1
|
Ringlander J, Rydell GE, Kann M. From the Cytoplasm into the Nucleus-Hepatitis B Virus Travel and Genome Repair. Microorganisms 2025; 13:157. [PMID: 39858925 PMCID: PMC11767736 DOI: 10.3390/microorganisms13010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Hepatitis B virus (HBV) is a major global health concern, affecting millions of people worldwide. HBV is part of the hepadnaviridae family and one of the primary causes of acute and chronic liver infections, leading to conditions such as cirrhosis and hepatocellular carcinoma (HCC). Understanding the intracellular transport and genome repair mechanisms of HBV is crucial for developing new drugs, which-in combination with immune modulators-may contribute to potential cures. This review will explore the current knowledge of HBV intracytoplasmic and nuclear transport, as well as genome repair processes, while drawing comparisons to other viruses with nuclear replication.
Collapse
Affiliation(s)
- Johan Ringlander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden; (J.R.); (G.E.R.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 41346 Gothenburg, Sweden
| | - Gustaf E. Rydell
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden; (J.R.); (G.E.R.)
| | - Michael Kann
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden; (J.R.); (G.E.R.)
- Department of Clinical Microbiology, Region Västra Götaland, Sahlgrenska University Hospital, 41346 Gothenburg, Sweden
| |
Collapse
|
2
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
3
|
Pastor F, Charles E, Belmudes L, Chabrolles H, Cescato M, Rivoire M, Burger T, Passot G, Durantel D, Lucifora J, Couté Y, Salvetti A. Deciphering the phospho-signature induced by hepatitis B virus in primary human hepatocytes. Front Microbiol 2024; 15:1415449. [PMID: 38841065 PMCID: PMC11150682 DOI: 10.3389/fmicb.2024.1415449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Phosphorylation is a major post-translation modification (PTM) of proteins which is finely tuned by the activity of several hundred kinases and phosphatases. It controls most if not all cellular pathways including anti-viral responses. Accordingly, viruses often induce important changes in the phosphorylation of host factors that can either promote or counteract viral replication. Among more than 500 kinases constituting the human kinome only few have been described as important for the hepatitis B virus (HBV) infectious cycle, and most of them intervene during early or late infectious steps by phosphorylating the viral Core (HBc) protein. In addition, little is known on the consequences of HBV infection on the activity of cellular kinases. The objective of this study was to investigate the global impact of HBV infection on the cellular phosphorylation landscape early after infection. For this, primary human hepatocytes (PHHs) were challenged or not with HBV, and a mass spectrometry (MS)-based quantitative phosphoproteomic analysis was conducted 2- and 7-days post-infection. The results indicated that while, as expected, HBV infection only minimally modified the cell proteome, significant changes were observed in the phosphorylation state of several host proteins at both time points. Gene enrichment and ontology analyses of up- and down-phosphorylated proteins revealed common and distinct signatures induced by infection. In particular, HBV infection resulted in up-phosphorylation of proteins involved in DNA damage signaling and repair, RNA metabolism, in particular splicing, and cytoplasmic cell-signaling. Down-phosphorylated proteins were mostly involved in cell signaling and communication. Validation studies carried out on selected up-phosphorylated proteins, revealed that HBV infection induced a DNA damage response characterized by the appearance of 53BP1 foci, the inactivation of which by siRNA increased cccDNA levels. In addition, among up-phosphorylated RNA binding proteins (RBPs), SRRM2, a major scaffold of nuclear speckles behaved as an antiviral factor. In accordance with these findings, kinase prediction analysis indicated that HBV infection upregulates the activity of major kinases involved in DNA repair. These results strongly suggest that HBV infection triggers an intrinsic anti-viral response involving DNA repair factors and RBPs that contribute to reduce HBV replication in cell culture models.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Emilie Charles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Lucid Belmudes
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Hélène Chabrolles
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Marion Cescato
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | | | - Thomas Burger
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Guillaume Passot
- Service de Chirurgie Générale et Oncologique, Hôpital Lyon Sud, Hospices Civils de Lyon Et CICLY, EA3738, Université Claude Bernard Lyon, Lyon, France
| | - David Durantel
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Julie Lucifora
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| | - Yohann Couté
- Université Grenoble Alpes, CEA, INSERM, UA13 BGE, CEA, CNRS, FR2048, Grenoble, France
| | - Anna Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS, Lyon, France
| |
Collapse
|
4
|
Zhang T, Zheng H, Lu D, Guan G, Li D, Zhang J, Liu S, Zhao J, Guo JT, Lu F, Chen X. RNA binding protein TIAR modulates HBV replication by tipping the balance of pgRNA translation. Signal Transduct Target Ther 2023; 8:346. [PMID: 37699883 PMCID: PMC10497612 DOI: 10.1038/s41392-023-01573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023] Open
Abstract
The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves not only as a bicistronic message RNA to translate core protein (Cp) and DNA polymerase (Pol), but also as the template for reverse transcriptional replication of viral DNA upon packaging into nucleocapsid. Although it is well known that pgRNA translates much more Cp than Pol, the molecular mechanism underlying the regulation of Cp and Pol translation efficiency from pgRNA remains elusive. In this study, we systematically profiled HBV nucleocapsid- and pgRNA-associated cellular proteins by proteomic analysis and identified TIA-1-related protein (TIAR) as a novel cellular protein that binds pgRNA and promotes HBV DNA replication. Interestingly, loss- and gain-of-function genetic analyses showed that manipulation of TIAR expression did not alter the levels of HBV transcripts nor the secretion of HBsAg and HBeAg in human hepatoma cells supporting HBV replication. However, Ribo-seq and PRM-based mass spectrometry analyses demonstrated that TIAR increased the translation of Pol but decreased the translation of Cp from pgRNA. RNA immunoprecipitation (RIP) and pulldown assays further revealed that TIAR directly binds pgRNA at the 5' stem-loop (ε). Moreover, HBV replication or Cp expression induced the increased expression and redistribution of TIAR from the nucleus to the cytoplasm of hepatocytes. Our results thus imply that TIAR is a novel cellular factor that regulates HBV replication by binding to the 5' ε structure of pgRNA to tip the balance of Cp and Pol translation. Through induction of TIAR translocation from the nucleus to the cytoplasm, Cp indirectly regulates the Pol translation and balances Cp and Pol expression levels in infected hepatocytes to ensure efficient viral replication.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huiling Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Danjuan Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Deyao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ju-Tao Guo
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
5
|
Kim C, Schlicksup CJ, Pérez-Segura C, Hadden-Perilla JA, Wang JCY, Zlotnick A. Structure of the Hepatitis B virus capsid quasi-6-fold with a trapped C-terminal domain reveals capsid movements associated with domain exit. J Biol Chem 2023; 299:105104. [PMID: 37517693 PMCID: PMC10463254 DOI: 10.1016/j.jbc.2023.105104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
Many viruses undergo transient conformational change to surveil their environments for receptors and host factors. In Hepatitis B virus (HBV) infection, after the virus enters the cell, it is transported to the nucleus by interaction of the HBV capsid with an importin α/β complex. The interaction between virus and importins is mediated by nuclear localization signals on the capsid protein's C-terminal domain (CTD). However, CTDs are located inside the capsid. In this study, we asked where does a CTD exit the capsid, are all quasi-equivalent CTDs created equal, and does the capsid structure deform to facilitate CTD egress from the capsid? Here, we used Impβ as a tool to trap transiently exposed CTDs and examined this complex by cryo-electron microscopy. We examined an asymmetric reconstruction of a T = 4 icosahedral capsid and a focused reconstruction of a quasi-6-fold vertex (3.8 and 4.0 Å resolution, respectively). Both approaches showed that a subset of CTDs extended through a pore in the center of the quasi-6-fold complex. CTD egress was accompanied by enlargement of the pore and subtle changes in quaternary and tertiary structure of the quasi-6-fold. When compared to molecular dynamics simulations, structural changes were within the normal range of capsid flexibility. Although pore diameter was enlarged in the Impβ-bound reconstruction, simulations indicate that CTD egress does not exclusively depend on enlarged pores. In summary, we find that HBV surveillance of its environment by transient exposure of its CTD requires only modest conformational change of the capsid.
Collapse
Affiliation(s)
- Christine Kim
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | | | - Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Jodi A Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Joseph Che-Yen Wang
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
6
|
Clark AB, Safdari M, Zoorob S, Zandi R, van der Schoot P. Relaxational dynamics of the T-number conversion of virus capsids. J Chem Phys 2023; 159:084904. [PMID: 37610017 DOI: 10.1063/5.0160822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
We extend a recently proposed kinetic theory of virus capsid assembly based on Model A kinetics and study the dynamics of the interconversion of virus capsids of different sizes triggered by a quench, that is, by sudden changes in the solution conditions. The work is inspired by in vitro experiments on functionalized coat proteins of the plant virus cowpea chlorotic mottle virus, which undergo a reversible transition between two different shell sizes (T = 1 and T = 3) upon changing the acidity and salinity of the solution. We find that the relaxation dynamics are governed by two time scales that, in almost all cases, can be identified as two distinct processes. Initially, the monomers and one of the two types of capsids respond to the quench. Subsequently, the monomer concentration remains essentially constant, and the conversion between the two capsid species completes. In the intermediate stages, a long-lived metastable steady state may present itself, where the thermodynamically less stable species predominate. We conclude that a Model A based relaxational model can reasonably describe the early and intermediate stages of the conversion experiments. However, it fails to provide a good representation of the time evolution of the state of assembly of the coat proteins in the very late stages of equilibration when one of the two species disappears from the solution. It appears that explicitly incorporating the nucleation barriers to assembly and disassembly is crucial for an accurate description of the experimental findings, at least under conditions where these barriers are sufficiently large.
