1
|
Chen Y, Wu N, Yan X, Kang L, Ou G, Zhou Z, Xu C, Feng J, Shi T. Impact of gut microbiota on colorectal anastomotic healing (Review). Mol Clin Oncol 2025; 22:52. [PMID: 40297498 PMCID: PMC12035527 DOI: 10.3892/mco.2025.2847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Intestinal anastomosis is a critical procedure in both emergency and elective surgeries to maintain intestinal continuity. However, the incidence of anastomotic leakage (AL) has recently increased, reaching up to 20%, imposing major clinical and economic burdens. Substantial perioperative alterations in the intestinal microbiota composition may contribute to AL, particularly due to disruptions in key microbial populations essential for intestinal health and healing. The intricate interplay between the intestinal microbiota and the host immune system, along with microbial changes before and during surgery, significantly influences anastomotic integrity. Notably, specific pathogens such as Enterococcus and Pseudomonas aeruginosa have been implicated in AL pathogenesis. Preventive strategies including dietary regulation, personalized intestinal preparation, microbiota restoration and enhanced recovery after surgery protocols, may mitigate AL risks. Future research should focus on elucidating the precise mechanisms linking intestinal microbiota alterations to anastomotic healing and developing targeted interventions to improve surgical outcomes.
Collapse
Affiliation(s)
- Yangyang Chen
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Nian Wu
- Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xin Yan
- Anesthesia Operating Room, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Liping Kang
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Guoyong Ou
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Zhenlin Zhou
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Changbo Xu
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Jiayi Feng
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| | - Tou Shi
- General Surgery Department, Guiyang Public Health Clinical Center, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
2
|
Mei LN, Wang ZJ, Duan Y, Shen JS, Ye HB, Zhu YY, Luo XD. 4-Hydroxyboesenbergin B of Alpinia japonica protected gastrointestinal tract by inhibiting vancomycin-resistant enterococcus and balancing intestinal microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119737. [PMID: 40179999 DOI: 10.1016/j.jep.2025.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alpinia japonica, a traditional herb utilized in Miao medicine in southwestern China, has been employed to alleviate symptoms such as stomachache, diarrhea, and abdominal pain, some of these symptoms may be associated with bacterial infections of the gastrointestinal tract. AIM OF THE STUDY To explore antimicrobial compounds related to traditional uses of A. japonica and its potential pathway in vitro and in vivo. MATERIALS AND METHODS Bioactive components of A. japonica were isolated by bioguide separation method. The antibacterial bioactivity of 4-hydroxyboesenbergin B (4-HB) was evaluated by time-kill curve and drug resistance induction. The pathway of 4-HB against VRE was investigated through network pharmacological analysis and validated by in vitro experiments and RT-qPCR assays. Moreover, a mouse gastrointestinal tract model was established to validate the antibacterial bioactivity of 4-HB in vivo. RESULTS 4-HB from A. japonica inhibited VRE (MIC = 16 μg/mL), rapidly killed the bacteria within 4 h at the 4 MIC concentration and exhibited low susceptibility to drug resistance. 4-HB specifically targeted VRE biofilms by down-regulating the expression of AtlA, SgrA, GelE, and Ace. As a result, 4-HB diminished the adhesion and aggregation ability of VRE, reduced the extracellular matrix content, disrupted biofilm structure and morphology, thereby reducing VRE resistance and virulence. Additionally, 4-HB significantly reduced VRE colonization, enhanced intestinal microbiota diversity, and promoted the restoration of intestinal microbiota balance in vivo. Notably, 4-HB enhanced the abundance of beneficial bacteria genera, such as Lactobacillus and Limosilactobacillus. CONCLUSIONS 4-HB has a significant ability to destroy VRE biofilms and balance intestinal microbiota, which might be responsible for the traditional use of A. japonica partly.
Collapse
Affiliation(s)
- Li-Na Mei
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Zhao-Jie Wang
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Yu Duan
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Jia-Shan Shen
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Hong-Bo Ye
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Yan-Yan Zhu
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Xiao-Dong Luo
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd., Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences Kunming, 650201, China.
| |
Collapse
|
3
|
Imani S, Lv S, Qian H, Cui Y, Li X, Babaeizad A, Wang Q. Current innovations in mRNA vaccines for targeting multidrug-resistant ESKAPE pathogens. Biotechnol Adv 2025; 79:108492. [PMID: 39637949 DOI: 10.1016/j.biotechadv.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
The prevalence of multidrug-resistant (MDR) ESKAPE pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa, represents a critical global public health challenge. In response, mRNA vaccines offer an adaptable and scalable platform for immunotherapy against ESKAPE pathogens by encoding specific antigens that stimulate B-cell-driven antibody production and CD8+ T-cell-mediated cytotoxicity, effectively neutralizing these pathogens and combating resistance. This review examines recent advancements and ongoing challenges in the development of mRNA vaccines targeting MDR ESKAPE pathogens. We explore antigen selection, the nuances of mRNA vaccine technology, and the complex interactions between bacterial infections and antibiotic resistance. By assessing the potential efficacy of mRNA vaccines and addressing key barriers to their paraclinical implementation, this review highlights the promising function of mRNA-based immunization in combating MDR ESKAPE pathogens.
Collapse
Affiliation(s)
- Saber Imani
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Shuojie Lv
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Hongbo Qian
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Yulan Cui
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - XiaoYan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| |
Collapse
|
4
|
ANTYPAS H, SCHMIDTCHEN V, STAIGER WI, LI Y, TAN RJW, NG KKF, NEO CJY, RADHESH SM, TANOTO FR, DA SILVA RAG, WINTER CC, MANZANO C, WONG JJ, PETHE K, HASSE B, BRUGGER SD, WONG SL, VAN TYNE D, ZINKERNAGEL AS, KLINE KA. Fsr quorum sensing system restricts biofilm growth and activates inflammation in enterococcal infective endocarditis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636843. [PMID: 39974957 PMCID: PMC11839028 DOI: 10.1101/2025.02.07.636843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Infective endocarditis (IE) is a life-threatening biofilm-associated infection, yet the factors driving biofilm formation remain poorly understood. Here, we identified the Fsr quorum sensing (QS) system of Enterococcus faecalis as a potent negative regulator of IE pathogenesis. Using microfluidic and in vivo models, we show that Fsr is induced in late IE when bacteria become shielded from blood flow. Deleting Fsr altered biofilm metabolism and promoted robust biofilm growth and gentamicin tolerance in vivo. Furthermore, Fsr inactivation attenuated inflammation by disrupting IL-1β cleavage and activation via the Fsr-regulated gelatinase (gelE), allowing biofilm to grow unchecked by the immune system. Consistent with our pre-clinical findings, analysis of two IE patient cohorts linked naturally occurring Fsr-deficient E. faecalis to prolonged bacteremia. Overall, our findings provide insights into the role of QS in biofilm growth, persistence, and immune evasion in enterococcal IE.
Collapse
Affiliation(s)
- Haris ANTYPAS
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Verena SCHMIDTCHEN
- Division of Infectious Diseases, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Willy Isao STAIGER
- Division of Infectious Diseases, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Yanhong LI
- Department of Medicine, University of Pittsburgh, PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Rachel Jing Wen TAN
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kenneth Kok Fei NG
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Cheryl Jia Yi NEO
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Shalome Meera RADHESH
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Frederick Reinhart TANOTO
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ronni Anderson Gonçalves DA SILVA
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | | | - Caroline MANZANO
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
| | - Jun Jie WONG
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kevin PETHE
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- National Center for Infectious Diseases (NCID), 308442, Singapore
| | - Barbara HASSE
- Division of Infectious Diseases, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Silvio Daniel BRUGGER
- Division of Infectious Diseases, University Hospital Zurich, CH-8091 Zurich, Switzerland
| | - Siu Ling WONG
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Tan Tock Seng Hospital, Singapore
| | - Daria VAN TYNE
- Department of Medicine, University of Pittsburgh, PA, USA
| | | | - Kimberly A. KLINE
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
- Department of Microbiology and Molecular Medicine, University of Geneva, Switzerland
- Lead Contact
| |
Collapse
|
5
|
Smith OER, Bharat TAM. Architectural dissection of adhesive bacterial cell surface appendages from a "molecular machines" viewpoint. J Bacteriol 2024; 206:e0029024. [PMID: 39499080 PMCID: PMC7616799 DOI: 10.1128/jb.00290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The ability of bacteria to interact with and respond to their environment is crucial to their lifestyle and survival. Bacterial cells routinely need to engage with extracellular target molecules, in locations spatially separated from their cell surface. Engagement with distant targets allows bacteria to adhere to abiotic surfaces and host cells, sense harmful or friendly molecules in their vicinity, as well as establish symbiotic interactions with neighboring cells in multicellular communities such as biofilms. Binding to extracellular molecules also facilitates transmission of information back to the originating cell, allowing the cell to respond appropriately to external stimuli, which is critical throughout the bacterial life cycle. This requirement of bacteria to bind to spatially separated targets is fulfilled by a myriad of specialized cell surface molecules, which often have an extended, filamentous arrangement. In this review, we compare and contrast such molecules from diverse bacteria, which fulfil a range of binding functions critical for the cell. Our comparison shows that even though these extended molecules have vastly different sequence, biochemical and functional characteristics, they share common architectural principles that underpin bacterial adhesion in a variety of contexts. In this light, we can consider different bacterial adhesins under one umbrella, specifically from the point of view of a modular molecular machine, with each part fulfilling a distinct architectural role. Such a treatise provides an opportunity to discover fundamental molecular principles governing surface sensing, bacterial adhesion, and biofilm formation.
