1
|
Pancrazi F, De Bei O, Lavecchia di Tocco F, Marchetti M, Campanini B, Cannistraro S, Bettati S, Bizzarri AR. Proline isomerization modulates the bacterial IsdB/hemoglobin interaction: an atomic force spectroscopy study. DISCOVER NANO 2025; 20:20. [PMID: 39918647 PMCID: PMC11805746 DOI: 10.1186/s11671-025-04182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Iron surface determinant B (IsdB), a Staphylococcus aureus (SA) surface protein involved in both heme iron acquisition from host hemoglobin (Hb) and bacterial adhesion, is a proven virulence factor that can be targeted for the design of antibacterial molecules or vaccines. Recent single-molecule experiments on IsdB interaction with cell adhesion factors revealed an increase of the complex lifetime upon applying a stronger force (catch bond); this was suggested to favor host invasion under shear stress. An increased bond strength under mechanical stress was also detected by Atomic Force Spectroscopy (AFS) for the interaction between IsdB and Hb. Structural information on the underlying molecular mechanisms at the basis of this behaviour in IsdB-based complexes is missing. Here, we show that the single point mutation of Pro173 in the IsdB domain responsible for Hb binding, which weakens the IsdB:Hb interaction without hampering heme extraction, totally abolishes the previously observed behavior. Remarkably, Pro173 does not directly interact with Hb, but undergoes cis-trans isomerization upon IsdB:Hb complex formation, coupled to folding-upon binding of the corresponding protein loop. Our results suggest that these events might represent the molecular basis for the stress-dependence of bond strength observed for wild type IsdB, shedding light on the mechanisms that govern the capability of SA to infect host cells.
Collapse
Affiliation(s)
- Francesca Pancrazi
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Omar De Bei
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | | | - Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125, Parma, Italy.
- Institute of Biophysics, National Research Council, via G. Moruzzi, 56124, Pisa, Italy.
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Sornchuer P, Saninjuk K, Amonyingcharoen S, Ruangtong J, Thongsepee N, Martviset P, Chantree P, Sangpairoj K. Whole Genome Sequencing Reveals Antimicrobial Resistance and Virulence Genes of Both Pathogenic and Non-Pathogenic B. cereus Group Isolates from Foodstuffs in Thailand. Antibiotics (Basel) 2024; 13:245. [PMID: 38534680 DOI: 10.3390/antibiotics13030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Members of the Bacillus cereus group are spore-forming Gram-positive bacilli that are commonly associated with diarrheal or emetic food poisoning. They are widespread in nature and frequently present in both raw and processed food products. Here, we genetically characterized 24 B. cereus group isolates from foodstuffs. Whole-genome sequencing (WGS) revealed that most of the isolates were closely related to B. cereus sensu stricto (12 isolates), followed by B. pacificus (5 isolates), B. paranthracis (5 isolates), B. tropicus (1 isolate), and "B. bingmayongensis" (1 isolate). The most detected virulence genes were BAS_RS06430, followed by bacillibactin biosynthesis genes (dhbA, dhbB, dhbC, dhbE, and dhbF), genes encoding the three-component non-hemolytic enterotoxin (nheA, nheB, and nheC), a gene encoding an iron-regulated leucine-rich surface protein (ilsA), and a gene encoding a metalloprotease (inhA). Various biofilm-associated genes were found, with high prevalences of tasA and sipW genes (matrix protein-encoding genes); purA, purC, and purL genes (eDNA synthesis genes); lytR and ugd genes (matrix polysaccharide synthesis genes); and abrB, codY, nprR, plcR, sinR, and spo0A genes (biofilm transcription regulator genes). Genes related to fosfomycin and beta-lactam resistance were identified in most of the isolates. We therefore demonstrated that WGS analysis represents a useful tool for rapidly identifying and characterizing B. cereus group strains. Determining the genetic epidemiology, the presence of virulence and antimicrobial resistance genes, and the pathogenic potential of each strain is crucial for improving the risk assessment of foodborne B. cereus group strains.
Collapse
Affiliation(s)
- Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | | | - Sumet Amonyingcharoen
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
3
|
Jugert CS, Didier A, Jessberger N. Lactoferrin-based food supplements trigger toxin production of enteropathogenic Bacillus cereus. Front Microbiol 2023; 14:1284473. [PMID: 38029127 PMCID: PMC10646309 DOI: 10.3389/fmicb.2023.1284473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein exhibiting antibacterial, antiviral, antifungal, antiparasitic, antiinflammatory, antianaemic and anticarcinogenic properties. While its inhibitory effects against bacterial pathogens are well investigated, little is known about its influence on the production and/or mode of action of bacterial toxins. Thus, the present study aimed to determine the impact of food supplements based on bovine lactoferrin on Bacillus cereus enterotoxin production. First, strain-specific growth inhibition of three representative isolates was observed in minimal medium with 1 or 10 mg/mL of a lactoferrin-based food supplement, designated as product no. 1. Growth inhibition did not result from iron deficiency. In contrast to that, all three strains showed increased amounts of enterotoxin component NheB in the supernatant, which corresponded with cytotoxicity. Moreover, lactoferrin product no. 1 enhanced NheB production of further 20 out of 28 B. cereus and Bacillus thuringiensis strains. These findings again suggested a strain-specific response toward lactoferrin. Product-specific differences also became apparent comparing the influence of further six products on highly responsive strain INRA C3. Highest toxin titres were detected after exposure to products no. 7, 1 and 2, containing no ingredients except pure bovine lactoferrin. INRA C3 was also used to determine the transcriptional response toward lactoferrin exposure via RNA sequencing. As control, iron-free medium was also included, which resulted in down-regulation of eight genes, mainly involved in amino acid metabolism, and in up-regulation of 52 genes, mainly involved in iron transport, uptake and utilization. In contrast to that, 153 genes were down-regulated in the presence of lactoferrin, including genes involved in flagellar assembly, motility, chemotaxis and sporulation as well as genes encoding regulatory proteins, transporters, heat and cold shock proteins and virulence factors. Furthermore, 125 genes were up-regulated in the presence of lactoferrin, comprising genes involved in sporulation and germination, nutrient uptake, iron transport and utilization, and resistance. In summary, lactoferrin exposure of B. cereus strain-specifically triggers an extensive transcriptional response that considerably exceeds the response toward iron deficiency and, despite down-regulation of various genes belonging to the PlcR-regulon, ultimately leads to an increased level of secreted enterotoxin by a mechanism, which has yet to be elucidated.
Collapse
Affiliation(s)
- Clara-Sophie Jugert
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Andrea Didier
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
4
|
Toukabri H, Lereclus D, Slamti L. A Sporulation-Independent Way of Life for Bacillus thuringiensis in the Late Stages of an Infection. mBio 2023:e0037123. [PMID: 37129506 DOI: 10.1128/mbio.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
The formation of endospores has been considered the unique survival and transmission mode of sporulating Firmicutes due to the exceptional resistance and persistence of this bacterial form. However, nonsporulated bacteria (Spo-) were reported at the early stages following the death of a host infected with Bacillus thuringiensis, an entomopathogenic sporulating bacterium. Here, we investigated the characteristics of the bacterial population in the late stages of an infection in the B. thuringiensis/Galleria mellonella infection model. Using fluorescent reporters and molecular markers coupled to flow cytometry, we demonstrated that the Spo- cells persist and constitute about half of the population 2 weeks post-infection (p.i.). Protein synthesis and growth recovery assays indicated that they are in a metabolically slowed-down state. These bacteria were extremely resistant to the insect cadaver environment, which did not support growth of in vitro-grown vegetative cells and spores. A transcriptomic analysis of this subpopulation at 7 days p.i. revealed a signature profile of this state, and the expression analysis of individual genes at the cell level showed that more bacteria mount an oxidative stress response as their survival time increases, in agreement with the increase of the free radical level in the host cadaver and in the number of reactive oxygen species (ROS)-producing bacteria. Altogether, these data show for the first time that nonsporulated bacteria are able to survive for a prolonged period of time in the context of an infection and indicate that they engage in a profound adaptation process that leads to their persistence in the host cadaver. IMPORTANCE Bacillus thuringiensis is an entomopathogenic bacterium widely used as a biopesticide. It belongs to the Bacillus cereus group, comprising the foodborne pathogen B. cereus sensu stricto and the anthrax agent Bacillus anthracis. Like other Firmicutes when they encounter harsh conditions, these Gram-positive bacteria can form dormant cells called spores. Due to its highly resistant nature, the spore was considered the unique mode of long-term survival, eclipsing any other form of persistence. Breaking this paradigm, we observed that B. thuringiensis was able to persist in its host cadaver in a nonsporulated form for at least 14 days. Our results show that these bacteria survived in the cadaver environment, which proved hostile for actively growing bacteria by engaging in a profound adaptation process. Studying this facet of the life cycle of a sporulating bacterium provides new fundamental knowledge and might lead to the development of strategies to combat sporulating pathogenic species.
Collapse
Affiliation(s)
- Hasna Toukabri
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Didier Lereclus
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Leyla Slamti
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
5
|
Hendricks K, Martines RB, Bielamowicz H, Boyer AE, Long S, Byers P, Stoddard RA, Taylor K, Kolton CB, Gallegos-Candela M, Roberts C, DeLeon-Carnes M, Salzer J, Dawson P, Brown D, Templeton-LeBouf L, Maves RC, Gulvik C, Lonsway D, Barr JR, Bower WA, Hoffmaster A. Welder's Anthrax: A Tale of 2 Cases. Clin Infect Dis 2022; 75:S354-S363. [PMID: 36251561 PMCID: PMC9649440 DOI: 10.1093/cid/ciac535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bacillus anthracis has traditionally been considered the etiologic agent of anthrax. However, anthrax-like illness has been documented in welders and other metal workers infected with Bacillus cereus group spp. harboring pXO1 virulence genes that produce anthrax toxins. We present 2 recent cases of severe pneumonia in welders with B. cereus group infections and discuss potential risk factors for infection and treatment options, including antitoxin.
