-type and attenuated S. Typhimurium strains. We reveal differential essential pathways between strains in vitro and provide a direct link between iron starvation, DNA synthesis, and bacterial membrane integrity.IMPORTANCESalmonella enterica is an important clinical pathogen that causes a high number of deaths and is increasingly resistant to antibiotics. Importantly, S. enterica is used widely as a model to understand host responses to infection. Understanding how Salmonella survives in vivo is important for the design of new vaccines to combat this pathogen. Live attenuated vaccines have been used clinically for decades. A widely used mutation, aroA, is thought to attenuate Salmonella by restricting the ability of the bacterium to access particular amino acids. Here we show that this mutation limits the ability of Salmonella to acquire iron. These observations have implications for the interpretation of many previous studies and for the use of aroA in vaccine development.
Collapse
Affiliation(s)
- Jessica L Rooke
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Emily C A Goodall
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Nicole Martinelli
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Chelsie Smith
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Maria Mora
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Yousief SW, Abdelmalek N, Paglietti B. Optimizing phage-based mutant recovery and minimizing heat effect in the construction of transposon libraries in Staphylococcus aureus. Sci Rep 2024; 14:22831. [PMID: 39354068 PMCID: PMC11445466 DOI: 10.1038/s41598-024-73731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Staphylococcus aureus (S. aureus), particularly Methicillin-resistant S. aureus (MRSA), poses a significant global public health threat, necessitating advanced methodologies to enhance our understanding of this organism at the omics levels. This study introduces a refined protocol for constructing and curing high-density transposon mutant (tn-mutant) libraries in S. aureus, addressing the challenges associated with low transductant yields, and the complex genetic manipulation mechanism in Gram-positive bacteria. Our methodology employs a Himar1 transposon based on a two-plasmid system, leveraging Himar1's high insertional efficiency in AT-rich organisms. Enhanced transduction efficiency was achieved through chloramphenicol pre-treatment and the use of modified enriched media. Complementing this, an optimized plasmid curing procedure ensured a representative and stable tn-mutant library. The protocol was successfully applied to multiple S. aureus strains, demonstrating an increase in mutant recovery and reduced post-curing impact. The method offers a robust approach for Transposon Insertion Sequencing (TIS) applications in S. aureus, enabling deeper insights into survival, resistance, and pathogenicity mechanisms. This protocol holds a significant potential for accelerating the construction of tn-mutant libraries in various S. aureus strains.
Collapse
Affiliation(s)
- Sally W Yousief
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Nader Abdelmalek
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy.
| |
Collapse
|
4
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
5
|
Carfrae LA, Brown ED. Nutrient stress is a target for new antibiotics. Trends Microbiol 2023; 31:571-585. [PMID: 36709096 DOI: 10.1016/j.tim.2023.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Present address: Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| |
Collapse
|
6
|
Fleming BA, Blango MG, Rousek AA, Kincannon WM, Tran A, Lewis A, Russell C, Zhou Q, Baird LM, Barber A, Brannon JR, Beebout C, Bandarian V, Hadjifrangiskou M, Howard M, Mulvey M. A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Res 2022; 50:7570-7590. [PMID: 35212379 PMCID: PMC9303304 DOI: 10.1093/nar/gkac116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.
Collapse
Affiliation(s)
- Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexis A Rousek
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Alexander Tran
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam J Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Colin W Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Qin Zhou
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa M Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
7
|
Targeting the ATP synthase in bacterial and fungal pathogens – beyond Mycobacterium tuberculosis. J Glob Antimicrob Resist 2022; 29:29-41. [DOI: 10.1016/j.jgar.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
|
8
|
Zaworski J, Dagva O, Kingston AW, Fomenkov A, Morgan RD, Bossi L, Raleigh EA. Genome archaeology of two laboratory Salmonella enterica enterica sv Typhimurium. G3 (BETHESDA, MD.) 2021; 11:jkab226. [PMID: 34544129 PMCID: PMC8496262 DOI: 10.1093/g3journal/jkab226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
The Salmonella research community has used strains and bacteriophages over decades, exchanging useful new isolates among laboratories for the study of cell surface antigens, metabolic pathways and restriction-modification (RM) studies. Here we present the sequences of two laboratory Salmonella strains (STK005, an isolate of LB5000; and its descendant ER3625). In the ancestry of LB5000, segments of ∼15 and ∼42 kb were introduced from Salmonella enterica sv Abony 803 into S. enterica sv Typhimurium LT2, forming strain SD14; this strain is thus a hybrid of S. enterica isolates. Strains in the SD14 lineage were used to define flagellar antigens from the 1950s to the 1970s, and to define three RM systems from the 1960s to the 1980s. LB5000 was also used as a host in phage typing systems used by epidemiologists. In the age of cheaper and easier sequencing, this resource will provide access to the sequence that underlies the extensive literature.
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Oyut Dagva
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | | | - Alexey Fomenkov
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Richard D Morgan
- Research Department, New England Biolabs, Ipswich, MA 01938-2723, USA
| | - Lionello Bossi
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), University Paris-Saclay, Gif-sur-Yvette 91198, France
| | | |
Collapse
|
9
|
Salmonella enterica Serovars Dublin and Enteritidis Comparative Proteomics Reveals Differential Expression of Proteins Involved in Stress Resistance, Virulence, and Anaerobic Metabolism. Infect Immun 2021; 89:IAI.00606-20. [PMID: 33361201 DOI: 10.1128/iai.00606-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/10/2020] [Indexed: 11/20/2022] Open
Abstract
The Enteritidis and Dublin serovars of Salmonella enterica are phylogenetically closely related yet differ significantly in host range and virulence. S Enteritidis is a broad-host-range serovar that commonly causes self-limited gastroenteritis in humans, whereas S Dublin is a cattle-adapted serovar that can infect humans, often resulting in invasive extraintestinal disease. The mechanism underlying the higher invasiveness of S Dublin remains undetermined. In this work, we quantitatively compared the proteomes of clinical isolates of each serovar grown under gut-mimicking conditions. Compared to S Enteritidis, the S Dublin proteome was enriched in proteins linked to response to several stress conditions, such as those encountered during host infection, as well as to virulence. The S Enteritidis proteome contained several proteins related to central anaerobic metabolism pathways that were undetected in S Dublin. In contrast to what has been observed in other extraintestinal serovars, most of the coding genes for these pathways are not degraded in S Dublin. Thus, we provide evidence that S Dublin metabolic functions may be much more affected than previously reported based on genomic studies. Single and double null mutants in stress response proteins Dps, YciF, and YgaU demonstrate their relevance to S Dublin invasiveness in a murine model of invasive salmonellosis. All in all, this work provides a basis for understanding interserovar differences in invasiveness and niche adaptation, underscoring the relevance of using proteomic approaches to complement genomic studies.
Collapse
|
10
|
Liu Q, Shen X, Bian X, Kong Q. Effect of deletion of gene cluster involved in synthesis of Enterobacterial common antigen on virulence and immunogenicity of live attenuated Salmonella vaccine when delivering heterologous Streptococcus pneumoniae antigen PspA. BMC Microbiol 2020; 20:150. [PMID: 32513100 PMCID: PMC7278252 DOI: 10.1186/s12866-020-01837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Enterobacterial common antigen (ECA) is a family-specific surface antigen shared by all members of the Enterobacteriaceae family. Previous studies showed that the loss of ECA results in Salmonella attenuation, indicating its usefulness as a vaccine candidate for Salmonella infection, but no studies have shown whether the mutation resulting from the deletion of the ECA operon in conjunction with other mutations could be used as an antigen vehicle for heterologous protein antigen delivery. RESULTS In this study, we introduced a nonpolar, defined ECA operon deletion into wild-type S. Typhimurium χ3761 and an attenuated vaccine strain χ9241, obtaining two isogenic ECA operon mutants, namely, χ12357 and χ12358, respectively. A number of in vitro and in vivo properties of the mutants were analyzed. We found that the loss of ECA did not affect the growth, lipopolysaccharide (LPS) production and motility of S. Typhimurium wild type strain χ3761 and its attenuated vaccine strain χ9241 but significantly affected the virulence when administered orally to BALB/c mice. Furthermore, the effects of the ECA mutation on the immunogenicity of a recombinant S. Typhimurium vaccine strain χ9241 when delivering the pneumococcal antigen PspA were determined. The result showed that the total anti-PspA IgG level of χ12358 (pYA4088) was slightly lower than that of χ9241 (pYA4088), but the protection rate was not compromised. CONCLUSIONS ECA affects virulence and benefits the Th2 immunity of Salmonella Typhimurium, therefore, it is feasible to use a reversible ECA mutant mode to design future Salmonella vaccine strains for heterologous protective antigens.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Xuegang Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoping Bian
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| |
Collapse
|
11
|
Seif Y, Choudhary KS, Hefner Y, Anand A, Yang L, Palsson BO. Metabolic and genetic basis for auxotrophies in Gram-negative species. Proc Natl Acad Sci U S A 2020; 117:6264-6273. [PMID: 32132208 PMCID: PMC7084086 DOI: 10.1073/pnas.1910499117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auxotrophies constrain the interactions of bacteria with their environment, but are often difficult to identify. Here, we develop an algorithm (AuxoFind) using genome-scale metabolic reconstruction to predict auxotrophies and apply it to a series of available genome sequences of over 1,300 Gram-negative strains. We identify 54 auxotrophs, along with the corresponding metabolic and genetic basis, using a pangenome approach, and highlight auxotrophies conferring a fitness advantage in vivo. We show that the metabolic basis of auxotrophy is species-dependent and varies with 1) pathway structure, 2) enzyme promiscuity, and 3) network redundancy. Various levels of complexity constitute the genetic basis, including 1) deleterious single-nucleotide polymorphisms (SNPs), in-frame indels, and deletions; 2) single/multigene deletion; and 3) movement of mobile genetic elements (including prophages) combined with genomic rearrangements. Fourteen out of 19 predictions agree with experimental evidence, with the remaining cases highlighting shortcomings of sequencing, assembly, annotation, and reconstruction that prevent predictions of auxotrophies. We thus develop a framework to identify the metabolic and genetic basis for auxotrophies in Gram-negatives.