Collapse
Affiliation(s)
- Olivia E. R. Smith
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
6
|
Lam LN, Sedra A, Kajfasz J, Berges A, Saengpet IS, Adams G, Fairman J, Lemos JA. Trivalent immunization with metal-binding proteins confers protection against enterococci in a mouse infection model. FEMS MICROBES 2024; 5:xtae031. [PMID: 39524556 PMCID: PMC11549557 DOI: 10.1093/femsmc/xtae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Enterococcus faecalis is ranked among the top five bacterial pathogens responsible for catheter-associated urinary tract infections, wound infections, secondary root canal infections, and infective endocarditis. Previously, we showed that inactivation of either the manganese- and iron-binding (EfaA) or zinc-binding (AdcA and AdcAII) lipoproteins significantly reduced E. faecalis virulence. Here, we explored whether immunization using a multi-valent approach induces protective immunity against systemic enterococcal infections. We found that multi-antigen antisera raised against EfaA, AdcA, and AdcAII displayed similar capacities to initiate neutrophil-mediated opsonization, like their single-antigen counterparts. Further, these antigen-specific antibodies worked synergistically with calprotectin, a divalent host metal chelator, to inhibit the growth of E. faecalis in laboratory media as well as in human sera. Using the Galleria mellonella invertebrate model and mouse peritonitis model, we showed that passive immunization with multi-antigen antisera conferred robust protection against E. faecalis infection, while the protective effects of single antigen antisera were negligible in G. mellonella, and negligible-to-moderate in the mouse model. Lastly, active immunization with the 3-antigen (trivalent) cocktail significantly protected mice against either lethal or non-lethal E. faecalis infections, with this protection appearing to be far-reaching based on immunization results obtained with contemporary strains of E. faecalis and closely related Enterococcus faecium.
Collapse
Affiliation(s)
- Ling Ning Lam
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Angie Sedra
- Vaxcyte, Inc., San Carlos, CA 94070, United States
| | - Jessica Kajfasz
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Aym Berges
- Vaxcyte, Inc., San Carlos, CA 94070, United States
| | - Irene S Saengpet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | - Grace Adams
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| | | | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
7
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
8
|
Haeberle AL, Greenwood-Quaintance KE, Zar S, Johnson S, Patel R, Willett JLE. Genotypic and phenotypic characterization of Enterococcus faecalis isolates from periprosthetic joint infections. Microbiol Spectr 2024; 12:e0056524. [PMID: 38912797 PMCID: PMC11302728 DOI: 10.1128/spectrum.00565-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Over 2.5 million prosthetic joint implantation surgeries occur annually in the United States. Periprosthetic joint infections (PJIs), though occurring in only 1-2% of patients receiving replacement joints, are challenging to diagnose and treat and are associated with significant morbidity. The Gram-positive bacterium Enterococcus faecalis, which can be highly antibiotic-resistant and is a robust biofilm producer on indwelling medical devices, accounts for 2-11% of PJIs. E. faecalis PJIs are understudied compared to those caused by other pathogens, such as Staphylococcus aureus. This motivates the need to generate a comprehensive understanding of E. faecalis PJIs to guide future treatments for these infections. To address this, we describe a panel of E. faecalis strains isolated from the surface of prosthetic joints in a cohort of individuals treated at the Mayo Clinic in Rochester, MN. Here, we present the first complete genome assemblage of E. faecalis PJI isolates. Comparative genomics shows differences in genome size, virulence factors, antimicrobial resistance genes, plasmids, and prophages, underscoring the genetic diversity of these strains. These isolates have strain-specific differences in in vitro biofilm biomass, biofilm burden, and biofilm morphology. We measured robust changes in biofilm architecture and aggregation for all isolates when grown in simulated synovial fluid (SSF). Finally, we evaluated the antibiotic efficacy of these isolates and found strain-specific changes across all strains when grown in SSF. Results of this study highlight the existence of genetic and phenotypic heterogeneity among E. faecalis PJI isolates which will provide valuable insight and resources for future E. faecalis PJI research. IMPORTANCE Periprosthetic joint infections (PJIs) affect ~1-2% of those who undergo joint replacement surgery. Enterococcus faecalis is a Gram-positive opportunistic pathogen that causes ~10% of PJIs in the United States each year, but our understanding of how and why E. faecalis causes PJIs is limited. E. faecalis infections are typically biofilm-associated and can be difficult to clear with antibiotic therapy. Here, we provide complete genomes for four E. faecalis PJI isolates from the Mayo Clinic. These isolates have strain-specific differences in biofilm formation, aggregation, and antibiotic susceptibility in simulated synovial fluid. These results provide important insight into the genomic and phenotypic features of E. faecalis isolates from PJI.
Collapse
Affiliation(s)
- Amanda L. Haeberle
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kerryl E. Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Zar
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stephen Johnson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
10
|
Singh KV, Galloway-Peña J, Montealegre MC, Dong X, Murray BE. Genomic context as well as sequence of both psr and penicillin-binding protein 5 contributes to β-lactam resistance in Enterococcus faecium. mBio 2024; 15:e0017024. [PMID: 38564699 PMCID: PMC11077988 DOI: 10.1128/mbio.00170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Penicillin-binding protein 5 (PBP5) of Enterococcus faecium (Efm) is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in Efm clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, pbp5 deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; in situ complementation restored parental AMP MICs. Using D344SRF (lacking ftsW/psr/pbp5), constructs with ftsWA/psrA (from a clade A1 strain) cloned upstream of pbp5-S and pbp5-S/R alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (>64 µg/mL) were seen using pbp5 from A1 strains. Next, using ftsW ± psr from clade B and clade A/B and B/A hybrid constructs, the presence of psrB, even alone or in trans, resulted in much lower AMP MICs (3-8 µg/mL) than when psrA was present (MICs >64 µg/mL). qRT PCR showed relatively greater pbp5 expression (P = 0.007) with pbp5 cloned downstream of clade A1 ftsW/psr (MIC >128 µg/mL) vs when cloned downstream of clade B ftsW/psr (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B psr on AMP MICs as well as the impact of pbp5 alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in Efm, our results showed that the presence of psrB resulted in a major decrease in Efm AMP MICs. IMPORTANCE The findings of this study shed light on ampicillin resistance in Enterococcus faecium clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B E. faecium strains exhibit lower AMP MICs when both psr alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B E. faecium and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in Pbp5 and psr. These changes in psr may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant E. faecium, thus potentially resorting ampicillin to our therapeutic armamentarium for this species.
Collapse
Affiliation(s)
- Kavindra V. Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Jessica Galloway-Peña
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Maria Camila Montealegre
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| | - Xingxing Dong
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | - Barbara E. Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology and Infectious Diseases, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
11
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
12
|
Haeberle A, Greenwood-Quaintance K, Zar S, Johnson S, Patel R, Willett JLE. Genotypic and phenotypic characterization of Enterococcus faecalis isolates from periprosthetic joint infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579140. [PMID: 38370742 PMCID: PMC10871183 DOI: 10.1101/2024.02.06.579140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Over 2.5 million prosthetic joint implantation surgeries occur annually in the United States. Periprosthetic joint infections (PJIs), though occurring in only 1-2% of patients receiving replacement joints, are challenging to diagnose and treat and are associated with significant morbidity. The Gram-positive bacterium Enterococcus faecalis, which can be highly antibiotic resistant and is a robust biofilm producer on indwelling medical devices, accounts for 2-11% of PJIs. E. faecalis PJIs are understudied compared to those caused by other pathogens, such as Staphylococcus aureus. This motivates the need to generate a comprehensive understanding of E. faecalis PJIs to guide future treatments for these infections. To address this, we describe a panel of E. faecalis strains isolated from the surface of prosthetic joints in a cohort of individuals treated at Mayo Clinic in Rochester, MN. Here, we present the first complete genome assemblage of E. faecalis PJI isolates. Comparative genomics shows differences in genome size, virulence factors, antimicrobial resistance genes, plasmids, and prophages, underscoring the genetic diversity of these strains. These isolates have strain-specific differences in in vitro biofilm biomass, biofilm burden, and biofilm morphology. We measured robust changes in biofilm architecture and aggregation for all isolates when grown in simulated synovial fluid (SSF). Lastly, we evaluated antibiotic efficacy of these isolates and found strain specific changes across all strains when grown in SSF. Results of this study highlight the existence of genetic and phenotypic heterogeneity among E. faecalis PJI isolates which will provide valuable insight and resources for future E. faecalis PJI research.