Collapse
Affiliation(s)
- Katherine Hendricks
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Roosecelis Brasil Martines
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hannah Bielamowicz
- Pathology Department, Fort Bend County Medical Examiner Office, Rosenberg, Texas, USA
| | - Anne E Boyer
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen Long
- Houston Laboratory Response Network, Houston Health Department, Houston, Texas, USA
| | - Paul Byers
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Robyn A Stoddard
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kathryn Taylor
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Cari Beesley Kolton
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maribel Gallegos-Candela
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christine Roberts
- Office of Communicable Diseases, Mississippi State Department of Health, Jackson, Mississippi, USA
| | - Marlene DeLeon-Carnes
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Johanna Salzer
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick Dawson
- Office of Science, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dannette Brown
- King Daughters Medical Center, Brookhaven, Mississippi, USA
| | | | - Ryan C Maves
- Departments of Infectious Diseases and Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Chris Gulvik
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Lonsway
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John R Barr
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - William A Bower
- Correspondence: W. A. Bower, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, MS H24-12, Atlanta, GA 30329 ()
| | - Alex Hoffmaster
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Calvigioni M, Cara A, Celandroni F, Mazzantini D, Panattoni A, Tirloni E, Bernardi C, Pinotti L, Stella S, Ghelardi E. Characterization of a Bacillus cereus strain associated with a large feed-related outbreak of severe infection in pigs. J Appl Microbiol 2022; 133:1078-1088. [PMID: 35611609 PMCID: PMC9543730 DOI: 10.1111/jam.15636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022]
Abstract
Aims Bacillus cereus is often responsible for foodborne diseases and both local and systemic infections in humans. Cases of infection in other mammals are rather rare. In this study, we report a B. cereus feed‐related outbreak that caused the death of 6234 pigs in Italy. Methods and Results Massive doses of a Gram‐positive, spore‐forming bacterium were recovered from the animal feed, faeces of survived pigs and intestinal content of dead ones. The B. cereus MM1 strain was identified by MALDI‐TOF MS and typified by RAPD‐PCR. The isolate was tested for the production of PC‐PLC, proteases, hemolysins and biofilm, for motility, as well as for the presence of genes encoding tissue‐degrading enzymes and toxins. Antimicrobial resistance and pathogenicity in Galleria mellonella larvae were also investigated. Our results show that the isolated B. cereus strain is swimming‐proficient, produces PC‐PLC, proteases, hemolysins, biofilm and carries many virulence genes. The strain shows high pathogenicity in G. mellonella larvae. Conclusions The isolated B. cereus strain demonstrates an aggressive profile of pathogenicity and virulence, being able to produce a wide range of determinants potentially hazardous to pigs' health. Significance and Impact of Study This study highlights the proficiency of B. cereus to behave as a devastating pathogen in swine if ingested at high doses and underlines that more stringent quality controls are needed for livestock feeds and supplements.
Collapse
Affiliation(s)
- Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Alice Cara
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Erica Tirloni
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Cristian Bernardi
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Simone Stella
- Department of Health, Animal Science and Food Safety, University of Milan, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.,Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Italy
| |
Collapse
|
7
|
de Perio MA, Hendricks KA, Dowell CH, Bower WA, Burton NC, Dawson P, Schrodt CA, Salzer JS, Marston CK, Feldmann K, Hoffmaster AR, Antonini JM. Welder’s Anthrax: A Review of an Occupational Disease. Pathogens 2022; 11:pathogens11040402. [PMID: 35456077 PMCID: PMC9029013 DOI: 10.3390/pathogens11040402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Since 1997, nine cases of severe pneumonia, caused by species within the B. cereus group and with a presentation similar to that of inhalation anthrax, were reported in seemingly immunocompetent metalworkers, with most being welders. In seven of the cases, isolates were found to harbor a plasmid similar to the B. anthracis pXO1 that encodes anthrax toxins. In this paper, we review the literature on the B. cereus group spp. pneumonia among welders and other metalworkers, which we term welder’s anthrax. We describe the epidemiology, including more information on two cases of welder’s anthrax in 2020. We also describe the health risks associated with welding, potential mechanisms of infection and pathological damage, prevention measures according to the hierarchy of controls, and clinical and public health considerations. Considering occupational risk factors and controlling exposure to welding fumes and gases among workers, according to the hierarchy of controls, should help prevent disease transmission in the workplace.
Collapse
Affiliation(s)
- Marie A. de Perio
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA
- Correspondence: or ; Tel.: +1-513-841-4116
| | - Katherine A. Hendricks
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (K.A.H.); (W.A.B.); (C.K.M.); (A.R.H.)
| | - Chad H. Dowell
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA
| | - William A. Bower
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (K.A.H.); (W.A.B.); (C.K.M.); (A.R.H.)
| | - Nancy C. Burton
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Patrick Dawson
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA; (N.C.B.); (K.F.)
| | - Caroline A. Schrodt
- Office of Science, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Johanna S. Salzer
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Chung K. Marston
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (K.A.H.); (W.A.B.); (C.K.M.); (A.R.H.)
| | - Karl Feldmann
- Office of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Alex R. Hoffmaster
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (K.A.H.); (W.A.B.); (C.K.M.); (A.R.H.)
| | - James M. Antonini
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| |
Collapse
|
8
|
Heme A Synthase Deficiency Affects the Ability of Bacillus cereus to Adapt to a Nutrient-Limited Environment. Int J Mol Sci 2022; 23:ijms23031033. [PMID: 35162964 PMCID: PMC8835132 DOI: 10.3390/ijms23031033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
The branched aerobic respiratory chain in Bacillus cereus comprises three terminal oxidases: cytochromes aa3, caa3, and bd. Cytochrome caa3 requires heme A for activity, which is produced from heme O by heme A synthase (CtaA). In this study, we deleted the ctaA gene in B. cereus AH187 strain, this deletion resulted in loss of cytochrome caa3 activity. Proteomics data indicated that B. cereus grown in glucose-containing medium compensates for the loss of cytochrome caa3 activity by remodeling its respiratory metabolism. This remodeling involves up-regulation of cytochrome aa3 and several proteins involved in redox stress response—to circumvent sub-optimal respiratory metabolism. CtaA deletion changed the surface-composition of B. cereus, affecting its motility, autoaggregation phenotype, and the kinetics of biofilm formation. Strikingly, proteome remodeling made the ctaA mutant more resistant to cold and exogenous oxidative stresses compared to its parent strain. Consequently, we hypothesized that ctaA inactivation could improve B. cereus fitness in a nutrient-limited environment.
Collapse
|
9
|
Papkou A, Schalkowski R, Barg MC, Koepper S, Schulenburg H. Population size impacts host-pathogen coevolution. Proc Biol Sci 2021; 288:20212269. [PMID: 34905713 PMCID: PMC8670963 DOI: 10.1098/rspb.2021.2269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/18/2021] [Indexed: 11/25/2022] Open
Abstract
Ongoing host-pathogen interactions are characterized by rapid coevolutionary changes forcing species to continuously adapt to each other. The interacting species are often defined by finite population sizes. In theory, finite population size limits genetic diversity and compromises the efficiency of selection owing to genetic drift, in turn constraining any rapid coevolutionary responses. To date, however, experimental evidence for such constraints is scarce. The aim of our study was to assess to what extent population size influences the dynamics of host-pathogen coevolution. We used Caenorhabditus elegans and its pathogen Bacillus thuringiensis as a model for experimental coevolution in small and large host populations, as well as in host populations which were periodically forced through a bottleneck. By carefully controlling host population size for 23 host generations, we found that host adaptation was constrained in small populations and to a lesser extent in the bottlenecked populations. As a result, coevolution in large and small populations gave rise to different selection dynamics and produced different patterns of host-pathogen genotype-by-genotype interactions. Our results demonstrate a major influence of host population size on the ability of the antagonists to co-adapt to each other, thereby shaping the dynamics of antagonistic coevolution.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rebecca Schalkowski
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
| | - Mike-Christoph Barg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
| | - Svenja Koepper
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universitaet Kiel, 24098 Kiel, Germany
- Max-Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
10
|
Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects. Microbiol Spectr 2021; 9:e0060421. [PMID: 34704785 PMCID: PMC8549738 DOI: 10.1128/spectrum.00604-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spore-forming bacterium Bacillus thuringiensis (Bt) of the Bacillus cereus group uses toxin-opened breaches at the insect midgut epithelium to infest the hemolymph, where it can rapidly propagate despite antimicrobial host defenses and induce host death by acute septicemia. The response of Bt to host hemolymph and the latter's role in bacterial pathogenesis is an area that needs clarification. Here, we report a proteomic analysis of the Bt kurstaki strain HD73 (Btk) hemolymph stimulon showing significant changes in 60 (34 up- and 26 downregulated) differentially accumulated proteins (DAPs). Gene ontology (GO) enrichment analysis revealed that DAPs were mainly related to glutamate metabolism, transketolase activity, and ATP-dependent transmembrane transport. KEGG analysis disclosed that DAPs were highly enriched in the biosynthesis of bacterial secondary metabolites, ansamycins. Interestingly, about 30% of all DAPs were in silico predicted as putative virulence factors. Further characterization of hemolymph effects on Btk showed enhanced autoaggregation in liquid cultures and biofilm formation in microtiter polystyrene plates. Hemolymph-exposed Btk cells were less immunogenic in mice, suggesting epitope masking of selected surface proteins. Bioassays with intrahemocoelically infected Bombyx mori larvae showed that hemolymph preexposure significantly increased Btk toxicity and reproduction within the insect (spore count per cadaver) at low inoculum doses, possibly due to 'virulence priming'. Collectively, our findings suggest that the Btk hemolymph stimulon could be partially responsible for bacterial survival and propagation within the hemolymph of infected insects, contributing to its remarkable success as an entomopathogen. All mass spectrometry data are available via ProteomeXchange with identifier PXD021830. IMPORTANCE After ingestion by a susceptible insect and damaging its midgut epithelium, the bacterium Bacillus thuringiensis (Bt) reaches the insect blood (hemolymph), where it propagates despite the host's antimicrobial defenses and induces insect death by acute septicemia. Although the hemolymph stage of the Bt toxic pathway is determinant for the infested insects' fate, the response of Bt to hemolymph and the latter's role in bacterial pathogenesis has been poorly explored. In this study, we identified the bacterial proteins differentially expressed by Bt after hemolymph exposure. We found that about 30% of hemolymph-regulated Bt proteins were potential virulence factors, including manganese superoxide dismutase, a described inhibitor of hemocyte respiratory burst. Additionally, contact with hemolymph enhanced Bt virulence phenotypes, such as cell aggregation and biofilm formation, altered bacterial immunogenicity, and increased Bt toxicity to intrahemocoelically injected insects.