Collapse
Affiliation(s)
- Alexander Bryan Clark
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Mohammadamin Safdari
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Selim Zoorob
- Biophysics Graduate Program, University of California, Riverside, California 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
- Biophysics Graduate Program, University of California, Riverside, California 92521, USA
| | - Paul van der Schoot
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Hofmann S, Plank V, Groitl P, Skvorc N, Hofmann K, Luther J, Ko C, Zimmerman P, Bruss V, Stadler D, Carpentier A, Rezk S, Nassal M, Protzer U, Schreiner S. SUMO Modification of Hepatitis B Virus Core Mediates Nuclear Entry, Promyelocytic Leukemia Nuclear Body Association, and Efficient Formation of Covalently Closed Circular DNA. Microbiol Spectr 2023; 11:e0044623. [PMID: 37199632 PMCID: PMC10269885 DOI: 10.1128/spectrum.00446-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Persistence of hepatitis B virus (HBV) infection is due to a nuclear covalently closed circular DNA (cccDNA), generated from the virion-borne relaxed circular DNA (rcDNA) genome in a process likely involving numerous cell factors from the host DNA damage response (DDR). The HBV core protein mediates rcDNA transport to the nucleus and likely affects stability and transcriptional activity of cccDNA. Our study aimed at investigating the role of HBV core protein and its posttranslational modification (PTM) with SUMO (small ubiquitin-like modifiers) during the establishment of cccDNA. HBV core protein SUMO PTM was analyzed in His-SUMO-overexpressing cell lines. The impact of HBV core SUMOylation on association with cellular interaction partners and on the HBV life cycle was determined using SUMOylation-deficient mutants of the HBV core protein. Here, we show that the HBV core protein is posttranslationally modified by the addition of SUMO and that this modification impacts nuclear import of rcDNA. By using SUMOylation-deficient HBV core mutants, we show that SUMO modification is a prerequisite for the association with specific promyelocytic leukemia nuclear bodies (PML-NBs) and regulates the conversion of rcDNA to cccDNA. By in vitro SUMOylation of HBV core, we obtained evidence that SUMOylation triggers nucleocapsid disassembly, providing novel insights into the nuclear import process of rcDNA. HBV core protein SUMOylation and subsequent association with PML bodies in the nucleus constitute a key step in the conversion of HBV rcDNA to cccDNA and therefore a promising target for inhibiting formation of the HBV persistence reservoir. IMPORTANCE HBV cccDNA is formed from the incomplete rcDNA involving several host DDR proteins. The exact process and the site of cccDNA formation are poorly understood. Here, we show that HBV core protein SUMO modification is a novel PTM regulating the function of HBV core. A minor specific fraction of the HBV core protein resides with PML-NBs in the nuclear matrix. SUMO modification of HBV core protein mediates its recruitment to specific PML-NBs within the host cell. Within HBV nucleocapsids, SUMOylation of HBV core induces HBV capsid disassembly and is a prerequisite for nuclear entry of HBV core. SUMO HBV core protein association with PML-NBs is crucial for efficient conversion of rcDNA to cccDNA and for the establishment of the viral persistence reservoir. HBV core protein SUMO modification and the subsequent association with PML-NBs might constitute a potential novel target in the development of drugs targeting the cccDNA.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Verena Plank
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Peter Groitl
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Nathalie Skvorc
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Katharina Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Julius Luther
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Chunkyu Ko
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Peter Zimmerman
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Volker Bruss
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Daniela Stadler
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | | | - Shahinda Rezk
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Medical Research Institute, Department of Molecular and Diagnostic Microbiology, Alexandria University, Alexandria, Egypt
| | - Michael Nassal
- Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research, Munich, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Villanueva RA, Loyola A. Pre- and Post-Transcriptional Control of HBV Gene Expression: The Road Traveled towards the New Paradigm of HBx, Its Isoforms, and Their Diverse Functions. Biomedicines 2023; 11:1674. [PMID: 37371770 DOI: 10.3390/biomedicines11061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped DNA human virus belonging to the Hepadnaviridae family. Perhaps its main distinguishable characteristic is the replication of its genome through a reverse transcription process. The HBV circular genome encodes only four overlapping reading frames, encoding for the main canonical proteins named core, P, surface, and X (or HBx protein). However, pre- and post-transcriptional gene regulation diversifies the full HBV proteome into diverse isoform proteins. In line with this, hepatitis B virus X protein (HBx) is a viral multifunctional and regulatory protein of 16.5 kDa, whose canonical reading frame presents two phylogenetically conserved internal in-frame translational initiation codons, and which results as well in the expression of two divergent N-terminal smaller isoforms of 8.6 and 5.8 kDa, during translation. The canonical HBx, as well as the smaller isoform proteins, displays different roles during viral replication and subcellular localizations. In this article, we reviewed the different mechanisms of pre- and post-transcriptional regulation of protein expression that take place during viral replication. We also investigated all the past and recent evidence about HBV HBx gene regulation and its divergent N-terminal isoform proteins. Evidence has been collected for over 30 years. The accumulated evidence simply strengthens the concept of a new paradigm of the canonical HBx, and its smaller divergent N-terminal isoform proteins, not only during viral replication, but also throughout cell pathogenesis.
Collapse
Affiliation(s)
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
9
|
Romero S, Unchwaniwala N, Evans EL, Eliceiri KW, Loeb DD, Sherer NM. Live Cell Imaging Reveals HBV Capsid Translocation from the Nucleus To the Cytoplasm Enabled by Cell Division. mBio 2023; 14:e0330322. [PMID: 36809075 PMCID: PMC10127671 DOI: 10.1128/mbio.03303-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Hepatitis B virus (HBV) capsid assembly is traditionally thought to occur predominantly in the cytoplasm, where the virus gains access to the virion egress pathway. To better define sites of HBV capsid assembly, we carried out single cell imaging of HBV Core protein (Cp) subcellular trafficking over time under conditions supporting genome packaging and reverse transcription in Huh7 hepatocellular carcinoma cells. Time-course analyses including live cell imaging of fluorescently tagged Cp derivatives showed Cp to accumulate in the nucleus at early time points (~24 h), followed by a marked re-distribution to the cytoplasm at 48 to 72 h. Nucleus-associated Cp was confirmed to be capsid and/or high-order assemblages using a novel dual label immunofluorescence strategy. Nuclear-to-cytoplasmic re-localization of Cp occurred predominantly during nuclear envelope breakdown in conjunction with cell division, followed by strong cytoplasmic retention of Cp. Blocking cell division resulted in strong nuclear entrapment of high-order assemblages. A Cp mutant, Cp-V124W, predicted to exhibit enhanced assembly kinetics, also first trafficked to the nucleus to accumulate at nucleoli, consistent with the hypothesis that Cp's transit to the nucleus is a strong and constitutive process. Taken together, these results provide support for the nucleus as an early-stage site of HBV capsid assembly, and provide the first dynamic evidence of cytoplasmic retention after cell division as a mechanism underpinning capsid nucleus-to-cytoplasm relocalization. IMPORTANCE Hepatitis B virus (HBV) is an enveloped, reverse-transcribing DNA virus that is a major cause of liver disease and hepatocellular carcinoma. Subcellular trafficking events underpinning HBV capsid assembly and virion egress remain poorly characterized. Here, we developed a combination of fixed and long-term (>24 h) live cell imaging technologies to study the single cell trafficking dynamics of the HBV Core Protein (Cp). We demonstrate that Cp first accumulates in the nucleus, and forms high-order structures consistent with capsids, with the predominant route of nuclear egress being relocalization to the cytoplasm during cell division in conjunction with nuclear membrane breakdown. Single cell video microscopy demonstrated unequivocally that Cp's localization to the nucleus is constitutive. This study represents a pioneering application of live cell imaging to study HBV subcellular transport, and demonstrates links between HBV Cp and the cell cycle.
Collapse
Affiliation(s)
- Sofia Romero
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nuruddin Unchwaniwala
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Edward L. Evans
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research (Department of Oncology), University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Liu Y, Abula A, Xiao H, Guo H, Li T, Zheng L, Chen B, Nguyen HC, Ji X. Structural Insight Into hnRNP A2/B1 Homodimerization and DNA Recognition. J Mol Biol 2023; 435:167920. [PMID: 36528084 DOI: 10.1016/j.jmb.2022.167920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) has been identified as a nuclear DNA sensor. Upon viral infection, hnRNP A2/B1 recognizes pathogen-derived DNA as a homodimer, which is a prerequisite for its translocation to the cytoplasm to activate the interferon response. However, the DNA binding mechanism inducing hnRNP A2/B1 homodimerization is unknown. Here, we show the crystal structure of the RNA recognition motif (RRM) of hnRNP A2/B1 in complex with a U-shaped ssDNA, which mediates the formation of a newly observed protein dimer. Our biochemical assays and mutagenesis studies confirm that the hnRNP A2/B1 homodimer forms in solution by binding to pre-generated ssDNA or dsDNA with a U-shaped bulge. These results depict a potential functional state of hnRNP A2/B1 in antiviral immunity and other cellular processes.