Collapse
Affiliation(s)
- Amanda Haeberle
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota USA
| | - Kerryl Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Zar
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota USA
| | - Stephen Johnson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota USA
| |
Collapse
|
13
|
Cunha F, Casaro S, Jones KL, Bisinotto RS, Kariyawasam S, Brown MB, Galvão KN. Sequencing and characterization of Helcococcus ovis: a comprehensive comparative genomic analysis of virulence. BMC Genomics 2023; 24:501. [PMID: 37648976 PMCID: PMC10466703 DOI: 10.1186/s12864-023-09581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Helcococcus ovis (H. ovis) is an emerging bacterial pathogen that commonly causes opportunistic respiratory, mammary, and uterine infections across mammalian hosts. This study applied long- and short-read whole genome sequencing technologies to identify virulence factors in five H. ovis isolates with low, medium, and high virulence phenotypes. RESULTS The resulting assemblies contained one circular chromosome ranging from 1,744,566 to 1,850,083 bp in length and had a mean GC content of 27.6%. Phylogenetic and nucleotide identity analyses found low virulence strain KG38 to be part of a clade that forms an outgroup apart from the rest of the H. ovis taxon. Assembling the first complete genomes of the species revealed major genomic rearrangements in KG38. One to six prophage regions were identified in each genome. A novel pathogenicity island was found exclusively in the two high virulence strains (KG37 and KG104), along with two hypothetical transmembrane proteins designated as putative VFs. Finally, three zinc ABC transporters and three Type-II/IV secretion systems were identified as possible virulence determinants in this species. The low virulence strain KG38 has fewer intact paralogs of these operons in its genome compared to the higher virulence isolates, which strongly suggests a role in virulence. This strain is also missing four putative virulence factors (VFs) found in other isolates associated with adherence (collagen adhesin precursor), immune evasion (choline-binding protein A and a PspA-like hypothetical protein) and cell wall synthesis (glycerol-3-phosphate cytidylyltransferase). CONCLUSIONS In this study, we assembled reference-quality complete genomes for five H. ovis strains to identify putative virulence factors. Phylogenetic analyses of H. ovis isolates revealed the presence of a clade representing a potentially novel species within the genus Helcococcus. A novel pathogenicity island and two hypothetical transmembrane proteins were found exclusively in high-virulence strains. The identification of Zinc ABC transporters and Type-II/IV secretion systems as possible virulence determinants, along with the differences in operon content between the low and high virulence isolates, strongly suggests they also play a role in the bacterium's pathogenicity. Taken together, these findings are a valuable first step toward deciphering the pathogenesis of H. ovis infections.
Collapse
Affiliation(s)
- Federico Cunha
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
- Department of Animal Sciences, University of Florida College of Agriculture and Life Sciences, Gainesville, FL, USA
| | - Segundo Casaro
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Kristi L Jones
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Rafael S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic and Population Medicine, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Mary B Brown
- Department of Infectious Diseases and Immunology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA.
- D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Liu Y, Li B, Wei Y. New understanding of gut microbiota and colorectal anastomosis leak: A collaborative review of the current concepts. Front Cell Infect Microbiol 2022; 12:1022603. [PMID: 36389160 PMCID: PMC9663802 DOI: 10.3389/fcimb.2022.1022603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023] Open
Abstract
Anastomotic leak (AL) is a life-threatening postoperative complication following colorectal surgery, which has not decreased over time. Until now, no specific risk factors or surgical technique could be targeted to improve anastomotic healing. In the past decade, gut microbiota dysbiosis has been recognized to contribute to AL, but the exact effects are still vague. In this context, interpretation of the mechanisms underlying how the gut microbiota contributes to AL is significant for improving patients' outcomes. This review concentrates on novel findings to explain how the gut microbiota of patients with AL are altered, how the AL-specific pathogen colonizes and is enriched on the anastomosis site, and how these pathogens conduct their tissue breakdown effects. We build up a framework between the gut microbiota and AL on three levels. Firstly, factors that shape the gut microbiota profiles in patients who developed AL after colorectal surgery include preoperative intervention and surgical factors. Secondly, AL-specific pathogenic or collagenase bacteria adhere to the intestinal mucosa and defend against host clearance, including the interaction between bacterial adhesion and host extracellular matrix (ECM), the biofilm formation, and the weakened host commercial bacterial resistance. Thirdly, we interpret the potential mechanisms of pathogen-induced poor anastomotic healing.
Collapse
Affiliation(s)
- Yang Liu
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| | - Bowen Li
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Science, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China,*Correspondence: Yunwei Wei,
| |
Collapse
|
15
|
Kang X, Wei Y, Fan X, Luo S, Luo X, Zhao S, Wang G. Analysis of virulence genes, drug resistance detection, and pathogenicity in Enterococcus from farm animals. Microb Pathog 2022; 171:105745. [PMID: 36057414 DOI: 10.1016/j.micpath.2022.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the presence of eight virulence genes (ace, asa1, esp, efaA, gelE, cylA, agg, fsr) in Enterococcus from a variety of animals and to explore the drug resistance and pathogenicity. This could provide a theoretical basis for clinical treatment of Enterococcus infections. Anal swabs from pigs, chickens, cattle, and dogs in farms and pet hospitals were collected for Enterococcus isolation and identification. Eight virulence genes were detected (PCR method), and drug resistance was assessed (drug-sensitive paper method). The strains containing different virulence genes were then divided into EV1, EV2, and EV3 groups. The LD50 and pathogenicity was examined by intra-peritoneal injection to infect mice. Differences were found in the detection rates of virulence genes in Enterococcus from the different animals. The highest overall detection rate was for the esp gene (78.0%), and the lowest for the cylA gene (15.5%). Eight genes were detected most frequently in Enterococcus from dogs and least frequently from cattle. Among the Enterococcus strains from four variety of animals, drug resistance was highest against sulfamethoxazole (100%), cefotaxime (>97%), and cefotaxitin (>93%). Drug resistance was lowest against vancomycin (0%), levofloxacin (<12%) and ciprofloxacin (<13%). The LD50 for each of the three groups was EV1LD50=8.71×109CFU, EV2LD50=2.34×1010CFU,and EV3LD50=9.33×1010CFU. The Enterococcus12LD50 dose group caused significant clinical symptoms in mice, with pathological effects on the heart, liver, lungs, and kidneys, and particularly on the urinary system. The abundance of Enterococcus virulence genes, drug resistance, and pathogenicity vary among different animal origins, and the pathology caused by Enterococcus requires effective treatment protocols based on species and regional characteristics.