Collapse
Affiliation(s)
- Yara Seif
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Kumari Sonal Choudhary
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Ying Hefner
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Amitesh Anand
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
| | - Laurence Yang
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bernhard O Palsson
- Systems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122;
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
12
|
Pardo-Esté C, Castro-Severyn J, Krüger GI, Cabezas CE, Briones AC, Aguirre C, Morales N, Baquedano MS, Sulbaran YN, Hidalgo AA, Meneses C, Poblete-Castro I, Castro-Nallar E, Valvano MA, Saavedra CP. The Transcription Factor ArcA Modulates Salmonella's Metabolism in Response to Neutrophil Hypochlorous Acid-Mediated Stress. Front Microbiol 2019; 10:2754. [PMID: 31866961 PMCID: PMC6906141 DOI: 10.3389/fmicb.2019.02754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/03/2023] Open
Abstract
Salmonella Typhimurium, a bacterial pathogen with high metabolic plasticity, can adapt to different environmental conditions; these traits enhance its virulence by enabling bacterial survival. Neutrophils play important roles in the innate immune response, including the production of microbicidal reactive oxygen species (ROS). In addition, the myeloperoxidase in neutrophils catalyzes the formation of hypochlorous acid (HOCl), a highly toxic molecule that reacts with essential biomolecules, causing oxidative damage including lipid peroxidation and protein carbonylation. The bacterial response regulator ArcA regulates adaptive responses to oxygen levels and influences the survival of Salmonella inside phagocytic cells. Here, we demonstrate by whole transcriptomic analyses that ArcA regulates genes related to various metabolic pathways, enabling bacterial survival during HOCl-stress in vitro. Also, inside neutrophils, ArcA controls the transcription of several metabolic pathways by downregulating the expression of genes related to fatty acid degradation, lysine degradation, and arginine, proline, pyruvate, and propanoate metabolism. ArcA also upregulates genes encoding components of the oxidative pathway. These results underscore the importance of ArcA in ATP generation inside the neutrophil phagosome and its participation in bacterial metabolic adaptations during HOCl stress.
Collapse
Affiliation(s)
- Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Gabriel I Krüger
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Elizabeth Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alan Cristóbal Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Camila Aguirre
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Maria Soledad Baquedano
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Yoelvis Noe Sulbaran
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alejandro A Hidalgo
- Laboratorio de Patogenesis Bacteriana, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Poblete-Castro
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
13
|
The Small RNA PinT Contributes to PhoP-Mediated Regulation of the Salmonella Pathogenicity Island 1 Type III Secretion System in Salmonella enterica Serovar Typhimurium. J Bacteriol 2019; 201:JB.00312-19. [PMID: 31262841 DOI: 10.1128/jb.00312-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium induces inflammatory diarrhea and bacterial uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). HilA activates transcription of the SPI1 structural components and effector proteins. Expression of hilA is activated by HilD, HilC, and RtsA, which act in a complex feed-forward regulatory loop. Many environmental signals and other regulators are integrated into this regulatory loop, primarily via HilD. After the invasion of Salmonella into host intestinal epithelial cells or during systemic replication in macrophages, the SPI T3SS is no longer required or expressed. We have shown that the two-component regulatory system PhoPQ, required for intracellular survival, represses the SPI1 T3SS mostly by controlling the transcription of hilA and hilD Here we show that PinT, one of the PhoPQ-regulated small RNAs (sRNAs), contributes to this regulation by repressing hilA and rtsA translation. PinT base pairs with both the hilA and rtsA mRNAs, resulting in translational inhibition of hilA, but also induces degradation of the rts transcript. PinT also indirectly represses expression of FliZ, a posttranslational regulator of HilD, and directly represses translation of ssrB, encoding the primary regulator of the SPI2 T3SS. Our in vivo mouse competition assays support the concept that PinT controls a series of virulence genes at the posttranscriptional level in order to adapt Salmonella from the invasion stage to intracellular survival.IMPORTANCE Salmonella is one of the most important food-borne pathogens, infecting over one million people in the United States every year. These bacteria use a needle-like device to interact with intestinal epithelial cells, leading to invasion of the cells and induction of inflammatory diarrhea. A complex regulatory network controls expression of the invasion system in response to numerous environmental signals. Here we explore the molecular mechanisms by which the small RNA PinT contributes to this regulation, facilitating inactivation of the system after invasion. PinT controls several important virulence systems in Salmonella, tuning the transition between different stages of infection.
Collapse
|
14
|
Müller J, Spriewald S, Stecher B, Stadler E, Fuchs TM. Evolutionary Stability of Salmonella Competition with the Gut Microbiota: How the Environment Fosters Heterogeneity in Exploitative and Interference Competition. J Mol Biol 2019; 431:4732-4748. [PMID: 31260689 DOI: 10.1016/j.jmb.2019.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
Abstract
Following ingestion, gastrointestinal pathogens compete against the gastrointestinal microbiota and overcome host immune defenses in order to cause infections. Besides employing direct killing mechanisms, the commensal microbiota occupies metabolic niches to outcompete invading pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) uses several strategies to successfully colonize the gut and establish infection, of which an increasing number is based on phenotypic heterogeneity within the S. Typhimurium population. The utilization of myo-inositol (MI) and the production of colicin confer a selective advantage over the microbiota in terms of exploitative and interference competition, respectively. In this review, we summarize the genetic basis underlying bistability of MI catabolism and colicin production. As demonstrated by single-cell analyses, a stochastic switch in the expression of the genes responsible for colicin production and MI degradation constitutes the heterogeneity of the two phenotypes. Both genetic systems are tightly regulated to avoid their expression under non-appropriate conditions and possible detrimental effects on bacterial fitness. Moreover, evolutionary mechanisms underlying formation and stability of these phenotypes in S. Typhimurium are discussed. We propose that both MI catabolism and colicin production create a bet-hedging strategy, which provides an adaptive benefit for S. Typhimurium in the fluctuating environment of the mammalian gut.
Collapse
Affiliation(s)
- Johannes Müller
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany; Institute for Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Stefanie Spriewald
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute, LMU Munich, Pettenkoferstr. 9a, 80336 Munich, Germany
| | - Eva Stadler
- Technische Universität München, Centre for Mathematical Sciences, Boltzmannstr. 3, 85747 Garching, Germany
| | - Thilo M Fuchs
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Naumburger Str. 96a, 07743 Jena, Germany.
| |
Collapse
|
15
|
Seif Y, Kavvas E, Lachance JC, Yurkovich JT, Nuccio SP, Fang X, Catoiu E, Raffatellu M, Palsson BO, Monk JM. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat Commun 2018; 9:3771. [PMID: 30218022 PMCID: PMC6138749 DOI: 10.1038/s41467-018-06112-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
Salmonella strains are traditionally classified into serovars based on their surface antigens. While increasing availability of whole-genome sequences has allowed for more detailed subtyping of strains, links between genotype, serovar, and host remain elusive. Here we reconstruct genome-scale metabolic models for 410 Salmonella strains spanning 64 serovars. Model-predicted growth capabilities in over 530 different environments demonstrate that: (1) the Salmonella accessory metabolic network includes alternative carbon metabolism, and cell wall biosynthesis; (2) metabolic capabilities correspond to each strain's serovar and isolation host; (3) growth predictions agree with 83.1% of experimental outcomes for 12 strains (690 out of 858); (4) 27 strains are auxotrophic for at least one compound, including L-tryptophan, niacin, L-histidine, L-cysteine, and p-aminobenzoate; and (5) the catabolic pathways that are important for fitness in the gastrointestinal environment are lost amongst extraintestinal serovars. Our results reveal growth differences that may reflect adaptation to particular colonization sites.
Collapse
Affiliation(s)
- Yara Seif
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Erol Kavvas
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | | | - James T Yurkovich
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
| | - Sean-Paul Nuccio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Edward Catoiu
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Manuela Raffatellu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens, Lyngby, Denmark.