Collapse
|
11
|
Consentino L, Rejasse A, Crapart N, Bevilacqua C, Nielsen-LeRoux C. Laser capture microdissection to study Bacillus cereus iron homeostasis gene expression during Galleria mellonella in vivo gut colonization. Virulence 2021; 12:2104-2121. [PMID: 34374318 PMCID: PMC8366545 DOI: 10.1080/21505594.2021.1959790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacillus cereus is a Gram-positive opportunistic pathogen closely related to the entomopathogen, Bacillus thuringiensis, both of which are involved in intestinal infections. Iron is an essential micronutrient for full growth and virulence of pathogens during infection. However, little is known about iron homeostasis during gut infection. Therefore, we aimed to assess the expression of B. cereus genes related to bacterial iron homeostasis, virulence and oxidative stress. The hypothesis is that the expression of such genes would vary between early and later stage colonization in correlation to gut cell damage. To perform the study, a germ-free Galleria mellonella model was set up in order to adapt the use of Laser-capture microdissection (LCM), to select precise areas in the gut lumen from frozen whole larval cryo-sections. Analyses were performed from alive larvae and the expression of targeted genes was assessed byspecific pre-amplification of mRNA followed by quantitative PCR. Firstly, the results reinforce the reliability of LCM, despite a low amount of bacterial RNA recovered. Secondly, bacterial genes involved in iron homeostasis are expressed in the lumen at both 3 and 16 hours post force-feeding. Thirdly, iron gene expression is slightly modulated during gut infection, and lastly, the mRNA of G. mellonella encoding for ferritin and transferrin iron storage and transport are recovered too. Therefore, iron homeostasis should play a role in B. cereus gut colonization. Furthermore, we demonstrate for the first time the value of using LCM for specific in situ gene expression analysis of extracellular bacteria in a whole animal.
Collapse
Affiliation(s)
- Laurent Consentino
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Crapart
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France.,Exilone, Elancourt, France
| | - Claudia Bevilacqua
- Université Paris Saclay, INRAE, AgroParisTech, UMR GABI, Abridge, Jouy En Josas, France
| | | |
Collapse
|
12
|
Ellis-Guardiola K, Mahoney BJ, Clubb RT. NEAr Transporter (NEAT) Domains: Unique Surface Displayed Heme Chaperones That Enable Gram-Positive Bacteria to Capture Heme-Iron From Hemoglobin. Front Microbiol 2021; 11:607679. [PMID: 33488548 PMCID: PMC7815599 DOI: 10.3389/fmicb.2020.607679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Iron is an important micronutrient that is required by bacteria to proliferate and to cause disease. Many bacterial pathogens forage iron from human hemoglobin (Hb) during infections, which contains this metal within heme (iron-protoporphyrin IX). Several clinically important pathogenic species within the Firmicutes phylum scavenge heme using surface-displayed or secreted NEAr Transporter (NEAT) domains. In this review, we discuss how these versatile proteins function in the Staphylococcus aureus Iron-regulated surface determinant system that scavenges heme-iron from Hb. S. aureus NEAT domains function as either Hb receptors or as heme-binding chaperones. In vitro studies have shown that heme-binding NEAT domains can rapidly exchange heme amongst one another via transiently forming transfer complexes, leading to the interesting hypothesis that they may form a protein-wire within the peptidoglycan layer through which heme flows from the microbial surface to the membrane. In Hb receptors, recent studies have revealed how dedicated heme- and Hb-binding NEAT domains function synergistically to extract Hb's heme molecules, and how receptor binding to the Hb-haptoglobin complex may block its clearance by macrophages, prolonging microbial access to Hb's iron. The functions of NEAT domains in other Gram-positive bacteria are also reviewed.
Collapse
Affiliation(s)
- Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
How Severe Anaemia Might Influence the Risk of Invasive Bacterial Infections in African Children. Int J Mol Sci 2020; 21:ijms21186976. [PMID: 32972031 PMCID: PMC7555399 DOI: 10.3390/ijms21186976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/21/2022] Open
Abstract
Severe anaemia and invasive bacterial infections are common causes of childhood sickness and death in sub-Saharan Africa. Accumulating evidence suggests that severely anaemic African children may have a higher risk of invasive bacterial infections. However, the mechanisms underlying this association remain poorly described. Severe anaemia is characterized by increased haemolysis, erythropoietic drive, gut permeability, and disruption of immune regulatory systems. These pathways are associated with dysregulation of iron homeostasis, including the downregulation of the hepatic hormone hepcidin. Increased haemolysis and low hepcidin levels potentially increase plasma, tissue and intracellular iron levels. Pathogenic bacteria require iron and/or haem to proliferate and have evolved numerous strategies to acquire labile and protein-bound iron/haem. In this review, we discuss how severe anaemia may mediate the risk of invasive bacterial infections through dysregulation of hepcidin and/or iron homeostasis, and potential studies that could be conducted to test this hypothesis.
Collapse
|
14
|
Visualization of Germination Proteins in Putative Bacillus cereus Germinosomes. Int J Mol Sci 2020; 21:ijms21155198. [PMID: 32707970 PMCID: PMC7432890 DOI: 10.3390/ijms21155198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/29/2022] Open
Abstract
Bacillus cereus can survive in the form of spores for prolonged periods posing a serious problem for the manufacture of safe shelf-stable foods of optimal quality. Our study aims at increasing knowledge of B. cereus spores focusing primarily on germination mechanisms to develop novel milder food preservation strategies. Major features of B. cereus spores are a core with the genetic material encased by multiple protective layers, an important one being the spores′ inner membrane (IM), the location of many important germination proteins. To study mechanisms involved in germination of B. cereus spores, we have examined the organization of germinant receptors (GRs) in spores′ IM. Previous studies have indicated that in spores of B.cereus ATCC 14579 the L-alanine responsive GR, GerR, plays a major role in the germination process. In our study, the location of the GerR GR subunit, GerRB, in spores was examined as a C-terminal SGFP2 fusion protein expressed under the control of the gerR operon′s promoter. Our results showed that: (i) the fluorescence maxima and integrated intensity in spores with plasmid-borne expression of GerRB-SGFP2 were significantly higher than in wild-type spores; (ii) western blot analysis confirmed the expression of the GerRB-SGFP2 fusion protein in spores; and (iii) fluorescence microscopy visualized GerRB-SGFP2 specific bright foci in ~30% of individual dormant spores if only GerRB-SGFP2 was expressed, but, noticeably, in ~85% of spores upon co-expression with GerRA and GerRC. Our data corroborates the notion that co-expression of GR subunits improves their stability. Finally, all spores displayed bright fluorescent foci upon expression of GerD-mScarlet-I under the control of the gerD promoter. We termed all fluorescent foci observed germinosomes, the term used for the IM foci of GRs in Bacillus subtilis spores. Our data are the first evidence for the existence of germinosomes in B. cereus spores.
Collapse
|
15
|
García López E, Martín-Galiano AJ. The Versatility of Opportunistic Infections Caused by Gemella Isolates Is Supported by the Carriage of Virulence Factors From Multiple Origins. Front Microbiol 2020; 11:524. [PMID: 32296407 PMCID: PMC7136413 DOI: 10.3389/fmicb.2020.00524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/11/2020] [Indexed: 12/29/2022] Open
Abstract
The molecular basis of the pathogenesis of the opportunistic invasive infections caused by isolates of the Gemella genus remains largely unknown. Moreover, inconsistencies in the current species assignation were detected after genome-level comparison of 16 public Gemella isolates. A literature search detected that, between the two most pathogenic species, Gemella morbillorum causes about twice the number of cases compared to Gemella haemolysans. These two species shared their mean diseases - sepsis and endocarditis - but differed in causing other syndromes. A number of well-known virulence factors were harbored by all species, such as a manganese transport/adhesin sharing 83% identity from oral endocarditis-causing streptococci. Likewise, all Gemellae carried the genes required for incorporating phosphorylcholine into their cell walls and encoded some choline-binding proteins. In contrast, other proteins were species-specific, which may justify the known epidemiological differences. G. haemolysans, but not G. morbillorum, harbor a gene cluster potentially encoding a polysaccharidic capsule. Species-specific surface determinants also included Rib and MucBP repeats, hemoglobin-binding NEAT domains, peptidases of C5a complement factor and domains that recognize extracellular matrix molecules exposed in damaged heart valves, such as collagen and fibronectin. Surface virulence determinants were associated with several taxonomically dispersed opportunistic genera of the oral microbiota, such as Granulicatella, Parvimonas, and Streptococcus, suggesting the existence of a horizontally transferrable gene reservoir in the oral environment, likely facilitated by close proximity in biofilms and ultimately linked to endocarditis. The identification of the Gemella virulence pool should be implemented in whole genome-based protocols to rationally predict the pathogenic potential in ongoing clinical infections caused by these poorly known bacterial pathogens.
Collapse
Affiliation(s)
- Ernesto García López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain
| |
Collapse
|
16
|
Peng D, Luo X, Zhang N, Guo S, Zheng J, Chen L, Sun M. Small RNA-mediated Cry toxin silencing allows Bacillus thuringiensis to evade Caenorhabditis elegans avoidance behavioral defenses. Nucleic Acids Res 2019; 46:159-173. [PMID: 29069426 PMCID: PMC5758910 DOI: 10.1093/nar/gkx959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Pathogen avoidance behavior protects animal hosts against microbial pathogens. Pathogens have evolved specific strategies during coevolution in response to such host defenses. However, these strategies for combatting host avoidance behavioral defenses remain poorly understood. Here, we used Caenorhabditis elegans and its bacterial pathogen Bacillus thuringiensis as a model and determined that small RNA (sRNA)-mediated Cry toxin silencing allowed pathogens to evade host avoidance behavioral defenses. The B. thuringiensis strain YBT-1518, which encodes three nematicidal cry genes, is highly toxic to C. elegans. However, the expression of the most potent toxin, Cry5Ba, was silenced in this strain when YBT-1518 was outside the host. Cry5Ba silencing was due to the sRNA BtsR1, which bound to the RBS site of the cry5Ba transcript via direct base pairing and inhibited Cry5Ba expression. Upon ingestion by C. elegans, Cry5Ba was expressed in vivo by strain YBT-1518. Cry5Ba silencing may allow B. thuringiensis to avoid nematode behavioral defenses and then express toxins once ingested to kill the host and gain a survival advantage. Our work describes a novel model of sRNA-mediated regulation to aid pathogens in combating host avoidance behavioral defenses.