Collapse
Affiliation(s)
- Yue Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Abudureyimu Abula
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China; School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | - Haonan Xiao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Le Zheng
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Biqing Chen
- Research Center of Chinese Medicine/Central Laboratory, Jiangsu Province Hospital of Chinese Medicine/ the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Henry C Nguyen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, People's Republic of China; Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, People's Republic of China.
| |
Collapse
|
11
|
HIRA Supports Hepatitis B Virus Minichromosome Establishment and Transcriptional Activity in Infected Hepatocytes. Cell Mol Gastroenterol Hepatol 2022; 14:527-551. [PMID: 35643233 PMCID: PMC9304598 DOI: 10.1016/j.jcmgh.2022.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Upon hepatitis B virus (HBV) infection, partially double-stranded viral DNA converts into a covalently closed circular chromatinized episomal structure (cccDNA). This form represents the long-lived genomic reservoir responsible for viral persistence in the infected liver. Although the involvement of host cell DNA damage response in cccDNA formation has been established, this work investigated the yet-to-be-identified histone dynamics on cccDNA during early phases of infection in human hepatocytes. METHODS Detailed studies of host chromatin-associated factors were performed in cell culture models of natural infection (ie, Na+-taurocholate cotransporting polypeptide (NTCP)-overexpressing HepG2 cells, HepG2hNTCP) and primary human hepatocytes infected with HBV, by cccDNA-specific chromatin immunoprecipitation and loss-of-function experiments during early kinetics of viral minichromosome establishment and onset of viral transcription. RESULTS Our results show that cccDNA formation requires the deposition of the histone variant H3.3 via the histone regulator A (HIRA)-dependent pathway. This occurs simultaneously with repair of the cccDNA precursor and independently from de novo viral protein expression. Moreover, H3.3 in its S31 phosphorylated form appears to be the preferential H3 variant found on transcriptionally active cccDNA in infected cultured cells and human livers. HIRA depletion after cccDNA pool establishment showed that HIRA recruitment is required for viral transcription and RNA production. CONCLUSIONS Altogether, we show a crucial role for HIRA in the interplay between HBV genome and host cellular machinery to ensure the formation and active transcription of the viral minichromosome in infected hepatocytes.
Collapse
|
12
|
Starr CA, Barnes LF, Jarrold MF, Zlotnick A. Hysteresis in Hepatitis B Virus (HBV) Requires Assembly of Near-Perfect Capsids. Biochemistry 2022; 61:505-513. [PMID: 35258283 PMCID: PMC9443786 DOI: 10.1021/acs.biochem.1c00810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hepatitis B virus (HBV) must release its contents to initiate infection, making capsid disassembly critical to the viral life cycle. Capsid assembly proceeds through a cascade of weak interactions between copies of capsid protein (Cp) to yield uniform particles. However, there is a hysteresis to capsid dissociation that allows capsids to persist under conditions where they could not assemble. In this study, we have sought to define the basis of hysteresis by examining urea-induced dissociation of in vitro-assembled HBV capsids. In general, capsid samples show a mixture of two pools, differentiated by stability. Labile capsid dissociation corresponds to an ∼5 μM pseudocritical concentration of assembly (pcc), the same as that observed in assembly reactions. Dissociation of the stable pool corresponds to a subfemtomolar pcc, indicative of hysteresis. The fraction of stable capsids in an assembly reaction increases with the integrity of the Cp preparation and when association is performed at a higher ionic strength, which modifies the Cp conformation. Labile complexes are more prevalent when assembly conditions yield many kinetically trapped (incomplete and overgrown) products. Cp isolated from stable capsids reassembles into a mixture of stable and labile capsids. These results suggest that hysteresis arises from an ideal capsid lattice, even when some of the substituents in that lattice have defects. Consistent with structural studies that show a subtle difference between Cp dimers and Cp in capsid, we propose that hysteresis arises when HBV capsids undergo a lattice-dependent structural transition.
Collapse
Affiliation(s)
- Caleb A. Starr
- – Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| | - Lauren F. Barnes
- – Chemistry Department, Indiana University, Bloomington, IN 47405
| | | | - Adam Zlotnick
- – Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
13
|
Core Protein-Directed Antivirals and Importin β Can Synergistically Disrupt HBV Capsids. J Virol 2021; 96:e0139521. [PMID: 34705562 DOI: 10.1128/jvi.01395-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral structural proteins can have multiple activities. Antivirals that target structural proteins have potential to exhibit multiple antiviral mechanisms. Hepatitis B Virus (HBV) core protein (Cp) is involved in most stages of the viral lifecycle: it assembles into capsids, packages viral RNA, is a metabolic compartment for reverse transcription, interacts with nuclear trafficking machinery, and disassembles to release the viral genome into the nucleus. During nuclear localization, HBV capsids bind to host importins (e.g. Impβ) via Cp's C-terminal domain (CTD); the CTD is localized to the interior of the capsid and is transiently exposed on the exterior. We used HAP12 as a representative Cp Allosteric Modulators (CpAMs), a class of antivirals that inappropriately stimulates and misdirects HBV assembly and deforms capsids. CpAM impact on other aspects of the HBV lifecycle is poorly understood. We investigated how HAP12 influenced the interactions between empty or RNA-filled capsids with Impβ and trypsin in vitro. We showed that HAP12 can modulate CTD accessibility and capsid stability, depending on the saturation of HAP12-binding sites. We demonstrated that Impβ synergistically contributes to capsid disruption at high levels of HAP12 saturation, using electron microscopy to visualize disruption and rearrangement of Cp dimers into aberrant complexes. However, RNA-filled capsids resisted the destabilizing effects of HAP12 and Impβ. In summary, we show host protein-induced catalysis of capsid disruption, an unexpected additional mechanism of action for CpAMs. Potentially, untimely capsid disassembly can hamper the HBV lifecycle and also cause the virus to become vulnerable to host innate immune responses. IMPORTANCE The HBV core, an icosahedral complex of 120 copies of the homodimeric core (capsid) protein with or without packaged nucleic acid, is transported to the host nucleus by its interaction with host importin proteins. Importin-core interaction requires the core protein C-terminal domain, which is inside the capsid, to "flip" to the capsid exterior. Core-protein directed drugs that affect capsid assembly and stability have been developed recently. We show that these molecules can, synergistically with importins, disrupt capsids. This mechanism of action, synergism with host protein, has potential to disrupt the virus lifecycle and activate the innate immune system.
Collapse
|
14
|
Abstract
The disassembly of a viral capsid leading to the release of its genetic material into the host cell is a fundamental step in viral infection. In hepatitis B virus (HBV), the capsid consists of identical protein monomers that dimerize and then arrange themselves into pentamers or hexamers on the capsid surface. By applying atomistic molecular dynamics simulation to an entire solvated HBV capsid subjected to a uniform mechanical stress protocol, we monitor the capsid-disassembly process and analyze the process down to the level of individual amino acids in 20 independent simulation replicas. The strain of an isotropic external force, combined with structural fluctuations, causes structurally heterogeneous cracks to appear in the HBV capsid. Analysis of the monomer-monomer interfaces reveals that, in contrast to the expectation from purely mechanical considerations, the cracks mainly occur within hexameric sites, whereas pentameric sites remain largely intact. Only a small subset of the capsid protein monomers, different in each simulation, are engaged in each instance of disassembly. We identify specific residues whose interactions are most readily lost during disassembly; R127, I139, Y132, N136, A137, and V149 are among the hot spots at the interfaces between dimers that lie within hexamers, leading to disassembly. The majority of these hot-spot residues are conserved by evolution, hinting to their importance for disassembly by avoiding overstabilization of capsids.