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
16
|
Ray S, Das S, Panda PK, Suar M. Identification of a new alanine racemase in Salmonella Enteritidis and its contribution to pathogenesis. Gut Pathog 2018; 10:30. [PMID: 30008809 PMCID: PMC6040060 DOI: 10.1186/s13099-018-0257-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Non-typhoidal Salmonella (NTS) infections caused primarily by S. Enteritidis and S. Typhimurium particularly in immunocompromised hosts have accounted for a large percentage of fatalities in developed nations. Antibiotics have revolutionized the cure of enteric infections but have also led to the rapid emergence of pathogen resistance. New powerful therapeutics involving metabolic enzymes are expected to be potential targets for combating microbial infections and ensuring effective health management. Therefore, the need for new antimicrobials to fight such health emergencies is paramount. Enteric bacteria successfully evade the gut and colonize their hosts through specialized virulence strategies. An important player, alanine racemase is a key enzyme facilitating bacterial survival. RESULTS This study aims at understanding the contribution of alanine racemase genes alr, dadX and SEN3897 to Salmonella survival in vitro and in vivo. We have shown SEN3897 to function as a unique alanine racemase in S. Enteritidis which displayed essential alanine racemase activity. Interestingly, the sole presence of this gene in alr dadX double mutant showed a strict dependence on d-alanine supplementation both in vitro and in vivo. However, Alr complementation in d-alanine auxotrophic strain restored the alanine racemase deficiency. The Km and Vmax of SEN3897 was 89.15 ± 10.2 mM, 400 ± 25.6 µmol/(min mg) for l-alanine and 35 ± 6 mM, 132.5 ± 11.3 µmol/(min mg) for d-alanine, respectively. In vitro assays for invasion and survival as well as in vivo virulence assays involving SEN3897 mutant showed attenuated phenotypes. Further, this study also showed attenuation of d-alanine auxotrophic strain in vivo for the development of potential targets against Salmonella that can be investigated further. CONCLUSION This study identified a third alanine racemase gene unique in S. Enteritidis which had a potential effect on survival and pathogenesis in vitro and in vivo. Our results also confirmed that SEN3897 by itself wasn't able to rescue d-alanine auxotrophy in S. Enteritidis which further contributed to its virulence properties.
Collapse
Affiliation(s)
- Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | - Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| | | | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha India
| |
Collapse
|
17
|
Zhang X, de Maat V, Guzmán Prieto AM, Prajsnar TK, Bayjanov JR, de Been M, Rogers MRC, Bonten MJM, Mesnage S, Willems RJL, van Schaik W. RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics 2017; 18:893. [PMID: 29162049 PMCID: PMC5699109 DOI: 10.1186/s12864-017-4299-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022] Open
Abstract
Background The Gram-positive bacterium Enterococcus faecium is a commensal of the human gastrointestinal tract and a frequent cause of bloodstream infections in hospitalized patients. The mechanisms by which E. faecium can survive and grow in blood during an infection have not yet been characterized. Here, we identify genes that contribute to growth of E. faecium in human serum through transcriptome profiling (RNA-seq) and a high-throughput transposon mutant library sequencing approach (Tn-seq). Results We first sequenced the genome of E. faecium E745, a vancomycin-resistant clinical isolate, using a combination of short- and long read sequencing, revealing a 2,765,010 nt chromosome and 6 plasmids, with sizes ranging between 9.3 kbp and 223.7 kbp. We then compared the transcriptome of E. faecium E745 during exponential growth in rich medium and in human serum by RNA-seq. This analysis revealed that 27.8% of genes on the E. faecium E745 genome were differentially expressed in these two conditions. A gene cluster with a role in purine biosynthesis was among the most upregulated genes in E. faecium E745 upon growth in serum. The E. faecium E745 transposon mutant library was then used to identify genes that were specifically required for growth of E. faecium in serum. Genes involved in de novo nucleotide biosynthesis (including pyrK_2, pyrF, purD, purH) and a gene encoding a phosphotransferase system subunit (manY_2) were thus identified to be contributing to E. faecium growth in human serum. Transposon mutants in pyrK_2, pyrF, purD, purH and manY_2 were isolated from the library and their impaired growth in human serum was confirmed. In addition, the pyrK_2 and manY_2 mutants were tested for their virulence in an intravenous zebrafish infection model and exhibited significantly attenuated virulence compared to E. faecium E745. Conclusions Genes involved in carbohydrate metabolism and nucleotide biosynthesis of E. faecium are essential for growth in human serum and contribute to the pathogenesis of this organism. These genes may serve as targets for the development of novel anti-infectives for the treatment of E. faecium bloodstream infections. Electronic supplementary material The online version of this article (10.1186/s12864-017-4299-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinglin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.,Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Vincent de Maat
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Ana M Guzmán Prieto
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Tomasz K Prajsnar
- Krebs Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jumamurat R Bayjanov
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Mark de Been
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Stéphane Mesnage
- Krebs Institute, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX, Utrecht, the Netherlands. .,Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
18
|
Ganguly A, Joerger RD. Sugar sulfates are not hydrolyzed by the acid-inducible sulfatase AslA from Salmonella enterica Enteritidis NalR and Kentucky 3795 at pH 5.5. Can J Microbiol 2017; 63:739-744. [DOI: 10.1139/cjm-2017-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The open reading frames SEN0085 and SeKA_A4361, from Salmonella enterica serovar Enteritidis NalR and serovar Kentucky 3795, respectively, corresponding to the acid-inducible sulfatase gene aslA from Salmonella enterica serovar Typhimurium, were previously suggested by microarray analysis to be differentially expressed under acid conditions. However, growth and enzyme activity tests in the present study demonstrated that both wild-type strains exhibited sulfatase activity with 4-nitrophenyl sulfate and 5-bromo-4-chloro-3 indolyl sulfate at pH 5.5. The acid sulfatase does not appear to be involved in sugar sulfate, tyrosine sulfate, 4-hydroxy-3-methoxyphenylglycol sulfate, heparin sulfate, or chondroitin sulfate hydrolysis at pH 5.5. Adhesion and invasion assays did not reveal differences between the serotypes and their corresponding aslA deletion mutants. Thus, the role and substrate(s) of AslA, a protein unique to salmonella and encoded in all sequenced Salmonella strains, remain elusive.
Collapse
Affiliation(s)
- Arpeeta Ganguly
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rolf D. Joerger
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
19
|
A novel antimicrobial approach based on the inhibition of zinc uptake in Salmonella enterica. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this review we discuss evidences suggesting that bacterial zinc homeostasis represents a promising target for new antimicrobial strategies. The ability of the gut pathogen Salmonella enterica sv Typhimurium to withstand the host responses aimed at controlling growth of the pathogen critically depends on the zinc importer ZnuABC. Strains lacking a functional ZnuABC or its soluble component ZnuA display a dramatic loss of pathogenicity, due to a reduced ability to express virulence factors; withstand the inflammatory response; and compete with other gut microbes. Based on this data, ZnuA was chosen as a candidate for the rational design of novel antibiotics. Through a combination of structural and functional investigations, we have provided a proof of concept of the potential of this approach.
Collapse
|
20
|
Herrero-Fresno A, Olsen JE. Salmonella Typhimurium metabolism affects virulence in the host - A mini-review. Food Microbiol 2017; 71:98-110. [PMID: 29366476 DOI: 10.1016/j.fm.2017.04.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/22/2022]
Abstract
Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S. Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly, and we are now beginning to understand that virulence and metabolism in the host are closely linked. The current review highlights which metabolic factors that are essential for Salmonella Typhimurium growth in the intestine, in cultured epithelial and macrophage-like cell lines, at systemic sites during invasive salmonellosis, and during long term asymptomatic colonization of the host. It also points to the limitations in our current knowledge, most notably that most studies have been carried out with few well-characterized laboratory strains, that we do not know how much the in vivo metabolism differs between serotypes, and that most results are based on challenges in the mouse model of infection. It will be very important to realize whether the current understanding of Salmonella metabolism in the host is true for all serotypes and all possible hosts.
Collapse
Affiliation(s)
- Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C., Denmark
| | - John Elmerdhahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C., Denmark.
| |
Collapse
|
21
|
Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing. Appl Environ Microbiol 2017; 83:AEM.03028-16. [PMID: 28039131 DOI: 10.1128/aem.03028-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022] Open
Abstract
Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism.IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being one of the common culprits. Recent studies also suggest that these human pathogens can use plants as alternate hosts as a part of their life cycle. While dual (animal/plant) lifestyles of other members of the Enterobacteriaceae family are well known, the strategies with which Salmonella colonizes plants are only partially understood. Therefore, we undertook a high-throughput characterization of the functions required for Salmonella persistence within tomatoes. The results of this study were compared with what is known about genes required for Salmonella virulence in animals and interactions of plant pathogens with their hosts to determine whether Salmonella repurposes its virulence repertoire inside plants or whether it behaves more as a phytopathogen during plant colonization. Even though Salmonella utilized some of its virulence-related genes in tomatoes, plant colonization required a distinct set of functions.
Collapse
|
22
|
Crua Asensio N, Muñoz Giner E, de Groot NS, Torrent Burgas M. Centrality in the host-pathogen interactome is associated with pathogen fitness during infection. Nat Commun 2017; 8:14092. [PMID: 28090086 PMCID: PMC5241799 DOI: 10.1038/ncomms14092] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
To perform their functions proteins must interact with each other, but how these interactions influence bacterial infection remains elusive. Here we demonstrate that connectivity in the host-pathogen interactome is directly related to pathogen fitness during infection. Using Y. pestis as a model organism, we show that the centrality-lethality rule holds for pathogen fitness during infection but only when the host-pathogen interactome is considered. Our results suggest that the importance of pathogen proteins during infection is directly related to their number of interactions with the host. We also show that pathogen proteins causing an extensive rewiring of the host interactome have a higher impact in pathogen fitness during infection. Hence, we conclude that hubs in the host-pathogen interactome should be explored as promising targets for antimicrobial drug design.