Collapse
Affiliation(s)
- Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiaoxia Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ni Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Suxia Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ling Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
17
|
Bacillus cereus cshA Is Expressed during the Lag Phase of Growth and Serves as a Potential Marker of Early Adaptation to Low Temperature and pH. Appl Environ Microbiol 2019; 85:AEM.00486-19. [PMID: 31076436 PMCID: PMC6606889 DOI: 10.1128/aem.00486-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH. Bacterial adaptation is characterized by a lag phase during which cells do not multiply or modify their physiology to cope with the constraints of their environment. Our aim was to determine a sequence of events during the lag phase of growth at low temperature and pH for three Bacillus cereus strains. The onsets of expression of two genes, one of which is essential for stress adaptation (cshA, coding for a RNA helicase) and one of which is involved in the transition between lag phase and exponential phase (abrB, coding for a transition regulator), were determined using fluorescent transcriptional reporter systems. Regardless of the stressing conditions and the tested strains, the cshA promoter was active very early, while the biomass increased and always did so before the first cell division. At 12°C and pH 7.0, the onset of cshA promoter activity occurred at between 3 h and 7 h, while the bacterial counts started to increase at between 12 h and 13 h. At pH 5.0 and at 20°C or 30°C, the onset of cshA promoter activity occurred before 1 h and earlier than at pH 7.0. In contrast, the onset of abrB promoter activity depended on the strain and the stressing conditions. In the ATCC 14579 strain, the onset of abrB promoter activity always started at between 30 min and 3 h, before biomass increased and cell division occurred. For the other strains, it took place along with the first cell division at 12°C but did so much later during growth under the other tested conditions. IMPORTANCE The spore-forming bacterium B. cereus is a major cause of foodborne outbreaks in Europe. Some B. cereus strains can grow at low temperatures and low pH in many processed foods. Modeling of the bacterial lag time is hampered by a lack of knowledge of the timing of events occurring during this phase. In this context, the identification of lag phase markers, not currently available, could be a real advance for the better prediction of lag time duration. Currently, no molecular markers of this phase are available. By determining that cshA was always expressed early during the lag phase, we provide a molecular marker of the early adaptation process of B. cereus cells when exposed to low temperature and pH.
Collapse
|
18
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
19
|
Yang Q, Li M, Spiller OB, Andrey DO, Hinchliffe P, Li H, MacLean C, Niumsup P, Powell L, Pritchard M, Papkou A, Shen Y, Portal E, Sands K, Spencer J, Tansawai U, Thomas D, Wang S, Wang Y, Shen J, Walsh T. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nat Commun 2017; 8:2054. [PMID: 29233990 PMCID: PMC5727292 DOI: 10.1038/s41467-017-02149-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022] Open
Abstract
MCR-1 is a lipid A modifying enzyme that confers resistance to the antibiotic colistin. Here, we analyse the impact of MCR-1 expression on E. coli morphology, fitness, competitiveness, immune stimulation and virulence. Increased expression of mcr-1 results in decreased growth rate, cell viability, competitive ability and significant degradation in cell membrane and cytoplasmic structures, compared to expression of catalytically inactive MCR-1 (E246A) or MCR-1 soluble component. Lipopolysaccharide (LPS) extracted from mcr-1 strains induces lower production of IL-6 and TNF, when compared to control LPS. Compared to their parent strains, high-level colistin resistance mutants (HLCRMs) show reduced fitness (relative fitness is 0.41-0.78) and highly attenuated virulence in a Galleria mellonella infection model. Furthermore, HLCRMs are more susceptible to most antibiotics than their respective parent strains. Our results show that the bacterium is challenged to find a delicate equilibrium between expression of MCR-1-mediated colistin resistance and minimalizing toxicity and thus ensuring cell survival.
Collapse
Affiliation(s)
- Qiue Yang
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| | - Mei Li
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Owen B Spiller
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Diego O Andrey
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1211, Geneva, Switzerland
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Pannika Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Lydia Powell
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Manon Pritchard
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Andrei Papkou
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Yingbo Shen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Edward Portal
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kirsty Sands
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Uttapoln Tansawai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - David Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Shaolin Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Timothy Walsh
- Department of Medical Microbiology and Infectious Disease, Division of Infection and Immunity, Cardiff University, Cardiff, CF14 4XN, UK.
| |
Collapse
|
20
|
Xu B, Zhang P, Li W, Liu R, Tang J, Fan H. hsdS, Belonging to the Type I Restriction-Modification System, Contributes to the Streptococcus suis Serotype 2 Survival Ability in Phagocytes. Front Microbiol 2017; 8:1524. [PMID: 28848531 PMCID: PMC5552720 DOI: 10.3389/fmicb.2017.01524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic agent in swine and humans. Anti-phagocytosis and survival in phagocytic cells and whole blood is essential for bacteria to be pathogenic. In this study, the host specificity determinant specificity subunit (coded by hsdS) of the Type I Restriction-Modification system and two peptidoglycan-binding proteins (coded by lysM and lysM′, respectively), which were simultaneously found to be subjected to transcript-level influence by hsdS, were identified to facilitate the anti-phagocytosis of SS2 to a microglia cell line BV2. Furthermore, they significantly enhanced its survival in BV2, whole blood, and a peroxidation environment (H2O2) (p < 0.05), yet not in the acidic condition based on statistical analysis of the characteristic differences between gene mutants and wild-type SS2. In contrast, another specificity subunit, coded by hsdS′, that belonged to the same Type I Restriction-Modification system, only significantly reduced the survival ability of SS2 in the acidic condition when in the form of a gene-deleted mutant (p < 0.05), but it did not significantly influence the survival ability in other conditions mentioned above or have enhanced anti-phagocytosis action when compared with wild-type SS2. In addition, the mutation of hsdS significantly enhanced the secretion of nitric oxide and TNF-α by BV2 with SS2 incubation (p < 0.05). The SS2 was tested, and it failed to stimulate BV2 to produce IFN-γ. These results demonstrated that hsdS contributed to bacterial anti-phagocytosis and survival in adverse host environments through positively impacting the transcription of two peptidoglycan-binding protein genes, enhancing resistance to reactive oxygen species, and reducing the secretion of TNF-α and nitric oxide by phagocytes. These findings revealed new mechanisms of SS2 pathogenesis.
Collapse
Affiliation(s)
- Bin Xu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Ping Zhang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Poultry Institute, Chinese Academy of Agricultural SciencesYangzhou, China
| | - Weiyi Li
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Rui Liu
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Jinsheng Tang
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
21
|
Kamar R, Réjasse A, Jéhanno I, Attieh Z, Courtin P, Chapot-Chartier MP, Nielsen-Leroux C, Lereclus D, El Chamy L, Kallassy M, Sanchis-Borja V. DltX of Bacillus thuringiensis Is Essential for D-Alanylation of Teichoic Acids and Resistance to Antimicrobial Response in Insects. Front Microbiol 2017; 8:1437. [PMID: 28824570 PMCID: PMC5541007 DOI: 10.3389/fmicb.2017.01437] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists of five genes dltXABCD but the involvement of the first ORF (dltX) encoding a small protein of unknown function, has never been investigated. The aim of this study was to establish whether this protein is involved in the D-alanylation process in Bacillus thuringiensis. We, therefore constructed an in frame deletion mutant of dltX, without affecting the expression of the other genes of the operon. The growth characteristics of the dltX mutant and those of the wild type strain were similar under standard in vitro conditions. However, disruption of dltX drastically impaired the resistance of B. thuringiensis to CAMPs and significantly attenuated its virulence in two insect species. Moreover, high-performance liquid chromatography studies showed that the dltX mutant was devoid of D-alanine, and electrophoretic mobility measurements indicated that the cells carried a higher negative surface charge. Scanning electron microscopy experiments showed morphological alterations of these mutant bacteria, suggesting that depletion of D-alanine from TAs affects cell wall structure. Our findings suggest that DltX is essential for the incorporation of D-alanyl esters into TAs. Therefore, DltX plays a direct role in the resistance to CAMPs, thus contributing to the survival of B. thuringiensis in insects. To our knowledge, this work is the first report examining the involvement of dltX in the D-alanylation of TAs.
Collapse
Affiliation(s)
- Rita Kamar
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France.,Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Agnès Réjasse
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Isabelle Jéhanno
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Zaynoun Attieh
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Pascal Courtin
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | | | | | - Didier Lereclus
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| | - Laure El Chamy
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Mireille Kallassy
- Laboratoire de Génétique de la Drosophile et Virulence Microbienne, Université Saint-JosephBeirut, Lebanon
| | - Vincent Sanchis-Borja
- INRA, UMR1319 MicalisJouy-en-Josas, France.,AgroParisTech, UMR MicalisJouy-en-Josas, France
| |
Collapse
|
22
|
Wojda I. Immunity of the greater wax moth Galleria mellonella. INSECT SCIENCE 2017; 24:342-357. [PMID: 26847724 DOI: 10.1111/1744-7917.12325] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/29/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Investigation of insect immune mechanisms provides important information concerning innate immunity, which in many aspects is conserved in animals. This is one of the reasons why insects serve as model organisms to study virulence mechanisms of human pathogens. From the evolutionary point of view, we also learn a lot about host-pathogen interaction and adaptation of organisms to conditions of life. Additionally, insect-derived antibacterial and antifungal peptides and proteins are considered for their potential to be applied as alternatives to antibiotics. While Drosophila melanogaster is used to study the genetic aspect of insect immunity, Galleria mellonella serves as a good model for biochemical research. Given the size of the insect, it is possible to obtain easily hemolymph and other tissues as a source of many immune-relevant polypeptides. This review article summarizes our knowledge concerning G. mellonella immunity. The best-characterized immune-related proteins and peptides are recalled and their short characteristic is given. Some other proteins identified at the mRNA level are also mentioned. The infectious routes used by Galleria natural pathogens such as Bacillus thuringiensis and Beauveria bassiana are also described in the context of host-pathogen interaction. Finally, the plasticity of G. mellonella immune response influenced by abiotic and biotic factors is described.