Collapse
|
15
|
Tsounis EP, Tourkochristou E, Mouzaki A, Triantos C. Toward a new era of hepatitis B virus therapeutics: The pursuit of a functional cure. World J Gastroenterol 2021; 27:2727-2757. [PMID: 34135551 PMCID: PMC8173382 DOI: 10.3748/wjg.v27.i21.2727] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection, although preventable by vaccination, remains a global health problem and a major cause of chronic liver disease. Although current treatment strategies suppress viral replication very efficiently, the optimal endpoint of hepatitis B surface antigen (HBsAg) clearance is rarely achieved. Moreover, the thorny problems of persistent chromatin-like covalently closed circular DNA and the presence of integrated HBV DNA in the host genome are ignored. Therefore, the scientific community has focused on developing innovative therapeutic approaches to achieve a functional cure of HBV, defined as undetectable HBV DNA and HBsAg loss over a limited treatment period. A deeper understanding of the HBV life cycle has led to the introduction of novel direct-acting antivirals that exert their function through multiple mechanisms, including inhibition of viral entry, transcriptional silencing, epigenetic manipulation, interference with capsid assembly, and disruption of HBsAg release. In parallel, another category of new drugs aims to restore dysregulated immune function in chronic hepatitis B accompanied by lethargic cellular and humoral responses. Stimulation of innate immunity by pattern-recognition receptor agonists leads to upregulation of antiviral cytokine expression and appears to contribute to HBV containment. Immune checkpoint inhibitors and adoptive transfer of genetically engineered T cells are breakthrough technologies currently being explored that may elicit potent HBV-specific T-cell responses. In addition, several clinical trials are attempting to clarify the role of therapeutic vaccination in this setting. Ultimately, it is increasingly recognized that elimination of HBV requires a treatment regimen based on a combination of multiple drugs. This review describes the rationale for progressive therapeutic interventions and discusses the latest findings in the field of HBV therapeutics.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras 26504, Greece
| |
Collapse
|
16
|
Early Steps of Hepatitis B Life Cycle: From Capsid Nuclear Import to cccDNA Formation. Viruses 2021; 13:v13050757. [PMID: 33925977 PMCID: PMC8145197 DOI: 10.3390/v13050757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) remains a major public health concern, with more than 250 million chronically infected people who are at high risk of developing liver diseases, including cirrhosis and hepatocellular carcinoma. Although antiviral treatments efficiently control virus replication and improve liver function, they cannot cure HBV infection. Viral persistence is due to the maintenance of the viral circular episomal DNA, called covalently closed circular DNA (cccDNA), in the nuclei of infected cells. cccDNA not only resists antiviral therapies, but also escapes innate antiviral surveillance. This viral DNA intermediate plays a central role in HBV replication, as cccDNA is the template for the transcription of all viral RNAs, including pregenomic RNA (pgRNA), which in turn feeds the formation of cccDNA through a step of reverse transcription. The establishment and/or expression of cccDNA is thus a prime target for the eradication of HBV. In this review, we provide an update on the current knowledge on the initial steps of HBV infection, from the nuclear import of the nucleocapsid to the formation of the cccDNA.
Collapse
|
17
|
Production of the HBc Protein from Different HBV Genotypes in E. coli. Use of Reassociated HBc VLPs for Packaging of ss- and dsRNA. Microorganisms 2021; 9:microorganisms9020283. [PMID: 33573151 PMCID: PMC7912224 DOI: 10.3390/microorganisms9020283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The core proteins (HBc) of the hepatitis B virus (HBV) genotypes A, B, C, D, E, F, and G were cloned and expressed in Escherichia coli (E. coli), and HBc-formed virus-like particles (VLPs) were purified with ammonium sulfate precipitation, gel filtration, and ion exchange chromatography (IEX). The best VLP yield was found for the HBc of the HBV genotypes D and G. For the HBc of the HBV genotypes D, F, and G, the possibility of dissociation and reassociation maintaining the native HBc structure was demonstrated. Single-stranded (ss) and double-stranded (ds) ribonucleic acid (RNA) was successfully packed into HBc VLPs for the HBV genotypes D and G.
Collapse
|
18
|
Tu T, Zhang H, Urban S. Hepatitis B Virus DNA Integration: In Vitro Models for Investigating Viral Pathogenesis and Persistence. Viruses 2021; 13:v13020180. [PMID: 33530322 PMCID: PMC7911709 DOI: 10.3390/v13020180] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a globally-distributed pathogen and is a major cause of liver disease. HBV (or closely-related animal hepadnaviruses) can integrate into the host genome, but (unlike retroviruses) this integrated form is replication-defective. The specific role(s) of the integrated HBV DNA has been a long-standing topic of debate. Novel in vitro models of HBV infection combined with sensitive molecular assays now enable researchers to investigate this under-characterised phenomenon with greater ease and precision. This review covers the contributions these systems have made to understanding how HBV DNA integration induces liver cancer and facilitates viral persistence. We summarise the current findings into a working model of chronic HBV infection and discuss the clinical implications of this hypothetical framework on the upcoming therapeutic strategies used to curb HBV-associated pathogenesis.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Faculty of Medicine and Health, Westmead Clinical School and Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| | - Henrik Zhang
- Storr Liver Centre, Faculty of Medicine and Health, Westmead Clinical School and Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Hepatitis B virus Core protein nuclear interactome identifies SRSF10 as a host RNA-binding protein restricting HBV RNA production. PLoS Pathog 2020; 16:e1008593. [PMID: 33180834 PMCID: PMC7707522 DOI: 10.1371/journal.ppat.1008593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/01/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies. Chronic infection with Hepatitis B virus (HBV) affects more than 250 million of people world-wide and is a major global cause of liver cancer. Current treatments lead to a significant reduction of viremia in patients. However, viral clearance is rarely obtained and the persistence of the HBV genome in the hepatocyte’s nucleus generates a stable source of viral RNAs and subsequently proteins which play important roles in immune escape mechanisms and liver disease progression. Therapies aiming at efficiently and durably eliminating viral gene expression are still required. In this study, we identified the nuclear partners of the HBV Core protein (HBc) to understand how this structural protein, responsible for capsid assembly in the cytoplasm, could also regulate viral gene expression. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs). One of these RBPs, SRSF10, was demonstrated to restrict HBV RNA levels and a drug, able to alter its phosphorylation, behaved as an antiviral compound capable of reducing viral gene expression. Altogether, this study sheds new light on novel regulatory functions of HBc and provides information relevant for the development of antiviral strategies aiming at preventing viral gene expression.
Collapse
|
20
|
Gerlich WH, Glebe D. Enigmatic PreS deletions in hepatitis B virus DNA. Virus Genes 2020; 56:675-676. [PMID: 33151446 PMCID: PMC7679326 DOI: 10.1007/s11262-020-01805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 11/03/2022]
Affiliation(s)
- Wolfram H Gerlich
- Institute for Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| | - Dieter Glebe
- Institute for Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
21
|
Marchetti AL, Guo H. New Insights on Molecular Mechanism of Hepatitis B Virus Covalently Closed Circular DNA Formation. Cells 2020; 9:cells9112430. [PMID: 33172220 PMCID: PMC7694973 DOI: 10.3390/cells9112430] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
The chronic factor of the Hepatitis B Virus (HBV), specifically the covalently closed circular DNA (cccDNA), is a highly stable and active viral episomal genome established in the livers of chronic hepatitis B patients as a constant source of disease. Being able to target and eliminate cccDNA is the end goal for a genuine cure for HBV. Yet how HBV cccDNA is formed from the viral genomic relaxed circular DNA (rcDNA) and by what host factors had been long-standing research questions. It is generally acknowledged that HBV hijacks cellular functions to turn the open circular DNA conformation of rcDNA into cccDNA through DNA repair mechanisms. With great efforts from the HBV research community, there have been several recent leaps in our understanding of cccDNA formation. It is our goal in this review to analyze the recent reports showing evidence of cellular factor's involvement in the molecular pathway of cccDNA biosynthesis.
Collapse
Affiliation(s)
- Alexander L. Marchetti
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Cancer Virology Program, Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Haitao Guo
- Cancer Virology Program, Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence:
| |
Collapse
|
22
|
Phosphorylation of the Arginine-Rich C-Terminal Domains of the Hepatitis B Virus (HBV) Core Protein as a Fine Regulator of the Interaction between HBc and Nucleic Acid. Viruses 2020; 12:v12070738. [PMID: 32650547 PMCID: PMC7412469 DOI: 10.3390/v12070738] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023] Open
Abstract
The morphogenesis of Hepatitis B Virus (HBV) viral particles is nucleated by the oligomerization of HBc protein molecules, resulting in the formation of an icosahedral capsid shell containing the replication-competent nucleoprotein complex made of the viral polymerase and the pre-genomic RNA (pgRNA). HBc is a phospho-protein containing two distinct domains acting together throughout the viral replication cycle. The N-terminal domain, (residues 1–140), shown to self-assemble, is linked by a short flexible domain to the basic C-terminal domain (residues 150–183) that interacts with nucleic acids (NAs). In addition, the C-terminal domain contains a series of phospho-acceptor residues that undergo partial phosphorylation and de-phosphorylation during virus replication. This highly dynamic process governs the homeostatic charge that is essential for capsid stability, pgRNA packaging and to expose the C-terminal domain at the surface of the particles for cell trafficking. In this review, we discuss the roles of the N-terminal and C-terminal domains of HBc protein during HBV morphogenesis, focusing on how the C-terminal domain phosphorylation dynamics regulate its interaction with nucleic acids throughout the assembly and maturation of HBV particles.
Collapse
|
23
|
Hepatitis B Virus Core Protein Domains Essential for Viral Capsid Assembly in a Cellular Context. J Mol Biol 2020; 432:3802-3819. [PMID: 32371046 DOI: 10.1016/j.jmb.2020.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein (HBc) is essential to the formation of the HBV capsid. HBc contains two domains: the N-terminal domain corresponding to residues 1-140 essential to form the icosahedral shell and the C-terminal domain corresponding to a basic and phosphorylated peptide, and required for DNA replication. The role of these two domains for HBV capsid assembly was essentially studied in vitro with HBc purified from mammalian or non-mammalian cell lysates, but their respective role in living cells remains to be clarified. We therefore investigated the assembly of the HBV capsid in Huh7 cells by combining fluorescence lifetime imaging microscopy/Förster's resonance energy transfer, fluorescence correlation spectroscopy and transmission electron microscopy approaches. We found that wild-type HBc forms oligomers early after transfection and at a sub-micromolar concentration. These oligomers are homogeneously diffused throughout the cell. We quantified a stoichiometry ranging from ~170 to ~230 HBc proteins per oligomer, consistent with the visualization of eGFP-containingHBV capsid shaped as native capsid particles by transmission electron microscopy. In contrast, no assembly was observed when HBc-N-terminal domain was expressed. This highlights the essential role of the C-terminal domain to form capsid in mammalian cells. Deletion of either the third helix or of the 124-135 residues of HBc had a dramatic impact on the assembly of the HBV capsid, inducing the formation of mis-assembled oligomers and monomers, respectively. This study shows that our approach using fluorescent derivatives of HBc is an innovative method to investigate HBV capsid formation.