Collapse
Affiliation(s)
- Núria Crua Asensio
- Systems Biology of Infection Lab, Department of Microbiology, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Elisabet Muñoz Giner
- Systems Biology of Infection Lab, Department of Microbiology, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Natalia Sánchez de Groot
- Gene Function and Evolution Lab, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marc Torrent Burgas
- Systems Biology of Infection Lab, Department of Microbiology, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, Department of Biochemistry and Molecular Biology, Biosciences Faculty, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
23
|
Bridge DR, Whitmire JM, Makobongo MO, Merrell DS. Heterologous Pseudomonas aeruginosa O-antigen delivery using a Salmonella enterica serovar Typhimurium wecA mutant strain. Int J Med Microbiol 2016; 306:529-540. [PMID: 27476047 DOI: 10.1016/j.ijmm.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/30/2023] Open
Abstract
There is a broad interest in adapting live vaccine strains (LVS) for use as recombinant vaccines that can deliver heterologous antigens. The Salmonella enterica serovar Typhimurium SL1344 ΔwecA LVS contains a mutation in wecA that abrogates production of Enterobacterial common antigen. This ΔwecA strain is attenuated in vivo, persistently colonizes the host, and protects against both wild type and cross-Salmonella serovar lethal challenge in a murine model of salmonellosis. Given these characteristics, we hypothesized that the SL1344 ΔwecA strain could be used as a carrier for heterologous antigen expression. To test this hypothesis, SL1344 ΔwecA was engineered to express the Pseudomonas aeruginosa O11 O-antigen gene cluster. Intraperitoneal (IP) but not oral immunization of BALB/c mice with the heterologous expression strain protected against lethal P. aeruginosa intranasal (IN) challenge. Furthermore, IP immunization resulted in P. aeruginosa O11-specific Ig and IgG antibody production. Functional analysis of sera collected from the IP immunized mice showed antibody-mediated agglutination and opsonophagocytic activity against P. aeruginosa. En masse, these results indicate that the S. Typhimurium SL1344 ΔwecA strain expressing the P. aeruginosa O11 O-antigen gene cluster is able to induce a humoral immune response and to protect against lethal P. aeruginosa challenge. As such, the S. Typhimurium SL1344 ΔwecA LVS can likely serve as a vehicle for expression of a wide variety of heterologous antigens as a means to create recombinant vaccines.
Collapse
Affiliation(s)
- Dacie R Bridge
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Jeannette M Whitmire
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Morris O Makobongo
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - D Scott Merrell
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| |
Collapse
|
24
|
Genes Required for the Fitness of Salmonella enterica Serovar Typhimurium during Infection of Immunodeficient gp91-/- phox Mice. Infect Immun 2016; 84:989-997. [PMID: 26787719 PMCID: PMC4807482 DOI: 10.1128/iai.01423-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
Salmonella enterica causes systemic diseases (typhoid and paratyphoid fever), nontyphoidal septicemia (NTS), and gastroenteritis in humans and other animals worldwide. An important but underrecognized emerging infectious disease problem in sub-Saharan Africa is NTS in children and immunocompromised adults. A current goal is to identify Salmonella mutants that are not pathogenic in the absence of key components of the immune system such as might be found in immunocompromised hosts. Such attenuated strains have the potential to be used as live vaccines. We have used transposon-directed insertion site sequencing (TraDIS) to screen mutants of Salmonella enterica serovar Typhimurium for their ability to infect and grow in the tissues of wild-type and immunodeficient mice. This was to identify bacterial genes that might be deleted for the development of live attenuated vaccines that would be safer to use in situations and/or geographical areas where immunodeficiencies are prevalent. The relative fitness of each of 9,356 transposon mutants, representing mutations in 3,139 different genes, was determined in gp91−/−phox mice. Mutations in certain genes led to reduced fitness in both wild-type and mutant mice. To validate these results, these genes were mutated by allelic replacement, and resultant mutants were retested for fitness in the mice. A defined deletion mutant of cysE was attenuated in C57BL/6 wild-type mice and immunodeficient gp91−/−phox mice and was effective as a live vaccine in wild-type mice.
Collapse
|
25
|
Silva-Valenzuela CA, Molina-Quiroz RC, Desai P, Valenzuela C, Porwollik S, Zhao M, Hoffman RM, Andrews-Polymenis H, Contreras I, Santiviago CA, McClelland M. Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of Salmonella Typhimurium in Intraperitoneal Infection of BALB/c Mice. Front Microbiol 2016; 6:1455. [PMID: 26779130 PMCID: PMC4700939 DOI: 10.3389/fmicb.2015.01455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/04/2015] [Indexed: 01/20/2023] Open
Abstract
Two pools of individual single gene deletion (SGD) mutants of S. Typhimurium 14028s encompassing deletions of 3,923 annotated non-essential ORFs and sRNAs were screened by intraperitoneal (IP) injection in BALB/c mice followed by recovery from spleen and liver 2 days post infection. The relative abundance of each mutant was measured by microarray hybridization. The two mutant libraries differed in the orientation of the antibiotic resistance cassettes (either sense-oriented Kan(R), SGD-K, or antisense-oriented Cam(R), SGD-C). Consistent systemic colonization defects were observed in both libraries and both organs for hundreds of mutants of genes previously reported to be important after IP injection in this animal model, and for about 100 new candidate genes required for systemic colonization. Four mutants with a range of apparent fitness defects were confirmed using competitive infections with the wild-type parental strain: ΔSTM0286, ΔSTM0551, ΔSTM2363, and ΔSTM3356. Two mutants, ΔSTM0286 and ΔSTM2363, were then complemented in trans with a plasmid encoding an intact copy of the corresponding wild-type gene, and regained the ability to fully colonize BALB/c mice systemically. These results suggest the presence of many more undiscovered Salmonella genes with phenotypes in IP infection of BALB/c mice, and validate the libraries for application to other systems.
Collapse
Affiliation(s)
- Cecilia A. Silva-Valenzuela
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Roberto C. Molina-Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
- Center for Adaptation Genetics and Drug Resistance, Tufts UniversityBoston, MA, USA
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| | - Camila Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| | | | - Robert M. Hoffman
- Anticancer Inc.San Diego, CA, USA
- Department of Surgery, UC San Diego School of Medicine, University of California, San DiegoSan Diego, CA, USA
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M UniversityCollege Station, TX, USA
| | - Inés Contreras
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de ChileSantiago, Chile
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, IrvineIrvine, CA, USA
| |
Collapse
|
26
|
Barquist L, Vogel J. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Annu Rev Genet 2015; 49:367-94. [PMID: 26473381 DOI: 10.1146/annurev-genet-112414-054804] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past decade, bacterial small RNAs (sRNAs) have gone from a biological curiosity to being recognized as a major class of regulatory molecules. High-throughput methods for sampling the transcriptional output of bacterial cells demonstrate that sRNAs are universal features of bacterial transcriptomes, are plentiful, and appear to vary extensively over evolutionary time. With ever more bacteria coming under study, the question becomes how can we accelerate the discovery and functional characterization of sRNAs in diverse organisms. New technologies built on high-throughput sequencing are emerging that can rapidly provide global insight into the numbers and functions of sRNAs in bacteria of interest, providing information that can shape hypotheses and guide research. In this review, we describe recent developments in transcriptomics (RNA-seq) and functional genomics that we expect to help us develop an integrated, systems-level view of sRNA biology in bacteria.
Collapse
Affiliation(s)
- Lars Barquist
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany; ,
| |
Collapse
|
27
|
Staib L, Fuchs TM. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front Microbiol 2015; 6:1116. [PMID: 26528264 PMCID: PMC4600919 DOI: 10.3389/fmicb.2015.01116] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/28/2015] [Indexed: 12/31/2022] Open
Abstract
After ingestion, Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters a densely populated, competitive environment in the gastrointestinal tract. To escape nutrient limitation caused by the intestinal microbiota, this pathogen has acquired specific metabolic traits to use compounds that are not metabolized by the commensal bacteria. For example, the utilization of 1,2-propanediol (1,2-PD), a product of the fermentation of L-fucose, which is present in foods of herbal origin and is also a terminal sugar of gut mucins. Under anaerobic conditions and in the presence of tetrathionate, 1,2-PD can serve as an energy source for S. Typhimurium. Comprehensive database analysis revealed that the 1,2-PD and fucose utilization operons are present in all S. enterica serovars sequenced thus far. The operon, consisting of 21 genes, is expressed as a single polycistronic mRNA. As demonstrated here, 1,2-PD was formed and further used when S. Typhimurium strain 14028 was grown with L-fucose, and the gene fucA encoding L-fuculose-1-phosphate aldolase was required for this growth. Using promoter fusions, we monitored the expression of the propanediol utilization operon that was induced at very low concentrations of 1,2-PD and was inhibited by the presence of D-glucose.