Collapse
Affiliation(s)
- Iwona Wojda
- Maria Curie-Sklodowska University, Faculty of Biology and Biotechnology, Institute of Biology and Biochemistry, Department of Immunobiology, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
23
|
Uluisik RC, Akbas N, Lukat-Rodgers GS, Adrian SA, Allen CE, Schmitt MP, Rodgers KR, Dixon DW. Characterization of the second conserved domain in the heme uptake protein HtaA from Corynebacterium diphtheriae. J Inorg Biochem 2017; 167:124-133. [PMID: 27974280 PMCID: PMC5199035 DOI: 10.1016/j.jinorgbio.2016.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022]
Abstract
HtaA is a heme-binding protein that is part of the heme uptake system in Corynebacterium diphtheriae. HtaA contains two conserved regions (CR1 and CR2). It has been previously reported that both domains can bind heme; the CR2 domain binds hemoglobin more strongly than the CR1 domain. In this study, we report the biophysical characteristics of HtaA-CR2. UV-visible spectroscopy and resonance Raman experiments are consistent with this domain containing a single heme that is bound to the protein through an axial tyrosine ligand. Mutants of conserved tyrosine and histidine residues (Y361, H412, and Y490) have been studied. These mutants are isolated with very little heme (≤5%) in comparison to the wild-type protein (~20%). Reconstitution after removal of the heme with butanone gave an alternative form of the protein. The HtaA-CR2 fold is very stable; it was necessary to perform thermal denaturation experiments in the presence of guanidinium hydrochloride. HtaA-CR2 unfolds extremely slowly; even in 6.8M GdnHCl at 37°C, the half-life was 5h. In contrast, the apo forms of WT HtaA-CR2 and the aforementioned mutants unfolded at much lower concentrations of GdnHCl, indicating the role of heme in stabilizing the structure and implying that heme transfer is effected only to a partner protein in vivo.
Collapse
Affiliation(s)
- Rizvan C Uluisik
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Neval Akbas
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Seth A Adrian
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States
| | - Courtni E Allen
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Michael P Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation, and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, United States.
| | - Dabney W Dixon
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States.
| |
Collapse
|
24
|
Hayrapetyan H, Siezen R, Abee T, Nierop Groot M. Comparative Genomics of Iron-Transporting Systems in Bacillus cereus Strains and Impact of Iron Sources on Growth and Biofilm Formation. Front Microbiol 2016; 7:842. [PMID: 27375568 PMCID: PMC4896950 DOI: 10.3389/fmicb.2016.00842] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022] Open
Abstract
Iron is an important element for bacterial viability, however it is not readily available in most environments. We studied the ability of 20 undomesticated food isolates of Bacillus cereus and two reference strains for capacity to use different (complex) iron sources for growth and biofilm formation. Studies were performed in media containing the iron scavenger 2,2-Bipyridine. Transcriptome analysis using B. cereus ATCC 10987 indeed showed upregulation of predicted iron transporters in the presence of 2,2-Bipyridine, confirming that iron was depleted upon its addition. Next, the impact of iron sources on growth performance of the 22 strains was assessed and correlations between growth stimulation and presence of putative iron transporter systems in the genome sequences were analyzed. All 22 strains effectively used Fe citrate and FeCl3 for growth, and possessed genes for biosynthesis of the siderophore bacillibactin, whereas seven strains lacked genes for synthesis of petrobactin. Hemoglobin could be used by all strains with the exception of one strain that lacked functional petrobactin and IlsA systems. Hemin could be used by the majority of the tested strains (19 of 22). Notably, transferrin, ferritin, and lactoferrin were not commonly used by B. cereus for growth, as these iron sources could be used by 6, 3, and 2 strains, respectively. Furthermore, biofilm formation was found to be affected by the type of iron source used, including stimulation of biofilms at liquid-air interphase (FeCl3 and Fe citrate) and formation of submerged type biofilms (hemin and lactoferrin). Our results show strain variability in the genome-encoded repertoire of iron-transporting systems and differences in efficacy to use complex iron sources for growth and biofilm formation. These features may affect B. cereus survival and persistence in specific niches.
Collapse
Affiliation(s)
- Hasmik Hayrapetyan
- Laboratory of Food Microbiology, Wageningen UniversityWageningen, Netherlands; Top Institute of Food and NutritionWageningen, Netherlands
| | - Roland Siezen
- Top Institute of Food and NutritionWageningen, Netherlands; Microbial Bioinformatics, NIZOEde, Netherlands; Center for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen UniversityWageningen, Netherlands; Top Institute of Food and NutritionWageningen, Netherlands
| | - Masja Nierop Groot
- Top Institute of Food and NutritionWageningen, Netherlands; Wageningen UR Food and Biobased ResearchWageningen, Netherlands
| |
Collapse
|
25
|
Wu Z, Shao J, Ren H, Tang H, Zhou M, Dai J, Lai L, Yao H, Fan H, Chen D, Zong J, Lu C. A Streptococcus suis LysM domain surface protein contributes to bacterial virulence. Vet Microbiol 2016; 187:64-69. [PMID: 27066710 DOI: 10.1016/j.vetmic.2016.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/16/2016] [Accepted: 03/25/2016] [Indexed: 01/20/2023]
Abstract
Streptococcus suis (SS) is a major swine pathogen, as well as a zoonotic agent for humans. Numerous factors contribute to SS virulence, but the pathogenesis of SS infection is poorly understood. Here, we show that a novel SS surface protein containing a LysM at the N-terminus (SS9-LysM) contributes to SS virulence. Homology analysis revealed that the amino acid sequence of SS9-LysM from the SS strain GZ0565 shares 99.8-68.7% identity with homologous proteins from other SS strains and 41.2% identity with Group B Streptococcal protective antigen Sip. Immunization experiments showed that 7 out of 30 mice immunized with recombinant SS9-LysM were protected against challenge with the virulent GZ0565 strain, while all of the control mice died within 48h following bacterial challenge. In mouse infection model, the virulence of the SS9-LysM deletion mutant (ΔSS9-LysM) was reduced compared with the wild-type (WT) strain GZ0565 and SS9-LysM complemented strain. In addition, ΔSS9-LysM was significantly more sensitive to killing by pig blood ex vivo and mouse blood in vivo compared with the WT strain and SS9-LysM complemented strain. In vivo transcriptome analysis in mouse blood showed that the WT strain reduced the expression of host genes related to iron-binding by SS9-LysM. Moreover, the total free iron concentration in blood from infected mice was significantly lower for the ΔSS9-LysM strain compared with the WT strain. Together, our data reveal that SS9-LysM facilitates SS survival within blood by releasing more free iron from the host. This represents a new mechanism of SS pathogenesis.
Collapse
Affiliation(s)
- Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| | - Jing Shao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Haiyan Ren
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huanyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Mingyao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Jiao Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Liying Lai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Dai Chen
- Novel Bioinformatics Co., Ltd., Shanghai, China
| | - Jie Zong
- Novel Bioinformatics Co., Ltd., Shanghai, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China.
| |
Collapse
|
26
|
Ferritin, an iron source in meat for Staphylococcus xylosus? Int J Food Microbiol 2016; 225:20-6. [PMID: 26971013 DOI: 10.1016/j.ijfoodmicro.2016.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/19/2016] [Accepted: 03/05/2016] [Indexed: 11/20/2022]
Abstract
Staphylococcus xylosus is frequently isolated from food of animal origin. Moreover, this species is one of the major starter cultures used for meat fermentation. Iron is a key element for growth and survival of bacteria. Meat is particularly rich in haemic (myoglobin and haemoglobin) and non-haemic (ferritin and transferrin) iron sources. Ferritin is a storage protein able to capture large quantities of iron. It is highly resistant to microbial attack and few microorganisms can use it as an iron source. Surprisingly, we found that the S. xylosus C2a strain grows in the presence of ferritin as a sole iron source. A three-cistron operon was highly overexpressed under ferritin iron growth conditions. We generated a deletion-insertion in the first gene of the operon and evaluated the phenotype of the mutant. The mutant showed decreased growth because it was less able to acquire iron from ferritin. Transcriptional analysis of the mutant revealed downregulation of several genes involved in the response to oxidative stress. This study characterized for the first time the capacity of a Staphylococcus to use iron from ferritin and revealed that a potential reductive pathway was involved in this acquisition. We hypothesize that this ability could give an advantage to S. xylosus in meat products.
Collapse
|
27
|
Peng D, Lin J, Huang Q, Zheng W, Liu G, Zheng J, Zhu L, Sun M. A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects. Environ Microbiol 2015; 18:846-62. [PMID: 26995589 DOI: 10.1111/1462-2920.13069] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022]
Abstract
The Gram-positive soil bacterium Bacillus thuringiensis has been developed as the leading microbial insecticide for years. The pathogenesis of B. thuringiensis requires common extracellular factors that depend on the PlcR regulon, which regulates a large number of virulence factors; however, the precise role of many of these proteins is not known. In this study, we describe the complete lifecycle of a nematicidal B. thuringiensis strain in the free living nematode Caenorhabditis elegans using in vitro and in vivo molecular techniques to follow host and bacterial effectors during the infection process. We then focus on the metalloproteinase ColB, a collagenase, which was found highly important for destruction of the intestine thereby facilitates the adaptation and colonization of B. thuringiensis in C. elegans. In vivo green fluorescent protein (GFP) reporter-gene studies showed that ColB expression is highly induced and regulated by the global activator PlcR. Finally, we demonstrated that ColB also takes part in B. thuringiensis virulence in an insect model following injection and oral infection. Indeed, addition of purified ColB accelerates the action of Cry toxin proteins in insects, too. These results give novel insights into host adaptation for B. thuringiensis and other B. cereus group bacteria and highlight the role of collagenase metalloproteases to synergize infection process.