Collapse
|
24
|
A New Role for Capsid Assembly Modulators To Target Mature Hepatitis B Virus Capsids and Prevent Virus Infection. Antimicrob Agents Chemother 2019; 64:AAC.01440-19. [PMID: 31658963 DOI: 10.1128/aac.01440-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is a major human pathogen, killing an estimated 887,000 people per year. Therefore, potentially curative therapies are of high importance. Following infection, HBV deposits a covalently closed circular DNA (cccDNA) in the nucleus of infected cells that serves as a transcription template and is not affected by current therapies. HBV core protein allosteric modulators (CpAMs) prevent correct capsid assembly but may also affect early stages of HBV infection. In this study, we aimed to determine the antiviral efficacy of a novel, structurally distinct heteroaryldihydropyrimidine (HAP)-type CpAM, HAP_R01, and investigated whether and how HAP_R01 prevents the establishment of HBV infection. HAP_R01 shows a significant inhibition of cccDNA formation when applied during the first 48 h of HBV infection. Inhibiting cccDNA formation, however, requires >1-log10-higher concentrations than inhibition of the assembly of newly forming capsids (half-maximal effective concentration [EC50], 345 to 918 nM versus 26.8 to 43.5 nM, respectively). Biophysical studies using a new method to detect the incoming capsid in de novo infection revealed that HAP_R01 can physically change mature capsids of incoming virus particles and affect particle integrity. Treating purified HBV virions with HAP_R01 reduced their infectivity, highlighting the unique antiviral activity of CpAMs to target the capsid within mature HBV particles. Accordingly, HAP_R01 shows an additive antiviral effect in limiting de novo infection when combined with viral entry inhibitors. In summary, HAP_R01 perturbs capsid integrity of incoming virus particles and reduces their infectivity and thus inhibits cccDNA formation in addition to preventing HBV capsid assembly.
Collapse
|
25
|
Wang J, Huang H, Liu Y, Chen R, Yan Y, Shi S, Xi J, Zou J, Yu G, Feng X, Lu F. HBV Genome and Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:17-37. [PMID: 31741332 DOI: 10.1007/978-981-13-9151-4_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection remains to be a serious threat to public health and is associated with many liver diseases including chronic hepatitis B (CHB), liver cirrhosis, and hepatocellular carcinoma. Although nucleos(t)ide analogues (NA) and pegylated interferon-α (Peg-IFNα) have been confirmed to be efficient in inhibiting HBV replication, it is difficult to eradicate HBV and achieve the clinical cure of CHB. Therefore, long-term therapy has been recommended to CHB treatment under the current antiviral therapy. In this context, the new antiviral therapy targeting one or multiple critical steps of viral life cycle may be an alternative approach in future. In the last decade, the functional receptor [sodium-taurocholate cotransporting polypeptide (NTCP)] of HBV entry into hepatocytes has been discovered, and the immature nucleocapsids containing the non- or partially reverse-transcribed pregenomic RNA, the nucleocapsids containing double-strand linear DNA (dslDNA), and the empty particles devoid of any HBV nucleic acid have been found to be released into circulation, which have supplemented the life cycle of HBV. The understanding of HBV life cycle may offer a new instruction for searching the potential antiviral targets, and the new viral markers used to monitor the efficacy of antiviral therapy for CHB patients in the future.
Collapse
Affiliation(s)
- Jie Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Hongxin Huang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Yongzhen Liu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Ran Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Ying Yan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Shu Shi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jingyuan Xi
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Jun Zou
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Guangxin Yu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Xiaoyu Feng
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R. China.
| |
Collapse
|
26
|
Mitra B, Wang J, Kim ES, Mao R, Dong M, Liu Y, Zhang J, Guo H. Hepatitis B Virus Precore Protein p22 Inhibits Alpha Interferon Signaling by Blocking STAT Nuclear Translocation. J Virol 2019; 93:e00196-19. [PMID: 31019054 PMCID: PMC6580977 DOI: 10.1128/jvi.00196-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Antagonism of host immune defenses against hepatitis B virus (HBV) infection by the viral proteins is speculated to cause HBV persistence and the development of chronic hepatitis. The circulating hepatitis B e antigen (HBeAg, p17) is known to manipulate host immune responses to assist in the establishment of persistent viral infection, and HBeAg-positive (HBeAg+) patients respond less effectively to IFN-α therapy than do HBeAg-negative (HBeAg-) patients in clinical practice. However, the function(s) of the intracellular form of HBeAg, previously reported as the precore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we report that the cytosolic p22 protein, but not the secreted HBeAg, significantly reduces interferon-stimulated response element (ISRE) activity and the expression of interferon-stimulated genes (ISGs) upon alpha interferon (IFN-α) stimulation in cell cultures. In line with this, HBeAg+ patients exhibit weaker induction of ISGs in their livers than do HBeAg- patients upon IFN-α therapy. Mechanistically, while p22 does not alter the total STAT1 or pSTAT1 levels in cells treated with IFN-α, it blocks the nuclear translocation of pSTAT1 by interacting with the nuclear transport factor karyopherin α1 through its C-terminal arginine-rich domain. In summary, our study suggests that HBV precore protein, specifically the p22 form, impedes JAK-STAT signaling to help the virus evade the host innate immune response and, thus, causes resistance to IFN therapy.IMPORTANCE Chronic hepatitis B virus (HBV) infection continues to be a major global health concern, and patients who fail to mount an efficient immune response to clear the virus will develop a life-long chronic infection that can progress to chronic active hepatitis, cirrhosis, and primary hepatocellular carcinoma. There is no definite cure for chronic hepatitis B, and alpha interferon (IFN-α) is the only available immunomodulatory drug, to which only a minority of chronic patients are responsive, with hepatitis B e antigen (HBeAg)-negative patients responding better than HBeAg-positive patients. We herein report that the intracellular HBeAg, also known as precore or p22, inhibits the antiviral signaling of IFN-α, which sheds light on the enigmatic function of precore protein in shaping HBV chronicity and provides a perspective toward areas that need to be further studied to make the current therapy better until a cure is achieved.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jinyu Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Elena S Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Richeng Mao
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minhui Dong
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanjie Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Health and Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Huber AD, Pineda DL, Liu D, Boschert KN, Gres AT, Wolf JJ, Coonrod EM, Tang J, Laughlin TG, Yang Q, Puray-Chavez MN, Ji J, Singh K, Kirby KA, Wang Z, Sarafianos SG. Novel Hepatitis B Virus Capsid-Targeting Antiviral That Aggregates Core Particles and Inhibits Nuclear Entry of Viral Cores. ACS Infect Dis 2019; 5:750-758. [PMID: 30582687 DOI: 10.1021/acsinfecdis.8b00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An estimated 240 million are chronically infected with hepatitis B virus (HBV), which can lead to liver disease, cirrhosis, and hepatocellular carcinoma. Currently, HBV treatment options include only nucleoside reverse transcriptase inhibitors and the immunomodulatory agent interferon alpha, and these treatments are generally not curative. New treatments with novel mechanisms of action, therefore, are highly desired for HBV therapy. The viral core protein (Cp) has gained attention as a possible therapeutic target because of its vital roles in the HBV life cycle. Several classes of capsid assembly effectors (CAEs) have been described in detail, and these compounds all increase capsid assembly rate but inhibit HBV replication by different mechanisms. In this study, we have developed a thermal shift-based screening method for CAE discovery and characterization, filling a much-needed gap in high-throughput screening methods for capsid-targeting molecules. Using this approach followed by cell-based screening, we identified the compound HF9C6 as a CAE with low micromolar potency against HBV replication. HF9C6 caused large multicapsid aggregates when capsids were assembled in vitro and analyzed by transmission electron microscopy. Interestingly, when HBV-expressing cells were treated with HF9C6, Cp was excluded from cell nuclei, suggesting that this compound may inhibit nuclear entry of Cp and capsids. Furthermore, mutational scanning of Cp suggested that HF9C6 binds the known CAE binding pocket, indicating that key Cp-compound interactions within this pocket have a role in determining the CAE mechanism of action.