Collapse
Affiliation(s)
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung Institute for Food and Health, Technische Universität MünchenFreising, Germany
| |
Collapse
|
28
|
Bridge DR, Whitmire JM, Gilbreath JJ, Metcalf ES, Merrell DS. An enterobacterial common antigen mutant of Salmonella enterica serovar Typhimurium as a vaccine candidate. Int J Med Microbiol 2015; 305:511-22. [PMID: 26070977 DOI: 10.1016/j.ijmm.2015.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022] Open
Abstract
Due to increasing rates of invasive Salmonella enterica serovar Typhimurium infection, there is a need for an effective vaccine to prevent this disease. Previous studies showed that a mutation in the first gene of the Enterobacterial common antigen biosynthetic pathway, wecA, resulted in attenuation of S. Typhimurium in a murine model of salmonellosis. Furthermore, immunization with a wecA(-) strain protected against lethal challenge with the parental wild type S. Typhimurium strain. Herein, we examined whether the S. Typhimurium wecA(-) strain could also provide cross-protection against non-parental strains of S. Typhimurium and S. Enteritidis. We found that intraperitoneal immunization (IP) with S. Typhimurium SL1344 wecA(-) resulted in a significant increase in survival compared to control mice for all Salmonella challenge strains tested. Oral immunization with SL1344 wecA(-) also resulted in increased survival; however, protection was less significant than with intraperitoneal immunization. The increase in survival of SL1344 wecA(-) immunized mice was associated with a Salmonella-specific IgG antibody response. Furthermore, analysis of sera from IP and orally immunized animals revealed cross-reactive antibodies to numerous Salmonella isolates. Functional analysis of antibodies found within the sera from IP immunized animals revealed agglutination and opsonophagocytic activity against all tested O:4 Salmonella serovars. Together these results indicate that immunization with a S. Typhimurium wecA(-) strain confers protection against lethal challenge with wild type S. Typhimurium and S. Enteritidis and that immunization correlates with functional antibody production.
Collapse
Affiliation(s)
- Dacie R Bridge
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Jeannette M Whitmire
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Eleanor S Metcalf
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - D Scott Merrell
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| |
Collapse
|
29
|
Joerger RD, Choi S. Contribution of the hdeB-like gene (SEN1493) to survival of Salmonella enterica enteritidis Nal(R) at pH 2. Foodborne Pathog Dis 2015; 12:353-9. [PMID: 25659065 DOI: 10.1089/fpd.2014.1878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Periplasmic proteins are particularly vulnerable to denaturation upon entry into a highly acid environment. In Escherichia coli, a level of protection of these proteins is afforded by acid-inducible chaperonins encoded by hdeAB. In contrast, Salmonella enterica only harbors an hdeB-like gene and it is currently not known what function it plays in this genus. In the present study, the hdeB-like gene was deleted in Salmonella enterica Enteritidis Nal(R) and Salmonella enterica Kentucky 3795. When grown overnight in tryptic soy broth (TSB) medium buffered at pH 5.5 and then exposed to TSB pH 2 for 20 min, Enteritidis wild-type strain experienced a 0.5-log10 reduction in colony-forming units, whereas the deletion strain's surviving cells were reduced by 1.6 log10. No difference in survival was observed in the corresponding Salmonella enterica Kentucky 3795 strains treated the same way. Exposure of the strains to pH 2.5 or 3 resulted in the same log reduction regardless of the presence of the hdeB-like gene. When wild-type and deletion strains of both serovars were grown in medium buffered at pH 7 prior to exposure to the acidic pHs, no difference in survival with respect to serovar or presence/absence of the hdeB-like gene was found. Salmonella enterica Enteritidis Nal(R) carrying its own or the intragenic region upstream of the hdeB-like from Salmonella enterica Kentucky 3795 cloned in front of the gfp gene from pFPV25 showed maximum fluorescence when grown at pH 5.5, whereas the corresponding plasmid-carrying Salmonella enterica Kentucky strains did not exhibit fluorescence regardless of the pH of the growth medium. Therefore, the hdeB-like gene in Salmonella enterica Enteritidis, but not in Salmonella enterica Kentucky 3795, contributed to survival at pH 2 and its expression is responsive to the pH of the medium.
Collapse
Affiliation(s)
- Rolf D Joerger
- Department of Animal and Food Sciences, University of Delaware , Newark, Delaware
| | | |
Collapse
|
30
|
Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS One 2014. [PMID: 25369209 DOI: 10.1371/journal.pone.0111513.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as 'hypothetical genes' in the Typhimurium genome.
Collapse
|
31
|
Bogomolnaya LM, Aldrich L, Ragoza Y, Talamantes M, Andrews KD, McClelland M, Andrews-Polymenis HL. Identification of novel factors involved in modulating motility of Salmonella enterica serotype typhimurium. PLoS One 2014; 9:e111513. [PMID: 25369209 PMCID: PMC4219756 DOI: 10.1371/journal.pone.0111513] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 09/28/2014] [Indexed: 12/03/2022] Open
Abstract
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as ‘hypothetical genes’ in the Typhimurium genome.
Collapse
Affiliation(s)
- Lydia M. Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lindsay Aldrich
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Yuri Ragoza
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Marissa Talamantes
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Katharine D. Andrews
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Maier L, Vyas R, Cordova CD, Lindsay H, Schmidt TSB, Brugiroux S, Periaswamy B, Bauer R, Sturm A, Schreiber F, von Mering C, Robinson MD, Stecher B, Hardt WD. Microbiota-derived hydrogen fuels Salmonella typhimurium invasion of the gut ecosystem. Cell Host Microbe 2014; 14:641-51. [PMID: 24331462 DOI: 10.1016/j.chom.2013.11.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/09/2023]
Abstract
The intestinal microbiota features intricate metabolic interactions involving the breakdown and reuse of host- and diet-derived nutrients. The competition for these resources can limit pathogen growth. Nevertheless, some enteropathogenic bacteria can invade this niche through mechanisms that remain largely unclear. Using a mouse model for Salmonella diarrhea and a transposon mutant screen, we discovered that initial growth of Salmonella Typhimurium (S. Tm) in the unperturbed gut is powered by S. Tm hyb hydrogenase, which facilitates consumption of hydrogen (H2), a central intermediate of microbiota metabolism. In competitive infection experiments, a hyb mutant exhibited reduced growth early in infection compared to wild-type S. Tm, but these differences were lost upon antibiotic-mediated disruption of the host microbiota. Additionally, introducing H2-consuming bacteria into the microbiota interfered with hyb-dependent S. Tm growth. Thus, H2 is an Achilles' heel of microbiota metabolism that can be subverted by pathogens and might offer opportunities to prevent infection.
Collapse
Affiliation(s)
- Lisa Maier
- Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Rounak Vyas
- SIB Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Helen Lindsay
- SIB Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | | | - Sandrine Brugiroux
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | | | - Rebekka Bauer
- Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Alexander Sturm
- Institute of Microbiology, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Frank Schreiber
- Department of Environmental Microbiology, Eawag and Department of Environmental Systems Sciences, ETH Zurich, CH-8600 Dübendorf, Switzerland
| | - Christian von Mering
- SIB Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Mark D Robinson
- SIB Swiss Institute of Bioinformatics, University of Zurich, CH-8057 Zurich, Switzerland
| | - Bärbel Stecher
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | | |
Collapse
|
33
|
Porwollik S, Santiviago CA, Cheng P, Long F, Desai P, Fredlund J, Srikumar S, Silva CA, Chu W, Chen X, Canals R, Reynolds MM, Bogomolnaya L, Shields C, Cui P, Guo J, Zheng Y, Endicott-Yazdani T, Yang HJ, Maple A, Ragoza Y, Blondel CJ, Valenzuela C, Andrews-Polymenis H, McClelland M. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS One 2014; 9:e99820. [PMID: 25007190 PMCID: PMC4089911 DOI: 10.1371/journal.pone.0099820] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/19/2014] [Indexed: 01/30/2023] Open
Abstract
We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.
Collapse
Affiliation(s)
- Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Pui Cheng
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Fred Long
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Prerak Desai
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Jennifer Fredlund
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Shabarinath Srikumar
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Cecilia A. Silva
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Xin Chen
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Rocío Canals
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - M. Megan Reynolds
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Christine Shields
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Ping Cui
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Jinbai Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yi Zheng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Tiana Endicott-Yazdani
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Hee-Jeong Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Aimee Maple
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Yury Ragoza
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Carlos J. Blondel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Helene Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
34
|
Jelsbak L, Hartman H, Schroll C, Rosenkrantz JT, Lemire S, Wallrodt I, Thomsen LE, Poolman M, Kilstrup M, Jensen PR, Olsen JE. Identification of metabolic pathways essential for fitness of Salmonella Typhimurium in vivo. PLoS One 2014; 9:e101869. [PMID: 24992475 PMCID: PMC4081726 DOI: 10.1371/journal.pone.0101869] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 01/27/2023] Open
Abstract
Bacterial infections remain a threat to human and animal health worldwide, and there is an urgent need to find novel targets for intervention. In the current study we used a computer model of the metabolic network of Salmonella enterica serovar Typhimurium and identified pairs of reactions (cut sets) predicted to be required for growth in vivo. We termed such cut sets synthetic auxotrophic pairs. We tested whether these would reveal possible combined targets for new antibiotics by analyzing the performance of selected single and double mutants in systemic mouse infections. One hundred and two cut sets were identified. Sixty-three of these included only pathways encoded by fully annotated genes, and from this sub-set we selected five cut sets involved in amino acid or polyamine biosynthesis. One cut set (asnA/asnB) demonstrated redundancy in vitro and in vivo and showed that asparagine is essential for S. Typhimurium during infection. trpB/trpA as well as single mutants were attenuated for growth in vitro, while only the double mutant was a cut set in vivo, underlining previous observations that tryptophan is essential for successful outcome of infection. speB/speF,speC was not affected in vitro but was attenuated during infection showing that polyamines are essential for virulence apparently in a growth independent manner. The serA/glyA cut-set was found to be growth attenuated as predicted by the model. However, not only the double mutant, but also the glyA mutant, were found to be attenuated for virulence. This adds glycine production or conversion of glycine to THF to the list of essential reactions during infection. One pair (thrC/kbl) showed true redundancy in vitro but not in vivo demonstrating that threonine is available to the bacterium during infection. These data add to the existing knowledge of available nutrients in the intra-host environment, and have identified possible new targets for antibiotics.