Collapse
Affiliation(s)
- Xinyun Kang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yanqin Wei
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofei Fan
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Shuangyan Luo
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xiaofeng Luo
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Sijun Zhao
- Chinese Center for Animal Health and Epidemiology, Qingdao, Shandong, China.
| | - Guiqin Wang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
16
|
Venkateswaran P, Lakshmanan PM, Muthukrishnan S, Bhagavathi H, Vasudevan S, Neelakantan P, Solomon AP. Hidden agenda of Enterococcus faecalis lifestyle transition: planktonic to sessile state. Future Microbiol 2022; 17:1051-1069. [PMID: 35899477 DOI: 10.2217/fmb-2021-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Enterococcus faecalis, a human gastrointestinal tract commensal, is known to cause nosocomial infections. Interestingly, the pathogen's host colonization and persistent infections are possibly linked to its lifestyle changes from planktonic to sessile state. Also, the multidrug resistance and survival fitness acquired in the sessile stage of E. faecalis has challenged treatment regimes. This situation exists because of the critical role played by several root genes and their molecular branches, which are part of quorum sensing, aggregation substance, surface adhesions, stress-related response and sex pheromones in the sessile state. It is therefore imperative to decode the hidden agenda of E. faecalis and understand the significant factors influencing biofilm formation. This would, in turn, augment the development of novel strategies to tackle E. faecalis infections.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Priya M Lakshmanan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Sudhiksha Muthukrishnan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Hema Bhagavathi
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | | | - Adline P Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| |
Collapse
|
17
|
Akpınar Kankaya D, Tuncer Y. Detection of Virulence Factors, Biofilm Formation and Biogenic Amine Production in
Vancomycin‐Resistant
Lactic Acid Bacteria (
VRLAB
) Isolated From Foods of Animal Origin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Didem Akpınar Kankaya
- Department of Food Technology, Gelendost Vocational School Isparta University of Applied Sciences Isparta Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering Süleyman Demirel University Isparta Turkey
| |
Collapse
|
18
|
Mariam SH. A sampling survey of enterococci within pasteurized, fermented dairy products and their virulence and antibiotic resistance properties. PLoS One 2021; 16:e0254390. [PMID: 34264984 PMCID: PMC8282027 DOI: 10.1371/journal.pone.0254390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 01/17/2023] Open
Abstract
Globally, fermented foods (FFs), which may be traditional or industrially-produced, are major sources of nutrition. In the traditional practice, the fermentation process is driven by communities of virtually uncharacterized microflora indigenous to the food substrate. Some of these flora can have virulent or antibiotic resistance properties, posing risk to consumers. Others, such as Enterococcus faecalis and Enterococcus faecium, may also be found in such foods. Enterococci that harbor antibiotic resistance or virulence factors can cycle among animals, food, humans and the environment, thereby transferring these harmful properties at the gene level to harmless commensals in the food matrix, animals and humans. In this work, several microbial isolates obtained from different FF sources were analyzed for their identity and virulence and/or antibiotic resistance properties. For identification aiming at enterococci, isolates that were Gram-positive and catalase- and oxidase-negative were subjected to multiple tests including for growth in broth containing 6.5% NaCl, growth and hydrolytic activity on medium containing bile-esculin, hemolytic activity on blood agar, and growth at 45°C and survival after incubation at 60°C for 30 min. Furthermore, the isolates were tested for susceptibility/resistance to a select group of antibiotics. Finally, the isolates were molecularly-characterized with respect to species identity and presence of virulence-encoding genes by amplification of target genes. Most sources contained enterococci, in addition to most of them also containing Gram-negative flora. Most of these also harbored virulence factors. Several isolates were also antibiotic-resistant. These results strongly suggest attention should be given to better control presence of such potentially pathogenic species.
Collapse
Affiliation(s)
- Solomon H. Mariam
- Aklilu Lemma Institute of Pathobiology, Armauer Hansen Research Institute, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
19
|
Anderson DI, Keskey R, Ackerman MT, Zaborina O, Hyman N, Alverdy JC, Shogan BD. Enterococcus faecalis Is Associated with Anastomotic Leak in Patients Undergoing Colorectal Surgery. Surg Infect (Larchmt) 2021; 22:1047-1051. [PMID: 34255574 DOI: 10.1089/sur.2021.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background: Anastomotic leak is among the most dreaded complications in patients undergoing colorectal surgery. We have discovered that in rodents, collagenase-producing bacteria, particularly Enterococcus faecalis, promotes anastomotic leak by degrading healing anastomotic tissue. Yet, it is unclear if these organisms play a role in humans. Patients and Methods: Patients undergoing colorectal resection at the University of Chicago from July 2014 through June 2019 who developed a post-operative infection were stratified into infections that resulted from an anastomotic leak, a Hartmann pouch stump leak, or a deep infection without an associated staple line leak. Results: Forty-two patients had available culture data. Of these patients, 19 were found to have an anastomotic leak, 7 had a stump leak, and 16 had a deep infection that was not associated with a staple line. Enterococcus faecalis was identified in 24% of all infections and was associated with the development of anastomotic leak (p = 0.029). When the organisms were classified into their known ability to produce collagenase, 74% of patients with an anastomotic leak were colonized with collagenase-producing organisms, compared with only 28% of patients with a deep infection or stump leak (p = 0.022). Antibiotic-resistant organisms were more common in patients with anastomotic leak (p = 0.01). Conclusions: Collagenase-producing and antibiotic-resistant organisms are more prevalent in anastomotic leak infections compared with other deep or organ/space infections. This lends evidence to a bacterial driven pathogenesis of leak and suggests that targeting these organisms may be a novel strategy to reduce this complication.
Collapse
Affiliation(s)
- Dana I Anderson
- University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Robert Keskey
- The University of Chicago Medicine, Department of Surgery, Chicago, Illinois, USA
| | - Max T Ackerman
- University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| | - Olga Zaborina
- The University of Chicago Medicine, Department of Surgery, Chicago, Illinois, USA
| | - Neil Hyman
- The University of Chicago Medicine, Department of Surgery, Chicago, Illinois, USA
| | - John C Alverdy
- The University of Chicago Medicine, Department of Surgery, Chicago, Illinois, USA
| | - Benjamin D Shogan
- The University of Chicago Medicine, Department of Surgery, Chicago, Illinois, USA
| |
Collapse
|
20
|
Del Giudice C, Vaia E, Liccardo D, Marzano F, Valletta A, Spagnuolo G, Ferrara N, Rengo C, Cannavo A, Rengo G. Infective Endocarditis: A Focus on Oral Microbiota. Microorganisms 2021; 9:1218. [PMID: 34199916 PMCID: PMC8227130 DOI: 10.3390/microorganisms9061218] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Infective endocarditis (IE) is an inflammatory disease usually caused by bacteria entering the bloodstream and settling in the heart lining valves or blood vessels. Despite modern antimicrobial and surgical treatments, IE continues to cause substantial morbidity and mortality. Thus, primary prevention and enhanced diagnosis remain the most important strategies to fight this disease. In this regard, it is worth noting that for over 50 years, oral microbiota has been considered one of the significant risk factors for IE. Indeed, among the disparate recommendations from the American heart association and the European Society of Cardiology, there are good oral hygiene and prophylaxis for high-risk patients undergoing dental procedures. Thus, significant interest has grown in the role of oral microbiota and it continues to be a subject of research interest, especially if we consider that antimicrobial treatments can generate drug-resistant mutant bacteria, becoming a severe social problem. This review will describe the current knowledge about the relationship between oral microbiota, dental procedures, and IE. Further, it will discuss current methods used to prevent IE cases that originate from oral pathogens and how these should be focused on improving oral hygiene, which remains the significant persuasible way to prevent bacteremia and systemic disorders.
Collapse
Affiliation(s)
- Carmela Del Giudice
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Emanuele Vaia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Daniela Liccardo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
| | - Federica Marzano
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Alessandra Valletta
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy; (C.D.G.); (E.V.); (A.V.); (G.S.)
- Institute of Dentistry, I. M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
- Istituti Clinici Scientifici ICS-Maugeri, 82037 Telese Terme, Italy
| | - Carlo Rengo
- Department of Prosthodontics and Dental Materials, School of Dental Medicine, University of Siena, 53100 Siena, Italy;
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, Medicine Federico II University of Naples, 80131 Naples, Italy; (D.L.); (N.F.); (G.R.)
- Istituti Clinici Scientifici ICS-Maugeri, 82037 Telese Terme, Italy
| |
Collapse
|
21
|
Chilambi GS, Nordstrom HR, Evans DR, Kowalski RP, Dhaliwal DK, Jhanji V, Shanks RMQ, Van Tyne D. Genomic and phenotypic diversity of Enterococcus faecalis isolated from endophthalmitis. PLoS One 2021; 16:e0250084. [PMID: 33852628 PMCID: PMC8046195 DOI: 10.1371/journal.pone.0250084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 11/30/2022] Open
Abstract
Enterococcus faecalis are hospital-associated opportunistic pathogens and also causative agents of post-operative endophthalmitis. Patients with enterococcal endophthalmitis often have poor visual outcomes, despite appropriate antibiotic therapy. Here we investigated the genomic and phenotypic characteristics of E. faecalis isolates collected from 13 patients treated at the University of Pittsburgh Medical Center Eye Center over 19 years. Comparative genomic analysis indicated that patients were infected with E. faecalis belonging to diverse multi-locus sequence types (STs) and resembled E. faecalis sampled from clinical, commensal, and environmental sources. We identified known E. faecalis virulence factors and antibiotic resistance genes in each genome, including genes conferring resistance to aminoglycosides, erythromycin, and tetracyclines. We assessed all isolates for their cytolysin production, biofilm formation, and antibiotic susceptibility, and observed phenotypic differences between isolates. Fluoroquinolone and cephalosporin susceptibilities were particularly variable between isolates, as were biofilm formation and cytolysin production. In addition, we found evidence of E. faecalis adaptation during recurrent endophthalmitis by identifying genetic variants that arose in sequential isolates sampled over eight months from the same patient. We identified a mutation in the DNA mismatch repair gene mutS that was associated with an increased rate of spontaneous mutation in the final isolate from the patient. Overall this study documents the genomic and phenotypic variability among E. faecalis causing endophthalmitis, as well as possible adaptive mechanisms underlying bacterial persistence during recurrent ocular infection.