Collapse
Affiliation(s)
- Andrew D. Huber
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
| | - Dallas L. Pineda
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Dandan Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Kelsey N. Boschert
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, 204 Gwynn Hall, Columbia, Missouri 65211, United States
| | - Anna T. Gres
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Jennifer J. Wolf
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Emily M. Coonrod
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Division of Biological Sciences, University of Missouri, 105 Tucker Hall, Columbia, Missouri 65211, United States
| | - Jing Tang
- Center for Drug Design, Academic Health Center, University of Minnesota, 312 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - Thomas G. Laughlin
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Qiongying Yang
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Maritza N. Puray-Chavez
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Juan Ji
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Kamalendra Singh
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Karen A. Kirby
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| | - Zhengqiang Wang
- Center for Drug Design, Academic Health Center, University of Minnesota, 312 Church St. SE, Minneapolis, Minnesota 55455, United States
| | - Stefan G. Sarafianos
- Christopher S. Bond Life Sciences Center, University of Missouri, 1201 E. Rollins St., Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, M616 Medical Sciences Building, Columbia, Missouri 65211, United States
| |
Collapse
|
28
|
Heger-Stevic J, Zimmermann P, Lecoq L, Böttcher B, Nassal M. Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathog 2018; 14:e1007488. [PMID: 30566530 PMCID: PMC6317823 DOI: 10.1371/journal.ppat.1007488] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its 3 kb DNA genome through capsid-internal reverse transcription, initiated by assembly of 120 core protein (HBc) dimers around a complex of viral pregenomic (pg) RNA and polymerase. Following synthesis of relaxed circular (RC) DNA capsids can be enveloped and secreted as stable virions. Upon infection of a new cell, however, the capsid disintegrates to release the RC-DNA into the nucleus for conversion into covalently closed circular (ccc) DNA. HBc´s interactions with nucleic acids are mediated by an arginine-rich C terminal domain (CTD) with intrinsically strong non-specific RNA binding activity. Adaptation to the changing demands for nucleic acid binding during the viral life cycle is thought to involve dynamic phosphorylation / dephosphorylation events. However, neither the relevant enzymes nor their target sites in HBc are firmly established. Here we developed a bacterial coexpression system enabling access to definably phosphorylated HBc. Combining Phos-tag gel electrophoresis, mass spectrometry and mutagenesis we identified seven of the eight hydroxy amino acids in the CTD as target sites for serine-arginine rich protein kinase 1 (SRPK1); fewer sites were phosphorylated by PKA and PKC. Phosphorylation of all seven sites reduced nonspecific RNA encapsidation as drastically as deletion of the entire CTD and altered CTD surface accessibility, without major structure changes in the capsid shell. The bulk of capsids from human hepatoma cells was similarly highly, yet non-identically, phosphorylated as by SRPK1. While not proving SRPK1 as the infection-relevant HBc kinase the data suggest a mechanism whereby high-level HBc phosphorylation principally suppresses RNA binding whereas one or few strategic dephosphorylation events enable selective packaging of the pgRNA/polymerase complex. The tools developed in this study should greatly facilitate the further deciphering of the role of HBc phosphorylation in HBV infection and its evaluation as a potential new therapeutic target.
Collapse
Affiliation(s)
- Julia Heger-Stevic
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Biological Faculty, University of Freiburg, Freiburg, Germany
| | - Peter Zimmermann
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Biological Faculty, University of Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, University of Lyon1, Lyon, France
| | - Bettina Böttcher
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Chabrolles H, Lahlali T, Auclair H, Salvetti A. [The multiple functions of the hepatitis B virus core protein: new research directions and therapeutic challenges]. Med Sci (Paris) 2018; 34:693-700. [PMID: 30230454 DOI: 10.1051/medsci/20183408016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Chronic infection by hepatitis B virus (HBV) is a major public health problem with more than 250 millions of people chronically infected worldwide who have a high risk to develop cirrhosis and hepatocellular carcinoma. Available treatments reduce viremia but do not eradicate the virus from hepatocytes. Therefore, there is an urgent need to develop new classes of antiviral molecules and the viral capsid protein, Core, constitutes a new favored target. Core protein Allosteric Modulators (CAMs) targeting its assembly functions are in clinical development. In addition, investigation of Core regulatory functions may lead to the development of compounds targeting cellular factors (HTA) that could be used in combined therapies aiming to achieve a better control of HBV replication.
Collapse
Affiliation(s)
- Hélène Chabrolles
- Centre de recherche en cancérologie de Lyon (CRCL), Inserm U1052, 151, cours Albert Thomas, 69003 Lyon, France
| | - Thomas Lahlali
- Centre de recherche en cancérologie de Lyon (CRCL), Inserm U1052, 151, cours Albert Thomas, 69003 Lyon, France
| | - Héloïse Auclair
- Centre de recherche en cancérologie de Lyon (CRCL), Inserm U1052, 151, cours Albert Thomas, 69003 Lyon, France
| | - Anna Salvetti
- Centre de recherche en cancérologie de Lyon (CRCL), Inserm U1052, 151, cours Albert Thomas, 69003 Lyon, France
| |
Collapse
|
30
|
Qazi SA, Schlicksup CJ, Rittichier J, VanNieuwenhze M, Zlotnick A. An Assembly-Activating Site in the Hepatitis B Virus Capsid Protein Can Also Trigger Disassembly. ACS Chem Biol 2018; 13:2114-2120. [PMID: 29920071 PMCID: PMC6407610 DOI: 10.1021/acschembio.8b00283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Hepatitis B Virus (HBV) core protein homodimers self-assemble to form an icosahedral capsid that packages the viral genome. Disassembly occurs in the nuclear basket to release the mature genome to the nucleus. Small molecules have been developed that bind to a pocket at the interdimer interface to accelerate assembly and strengthen interactions between subunits; these are under development as antiviral agents. Here, we explore the role of the dimer-dimer interface by mutating sites in the drug-binding pocket to cysteine and examining the effect of covalently linking small molecules to them. We find that ligands bound to the pocket may trigger capsid disassembly in a dose-dependent manner. This result indicates that, at least transiently, the pocket adopts a destabilizing conformation. We speculate that this pocket also plays a role in virus disassembly and genome release by binding ligands that are incompatible with virus stability, "unwanted guests." Investigating protein-protein interactions, especially large protein polymers, offers new and unique challenges. By using an engineered addressable thiol, we provide a means to examine the effects of modifying an interface without requiring drug-like properties for the ligand.
Collapse
Affiliation(s)
- Shefah A. Qazi
- Department of Molecular and Cellular Biochemistry, Indiana
University, Bloomington, Indiana, 47405, USA
- Department of Chemistry, Indiana University, Bloomington,
Indiana, 47405, USA
| | - Christopher J. Schlicksup
- Department of Molecular and Cellular Biochemistry, Indiana
University, Bloomington, Indiana, 47405, USA
| | - Jonathan Rittichier
- Department of Chemistry, Indiana University, Bloomington,
Indiana, 47405, USA
| | | | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana
University, Bloomington, Indiana, 47405, USA
| |
Collapse
|
31
|
Schlicksup CJ, Wang JCY, Francis S, Venkatakrishnan B, Turner WW, VanNieuwenhze M, Zlotnick A. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids. eLife 2018; 7:31473. [PMID: 29377794 PMCID: PMC5788503 DOI: 10.7554/elife.31473] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022] Open
Abstract
Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (<4 Å), we introduced a disulfide crosslink that rescued particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. Viruses are simple structures formed of genetic information wrapped inside a shell. For the hepatitis B virus, this casing looks like a soccer ball. It is composed of 240 copies of the same protein, arranged in a pattern of pentagons and hexagons. These proteins form a protective shield for the virus’ genetic information: they also interact with the cells of the host during key events of the virus’ life cycle. When the hepatitis B virus infects a cell, it hijacks the cellular machinery to replicate. New shell proteins are produced and assemble within the cell. A type of potential antiviral drug called a CpAM disrupts this process: it causes the shell to assemble too early and inaccurately, which impairs the life cycle of the virus. However, a CpAM can bind to the shell even after it has already assembled. How this binding affects the virus is still unclear. Here, Schlicksup et al. attach a fluorescent molecule to a CpAM, and use a cutting-edge microscopy method to look at the structures at the atomic level. This makes it possible to examine in detail how the CpAM attaches to a correctly formed virus shell. Schlicksup et al. show that when the CpAM binds to the shell, it disrupts and sometimes even breaks the soccer-like pattern of the shell: the hexagons flatten, and the pentagons buckle. These misshaped shells could prevent the virus from interacting with the cellular structures necessary for infection or prevent it from releasing the virus’ genetic information. This is a new antiviral mechanism for a CpAM. By acting both before and after the shell has assembled, the CpAM targets the virus at different points of its life cycle. Hepatitis B affects over 240 million people worldwide. While a vaccine exists, there is still no cure for it. A better understanding of the physics of the virus’ shell and the mode of action of CpAMs could lead to better drugs against the disease.
Collapse
Affiliation(s)
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States.,Indiana University Electron Microscopy Center, Bloomington, United States
| | | | | | | | | | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
32
|
Diab A, Foca A, Zoulim F, Durantel D, Andrisani O. The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals. Antiviral Res 2017; 149:211-220. [PMID: 29183719 DOI: 10.1016/j.antiviral.2017.11.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Virally encoded proteins have evolved to perform multiple functions, and the core protein (HBc) of the hepatitis B virus (HBV) is a perfect example. While HBc is the structural component of the viral nucleocapsid, additional novel functions for the nucleus-localized HBc have recently been described. These results extend for HBc, beyond its structural role, a regulatory function in the viral life cycle and potentially a role in pathogenesis. In this article, we review the diverse roles of HBc in HBV replication and pathogenesis, emphasizing how the unique structure of this protein is key to its various functions. We focus in particular on recent advances in understanding the significance of HBc phosphorylations, its interaction with host proteins and the role of HBc in regulating the transcription of host genes. We also briefly allude to the emerging niche for new direct-acting antivirals targeting HBc, known as Core (protein) Allosteric Modulators (CAMs).