Collapse
Affiliation(s)
- Lotte Jelsbak
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hassan Hartman
- Department of Medical and Biological Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Casper Schroll
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jesper T. Rosenkrantz
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sebastien Lemire
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Inke Wallrodt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Line E. Thomsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mark Poolman
- Department of Medical and Biological Sciences, Faculty of Health and Life Science, Oxford Brookes University, Oxford, United Kingdom
| | - Mogens Kilstrup
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter R. Jensen
- Center for Systems Microbiology, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John E. Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
35
|
Ali MM, Newsom DL, González JF, Sabag-Daigle A, Stahl C, Steidley B, Dubena J, Dyszel JL, Smith JN, Dieye Y, Arsenescu R, Boyaka PN, Krakowka S, Romeo T, Behrman EJ, White P, Ahmer BMM. Fructose-asparagine is a primary nutrient during growth of Salmonella in the inflamed intestine. PLoS Pathog 2014; 10:e1004209. [PMID: 24967579 PMCID: PMC4072780 DOI: 10.1371/journal.ppat.1004209] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (Salmonella) is one of the most significant food-borne pathogens affecting both humans and agriculture. We have determined that Salmonella encodes an uptake and utilization pathway specific for a novel nutrient, fructose-asparagine (F-Asn), which is essential for Salmonella fitness in the inflamed intestine (modeled using germ-free, streptomycin-treated, ex-germ-free with human microbiota, and IL10-/- mice). The locus encoding F-Asn utilization, fra, provides an advantage only if Salmonella can initiate inflammation and use tetrathionate as a terminal electron acceptor for anaerobic respiration (the fra phenotype is lost in Salmonella SPI1- SPI2- or ttrA mutants, respectively). The severe fitness defect of a Salmonella fra mutant suggests that F-Asn is the primary nutrient utilized by Salmonella in the inflamed intestine and that this system provides a valuable target for novel therapies.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - David L. Newsom
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Juan F. González
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Christopher Stahl
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Brandi Steidley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Judith Dubena
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Jessica L. Dyszel
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Jenee N. Smith
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Yakhya Dieye
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Razvan Arsenescu
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Steven Krakowka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Edward J. Behrman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Peter White
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Brian M. M. Ahmer
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
36
|
Hartman HB, Fell DA, Rossell S, Jensen PR, Woodward MJ, Thorndahl L, Jelsbak L, Olsen JE, Raghunathan A, Daefler S, Poolman MG. Identification of potential drug targets in Salmonella enterica sv. Typhimurium using metabolic modelling and experimental validation. MICROBIOLOGY-SGM 2014; 160:1252-1266. [PMID: 24777662 DOI: 10.1099/mic.0.076091-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica sv. Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of S. Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in the energy demand while growing in glucose minimal medium. By grouping reactions with similar flux responses, a subnetwork of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions that when removed from the genome-scale model interfered with energy and biomass generation. Eleven such sets were found to be essential for the production of biomass precursors. Experimental investigation of seven of these showed that knockouts of the associated genes resulted in attenuated growth for four pairs of reactions, whilst three single reactions were shown to be essential for growth.
Collapse
Affiliation(s)
- Hassan B Hartman
- Department of Medical and Biological Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 OBP, UK
| | - David A Fell
- Department of Medical and Biological Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 OBP, UK
| | - Sergio Rossell
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Peter Ruhdal Jensen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Lotte Thorndahl
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Jelsbak
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Anu Raghunathan
- Department of Infectious Diseases, Mount Sinai School of Medicine, New York, NY, USA
| | - Simon Daefler
- Department of Infectious Diseases, Mount Sinai School of Medicine, New York, NY, USA
| | - Mark G Poolman
- Department of Medical and Biological Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 OBP, UK
| |
Collapse
|
37
|
Staib L, Fuchs TM. From food to cell: nutrient exploitation strategies of enteropathogens. MICROBIOLOGY-SGM 2014; 160:1020-1039. [PMID: 24705229 DOI: 10.1099/mic.0.078105-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Upon entering the human gastrointestinal tract, foodborne bacterial enteropathogens encounter, among numerous other stress conditions, nutrient competition with the host organism and the commensal microbiota. The main carbon, nitrogen and energy sources exploited by pathogens during proliferation in, and colonization of, the gut have, however, not been identified completely. In recent years, a huge body of literature has provided evidence that most enteropathogens are equipped with a large set of specific metabolic pathways to overcome nutritional limitations in vivo, thus increasing bacterial fitness during infection. These adaptations include the degradation of myo-inositol, ethanolamine cleaved from phospholipids, fucose derived from mucosal glycoconjugates, 1,2-propanediol as the fermentation product of fucose or rhamnose and several other metabolites not accessible for commensal bacteria or present in competition-free microenvironments. Interestingly, the data reviewed here point to common metabolic strategies of enteric pathogens allowing the exploitation of nutrient sources that not only are present in the gut lumen, the mucosa or epithelial cells, but also are abundant in food. An increased knowledge of the metabolic strategies developed by enteropathogens is therefore a key factor to better control foodborne diseases.
Collapse
Affiliation(s)
- Lena Staib
- ZIEL, Abteilung Mikrobiologie, and Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany
| | - Thilo M Fuchs
- ZIEL, Abteilung Mikrobiologie, and Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany
| |
Collapse
|
38
|
De la Cruz MA, Zhao W, Farenc C, Gimenez G, Raoult D, Cambillau C, Gorvel JP, Méresse S. A toxin-antitoxin module of Salmonella promotes virulence in mice. PLoS Pathog 2013; 9:e1003827. [PMID: 24385907 PMCID: PMC3868539 DOI: 10.1371/journal.ppat.1003827] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022] Open
Abstract
Toxin-antitoxin (TA) modules are widely prevalent in both bacteria and archaea. Originally described as stabilizing elements of plasmids, TA modules are also widespread on bacterial chromosomes. These modules promote bacterial persistence in response to specific environmental stresses. So far, the possibility that TA modules could be involved in bacterial virulence has been largely neglected, but recent comparative genomic studies have shown that the presence of TA modules is significantly associated with the pathogenicity of bacteria. Using Salmonella as a model, we investigated whether TA modules help bacteria to overcome the stress conditions encountered during colonization, thereby supporting virulence in the host. By bioinformatics analyses, we found that the genome of the pathogenic bacterium Salmonella Typhimurium encodes at least 11 type II TA modules. Several of these are conserved in other pathogenic strains but absent from non-pathogenic species indicating that certain TA modules might play a role in Salmonella pathogenicity. We show that one TA module, hereafter referred to as sehAB, plays a transient role in virulence in perorally inoculated mice. The use of a transcriptional reporter demonstrated that bacteria in which sehAB is strongly activated are predominantly localized in the mesenteric lymph nodes. In addition, sehAB was shown to be important for the survival of Salmonella in these peripheral lymphoid organs. These data indicate that the transient activation of a type II TA module can bring a selective advantage favouring virulence and demonstrate that TA modules are engaged in Salmonella pathogenesis.
Collapse
Affiliation(s)
- Miguel A. De la Cruz
- Aix-Marseille University, CIML, Marseille, France
- CNRS, UMR 7280, Marseille, France
- INSERM, U631, Marseille, France
| | - Weidong Zhao
- Aix-Marseille University, CIML, Marseille, France
- CNRS, UMR 7280, Marseille, France
- INSERM, U631, Marseille, France
| | - Carine Farenc
- Aix-Marseille University, AFMB, Marseille, France
- CNRS, UMR 7257, Marseille, France
| | | | | | - Christian Cambillau
- Aix-Marseille University, AFMB, Marseille, France
- CNRS, UMR 7257, Marseille, France
| | - Jean-Pierre Gorvel
- Aix-Marseille University, CIML, Marseille, France
- CNRS, UMR 7280, Marseille, France
- INSERM, U631, Marseille, France
| | - Stéphane Méresse
- Aix-Marseille University, CIML, Marseille, France
- CNRS, UMR 7280, Marseille, France
- INSERM, U631, Marseille, France
- * E-mail:
| |
Collapse
|
39
|
Rosenkrantz JT, Aarts H, Abee T, Rolfe MD, Knudsen GM, Nielsen MB, Thomsen LE, Zwietering MH, Olsen JE, Pin C. Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium. BMC Microbiol 2013; 13:294. [PMID: 24345035 PMCID: PMC3878590 DOI: 10.1186/1471-2180-13-294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Salmonella Typhimurium is an important pathogen of human and animals. It shows a broad growth range and survives in harsh conditions. The aim of this study was to analyze transcriptional responses to a number of growth and stress conditions as well as the relationship of metabolic pathways and/or cell functions at the genome-scale-level by network analysis, and further to explore whether highly connected genes (hubs) in these networks were essential for growth, stress adaptation and virulence. RESULTS De novo generated as well as published transcriptional data for 425 selected genes under a number of growth and stress conditions were used to construct a bipartite network connecting culture conditions and significantly regulated genes (transcriptional network). Also, a genome scale network was constructed for strain LT2. The latter connected genes with metabolic pathways and cellular functions. Both networks were shown to belong to the family of scale-free networks characterized by the presence of highly connected nodes or hubs which are genes whose transcription is regulated when responding to many of the assayed culture conditions or genes encoding products involved in a high number of metabolic pathways and cell functions.The five genes with most connections in the transcriptional network (wraB, ygaU, uspA, cbpA and osmC) and in the genome scale network (ychN, siiF (STM4262), yajD, ybeB and dcoC) were selected for mutations, however mutagenesis of ygaU and ybeB proved unsuccessful. No difference between mutants and the wild type strain was observed during growth at unfavorable temperatures, pH values, NaCl concentrations and in the presence of H2O2. Eight mutants were evaluated for virulence in C57/BL6 mice and none differed from the wild type strain. Notably, however, deviations of phenotypes with respect to the wild type were observed when combinations of these genes were deleted. CONCLUSION Network analysis revealed the presence of hubs in both transcriptional and functional networks of S. Typhimurium. Hubs theoretically confer higher resistance to random mutation but a greater susceptibility to directed attacks, however, we found that genes that formed hubs were dispensable for growth, stress adaptation and virulence, suggesting that evolution favors non-essential genes as main connectors in cellular networks.