Collapse
Affiliation(s)
- Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qiong Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wen Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guoqiang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
28
|
Abi-Khalil E, Segond D, Terpstra T, André-Leroux G, Kallassy M, Lereclus D, Bou-Abdallah F, Nielsen-Leroux C. Heme interplay between IlsA and IsdC: Two structurally different surface proteins from Bacillus cereus. Biochim Biophys Acta Gen Subj 2015; 1850:1930-41. [PMID: 26093289 DOI: 10.1016/j.bbagen.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Iron is an essential element for bacterial growth and virulence. Because of its limited bioavailability in the host, bacteria have adapted several strategies to acquire iron during infection. In the human opportunistic bacteria Bacillus cereus, a surface protein IlsA is shown to be involved in iron acquisition from both ferritin and hemoproteins. IlsA has a modular structure consisting of a NEAT (Near Iron transporter) domain at the N-terminus, several LRR (Leucine Rich Repeat) motifs and a SLH (Surface Layer Homology) domain likely involved in anchoring the protein to the cell surface. METHODS Isothermal titration calorimetry, UV-Vis spectrophotometry, affinity chromatography and rapid kinetics stopped-flow measurements were employed to probe the binding and transfer of hemin between two different B. cereus surface proteins (IlsA and IsdC). RESULTS IlsA binds hemin via the NEAT domain and is able to extract heme from hemoglobin whereas the LRR domain alone is not involved in these processes. A rapid hemin transfer from hemin-containing IlsA (holo-IlsA) to hemin-free IsdC (apo-IsdC) is demonstrated. CONCLUSIONS For the first time, it is shown that two different B. cereus surface proteins (IlsA and IsdC) can interact and transfer heme suggesting their involvement in B. cereus heme acquisition. GENERAL SIGNIFICANCE An important role for the complete Isd system in heme-associated bacterial growth is demonstrated and new insights into the interplay between an Isd NEAT surface protein and an IlsA-NEAT-LRR protein, both of which appear to be involved in heme-iron acquisition in B. cereus are revealed.
Collapse
Affiliation(s)
- Elise Abi-Khalil
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France; Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon; Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Diego Segond
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France
| | - Tyson Terpstra
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | | - Mireille Kallassy
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Didier Lereclus
- INRA, UMR 1319 Micalis-AgroParisTech, AgroParisTech UMR Micalis, F-78352 Jouy en Josas, France
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | |
Collapse
|
29
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
30
|
Hayrapetyan H, Muller L, Tempelaars M, Abee T, Nierop Groot M. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. Int J Food Microbiol 2015; 200:72-9. [PMID: 25700364 DOI: 10.1016/j.ijfoodmicro.2015.02.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/17/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Biofilm formation of Bacillus cereus reference strains ATCC 14579 and ATCC 10987 and 21 undomesticated food isolates was studied on polystyrene and stainless steel as contact surfaces. For all strains, the biofilm forming capacity was significantly enhanced when in contact with stainless steel (SS) as a surface as compared to polystyrene (PS). For a selection of strains, the total CFU and spore counts in biofilms were determined and showed a good correlation between CFU counts and total biomass of these biofilms. Sporulation was favoured in the biofilm over the planktonic state. To substantiate whether iron availability could affect B. cereus biofilm formation, the free iron availability was varied in BHI by either the addition of FeCl3 or by depletion of iron with the scavenger 2,2-Bipyridine. Addition of iron resulted in increased air-liquid interface biofilm on polystyrene but not on SS for strain ATCC 10987, while the presence of Bipyridine reduced biofilm formation for both materials. Biofilm formation was restored when excess FeCl3 was added in combination with the scavenger. Further validation of the iron effect for all 23 strains in microtiter plate showed that fourteen strains (including ATCC10987) formed a biofilm on PS. For eight of these strains biofilm formation was enhanced in the presence of added iron and for eleven strains it was reduced when free iron was scavenged. Our results show that stainless steel as a contact material provides more favourable conditions for B. cereus biofilm formation and maturation compared to polystyrene. This effect could possibly be linked to iron availability as we show that free iron availability affects B. cereus biofilm formation.
Collapse
Affiliation(s)
- Hasmik Hayrapetyan
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands; Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Lisette Muller
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands; Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands; Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands.
| | - Masja Nierop Groot
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands; Food and Biobased Research, Wageningen UR, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
31
|
Molecular and evolutionary analysis of NEAr-iron Transporter (NEAT) domains. PLoS One 2014; 9:e104794. [PMID: 25153520 PMCID: PMC4143258 DOI: 10.1371/journal.pone.0104794] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 07/18/2014] [Indexed: 12/25/2022] Open
Abstract
Iron is essential for bacterial survival, being required for numerous biological processes. NEAr-iron Transporter (NEAT) domains have been studied in pathogenic Gram-positive bacteria to understand how their proteins obtain heme as an iron source during infection. While a 2002 study initially discovered and annotated the NEAT domain encoded by the genomes of several Gram-positive bacteria, there remains a scarcity of information regarding the conservation and distribution of NEAT domains throughout the bacterial kingdom, and whether these domains are restricted to pathogenic bacteria. This study aims to expand upon initial bioinformatics analysis of predicted NEAT domains, by exploring their evolution and conserved function. This information was used to identify new candidate domains in both pathogenic and nonpathogenic organisms. We also searched metagenomic datasets, specifically sequence from the Human Microbiome Project. Here, we report a comprehensive phylogenetic analysis of 343 NEAT domains, encoded by Gram-positive bacteria, mostly within the phylum Firmicutes, with the exception of Eggerthella sp. (Actinobacteria) and an unclassified Mollicutes bacterium (Tenericutes). No new NEAT sequences were identified in the HMP dataset. We detected specific groups of NEAT domains based on phylogeny of protein sequences, including a cluster of novel clostridial NEAT domains. We also identified environmental and soil organisms that encode putative NEAT proteins. Biochemical analysis of heme binding by a NEAT domain from a protein encoded by the soil-dwelling organism Paenibacillus polymyxa demonstrated that the domain is homologous in function to NEAT domains encoded by pathogenic bacteria. Together, this study provides the first global bioinformatics analysis and phylogenetic evidence that NEAT domains have a strong conservation of function, despite group-specific differences at the amino acid level. These findings will provide information useful for future projects concerning the structure and function of NEAT domains, particularly in pathogens where they have yet to be studied.
Collapse
|
32
|
Collagen-like glycoprotein BclS is involved in the formation of filamentous structures of the Lysinibacillus sphaericus exosporium. Appl Environ Microbiol 2014; 80:6656-63. [PMID: 25149519 DOI: 10.1128/aem.02238-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lysinibacillus sphaericus produces mosquitocidal binary toxins (Bin toxins) deposited within a balloon-like exosporium during sporulation. Unlike Bacillus cereus group strains, the exosporium of L. sphaericus is usually devoid of the hair-like nap, an external filamentous structure formed by a collagen-like protein, BclA. In this study, a new collagen-like exosporium protein encoded by Bsph_0411 (BclS) from L. sphaericus C3-41 was characterized. Thin-section electron microscopy revealed that deletion of bclS resulted in the loss of the filamentous structures that attach to the exosporium basal layer and spread through the interspace of spores. In vivo visualization of BclS-green fluorescent protein (GFP)/mCherry fusion proteins revealed a dynamic pattern of fluorescence that encased the spore from the mother cell-distal (MCD) pole of the forespore, and the BclS-GFP fusions were found to be located in the interspace of the spore, as confirmed by three-dimensional (3D) superresolution fluorescence microscopy. Further studies demonstrated that the bclS mutant spores were more sensitive to wet-heat treatment and germinated at a lower rate than wild-type spores and that these phenotypes were significantly restored in the bclS-complemented strain. These results suggested novel roles of collagen-like protein in exosporium assembly and spore germination, providing a hint for a further understanding of the genetic basis of the high level of persistence of Bin toxins in nature.
Collapse
|
33
|
Segond D, Abi Khalil E, Buisson C, Daou N, Kallassy M, Lereclus D, Arosio P, Bou-Abdallah F, Nielsen Le Roux C. Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization. PLoS Pathog 2014; 10:e1003935. [PMID: 24550730 PMCID: PMC3923779 DOI: 10.1371/journal.ppat.1003935] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 01/08/2014] [Indexed: 01/18/2023] Open
Abstract
In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis. Iron homeostasis is important for all living organisms; too much iron confers cell toxicity, and too little iron results in reduced cell fitness. While crucial for many cellular processes in both man and pathogens, a battle for this essential nutrient erupts during infection between the host and the invading bacteria. Iron is principally stored in ferritin, a large molecule able to bind several thousand iron ions. Although host ferritins represent a mine of iron for pathogens, studies of the mechanisms involved in its acquisition by bacteria are scarce. In the human opportunistic pathogen Bacillus cereus, the surface protein IlsA is able to bind several host iron sources in vitro. In this study, we show that IlsA acts as a ferritin receptor and enhances iron release from the ferritin through direct interaction with each ferritin subunit. Moreover, we demonstrate that the siderophore bacillibactin, a small secreted iron chelator, is essential for ferritin iron acquisition and takes part in B. cereus virulence. We propose a new iron acquisition model that provides new insights into bacterial host adaptation.
Collapse
Affiliation(s)
- Diego Segond
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Elise Abi Khalil
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Christophe Buisson
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Nadine Daou
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Mireille Kallassy
- Laboratory of Biotechnology, Saint-Joseph University, Beyrouth, Lebanon
| | - Didier Lereclus
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York, United States of America
| | - Christina Nielsen Le Roux
- INRA, UMR 1319 Micalis, La Minière, Guyancourt, France
- AgroParisTech, UMR Micalis, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
34
|
Dickson CF, Kumar KK, Jacques DA, Malmirchegini GR, Spirig T, Mackay JP, Clubb RT, Guss JM, Gell DA. Structure of the hemoglobin-IsdH complex reveals the molecular basis of iron capture by Staphylococcus aureus. J Biol Chem 2014; 289:6728-6738. [PMID: 24425866 DOI: 10.1074/jbc.m113.545566] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Staphylococcus aureus causes life-threatening disease in humans. The S. aureus surface protein iron-regulated surface determinant H (IsdH) binds to mammalian hemoglobin (Hb) and extracts heme as a source of iron, which is an essential nutrient for the bacteria. However, the process of heme transfer from Hb is poorly understood. We have determined the structure of IsdH bound to human Hb by x-ray crystallography at 4.2 Å resolution, revealing the structural basis for heme transfer. One IsdH molecule is bound to each α and β Hb subunit, suggesting that the receptor acquires iron from both chains by a similar mechanism. Remarkably, two near iron transporter (NEAT) domains in IsdH perform very different functions. An N-terminal NEAT domain binds α/β globin through a site distant from the globin heme pocket and, via an intervening structural domain, positions the C-terminal heme-binding NEAT domain perfectly for heme transfer. These data, together with a 2.3 Å resolution crystal structure of the isolated N-terminal domain bound to Hb and small-angle x-ray scattering of free IsdH, reveal how multiple domains of IsdH cooperate to strip heme from Hb. Many bacterial pathogens obtain iron from human hemoglobin using proteins that contain multiple NEAT domains and other domains whose functions are poorly understood. Our results suggest that, rather than acting as isolated units, NEAT domains may be integrated into higher order architectures that employ multiple interaction interfaces to efficiently extract heme from host proteins.