Collapse
Affiliation(s)
- Ahmed Diab
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA; INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, 69008, Lyon, France
| | - Adrien Foca
- INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, 69008, Lyon, France
| | - Fabien Zoulim
- INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, 69008, Lyon, France; Hepato-Gastroenterology Unit, Croix-Rousse Hospital, Hospices Civils de Lyon (HCL), 69002, Lyon, France; Labex DEVweCAN, 69008, Lyon, France
| | - David Durantel
- INSERM U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France; University of Lyon, Université Claude-Bernard (UCBL), UMR_S1052, UCBL, 69008, Lyon, France; Hepato-Gastroenterology Unit, Croix-Rousse Hospital, Hospices Civils de Lyon (HCL), 69002, Lyon, France.
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
33
|
Sekine E, Schmidt N, Gaboriau D, O’Hare P. Spatiotemporal dynamics of HSV genome nuclear entry and compaction state transitions using bioorthogonal chemistry and super-resolution microscopy. PLoS Pathog 2017; 13:e1006721. [PMID: 29121649 PMCID: PMC5697887 DOI: 10.1371/journal.ppat.1006721] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/21/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022] Open
Abstract
We investigated the spatiotemporal dynamics of HSV genome transport during the initiation of infection using viruses containing bioorthogonal traceable precursors incorporated into their genomes (HSVEdC). In vitro assays revealed a structural alteration in the capsid induced upon HSVEdC binding to solid supports that allowed coupling to external capture agents and demonstrated that the vast majority of individual virions contained bioorthogonally-tagged genomes. Using HSVEdC in vivo we reveal novel aspects of the kinetics, localisation, mechanistic entry requirements and morphological transitions of infecting genomes. Uncoating and nuclear import was observed within 30 min, with genomes in a defined compaction state (ca. 3-fold volume increase from capsids). Free cytosolic uncoated genomes were infrequent (7-10% of the total uncoated genomes), likely a consequence of subpopulations of cells receiving high particle numbers. Uncoated nuclear genomes underwent temporal transitions in condensation state and while ICP4 efficiently associated with condensed foci of initial infecting genomes, this relationship switched away from residual longer lived condensed foci to increasingly decondensed genomes as infection progressed. Inhibition of transcription had no effect on nuclear entry but in the absence of transcription, genomes persisted as tightly condensed foci. Ongoing transcription, in the absence of protein synthesis, revealed a distinct spatial clustering of genomes, which we have termed genome congregation, not seen with non-transcribing genomes. Genomes expanded to more decondensed forms in the absence of DNA replication indicating additional transitional steps. During full progression of infection, genomes decondensed further, with a diffuse low intensity signal dissipated within replication compartments, but frequently with tight foci remaining peripherally, representing unreplicated genomes or condensed parental strands of replicated DNA. Uncoating and nuclear entry was independent of proteasome function and resistant to inhibitors of nuclear export. Together with additional data our results reveal new insight into the spatiotemporal dynamics of HSV genome uncoating, transport and organisation.
Collapse
Affiliation(s)
- Eiki Sekine
- Section of Virology, Department of Medicine, Imperial College, St Mary’s Medical School, London, United Kingdom
| | - Nora Schmidt
- Section of Virology, Department of Medicine, Imperial College, St Mary’s Medical School, London, United Kingdom
| | - David Gaboriau
- Department of Medicine, Facility for Imaging by Light Microscopy, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Peter O’Hare
- Section of Virology, Department of Medicine, Imperial College, St Mary’s Medical School, London, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Karayiannis P. Hepatitis B virus: virology, molecular biology, life cycle and intrahepatic spread. Hepatol Int 2017; 11:500-508. [PMID: 29098564 DOI: 10.1007/s12072-017-9829-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/05/2017] [Indexed: 12/18/2022]
Abstract
Hepatitis B virus is a member of the Hepadnaviridae family and responsible for causing acute and chronic hepatitis in humans. The current estimates of people chronically infected with the virus are put at 250 million worldwide. Immune-mediated liver damage in these individuals may lead to the development of cirrhosis and hepatocellular carcinoma later in life. This review deals with our current understanding of the virology, molecular biology, life cycle and cell-to-cell spread of this very important pathogen, all of which are considered essential for current and future approaches to antiviral treatment.
Collapse
Affiliation(s)
- P Karayiannis
- Medical School, University of Nicosia, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, CY-1700, Nicosia, Cyprus.
| |
Collapse
|
35
|
Ghouri YA, Mian I, Rowe JH. Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis. J Carcinog 2017; 16:1. [PMID: 28694740 PMCID: PMC5490340 DOI: 10.4103/jcar.jcar_9_16] [Citation(s) in RCA: 526] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since the 1970s, the epidemic of hepatocellular carcinoma (HCC) has spread beyond the Eastern Asian predominance and has been increasing in Northern hemisphere, especially in the United States (US) and Western Europe. It occurs more commonly in males in the fourth and fifth decades of life. Among all cancers, HCC is one of the fastest growing causes of death in the US and poses a significant economic burden on healthcare. Chronic liver disease due to hepatitis B virus or hepatitis C virus and alcohol accounts for the majority of HCC cases. Incidence of nonalcoholic fatty liver disease has been on the risem and it has also been associated with the development of HCC. Its pathogenesis varies based on the underlying etiological factor although majority of cases develop in the setting of background cirrhosis. Carcinogenesis of HCC includes angiogenesis, chronic inflammation, and tumor macroenvironment and microenvironment. There is a significant role of both intrinsic genetic risk factors and extrinsic influences such as alcohol or viral infections that lead to the development of HCC. Understanding its etiopathogenesis helps select appropriate diagnostic tests and treatments.
Collapse
Affiliation(s)
- Yezaz Ahmed Ghouri
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Idrees Mian
- Department of Hematology and Oncology, National Institute of Health, Bethesda, Maryland, USA
| | - Julie H Rowe
- Department of Internal Medicine, Division of Oncology, University of Texas Health Science Center, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
36
|
Nuclear Import of Hepatitis B Virus Capsids and Genome. Viruses 2017; 9:v9010021. [PMID: 28117723 PMCID: PMC5294990 DOI: 10.3390/v9010021] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped pararetrovirus with a DNA genome, which is found in an up to 36 nm-measuring capsid. Replication of the genome occurs via an RNA intermediate, which is synthesized in the nucleus. The virus must have thus ways of transporting its DNA genome into this compartment. This review summarizes the data on hepatitis B virus genome transport and correlates the finding to those from other viruses.
Collapse
|
37
|
Abstract
The early steps of HBV entry remain largely unknown despite the recent discovery of an HBV-specific entry receptor. Following entry HBV capsids have to be transported through the cytoplasm to the nuclear periphery, followed by nuclear entry. These steps have to take place in a coordinated manner to allow delivery of the genome into the nucleus. Due to the viscosity of the cytoplasm, the intracytoplasmic translocation has to be active and directed.Here, we describe protocols that can be applied to investigations of the HBV capsid with the cytoplasmic transport systems. We have chosen to present two independent experimental approaches, which allow avoiding artifacts. Aside of the specific capsid detection system, the protocols can be applied to any other viral structure.
Collapse
Affiliation(s)
- Quentin Osseman
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Michael Kann
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France.
- Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, Bordeaux, France.