Collapse
Affiliation(s)
- Gayatri Shankar Chilambi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Hayley R. Nordstrom
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel R. Evans
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Regis P. Kowalski
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, UPMC Eye Center, Ophthalmology and Visual Sciences Research Center, The Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Deepinder K. Dhaliwal
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, UPMC Eye Center, Ophthalmology and Visual Sciences Research Center, The Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Vishal Jhanji
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, UPMC Eye Center, Ophthalmology and Visual Sciences Research Center, The Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robert M. Q. Shanks
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, UPMC Eye Center, Ophthalmology and Visual Sciences Research Center, The Eye and Ear Institute, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daria Van Tyne
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Aun E, Kisand V, Laht M, Telling K, Kalmus P, Väli Ü, Brauer A, Remm M, Tenson T. Molecular Characterization of Enterococcus Isolates From Different Sources in Estonia Reveals Potential Transmission of Resistance Genes Among Different Reservoirs. Front Microbiol 2021; 12:601490. [PMID: 33841342 PMCID: PMC8032980 DOI: 10.3389/fmicb.2021.601490] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022] Open
Abstract
In this study, we aimed to characterize the population structure, drug resistance mechanisms, and virulence genes of Enterococcus isolates in Estonia. Sixty-one Enterococcus faecalis and 34 Enterococcus faecium isolates were collected between 2012 and 2014 across the country from various sites and sources, including farm animals and poultry (n = 53), humans (n = 12), environment (n = 24), and wild birds (n = 44). Clonal relationships of the strains were determined by whole-genome sequencing and analyzed by multi-locus sequence typing. We determined the presence of acquired antimicrobial resistance genes and 23S rRNA mutations, virulence genes, and also the plasmid or chromosomal origin of the genes using dedicated DNA sequence analysis tools available and/or homology search against an ad hoc compiled database of relevant sequences. Two E. faecalis isolates from human with vanB genes were highly resistant to vancomycin. Closely related E. faecalis strains were isolated from different host species. This indicates interspecies spread of strains and potential transfer of antibiotic resistance. Genomic context analysis of the resistance genes indicated frequent association with plasmids and mobile genetic elements. Resistance genes are often present in the identical genetic context in strains with diverse origins, suggesting the occurrence of transfer events.
Collapse
Affiliation(s)
- Erki Aun
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mailis Laht
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Kaidi Telling
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Piret Kalmus
- Department of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Ülo Väli
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Age Brauer
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maido Remm
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
23
|
Arora S, Gordon J, Hook M. Collagen Binding Proteins of Gram-Positive Pathogens. Front Microbiol 2021; 12:628798. [PMID: 33613497 PMCID: PMC7893114 DOI: 10.3389/fmicb.2021.628798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Collagens are the primary structural components of mammalian extracellular matrices. In addition, collagens regulate tissue development, regeneration and host defense through interaction with specific cellular receptors. Their unique triple helix structure, which requires a glycine residue every third amino acid, is the defining structural feature of collagens. There are 28 genetically distinct collagens in humans. In addition, several other unrelated human proteins contain a collagen domain. Gram-positive bacteria of the genera Staphylococcus, Streptococcus, Enterococcus, and Bacillus express cell surface proteins that bind to collagen. These proteins of Gram-positive pathogens are modular proteins that can be classified into different structural families. This review will focus on the different structural families of collagen binding proteins of Gram-positive pathogen. We will describe how these proteins interact with the triple helix in collagens and other host proteins containing a collagenous domain and discuss how these interactions can contribute to the pathogenic processes.
Collapse
Affiliation(s)
- Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Jay Gordon
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| |
Collapse
|
24
|
Kalfopoulou E, Huebner J. Advances and Prospects in Vaccine Development against Enterococci. Cells 2020; 9:cells9112397. [PMID: 33147722 PMCID: PMC7692742 DOI: 10.3390/cells9112397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Enterococci are the second most common Gram-positive pathogen responsible for nosocomial infections. Due to the limited number of new antibiotics that reach the medical practice and the resistance of enterococci to the current antibiotic options, passive and active immunotherapies have emerged as a potential prevention and/or treatment strategy against this opportunistic pathogen. In this review, we explore the pathogenicity of these bacteria and their interaction with the host immune response. We provide an overview of the capsular polysaccharides and surface-associated proteins that have been described as potential antigens in anti-enterococcal vaccine formulations. In addition, we describe the current status in vaccine development against enterococci and address the importance and the current advances toward the development of well-defined vaccines with broad coverage against enterococci.
Collapse
Affiliation(s)
- Ermioni Kalfopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, 81675 Munich, Germany;
| | - Johannes Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany
- Correspondence: ; Tel.: +49-89-44005-7970
| |
Collapse
|
25
|
Basiouni S, Fayed MAA, Tarabees R, El-Sayed M, Elkhatam A, Töllner KR, Hessel M, Geisberger T, Huber C, Eisenreich W, Shehata AA. Characterization of Sunflower Oil Extracts from the Lichen Usnea barbata. Metabolites 2020; 10:metabo10090353. [PMID: 32878015 PMCID: PMC7570345 DOI: 10.3390/metabo10090353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing global emergence of multidrug resistant (MDR) pathogens is categorized as one of the most important health problems. Therefore, the discovery of novel antimicrobials is of the utmost importance. Lichens provide a rich source of natural products including unique polyketides and polyphenols. Many of them display pharmaceutical benefits. The aim of this study was directed towards the characterization of sunflower oil extracts from the fruticose lichen, Usnea barbata. The concentration of the major polyketide, usnic acid, was 1.6 mg/mL extract as determined by NMR analysis of the crude mixture corresponding to 80 mg per g of the dried lichen. The total phenolics and flavonoids were determined by photometric assays as 4.4 mg/mL (gallic acid equivalent) and 0.27 mg/mL (rutin equivalent) corresponding to 220 mg/g and 13.7 mg/g lichen, respectively. Gram-positive (e.g., Enterococcus faecalis) and Gram-negative bacteria, as well as clinical isolates of infected chickens were sensitive against these extracts as determined by agar diffusion tests. Most of these activities increased in the presence of zinc salts. The data suggest the potential usage of U. barbata extracts as natural additives and mild antibiotics in animal husbandry, especially against enterococcosis in poultry.
Collapse
Affiliation(s)
- Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt;
| | - Marwa A. A. Fayed
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat 32897, Egypt;
| | - Reda Tarabees
- Institute for Bacteriology and Mycology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt; (R.T.); (M.E.-S.)
| | - Mohamed El-Sayed
- Institute for Bacteriology and Mycology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt; (R.T.); (M.E.-S.)
| | - Ahmed Elkhatam
- Department for Parasitology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt;
| | - Klaus-Rainer Töllner
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany; (K.-R.T.); (M.H.)
| | - Manfred Hessel
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany; (K.-R.T.); (M.H.)
| | - Thomas Geisberger
- Chair of Biochemistry, Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany; (T.G.); (C.H.)
| | - Claudia Huber
- Chair of Biochemistry, Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany; (T.G.); (C.H.)
| | - Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany; (T.G.); (C.H.)
- Correspondence: (W.E.); (A.A.S.); Tel.: +49-089-289-13336 (W.E.); +49-06762-96362-137 (A.A.S.)
| | - Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany; (K.-R.T.); (M.H.)
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
- Correspondence: (W.E.); (A.A.S.); Tel.: +49-089-289-13336 (W.E.); +49-06762-96362-137 (A.A.S.)
| |
Collapse
|
26
|
Bin-Asif H, Abid Ali S. The Genus Enterococcus and Its Associated Virulent Factors. Microorganisms 2020. [DOI: 10.5772/intechopen.89083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
27
|
|
28
|
Exploiting biofilm phenotypes for functional characterization of hypothetical genes in Enterococcus faecalis. NPJ Biofilms Microbiomes 2019; 5:23. [PMID: 31552139 PMCID: PMC6753144 DOI: 10.1038/s41522-019-0099-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is a commensal organism as well as an important nosocomial pathogen, and its infections are typically linked to biofilm formation. Nearly 25% of the E. faecalis OG1RF genome encodes hypothetical genes or genes of unknown function. Elucidating their function and how these gene products influence biofilm formation is critical for understanding E. faecalis biology. To identify uncharacterized early biofilm determinants, we performed a genetic screen using an arrayed transposon (Tn) library containing ~2000 mutants in hypothetical genes/intergenic regions and identified eight uncharacterized predicted protein-coding genes required for biofilm formation. We demonstrate that OG1RF_10435 encodes a phosphatase that modulates global protein expression and arginine catabolism and propose renaming this gene bph (biofilm phosphatase). We present a workflow for combining phenotype-driven experimental and computational evaluation of hypothetical gene products in E. faecalis, which can be used to study hypothetical genes required for biofilm formation and other phenotypes of diverse bacteria.