Collapse
Affiliation(s)
- Claire F Dickson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Kaavya Krishna Kumar
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David A Jacques
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | - Thomas Spirig
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - J Mitchell Guss
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales 2006, Australia
| | - David A Gell
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania 7000, Australia.
| |
Collapse
|
35
|
Pishchany G, Sheldon JR, Dickson CF, Alam MT, Read TD, Gell DA, Heinrichs DE, Skaar EP. IsdB-dependent hemoglobin binding is required for acquisition of heme by Staphylococcus aureus. J Infect Dis 2013; 209:1764-72. [PMID: 24338348 DOI: 10.1093/infdis/jit817] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen responsible for tremendous morbidity and mortality. As with most bacteria, S. aureus requires iron to cause disease, and it can acquire iron from host hemoglobin. The current model for staphylococcal hemoglobin-iron acquisition proposes that S. aureus binds hemoglobin through the surface-exposed hemoglobin receptor IsdB. IsdB removes heme from bound hemoglobin and transfers this cofactor to other proteins of the Isd system, which import and degrade heme to release iron in the cytoplasm. Here we demonstrate that the individual components of the Isd system are required for growth on low nanomolar concentrations of hemoglobin as a sole source of iron. An in-depth study of hemoglobin binding by IsdB revealed key residues that are required for hemoglobin binding. Further, we show that these residues are necessary for heme extraction from hemoglobin and growth on hemoglobin as a sole iron source. These processes are found to contribute to the pathogenicity of S. aureus in a murine model of infection. Together these results build on the model for Isd-mediated hemoglobin binding and heme-iron acquisition during the pathogenesis of S. aureus infection.
Collapse
Affiliation(s)
- Gleb Pishchany
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Moriwaki Y, Terada T, Caaveiro JMM, Takaoka Y, Hamachi I, Tsumoto K, Shimizu K. Heme binding mechanism of structurally similar iron-regulated surface determinant near transporter domains of Staphylococcus aureus exhibiting different affinities for heme. Biochemistry 2013; 52:8866-77. [PMID: 24245481 DOI: 10.1021/bi4008325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Near transporter (NEAT) domains of the iron-regulated surface determinant (Isd) proteins are essential for the import of nutritional heme from host animals to Gram-positive pathogens such as Staphylococcus aureus. The order of transfer of heme between NEAT domains occurs from IsdH to IsdA to IsdC, without any energy input despite the similarity of their three-dimensional structures. We measured the free energy of binding of heme and various metalloporphyrins to each NEAT domain and found that the affinity of heme and non-iron porphyrins for NEAT domains increased gradually in the same order as that for heme transfer. To gain insight into the atomistic mechanism for the differential affinities, we performed in silico molecular dynamics simulation and in vitro site-directed mutagenesis. The simulations revealed that the negatively charged residues that are abundant in the loop between strand β1b and the 310 helix of IsdH-NEAT3 destabilize the interaction with the propionate group of heme. The higher affinity of IsdC was in part attributed to the formation of a salt bridge between its unique residue, Glu88, and the conserved Arg100 upon binding to heme. In addition, we found that Phe130 of IsdC makes the β7-β8 hairpin less flexible in the ligand-free form, which serves to reduce the magnitude of the entropy loss on binding to heme. We confirmed that substitution of these key residues of IsdC decreased its affinity for heme. Furthermore, IsdC mutants, whose affinities for heme were lower than those of IsdA, transferred heme back to IsdA. Thus, NEAT domains have evolved the characteristic residues on the common structural scaffold such that they exhibit different affinities for heme, thus promoting the efficient transfer of heme.
Collapse
Affiliation(s)
- Yoshitaka Moriwaki
- Department of Biotechnology and ‡Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013; 3:80. [PMID: 24312900 PMCID: PMC3832793 DOI: 10.3389/fcimb.2013.00080] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense.
Collapse
Affiliation(s)
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
38
|
Milutinović B, Fritzlar S, Kurtz J. Increased survival in the red flour beetle after oral priming with bacteria-conditioned media. J Innate Immun 2013; 6:306-14. [PMID: 24216503 PMCID: PMC6742957 DOI: 10.1159/000355211] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
Immune priming is defined as enhanced protection upon secondary exposure to a pathogen. Such enhanced resistance after prior exposure has been demonstrated for a number of insect species including the red flour beetle, Tribolium castaneum. In testing this phenomenon, the majority of studies have focused on introducing the pathogen into the insect's hemocoel via septic wounding through the cuticle. Although such septic injury can occur in nature, many pathogens enter their hosts via the oral route, i.e. by ingestion. Bacillus thuringiensis bacteria are well-known insect pathogens that infect their host orally. We found that T. castaneum larvae showed increased survival after oral exposure to B. thuringiensis, when they had been orally primed with filter-sterilized media in which spores of B. thuringiensis had been raised. Such priming was achieved only with a naturally pathogenic strain of B. thuringiensis and a strain that was made pathogenic by transfer of plasmids. Moreover, primed larvae were smaller in size 24 h after priming and had a longer developmental time, indicating that investment in such a response comes at a cost. However, the increased survival in primed larvae was not caused by larval size differences upon challenge.
Collapse
Affiliation(s)
| | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
39
|
Abstract
The proliferative capability of many invasive pathogens is limited by the bioavailability of iron. Pathogens have thus developed strategies to obtain iron from their host organisms. In turn, host defense strategies have evolved to sequester iron from invasive pathogens. This review explores the mechanisms employed by bacterial pathogens to gain access to host iron sources, the role of iron in bacterial virulence, and iron-related genes required for the establishment or maintenance of infection. Host defenses to limit iron availability for bacterial growth during the acute-phase response and the consequences of iron overload conditions on susceptibility to bacterial infection are also examined. The evidence summarized herein demonstrates the importance of iron bioavailability in influencing the risk of infection and the ability of the host to clear the pathogen.
Collapse
|
40
|
Milutinović B, Stolpe C, Peuβ R, Armitage SAO, Kurtz J. The red flour beetle as a model for bacterial oral infections. PLoS One 2013; 8:e64638. [PMID: 23737991 PMCID: PMC3667772 DOI: 10.1371/journal.pone.0064638] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 04/17/2013] [Indexed: 01/03/2023] Open
Abstract
Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus thuringiensis (Bt) are widely used and tractable model organisms. However, they have not been employed yet as an efficient experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T. castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt) bacteria. We found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Clemens Stolpe
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Robert Peuβ
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
41
|
Iron regulates Bacillus thuringiensis haemolysin hlyII gene expression during insect infection. J Invertebr Pathol 2013; 113:205-8. [PMID: 23598183 DOI: 10.1016/j.jip.2013.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022]
Abstract
Bacillus thuringiensis (Bt) is a spore-forming entomopathogen broadly used in agriculture crop. The haemolysin HlyII is an important Bt virulence factor responsible for insect death. In this work, we focused on the regulation of the hlyII gene throughout the bacterial growth in vitro and in vivo during insect infection. We show that hlyII regulation depends on the global regulator Fur. This regulation occurs independently of HlyIIR, the other known regulator of hlyII gene expression. Moreover, we show that hlyII is highly expressed when iron is depleted in vivo. As HlyII induces haemocyte and macrophage death, which are involved in the sequestration of iron upon infection, HlyII may induce host cell death to allow bacteria to gain access to iron.
Collapse
|
42
|
Differentiation of Bacillus anthracis, B. cereus, and B. thuringiensis on the basis of the csaB gene reflects host source. Appl Environ Microbiol 2013; 79:3860-3. [PMID: 23563945 DOI: 10.1128/aem.00591-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
csaB gene analysis clustered 198 strains of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis into two groups related to mammalian and insect hosts, respectively. Mammal-related group I strains also have more S-layer homology (SLH) protein genes than group II strains. This indicates that csaB-based differentiation reflects selective pressure from animal hosts.