| |
Collapse
|
38
|
Chen C, Wang JCY, Pierson EE, Keifer DZ, Delaleau M, Gallucci L, Cazenave C, Kann M, Jarrold MF, Zlotnick A. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes. PLoS Pathog 2016; 12:e1005802. [PMID: 27518410 PMCID: PMC4982637 DOI: 10.1371/journal.ppat.1005802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein's C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of "dark" particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Elizabeth E. Pierson
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - David Z. Keifer
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Mildred Delaleau
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Lara Gallucci
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Christian Cazenave
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Michael Kann
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
39
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
40
|
Pumpens P, Grens E. The true story and advantages of the famous Hepatitis B virus core particles: Outlook 2016. Mol Biol 2016; 50:489-509. [DOI: 10.1134/s0026893316040099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/02/2025]
|
41
|
Radreau P, Porcherot M, Ramiére C, Mouzannar K, Lotteau V, André P. Reciprocal regulation of farnesoid X receptor α activity and hepatitis B virus replication in differentiated HepaRG cells and primary human hepatocytes. FASEB J 2016; 30:3146-54. [DOI: 10.1096/fj.201500134] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Pauline Radreau
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
- EnyoPharma Lyon France
| | - Marine Porcherot
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
- EnyoPharma Lyon France
| | - Christophe Ramiére
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
- Laboratoire de VirologieHôpital de la Croix–RousseHospices Civils de Lyon Lyon France
| | - Karim Mouzannar
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
| | - Vincent Lotteau
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
| | - Patrice André
- Centre International de Recherche en InfectiologieInstitut National de la Santé et de la Recherche Médicale Unité 1111Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon France
- Ecole Normale Supérieure de Lyon Lyon France
- Université Claude Bernard Lyon 1 Villeurbanne France
- Université de Lyon Lyon France
- Laboratoire de VirologieHôpital de la Croix–RousseHospices Civils de Lyon Lyon France
| |
Collapse
|
42
|
Blondot ML, Bruss V, Kann M. Intracellular transport and egress of hepatitis B virus. J Hepatol 2016; 64:S49-S59. [PMID: 27084037 DOI: 10.1016/j.jhep.2016.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/23/2022]
Abstract
Hepatitis B virus (HBV) replicates its genomic information in the nucleus via transcription and therefore has to deliver its partially double stranded DNA genome into the nucleus. Like other viruses with a nuclear replication phase, HBV genomes are transported inside the viral capsids first through the cytoplasm towards the nuclear envelope. Following the arrival at the nuclear pore, the capsids are transported through, using classical cellular nuclear import pathways. The arrest of nuclear import at the nucleoplasmic side of the nuclear pore is unique, however, and is where the capsids efficiently disassemble leading to genome release. In the latter phase of the infection, newly formed nucleocapsids in the cytosol have to move to budding sites at intracellular membranes carrying the three viral envelope proteins. Capsids containing single stranded nucleic acid are not enveloped, in contrast to empty and double stranded DNA containing capsids. A small linear domain in the large envelope protein and two areas on the capsid surface have been mapped, where point mutations strongly block nucleocapsid envelopment. It is possible that these domains are involved in the envelope--with capsid interactions driving the budding process. Like other enveloped viruses, HBV also uses the cellular endosomal sorting complexes required for transport (ESCRT) machinery for catalyzing budding through the membrane and away from the cytosol.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Volker Bruss
- Institute for Virology, Helmholtz Zentrum München, Technische Universität Muenchen, Neuherberg, Germany
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; CHU de Bordeaux, Bordeaux, France.
| |
Collapse
|
43
|
Selzer L, Zlotnick A. Assembly and Release of Hepatitis B Virus. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021394. [PMID: 26552701 DOI: 10.1101/cshperspect.a021394] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatitis B virus (HBV) core protein is a dynamic and versatile protein that directs many viral processes. During capsid assembly, core protein allosteric changes ensure efficient formation of a stable capsid that assembles while packaging viral RNA-polymerase complex. Reverse transcription of the RNA genome as well as transport of the capsid to multiple cellular compartments are directed by dynamic phosphorylation and structural changes of core protein. Subsequently, interactions of the capsid with the surface proteins and/or host proteins trigger envelopment and release of the viral capsids or the transport to the nucleus. Held together by many weak protein-protein interactions, the viral capsid is an extraordinary metastable machine that is stable enough to persist in the cellular and extracellular environment but dissociates to allow release of the viral genome at the right time during infection.
Collapse
Affiliation(s)
- Lisa Selzer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
44
|
Pham S, Tabarin T, Garvey M, Pade C, Rossy J, Monaghan P, Hyatt A, Böcking T, Leis A, Gaus K, Mak J. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry. Virology 2015; 486:121-33. [PMID: 26432024 DOI: 10.1016/j.virol.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the 'lynchpin' for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection.
Collapse
Affiliation(s)
- Son Pham
- Deakin University, Victoria 3216, Australia; CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Thibault Tabarin
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220, Australia
| | - Megan Garvey
- Deakin University, Victoria 3216, Australia; CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Corinna Pade
- Deakin University, Victoria 3216, Australia; CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Jérémie Rossy
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220, Australia
| | - Paul Monaghan
- CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Alex Hyatt
- CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Till Böcking
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220, Australia
| | - Andrew Leis
- CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Katharina Gaus
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220, Australia.
| | - Johnson Mak
- Deakin University, Victoria 3216, Australia; CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia.
| |
Collapse
|
45
|
Selzer L, Kant R, Wang JCY, Bothner B, Zlotnick A. Hepatitis B Virus Core Protein Phosphorylation Sites Affect Capsid Stability and Transient Exposure of the C-terminal Domain. J Biol Chem 2015; 290:28584-28593. [PMID: 26405031 DOI: 10.1074/jbc.m115.678441] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 01/05/2023] Open
Abstract
Hepatitis B virus core protein has 183 amino acids divided into an assembly domain and an arginine-rich C-terminal domain (CTD) that regulates essential functions including genome packaging, reverse transcription, and intracellular trafficking. Here, we investigated the CTD in empty hepatitis B virus (HBV) T=4 capsids. We examined wild-type core protein (Cp183-WT) and a mutant core protein (Cp183-EEE), in which three CTD serines are replaced with glutamate to mimic phosphorylated protein. We found that Cp183-WT capsids were less stable than Cp183-EEE capsids. When we tested CTD sensitivity to trypsin, we detected two different populations of CTDs differentiated by their rate of trypsin cleavage. Interestingly, CTDs from Cp183-EEE capsids exhibited a much slower rate of proteolytic cleavage when compared with CTDs of Cp183-WT capsids. Cryo-electron microscopy studies of trypsin-digested capsids show that CTDs at five-fold symmetry vertices are most protected. We hypothesize that electrostatic interactions between glutamates and arginines in Cp183-EEE, particularly at five-fold, increase capsid stability and reduce CTD exposure. Our studies show that quasi-equivalent CTDs exhibit different rates of exposure and thus might perform distinct functions during the hepatitis B virus lifecycle. Our results demonstrate a structural role for CTD phosphorylation and indicate crosstalk between CTDs within a capsid particle.
Collapse
Affiliation(s)
- Lisa Selzer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Ravi Kant
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Joseph C-Y Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.
| |
Collapse
|
46
|
Chen J, Wu M, Liu K, Zhang W, Li Y, Zhou X, Bai L, Yuan Z. New insights into hepatitis B virus biology and implications for novel antiviral strategies. Natl Sci Rev 2015; 2:296-313. [DOI: 10.1093/nsr/nwv044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2025] Open
Abstract
AbstractHepatitis B virus (HBV), a small DNA virus with a unique replication mode, can cause chronic hepatitis (CHB), which is characterized by the persistence of the viral covalently closed circular DNA that serves as the template for HBV replication and the production of large amounts of secreted HBV surface antigen (HBsAg) that is present in excess of the levels of infectious virus. Despite the success of currently approved antiviral treatments for CHB patients, including interferon and nucleotide analogs, which suppress HBV replication and reduce the risk of CHB-related liver diseases, these therapies fail to eradicate the virus in most of the patients. With the development of the cell and animal models for HBV study, a better understanding of the HBV life cycle has been achieved and a series of novel antiviral strategies that target different stages of HBV replication have been designed to overcome the viral factors that contribute to HBV persistence. Such basic HBV research advancements and therapeutic developments are the subject of this review.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Kuancheng Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Zhang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaohui Zhou
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lu Bai
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Hennig T, O'Hare P. Viruses and the nuclear envelope. Curr Opin Cell Biol 2015; 34:113-21. [PMID: 26121672 DOI: 10.1016/j.ceb.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
Viruses encounter and manipulate almost all aspects of cell structure and metabolism. The nuclear envelope (NE), with central roles in cell structure and genome function, acts and is usurped in diverse ways by different viruses. It can act as a physical barrier to infection that must be overcome, as a functional barrier that restricts infection by various mechanisms and must be counteracted or indeed as a positive niche, important or even essential for virus infection or production of progeny virions. This review summarizes virus-host interactions at the NE, highlighting progress in understanding the replication of viruses including HIV-1, Influenza, Herpes Simplex, Adenovirus and Ebola, and molecular insights into hitherto unknown functional pathways at the NE.
Collapse
Affiliation(s)
- Thomas Hennig
- Section of Virology, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom
| | - Peter O'Hare
- Section of Virology, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom.
| |
Collapse
|
48
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|
49
|
Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications. Sci Rep 2015; 5:11639. [PMID: 26113394 PMCID: PMC4650659 DOI: 10.1038/srep11639] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.
Collapse
|
50
|
Seeger C, Mason WS. Molecular biology of hepatitis B virus infection. Virology 2015; 479-480:672-86. [PMID: 25759099 PMCID: PMC4424072 DOI: 10.1016/j.virol.2015.02.031] [Citation(s) in RCA: 619] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
Human hepatitis B virus (HBV) is the prototype of a family of small DNA viruses that productively infect hepatocytes, the major cell of the liver, and replicate by reverse transcription of a terminally redundant viral RNA, the pregenome. Upon infection, the circular, partially double-stranded virion DNA is converted in the nucleus to a covalently closed circular DNA (cccDNA) that assembles into a minichromosome, the template for viral mRNA synthesis. Infection of hepatocytes is non-cytopathic. Infection of the liver may be either transient (<6 months) or chronic and lifelong, depending on the ability of the host immune response to clear the infection. Chronic infections can cause immune-mediated liver damage progressing to cirrhosis and hepatocellular carcinoma (HCC). The mechanisms of carcinogenesis are unclear. Antiviral therapies with nucleoside analog inhibitors of viral DNA synthesis delay sequelae, but cannot cure HBV infections due to the persistence of cccDNA in hepatocytes.
Collapse
|