Collapse
Affiliation(s)
- Jesper T Rosenkrantz
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, C, Denmark
| | - Henk Aarts
- Centre for Infectious disease control, National Institute for Public Health, PO box 1, 3720 BA Bilthoven, The Netherlands
| | - Tjakko Abee
- Wageningen University and Research Centre, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, Netherlands
| | - Matthew D Rolfe
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Gitte M Knudsen
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
- National Food Institute, Danish Technical University, Soelvtofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Maj-Britt Nielsen
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, C, Denmark
- Present address: DANSTEM Laboratory, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, N, Denmark
| | - Line E Thomsen
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, C, Denmark
| | - Marcel H Zwietering
- Wageningen University and Research Centre, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, Netherlands
| | - John E Olsen
- Department of Veterinary Disease Biology, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, C, Denmark
| | - Carmen Pin
- Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| |
Collapse
|
40
|
Pati NB, Vishwakarma V, Selvaraj SK, Dash S, Saha B, Singh N, Suar M. Salmonella Typhimurium TTSS-2 deficient mig-14 mutant shows attenuation in immunocompromised mice and offers protection against wild-type Salmonella Typhimurium infection. BMC Microbiol 2013; 13:236. [PMID: 24148706 PMCID: PMC3819739 DOI: 10.1186/1471-2180-13-236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/24/2013] [Indexed: 01/06/2023] Open
Abstract
Background Development of Salmonella enterica serovar Typhimurium (S. Typhimurium) live attenuated vaccine carrier strain to prevent enteric infections has been a subject of intensive study. Several mutants of S. Typhimurium have been proposed as an effective live attenuated vaccine strain. Unfortunately, many such mutant strains failed to successfully complete the clinical trials as they were suboptimal in delivering effective safety and immunogenicity. However, it remained unclear, whether the existing live attenuated S. Typhimurium strains can further be attenuated with improved safety and immune efficacy or not. Results We deleted a specific non-SPI (Salmonella Pathogenicity Island) encoded virulence factor mig-14 (an antimicrobial peptide resistant protein) in ssaV deficient S. Typhimurium strain. The ssaV is an important SPI-II gene involved in Salmonella replication in macrophages and its mutant strain is considered as a potential live attenuated strain. However, fatal systemic infection was previously reported in immunocompromised mice like Nos2−/− and Il-10−/− when infected with ssaV deficient S. Typhimurium. Here we reported that attenuation of S. Typhimurium ssaV mutant in immunocompromised mice can further be improved by introducing additional deletion of gene mig-14. The ssaV, mig-14 double mutant was as efficient as ssaV mutant, with respect to host colonization and eliciting Salmonella-specific mucosal sIgA and serum IgG response in wild-type C57BL/6 mice. Interestingly, this double mutant did not show any systemic infection in immunocompromised mice. Conclusions This study suggests that ssaV, mig-14 double mutant strain can be effectively used as a potential vaccine candidate even in immunocompromised mice. Such attenuated vaccine strain could possibly used for expression of heterologous antigens and thus for development of a polyvalent vaccine strain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
41
|
The Aeromonas salmonicida subsp. salmonicida exoproteome: determination of the complete repertoire of Type-Three Secretion System effectors and identification of other virulence factors. Proteome Sci 2013; 11:42. [PMID: 24073886 PMCID: PMC3852671 DOI: 10.1186/1477-5956-11-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
Background Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. Results Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. Conclusions We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.
Collapse
|
42
|
Hammarlöf DL, Canals R, Hinton JCD. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics. Curr Opin Microbiol 2013; 16:643-51. [PMID: 24021902 DOI: 10.1016/j.mib.2013.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/12/2013] [Indexed: 02/01/2023]
Abstract
The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens.
Collapse
Affiliation(s)
- Disa L Hammarlöf
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | | | | |
Collapse
|
43
|
Schmidt BJ, Ebrahim A, Metz TO, Adkins JN, Palsson BØ, Hyduke DR. GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. ACTA ACUST UNITED AC 2013; 29:2900-8. [PMID: 23975765 DOI: 10.1093/bioinformatics/btt493] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Genome-scale metabolic models have been used extensively to investigate alterations in cellular metabolism. The accuracy of these models to represent cellular metabolism in specific conditions has been improved by constraining the model with omics data sources. However, few practical methods for integrating metabolomics data with other omics data sources into genome-scale models of metabolism have been developed. RESULTS GIM(3)E (Gene Inactivation Moderated by Metabolism, Metabolomics and Expression) is an algorithm that enables the development of condition-specific models based on an objective function, transcriptomics and cellular metabolomics data. GIM(3)E establishes metabolite use requirements with metabolomics data, uses model-paired transcriptomics data to find experimentally supported solutions and provides calculations of the turnover (production/consumption) flux of metabolites. GIM(3)E was used to investigate the effects of integrating additional omics datasets to create increasingly constrained solution spaces of Salmonella Typhimurium metabolism during growth in both rich and virulence media. This integration proved to be informative and resulted in a requirement of additional active reactions (12 in each case) or metabolites (26 or 29, respectively). The addition of constraints from transcriptomics also impacted the allowed solution space, and the cellular metabolites with turnover fluxes that were necessarily altered by the change in conditions increased from 118 to 271 of 1397. AVAILABILITY GIM(3)E has been implemented in Python and requires a COBRApy 0.2.x. The algorithm and sample data described here are freely available at: http://opencobra.sourceforge.net/ CONTACTS brianjamesschmidt@gmail.com
Collapse
Affiliation(s)
- Brian J Schmidt
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|
44
|
Yan Q, Sreedharan A, Wei S, Wang J, Pelz-Stelinski K, Folimonova S, Wang N. Global gene expression changes in Candidatus Liberibacter asiaticus during the transmission in distinct hosts between plant and insect. MOLECULAR PLANT PATHOLOGY 2013; 14:391-404. [PMID: 23336388 PMCID: PMC6638839 DOI: 10.1111/mpp.12015] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Huanglongbing (HLB) or citrus greening disease is a destructive disease of citrus worldwide, which is associated with Candidatus Liberibacter asiaticus. This phloem-limited fastidious pathogen is transmitted by the Asian citrus psyllid, Diaphorina citri, and appears to be an intracellular pathogen that maintains an intimate association with the psyllid or the plant throughout its life cycle. The molecular basis of the interaction of this pathogen with its hosts is not well understood. We hypothesized that, during infection, Ca. L. asiaticus differentially expresses the genes critical for its survival and/or pathogenicity in either host. To test this hypothesis, quantitative reverse transcription-polymerase chain reaction was performed to compare the gene expression of Ca. L. asiaticus in planta and in psyllid. Overall, 381 genes were analysed for their gene expression in planta and in psyllid. Among them, 182 genes were up-regulated in planta compared with in psyllid (P < 0.05), 16 genes were up-regulated in psyllid (P < 0.05) and 183 genes showed no statistically significant difference (P ≥ 0.05) in expression between in planta and in psyllid. Our study indicates that the expression of the Ca. L. asiaticus genes involved in transcriptional regulation, transport system, secretion system, flagella assembly, metabolic pathway and stress resistance are changed significantly in a host-specific manner to adapt to the distinct environments of plant and insect. To our knowledge, this is the first large-scale study to evaluate the differential expression of Ca. L. asiaticus genes in a plant host and its insect vector.
Collapse
Affiliation(s)
- Qing Yan
- Department of Microbiology and Cell Science, Citrus Research and Education Center, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, Farhan H, Mazé A, Bumann D. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 2013; 9:e1003301. [PMID: 23633950 PMCID: PMC3636032 DOI: 10.1371/journal.ppat.1003301] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases.