Collapse
|
29
|
Singh H, Das S, Yadav J, Srivastava VK, Jyoti A, Kaushik S. In search of novel protein drug targets for treatment of Enterococcus faecalis infections. Chem Biol Drug Des 2019; 94:1721-1739. [PMID: 31260188 DOI: 10.1111/cbdd.13582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
Abstract
Enterococcus faecalis (Ef) is one of the major pathogens involved in hospital-acquired infections. It can cause nosocomial bacteremia, surgical wound infection, and urinary tract infection. It is important to mention here that Ef is developing resistance against many commonly occurring antibiotics. The occurrence of multidrug resistance (MDR) and extensive-drug resistance (XDR) is now posing a major challenge to the medical community. In this regard, to combat the infections caused by Ef, we have to look for an alternative. Rational structure-based drug design exploits the three-dimensional structure of the target protein, which can be unraveled by various techniques such as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. In this review, we have discussed the complete picture of Ef infections, the possible treatment available at present, and the alternative treatment options to be explored. This study will help in better understanding of novel biological targets against Ef and the compounds, which are likely to bind with these targets. Using these detailed structural informations, rational structure-based drug design is achievable and tight inhibitors against Ef can be prepared.
Collapse
Affiliation(s)
- Harpreet Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Satyajeet Das
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Jyoti Yadav
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Anupam Jyoti
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
30
|
Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of Enterococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0053-2018. [PMID: 31298205 PMCID: PMC6629438 DOI: 10.1128/microbiolspec.gpp3-0053-2018] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
Enterococci are unusually well adapted for survival and persistence in a variety of adverse environments, including on inanimate surfaces in the hospital environment and at sites of infection. This intrinsic ruggedness undoubtedly played a role in providing opportunities for enterococci to interact with other overtly drug-resistant microbes and acquire additional resistances on mobile elements. The rapid rise of antimicrobial resistance among hospital-adapted enterococci has rendered hospital-acquired infections a leading therapeutic challenge. With about a quarter of a genome of additional DNA conveyed by mobile elements, there are undoubtedly many more properties that have been acquired that help enterococci persist and spread in the hospital setting and cause diseases that have yet to be defined. Much remains to be learned about these ancient and rugged microbes, particularly in the area of pathogenic mechanisms involved with human diseases.
Collapse
Affiliation(s)
- Elizabeth Fiore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Daria Van Tyne
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
31
|
Bolocan AS, Upadrasta A, Bettio PHDA, Clooney AG, Draper LA, Ross RP, Hill C. Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases. Viruses 2019; 11:E366. [PMID: 31010053 PMCID: PMC6521178 DOI: 10.3390/v11040366] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed.
Collapse
Affiliation(s)
- Andrei S Bolocan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Aditya Upadrasta
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Pedro H de Almeida Bettio
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
32
|
Abstract
The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that are of great relevance to human health for their role as major causative agents of health care-associated infections. The enterococci are resilient and versatile species able to survive under harsh conditions, making them well adapted to the health care environment. Two species cause the majority of enterococcal infections: Enterococcus faecalis and Enterococcus faecium Both species demonstrate intrinsic resistance to common antibiotics, such as virtually all cephalosporins, aminoglycosides, clindamycin, and trimethoprim-sulfamethoxazole. Additionally, a remarkably plastic genome allows these two species to readily acquire resistance to further antibiotics, such as high-level aminoglycoside resistance, high-level ampicillin resistance, and vancomycin resistance, either through mutation or by horizontal transfer of genetic elements conferring resistance determinants.
Collapse
Affiliation(s)
- Mónica García-Solache
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
33
|
Singh KV, Pinkston KL, Gao P, Harvey BR, Murray BE. Anti-Ace monoclonal antibody reduces Enterococcus faecalis aortic valve infection in a rat infective endocarditis model. Pathog Dis 2018; 76:5185112. [PMID: 30445491 DOI: 10.1093/femspd/fty084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Ace (Adhesin to collagen from Enterococcus faecalis) is a cell-wall anchored protein that is expressed conditionally and is important for virulence in a rat infective endocarditis (IE) model. Previously, we showed that rats immunized with the collagen binding domain of Ace (domain A), or administered anti-Ace domain A polyclonal antibody, were less susceptible to E. faecalis endocarditis than sham-immunized controls. In this work, we demonstrated that a sub nanomolar monoclonal antibody (mAb), anti-Ace mAb70, significantly diminished E. faecalis binding to ECM collagen IV in in vitro adherence assays and that, in the endocarditis model, anti-Ace mAb70 pre-treatment significantly reduced E. faecalis infection of aortic valves. The effectiveness of anti-Ace mAb against IE in the rat model suggests it might serve as a beneficial agent for passive protection against E. faecalis infections.
Collapse
Affiliation(s)
- Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St. Houston, TX 77030, USA.,UTHealth's Center for Antimicrobial Resistance and Microbial Genomics (CARMiG), 6431 Fannin St., Houston, TX 77030
| | - Kenneth L Pinkston
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, 1825 Pressler St, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peng Gao
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, 1825 Pressler St, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Barrett R Harvey
- Center for Molecular Imaging, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, 1825 Pressler St, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, 6431 Fannin St. Houston, TX 77030, USA
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, 6431 Fannin St. Houston, TX 77030, USA.,UTHealth's Center for Antimicrobial Resistance and Microbial Genomics (CARMiG), 6431 Fannin St., Houston, TX 77030.,Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, 6431 Fannin St. Houston, TX 77030, USA
| |
Collapse
|
34
|
Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol 2018; 17:82-94. [DOI: 10.1038/s41579-018-0107-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Colomer-Winter C, Gaca AO, Chuang-Smith ON, Lemos JA, Frank KL. Basal levels of (p)ppGpp differentially affect the pathogenesis of infective endocarditis in Enterococcus faecalis. MICROBIOLOGY (READING, ENGLAND) 2018; 164:1254-1265. [PMID: 30091695 PMCID: PMC6600344 DOI: 10.1099/mic.0.000703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
The alarmone (p)ppGpp mediates the stringent response and has a recognized role in bacterial virulence. We previously reported a stringent response-like state in Enterococcus faecalis isolated from a rabbit foreign body abscess model and showed that E. faecalis mutants with varying levels of cellular (p)ppGpp [Δrel, ΔrelQ and the (p)ppGpp0 ΔrelΔrelQ] had differential abilities to persist within abscesses. In this study, we investigated whether (p)ppGpp contributes to the pathogenesis of E. faecalis infective endocarditis (IE), a biofilm infection of the heart valves. While the stringent response was not activated in heart valve-associated E. faecalis, deletion of the gene encoding the bifunctional (p)ppGpp synthetase/hydrolase Rel significantly impaired valve colonization. These results indicate that the presence of (p)ppGpp is dispensable for E. faecalis to cause IE, whereas the ability to regulate (p)ppGpp levels is critical for valve colonization. Next, we characterized how basal (p)ppGpp levels affect processes associated with IE pathogenesis. Despite being defective in binding to BSA-coated polystyrene surfaces, the Δrel strain bound to collagen- and fibronectin-coated surfaces and ex vivo porcine heart valves as well as the parent and ΔrelΔrelQ strains, ruling out the possibility that the impaired IE phenotype was due to an attachment defect. Moreover, differences in cellular (p)ppGpp levels did not affect extracellular gelatinase activity but significantly impaired enterococcal invasion of human coronary artery endothelial cells. Taken together, this study uncovers for the first time the fact that differences in basal (p)ppGpp levels, rather than the stringent response, differentially affect processes that contribute to the pathogenesis of IE.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Anthony O. Gaca
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Present address: Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Olivia N. Chuang-Smith
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Present address: Bridge to MD and Pathway to American University of Antigua (AUA) Programs, Manipal Education Americas, LLC, New York, NY, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Kristi L. Frank
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
36
|
Franyó D, Kocsi B, Lesinszki V, Pászti J, Kozák A, Bukta EE, Szabó J, Dombrádi Z. Characterization of Clinical Vancomycin-Resistant Enterococcus faecium Isolated in Eastern Hungary. Microb Drug Resist 2018; 24:1559-1567. [PMID: 29957103 DOI: 10.1089/mdr.2018.0074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The aim of our study was to characterize and elicit the genetic relatedness of emerging vancomycin-resistant enterococci (VRE) isolated between 2012 and 2015 at a teaching hospital in Debrecen, Hungary. RESULTS Altogether 43 nonduplicate vancomycin-resistant Enterococcus faecium (VREfm) clinical isolates were obtained. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used for species identification. Isolates showed 100% resistance to ampicillin and ciprofloxacin while 81.4% were resistant to gentamicin. PCR analysis revealed the presence of VanB in 40 and VanA in 3 isolates. Among ace, agg, and esp virulence genes only esp was found in seven cases. Modified microtiter-plate test showed 13 weak and 4 moderate biofilm producer isolates. Pulsed-field gel electrophoresis revealed nine pulsotypes. According to multilocus sequence typing all of the tested isolates belonged to clonal complex 17 (CC17). CONCLUSIONS We report on the alarming emergence of multidrug-resistant VREfm belonging to CC17 at a tertiary hospital in Eastern Hungary. This is the first report of sequence types 412 and 364 from this region. Although outbreak did not occur the increasing prevalence of VREfm is of concern and dissemination must be prevented with proper infection control measures and regular VRE screening.