Collapse
|
43
|
Honsa ES, Owens CP, Goulding CW, Maresso AW. The near-iron transporter (NEAT) domains of the anthrax hemophore IsdX2 require a critical glutamine to extract heme from methemoglobin. J Biol Chem 2013; 288:8479-8490. [PMID: 23364793 DOI: 10.1074/jbc.m112.430009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several gram-positive pathogenic bacteria employ near-iron transporter (NEAT) domains to acquire heme from hemoglobin during infection. However, the structural requirements and mechanism of action for NEAT-mediated heme extraction remains unknown. Bacillus anthracis exhibits a rapid growth rate during systemic infection, suggesting that the bacterium expresses efficient iron acquisition systems. To understand how B. anthracis acquires iron from heme sources, which account for 80% of mammalian iron stores, we investigated the properties of the five-NEAT domain hemophore IsdX2. Using a combination of bioinformatics and site-directed mutagenesis, we determined that the heme extraction properties of IsdX2 are dependent on an amino acid with an amide side chain within the 310-helix of the NEAT domain. Additionally, we used a spectroscopic analysis to show that IsdX2 NEAT domains only scavenge heme from methemoglobin (metHb) and that autoxidation of oxyhemoglobin to metHb must occur prior to extraction. We also report the crystal structures of NEAT5 wild type and a Q29T mutant and present surface plasmon resonance data that indicate that the loss of this amide side chain reduces the affinity of the NEAT domain for metHb. We propose a model whereby the amide side chain is first required to drive an interaction with metHb that destabilizes heme, which is subsequently extracted and coordinated in the aliphatic heme-binding environment of the NEAT domain. Because an amino acid with an amide side chain in this position is observed in NEAT domains of several genera of gram-positive pathogenic bacteria, these results suggest that specific targeting of this or nearby residues may be an entry point for inhibitor development aimed at blocking bacterial iron acquisition during infection.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Cedric P Owens
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92617
| | - Celia W Goulding
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92617
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
44
|
Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp 2012:e4392. [PMID: 23271509 DOI: 10.3791/4392] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The study of bacterial virulence often requires a suitable animal model. Mammalian models of infection are costly and may raise ethical issues. The use of insects as infection models provides a valuable alternative. Compared to other non-vertebrate model hosts such as nematodes, insects have a relatively advanced system of antimicrobial defenses and are thus more likely to produce information relevant to the mammalian infection process. Like mammals, insects possess a complex innate immune system(1). Cells in the hemolymph are capable of phagocytosing or encapsulating microbial invaders, and humoral responses include the inducible production of lysozyme and small antibacterial peptides(2,3). In addition, analogies are found between the epithelial cells of insect larval midguts and intestinal cells of mammalian digestive systems. Finally, several basic components essential for the bacterial infection process such as cell adhesion, resistance to antimicrobial peptides, tissue degradation and adaptation to oxidative stress are likely to be important in both insects and mammals(1). Thus, insects are polyvalent tools for the identification and characterization of microbial virulence factors involved in mammalian infections. Larvae of the greater wax moth Galleria mellonella have been shown to provide a useful insight into the pathogenesis of a wide range of microbial infections including mammalian fungal (Fusarium oxysporum, Aspergillus fumigatus, Candida albicans) and bacterial pathogens, such as Staphylococcus aureus, Proteus vulgaris, Serratia marcescens Pseudomonas aeruginosa, Listeria monocytogenes or Enterococcus faecalis(4-7). Regardless of the bacterial species, results obtained with Galleria larvae infected by direct injection through the cuticle consistently correlate with those of similar mammalian studies: bacterial strains that are attenuated in mammalian models demonstrate lower virulence in Galleria, and strains causing severe human infections are also highly virulent in the Galleria model(8-11). Oral infection of Galleria is much less used and additional compounds, like specific toxins, are needed to reach mortality. G. mellonella larvae present several technical advantages: they are relatively large (last instar larvae before pupation are about 2 cm long and weight 250 mg), thus enabling the injection of defined doses of bacteria; they can be reared at various temperatures (20 °C to 30 °C) and infection studies can be conducted between 15 °C to above 37 °C(12,13), allowing experiments that mimic a mammalian environment. In addition, insect rearing is easy and relatively cheap. Infection of the larvae allows monitoring bacterial virulence by several means, including calculation of LD50(14), measurement of bacterial survival(15,16) and examination of the infection process(17). Here, we describe the rearing of the insects, covering all life stages of G. mellonella. We provide a detailed protocol of infection by two routes of inoculation: oral and intra haemocoelic. The bacterial model used in this protocol is Bacillus cereus, a Gram positive pathogen implicated in gastrointestinal as well as in other severe local or systemic opportunistic infections(18,19).
Collapse
|
45
|
Abstract
The metal iron is a limiting nutrient for bacteria during infection. Bacillus anthracis, the causative agent of anthrax and a potential weapon of bioterrorism, grows rapidly in mammalian hosts, which suggests that it efficiently attains iron during infection. Recent studies have uncovered both heme (isd) and siderophore-mediated (asb) iron transport pathways in this pathogen. Whereas deletion of the asb genes results in reduced virulence, the loss of three surface components from isd had no effect, thereby leaving open the question of what additional factors in B. anthracis are responsible for iron uptake from the most abundant iron source for mammals, heme. Here, we describe the first functional characterization of bas0520, a gene recently implicated in anthrax disease progression. bas0520 encodes a single near-iron transporter (NEAT) domain and several leucine-rich repeats. The NEAT domain binds heme, despite lacking a stabilizing tyrosine common to the NEAT superfamily of hemoproteins. The NEAT domain also binds hemoglobin and can acquire heme from hemoglobin in solution. Finally, deletion of bas0520 resulted in bacilli unable to grow efficiently on heme or hemoglobin as an iron source and yielded the most significant phenotype relative to that for other putative heme uptake systems, a result that suggests that this protein plays a prominent role in the replication of B. anthracis in hematogenous environments. Thus, we have assigned the name of Hal (heme-acquisition leucine-rich repeat protein) to BAS0520. These studies advance our understanding of heme acquisition by this dangerous pathogen and justify efforts to determine the mechanistic function of this novel protein for vaccine or inhibitor development.
Collapse
|
46
|
Abstract
Haem is the major iron source for bacteria that develop in higher organisms. In these hosts, bacteria have to cope with nutritional immunity imposed by the host, since haem and iron are tightly bound to carrier and storage proteins. Siderophores were the first recognized fighters in the battle for iron between bacteria and host. They are non-proteinaceus organic molecules having an extremely high affinity for Fe(3+) and able to extract it from host proteins. Haemophores, that display functional analogy with siderophores, were more recently discovered. They are a class of secreted proteins with a high affinity for haem; they are able to extract haem from host haemoproteins and deliver it to specific receptors that internalize haem. In the past few years, a wealth of data has accumulated on haem acquisition systems that are dependent on surface exposed/secreted bacterial proteins. They promote haem transfer from its initial source (in most cases, a eukaryotic haem binding protein) to the transporter that carries out the membrane crossing step. Here we review recent discoveries in this field, with particular emphasis on similar and dissimilar mechanisms in haemophores and siderophores, from the initial host source to the binding protein/receptor at the cell surface.
Collapse
Affiliation(s)
- Cécile Wandersman
- Unité des Membranes Bactériennes, Institut Pasteur, Département de Microbiologie, 25-28, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
47
|
Bacterial swimmers that infiltrate and take over the biofilm matrix. Proc Natl Acad Sci U S A 2012; 109:13088-93. [PMID: 22773813 DOI: 10.1073/pnas.1200791109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria grow in either planktonic form or as biofilms, which are attached to either inert or biological surfaces. Both growth forms are highly relevant states in nature and of paramount scientific focus. However, interchanges between bacteria in these two states have been little explored. We discovered that a subpopulation of planktonic bacilli is propelled by flagella to tunnel deep within a biofilm structure. Swimmers create transient pores that increase macromolecular transfer within the biofilm. Irrigation of the biofilm by swimmer bacteria may improve biofilm bacterial fitness by increasing nutrient flow in the matrix. However, we show that the opposite may also occur (i.e., swimmers can exacerbate killing of biofilm bacteria by facilitating penetration of toxic substances from the environment). We combined these observations with the fact that numerous bacteria produce antimicrobial substances in nature. We hypothesized and proved that motile bacilli expressing a bactericide can also kill a heterologous biofilm population, Staphylococcus aureus in this case, and then occupy the newly created space. These findings identify microbial motility as a determinant of the biofilm landscape and add motility to the complement of traits contributing to rapid alterations in biofilm populations.
Collapse
|
48
|
Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 2012; 15:220-31. [PMID: 22633889 DOI: 10.1016/j.mib.2012.04.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.
Collapse
Affiliation(s)
- Christina Nielsen-LeRoux
- INRA, UMR1319, Micalis, Génétique microbienne et Environnement, La Minière, F-78280 Guyancourt, France.
| | | | | | | | | |
Collapse
|
49
|
Song F, Peng Q, Brillard J, Buisson C, Been M, Abee T, Broussolle V, Huang D, Zhang J, Lereclus D, Nielsen‐LeRoux C. A multicomponent sugar phosphate sensor system specifically induced in
Bacillus cereus
during infection of the insect gut. FASEB J 2012; 26:3336-50. [DOI: 10.1096/fj.11-197681] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fuping Song
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Qi Peng
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Julien Brillard
- INRA Avignon France
- Université d'Avignon et des Pays de Vaucluse, UMR408, Sécurité et Qualité des Produits d'Origine Végétale Avignon France
| | - Christophe Buisson
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
| | - Mark Been
- Top Institute (TI) Food and Nutrition and Laboratory of Food Microbiology Wageningen The Netherlands
| | - Tjakko Abee
- Top Institute (TI) Food and Nutrition and Laboratory of Food Microbiology Wageningen The Netherlands
| | - Véronique Broussolle
- INRA Avignon France
- Université d'Avignon et des Pays de Vaucluse, UMR408, Sécurité et Qualité des Produits d'Origine Végétale Avignon France
| | - Dafang Huang
- Biotechnology Research InstituteChinese Academy of Agricultural Sciences (CAAS) Beijing China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| | - Didier Lereclus
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
| | - Christina Nielsen‐LeRoux
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1319 MicalisGénétique Microbienne et Environnement Guyancourt France
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection Beijing China
| |
Collapse
|
50
|
Ekworomadu MT, Poor CB, Owens CP, Balderas MA, Fabian M, Olson JS, Murphy F, Balkabasi E, Honsa ES, He C, Goulding CW, Maresso AW. Differential function of lip residues in the mechanism and biology of an anthrax hemophore. PLoS Pathog 2012; 8:e1002559. [PMID: 22412371 PMCID: PMC3297588 DOI: 10.1371/journal.ppat.1002559] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/16/2012] [Indexed: 11/19/2022] Open
Abstract
To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 310-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 310-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands. Pathogenic bacteria need to acquire host iron to replicate during infection. Approximately 80% of mammalian iron is associated with a small molecule termed heme, most of which is bound to circulating hemoglobin and involved in O2 transport in red cells. Bacteria secrete proteins, termed hemophores, to acquire the heme from hemoglobin, a process thought to accelerate delivery of the heme to the bacterial surface for iron import into the cell. The mechanisms by which hemophores extract host heme from hemoglobin are not known. Here, we report that the IsdX1 hemophore from B. anthracis, the causative agent of anthrax disease, uses a conserved structural feature to link hemoglobin association with heme binding and extraction, thereby facilitating bacterial growth in low-iron environments. Such “molecular coupling” suggests that specific inhibition of the hemophore-hemoglobin interaction for this class of proteins may serve as a starting point for new anti-infective therapeutics aimed at short-circuiting iron uptake networks in bacterial pathogens.
Collapse
Affiliation(s)
- MarCia T. Ekworomadu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Catherine B. Poor
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - Cedric P. Owens
- Departments of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, California, United States of America
| | - Miriam A. Balderas
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Marian Fabian
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - John S. Olson
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Frank Murphy
- Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois, United States of America
| | - Erol Balkabasi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Erin S. Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - Celia W. Goulding
- Departments of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, California, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|