Collapse
Affiliation(s)
- Benjamin Steeb
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil A. Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Petra Tienz
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Hesso Farhan
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, Davies HM, Wang J, van Diemen PM, Buckley AM, Bowen AJ, Pullinger GD, Turner DJ, Langridge GC, Turner AK, Parkhill J, Charles IG, Maskell DJ, Stevens MP. Comprehensive assignment of roles for Salmonella typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet 2013; 9:e1003456. [PMID: 23637626 PMCID: PMC3630085 DOI: 10.1371/journal.pgen.1003456] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/02/2013] [Indexed: 11/19/2022] Open
Abstract
Chickens, pigs, and cattle are key reservoirs of Salmonella enterica, a foodborne pathogen of worldwide importance. Though a decade has elapsed since publication of the first Salmonella genome, thousands of genes remain of hypothetical or unknown function, and the basis of colonization of reservoir hosts is ill-defined. Moreover, previous surveys of the role of Salmonella genes in vivo have focused on systemic virulence in murine typhoid models, and the genetic basis of intestinal persistence and thus zoonotic transmission have received little study. We therefore screened pools of random insertion mutants of S. enterica serovar Typhimurium in chickens, pigs, and cattle by transposon-directed insertion-site sequencing (TraDIS). The identity and relative fitness in each host of 7,702 mutants was simultaneously assigned by massively parallel sequencing of transposon-flanking regions. Phenotypes were assigned to 2,715 different genes, providing a phenotype–genotype map of unprecedented resolution. The data are self-consistent in that multiple independent mutations in a given gene or pathway were observed to exert a similar fitness cost. Phenotypes were further validated by screening defined null mutants in chickens. Our data indicate that a core set of genes is required for infection of all three host species, and smaller sets of genes may mediate persistence in specific hosts. By assigning roles to thousands of Salmonella genes in key reservoir hosts, our data facilitate systems approaches to understand pathogenesis and the rational design of novel cross-protective vaccines and inhibitors. Moreover, by simultaneously assigning the genotype and phenotype of over 90% of mutants screened in complex pools, our data establish TraDIS as a powerful tool to apply rich functional annotation to microbial genomes with minimal animal use. Salmonella Typhimurium is a major cause of human diarrhoeal infections, usually acquired from chickens, pigs, cattle, or their products. To understand the basis of persistence and pathogenesis in these reservoir hosts, and to inform the design of novel vaccines and treatments, we generated a library of 7,702 S. Typhimurium mutants, each bearing an insertion at a random position in the genome. Using DNA sequencing, we identified the disrupted gene in each mutant and determined its relative abundance in a laboratory culture and after experimental infection of mice, chickens, pigs, and cattle. The method allowed large numbers of mutants to be investigated simultaneously, drastically reducing the number of animals required to perform a comprehensive screen. We identified mutants that grow in culture but do not survive in one or more of the animals. The genes disrupted in these mutants are inferred to be important for the infection process. Most of these genes were required in all three food-producing animals, but smaller subsets of genes may mediate persistence in a specific host species. The data provide the most comprehensive map of virulence-associated genes for any bacterial pathogen in natural hosts and are highly relevant for the design of control strategies.
Collapse
Affiliation(s)
- Roy R. Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Eirwen Morgan
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Sarah E. Peters
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J. Pleasance
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Debra L. Hudson
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Holly M. Davies
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Jinhong Wang
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pauline M. van Diemen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Anthony M. Buckley
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Alison J. Bowen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Gillian D. Pullinger
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Daniel J. Turner
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Gemma C. Langridge
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - A. Keith Turner
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Ian G. Charles
- The ithree institute, University of Technology Sydney, Broadway, Australia
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Mark P. Stevens
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire, United Kingdom
| |
Collapse
|
47
|
Kemski MM, Stevens B, Rappleye CA. Spectrum of T-DNA integrations for insertional mutagenesis of Histoplasma capsulatum. Fungal Biol 2012; 117:41-51. [PMID: 23332832 DOI: 10.1016/j.funbio.2012.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Agrobacterium-mediated transformation is being increasingly used for insertional mutagenesis of fungi. To better evaluate its effectiveness as a mutagen for the fungal pathogen Histoplasma capsulatum, we analyzed a collection of randomly selected T-DNA insertion mutants. Testing of different T-DNA element vectors engineered for transformation of fungi showed that pBHt2 provides the highest transformation efficiency and the lowest rate of vector backbone carryover. Sixty-eight individual T-DNA integrations were characterized by recovery of T-DNA ends and flanking genomic sequences. The right border (RB) end of the T-DNA is largely preserved whereas the left border (LB) end is frequently truncated. Analysis of T-DNA insertion sites confirms the lack of any integration hotspots in the Histoplasma genome. Relative to genes, T-DNA integrations show significant bias towards promoter regions at the expense of coding sequences. With consideration for potential promoter interruption and the demonstrated efficacy of intronic insertions, 61 % of mapped T-DNA insertions should impair gene expression or function. Mapping of T-DNA flanking sequences demonstrates 67 % of T-DNA integrations are integrations at a single chromosomal site and 31 % of T-DNA integrations are associated with large-scale chromosomal rearrangements. This characterization of T-DNA insertions in mutants selected without regard to phenotype supports application of Agrobacterium-mediated transformation as an insertional mutagen for genome-based screens and functional discovery of genes in Histoplasma.
Collapse
Affiliation(s)
- Megan M Kemski
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
48
|
Vi antigen of Salmonella enetrica serovar Typhi — biosynthesis, regulation and its use as vaccine candidate. Open Life Sci 2012. [DOI: 10.2478/s11535-012-0082-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractVi capsular polysaccharide (Vi antigen) was first identified as the virulence antigen of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever in humans. The presence of Vi antigen differentiates S. Typhi from other serovars of Salmonella. Vi antigen is a linear polymer consisting of α-1,4-linked-N-acetyl-galactosaminuronate, whose expression is controlled by three chromosomal loci, namely viaA, viaB and ompB. Both viaA and viaB region are present on Salmonella Pathogenicity Island-7, a large, mosaic, genetic island. The viaA region encodes a positive regulator and the viaB locus is composed of 11 genes designated tviA-tviE (for Vi biosyhthesis), vexA-vexE (for Vi antigen export) and ORF 11. Vi polysaccharide is synthesized from UDP-N-acetyl glucosamine in a series of steps requiring TviB, TviC, and TviE, and regulation of Vi polysaccharide synthesis is controlled by two regulatory systems, rscB-rscC (viaA locus) and ompR-envZ (ompB locus), which respond to changes in osmolarity. This antigen is highly immunogenic and has been used for the formulation of one of the currently available vaccines against typhoid. Despite advancement in the area of vaccinology, its pace of progress needs to be accelerated and effective control programmes will be needed for proper disease management.
Collapse
|
49
|
Pushpa OB, Suresh MX. SALMONELLABASE - An online database of druggable targets of Salmonella species. Bioinformation 2012; 8:734-7. [PMID: 23055621 PMCID: PMC3449382 DOI: 10.6026/97320630008734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/30/2012] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Salmonellosis is one of the most common and widely distributed food borne diseases caused by Salmonella serovars. The emergence of multi drug resistant strains has become a threatening public health problem and targeting unique effectors of this pathogen can be considered as a powerful strategy for drug design. SalmonellaBase is an online web portal serving as an integrated source of information about Salmonella serovars with the data required for the structural and functional studies and the analysis of druggable targets in Salmonella. We have identified several target proteins, which helps in the pathogenicity of the organism and predicted their structures. The database will have the information on completely sequenced genomes of Salmonella species with the complete set of protein sequences of the respective strains, determined structures, predicted protein structures and biochemical pathways of the respective strains. In addition, we have provided information about name and source of the protein, Uniprot and Protein Data Bank codes and literature information. Furthermore, SalmonellaBase is linked to related databases and other resources. We have set up a web interface with different search and display options so that users have the ability to get the data in several ways. SalmonellaBase is a freely available database. AVAILABILITY http://www.salmonellabase.com/
Collapse
Affiliation(s)
- Ophilia Benedict Pushpa
- Department of Bioinformatics, Sathyabama University, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600 119
| | - Muthaiyan Xavier Suresh
- Department of Bioinformatics, Sathyabama University, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai - 600 119
| |
Collapse
|
50
|
Luo Y, Kong Q, Yang J, Mitra A, Golden G, Wanda SY, Roland KL, Jensen RV, Ernst PB, Curtiss R. Comparative genome analysis of the high pathogenicity Salmonella Typhimurium strain UK-1. PLoS One 2012; 7:e40645. [PMID: 22792393 PMCID: PMC3391293 DOI: 10.1371/journal.pone.0040645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 06/13/2012] [Indexed: 12/26/2022] Open
Abstract
Salmonella enterica serovar Typhimurium, a gram-negative facultative rod-shaped bacterium causing salmonellosis and foodborne disease, is one of the most common isolated Salmonella serovars in both developed and developing nations. Several S. Typhimurium genomes have been completed and many more genome-sequencing projects are underway. Comparative genome analysis of the multiple strains leads to a better understanding of the evolution of S. Typhimurium and its pathogenesis. S. Typhimurium strain UK-1 (belongs to phage type 1) is highly virulent when orally administered to mice and chickens and efficiently colonizes lymphoid tissues of these species. These characteristics make this strain a good choice for use in vaccine development. In fact, UK-1 has been used as the parent strain for a number of nonrecombinant and recombinant vaccine strains, including several commercial vaccines for poultry. In this study, we conducted a thorough comparative genome analysis of the UK-1 strain with other S. Typhimurium strains and examined the phenotypic impact of several genomic differences. Whole genomic comparison highlights an extremely close relationship between the UK-1 strain and other S. Typhimurium strains; however, many interesting genetic and genomic variations specific to UK-1 were explored. In particular, the deletion of a UK-1-specific gene that is highly similar to the gene encoding the T3SS effector protein NleC exhibited a significant decrease in oral virulence in BALB/c mice. The complete genetic complements in UK-1, especially those elements that contribute to virulence or aid in determining the diversity within bacterial species, provide key information in evaluating the functional characterization of important genetic determinants and for development of vaccines.
Collapse
Affiliation(s)
- Yingqin Luo
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Qingke Kong
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Jiseon Yang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Arindam Mitra
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Greg Golden
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Roderick V. Jensen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Peter B. Ernst
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|