Collapse
Affiliation(s)
- Dorottya Franyó
- 1 Department of Medical Microbiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Balázs Kocsi
- 2 Department of Industrial Process Management, Faculty of Engineering, University of Debrecen , Debrecen, Hungary
| | | | - Judit Pászti
- 3 National Public Health Institute, Budapest, Hungary
| | - Anita Kozák
- 1 Department of Medical Microbiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Evelin Erzsébet Bukta
- 1 Department of Medical Microbiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Judit Szabó
- 1 Department of Medical Microbiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| | - Zsuzsanna Dombrádi
- 1 Department of Medical Microbiology, Faculty of Medicine, University of Debrecen , Debrecen, Hungary
| |
Collapse
|
37
|
Enterococcus faecalis Demonstrates Pathogenicity through Increased Attachment in an Ex Vivo Polymicrobial Pulpal Infection. Infect Immun 2018; 86:IAI.00871-17. [PMID: 29483293 DOI: 10.1128/iai.00871-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/21/2018] [Indexed: 11/20/2022] Open
Abstract
This study investigated the host response to a polymicrobial pulpal infection consisting of Streptococcus anginosus and Enterococcus faecalis, bacteria commonly implicated in dental abscesses and endodontic failure, using a validated ex vivo rat tooth model. Tooth slices were inoculated with planktonic cultures of S. anginosus or E. faecalis alone or in coculture at S. anginosus/E. faecalis ratios of 50:50 and 90:10. Attachment was semiquantified by measuring the area covered by fluorescently labeled bacteria. Host response was established by viable histological cell counts, and inflammatory response was measured using reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry. A significant reduction in cell viability was observed for single and polymicrobial infections, with no significant differences between infection types (∼2,000 cells/mm2 for infected pulps compared to ∼4,000 cells/mm2 for uninfected pulps). E. faecalis demonstrated significantly higher levels of attachment (6.5%) than S. anginosus alone (2.3%) and mixed-species infections (3.4% for 50:50 and 2.3% for 90:10), with a remarkable affinity for the pulpal vasculature. Infections with E. faecalis demonstrated the greatest increase in tumor necrosis factor alpha (TNF-α) (47.1-fold for E. faecalis, 14.6-fold for S. anginosus, 60.1-fold for 50:50, and 25.0-fold for 90:10) and interleukin 1β (IL-1β) expression (54.8-fold for E. faecalis, 8.8-fold for S. anginosus, 54.5-fold for 50:50, and 39.9-fold for 90:10) compared to uninfected samples. Immunohistochemistry confirmed this, with the majority of inflammation localized to the pulpal vasculature and odontoblast regions. Interestingly, E. faecalis supernatant and heat-killed E. faecalis treatments were unable to induce the same inflammatory response, suggesting E. faecalis pathogenicity in pulpitis is linked to its greater ability to attach to the pulpal vasculature.
Collapse
|
38
|
High Level of Biofilm Formation and Virulence Factors in Enterococci Species Isolated From Clinical and Normal Flora Samples. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2018. [DOI: 10.1097/ipc.0000000000000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Muller C, Massier S, Le Breton Y, Rincé A. The role of the CroR response regulator in resistance of Enterococcus faecalis to D-cycloserine is defined using an inducible receiver domain. Mol Microbiol 2017; 107:416-427. [PMID: 29205552 DOI: 10.1111/mmi.13891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
Enterococcus faecalis is an opportunistic multidrug-resistant human pathogen causing severe nosocomial infections. Previous investigations revealed that the CroRS two-component regulatory pathway likely displays a pleiotropic role in E. faecalis, involved in virulence, macrophage survival, oxidative stress response as well as antibiotic resistance. Therefore, CroRS represents an attractive potential new target for antibiotherapy. In this report, we further explored CroRS cellular functions by characterizing the CroR regulon: the 'domain swapping' method was applied and a CroR chimera protein was generated by fusing the receiver domain from NisR to the output domain from CroR. After demonstrating that the chimera CroR complements a croR gene deletion in E. faecalis (stress response, virulence), we conducted a global gene expression analysis using RNA-Seq and identified 50 potential CroR targets involved in multiple cellular functions such as cell envelope homeostasis, substrate transport, cell metabolism, gene expression regulation, stress response, virulence and antibiotic resistance. For validation, CroR direct binding to several candidate targets was demonstrated by EMSA. Further, this work identified alr, the gene encoding the alanine racemase enzyme involved in E. faecalis resistance to D-cycloserine, a promising antimicrobial drug to treat enterococcal infections, as a member of the CroR regulon.
Collapse
Affiliation(s)
- Cécile Muller
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Sébastien Massier
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Yoann Le Breton
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Alain Rincé
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| |
Collapse
|
40
|
Goh HMS, Yong MHA, Chong KKL, Kline KA. Model systems for the study of Enterococcal colonization and infection. Virulence 2017; 8:1525-1562. [PMID: 28102784 PMCID: PMC5810481 DOI: 10.1080/21505594.2017.1279766] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are common inhabitants of the human gastrointestinal tract, as well as frequent opportunistic pathogens. Enterococci cause a range of infections including, most frequently, infections of the urinary tract, catheterized urinary tract, bloodstream, wounds and surgical sites, and heart valves in endocarditis. Enterococcal infections are often biofilm-associated, polymicrobial in nature, and resistant to antibiotics of last resort. Understanding Enterococcal mechanisms of colonization and pathogenesis are important for identifying new ways to manage and intervene with these infections. We review vertebrate and invertebrate model systems applied to study the most common E. faecalis and E. faecium infections, with emphasis on recent findings examining Enterococcal-host interactions using these models. We discuss strengths and shortcomings of each model, propose future animal models not yet applied to study mono- and polymicrobial infections involving E. faecalis and E. faecium, and comment on the significance of anti-virulence strategies derived from a fundamental understanding of host-pathogen interactions in model systems.
Collapse
Affiliation(s)
- H. M. Sharon Goh
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - M. H. Adeline Yong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
41
|
Miller WR, Murray BE, Rice LB, Arias CA. Vancomycin-Resistant Enterococci: Therapeutic Challenges in the 21st Century. Infect Dis Clin North Am 2017; 30:415-439. [PMID: 27208766 DOI: 10.1016/j.idc.2016.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vancomycin-resistant enterococci are serious health threats due in part to their ability to persist in rugged environments and their propensity to acquire antibiotic resistance determinants. Enterococci have now established a home in our hospitals and possess mechanisms to defeat most currently available antimicrobials. This article reviews the history of the struggle with this pathogen, what is known about the traits associated with its rise in the modern medical environment, and the current understanding of therapeutic approaches in severe infections caused by these microorganisms. As the 21st century progresses, vancomycin-resistant enterococci continue to pose a daunting clinical challenge.
Collapse
Affiliation(s)
- William R Miller
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Louis B Rice
- Departments of Medicine, Microbiology and Immunology, Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA; Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Avenue Cra 9 No. 131 A - 02, Bogotá, Colombia.
| |
Collapse
|
42
|
Singh KV, Tran TT, Nannini EC, Tam VH, Arias CA, Murray BE. Efficacy of Ceftaroline against Methicillin-Susceptible Staphylococcus aureus Exhibiting the Cefazolin High-Inoculum Effect in a Rat Model of Endocarditis. Antimicrob Agents Chemother 2017; 61:e00324-17. [PMID: 28483961 PMCID: PMC5487651 DOI: 10.1128/aac.00324-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Certain Staphylococcus aureus strains exhibit an inoculum effect (InE) with cefazolin (CFZ) that has been associated with therapeutic failures in high-inoculum infections. We assessed the in vitro activities of ceftaroline (CPT), CFZ, and nafcillin (NAF) against 17 type A β-lactamase (βla)-producing, methicillin-susceptible S. aureus (MSSA) strains, including the previously reported TX0117, which exhibits the CFZ InE, and its βla-cured derivative, TX0117c. Additionally, we determined the pharmacokinetics of CPT in rats after single intramuscular doses of 20 and 40 mg/kg of body weight and evaluated the activities of CPT (40 mg/kg every 8 h [q8h]), CFZ, and NAF against TX0117 and TX0117c in a rat model of infective endocarditis. No InE was observed for CPT or NAF, whereas a marked InE was detected for CFZ (MIC, 8 to ≥128 μg/ml). CPT and NAF treatment against TX0117 resulted in mean bacterial counts of 2.3 and 2.1 log10 CFU/g in vegetations, respectively, compared to a mean of 5.9 log10 CFU/g in the CFZ-treated group (CPT and NAF versus CFZ, P = 0.001; CPT versus NAF, P = 0.9830). Both CFZ and CPT were efficacious against the βla-cured derivative, TX0117c, compared to time zero (t0) (P = <0.0001 and 0.0015, respectively). Our data reiterate the in vivo consequences of the CFZ InE and show that CPT is not affected by this phenomenon. CPT might be considered for high-inoculum infections caused by MSSA exhibiting the CFZ InE.
Collapse
Affiliation(s)
- Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Truc T Tran
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Esteban C Nannini
- Division of Infectious Diseases, School of Medicine, Universidad Nacional de Rosario,. Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET, Rosario, Argentina
| | - Vincent H Tam
- College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Cesar A Arias
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
- Molecular Genetics and Antimicrobial Resistance Unit, Universidad El Bosque, Bogota, Colombia
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Barbara E Murray
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, USA
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| |
Collapse
|
43
|
Madani A, Garakani K, Mofrad MRK. Molecular mechanics of Staphylococcus aureus adhesin, CNA, and the inhibition of bacterial adhesion by stretching collagen. PLoS One 2017; 12:e0179601. [PMID: 28665944 PMCID: PMC5493303 DOI: 10.1371/journal.pone.0179601] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/31/2017] [Indexed: 02/05/2023] Open
Abstract
Bacterial adhesion to collagen, the most abundant protein in humans, is a critical step in the initiation and persistence of numerous bacterial infections. In this study, we explore the collagen binding mechanism of the multi-modular cell wall anchored collagen adhesin (CNA) in Staphylococcus aureus and examine how applied mechanical forces can modulate adhesion ability. The common structural-functional elements and domain organization of CNA are present across over 50 genera of bacteria. Through the use of molecular dynamics models and normal mode analysis, we shed light on the CNA's structural and conformational dynamics and its interactions with collagen that lead to collagen binding. Our results suggest that the linker region, CNA165-173, acts as a hinge exhibiting bending, extensional, and torsional modes of structural flexibility and its residues are key in the interaction of the CNA-collagen complex. Steered molecular dynamics simulations were conducted with umbrella sampling. During the course of these simulations, the 'locking' latch from the CNA N2 domain was dissociated from its groove in the CNA N1 domain, implying the importance of the latch for effective ligand binding. Finally, we observed that the binding efficiency of the CNA N1-N2 domains to collagen decreases greatly with increasing tensile force application to the collagen peptides. Thus, CNA and similar adhesins might preferentially bind to sites in which collagen fibers are cleaved, such as in wounded, injured, or inflamed tissues, or in which the collagenous tissue is less mature. As alternative techniques for control of bacterial infection are in-demand due to the rise of bacterial antibiotic resistance, results from our computational studies with respect to the mechanoregulation of the collagen binding site may inspire new therapeutics and engineering solutions by mechanically preventing colonization and/or further pathogenesis.
Collapse
Affiliation(s)
- Ali Madani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, United States of America
| | - Kiavash Garakani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, United States of America
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California, United States of America
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Avci M, Tuncer BÖ. Safety Evaluation of Enterocin Producer Enterococcus sp. Strains Isolated from Traditional Turkish Cheeses. Pol J Microbiol 2017. [DOI: 10.5604/01.3001.0010.7839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to determine the antimicrobial activity and the occurrence of bacteriocin structural genes in Enterococcus spp. isolated from different cheeses and also investigate of their some virulence factors. Enterococcus strains were isolated from 33 different cheeses. Enterococcus faecium (6 strains) and Enterococcus faecalis (5 strains) enterocin-producing strains were identified by 16S rDNA analyses. entA, entB, entP and entX structural genes were detected in some isolates. Multiple enterocin structural genes were found in 7 strains. None of the tested enterococci demonstrated β-haemolytic activity and only one strain has gelatinase activity. Six strains showed multiple antibiotic resistance patterns and in addition, vanA and several virulence genes were detected in many strains. Only E. faecalis MBE1-9 showed tyrosine decarboxylase activity and tdc gene was only detected in this strain.
Collapse
Affiliation(s)
- Mine Avci
- Süleyman Demirel University, Faculty of Engineering, Department of Food Engineering, Isparta, Turkey
| | - Banu Özden Tuncer
- Süleyman Demirel University, Faculty of Engineering, Department of Food Engineering, Isparta, Turkey
| |
Collapse
|
45
|
Bachmann R, Leonard D, Delzenne N, Kartheuser A, Cani PD. Novel insight into the role of microbiota in colorectal surgery. Gut 2017; 66:738-749. [PMID: 28153961 DOI: 10.1136/gutjnl-2016-312569] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 12/12/2022]
Abstract
Recent literature undeniably supports the idea that the microbiota has a strong influence on the healing process of an intestinal anastomosis. Understanding the mechanisms by which the bacterial community of the gut influences intestinal healing could open the door for new preventive and therapeutic approaches. Among the different mechanisms, data have shown that the production of specific reactive oxygen species (ROS) and the activation of specific formyl peptide receptors (FPRs) regulate intestinal wound healing. Evidence suggests that specific gut microbes such as Lactobacillus spp and Akkermansia muciniphila help to regulate healing processes through both ROS-dependent and FPR-dependent mechanisms. In this review, we will discuss the current knowledge and future perspectives concerning the impact of microbiota on wound healing. We will further review available evidence on whether mechanical bowel preparation and the use of specific antibiotics are beneficial or harmful procedures, an ongoing matter of debate. These practices have a profound effect on the gut microbiota composition at the level of both the mucosal and the luminal compartments. Therefore, a key question remains unanswered: should we continue to prepare the gut before surgical intervention? Current knowledge and data do not clearly support the use of one technique or another to avoid complications such as anastomotic leak. There is an urgent need for appropriate interventions with a deep microbiota analysis to investigate both the surgical technical benefits of a proper anastomosis compared with the potential effect of the gut microbes (beneficial vs harmful) on the processes of wound healing and anastomotic leakage reduction.
Collapse
Affiliation(s)
- Radu Bachmann
- Colorectal Surgery Unit, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Cliniques des Pathologies Tumorales du Colon et de Rectum (CPTCR), Institut Roi Albert II, Cliniques universitaires Saint Luc, Brussels, Belgium
| | - Daniel Leonard
- Colorectal Surgery Unit, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Cliniques des Pathologies Tumorales du Colon et de Rectum (CPTCR), Institut Roi Albert II, Cliniques universitaires Saint Luc, Brussels, Belgium
| | - Nathalie Delzenne
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition research group, Brussels, Belgium
| | - Alex Kartheuser
- Colorectal Surgery Unit, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Cliniques des Pathologies Tumorales du Colon et de Rectum (CPTCR), Institut Roi Albert II, Cliniques universitaires Saint Luc, Brussels, Belgium
| | - Patrice D Cani
- Université catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition research group, Brussels, Belgium.,WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Brussels, Belgium
| |
Collapse
|
46
|
Madsen KT, Skov MN, Gill S, Kemp M. Virulence Factors Associated with Enterococcus Faecalis Infective Endocarditis: A Mini Review. Open Microbiol J 2017; 11:1-11. [PMID: 28567146 PMCID: PMC5418949 DOI: 10.2174/1874285801711010001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 01/02/2023] Open
Abstract
Introduction: The enterococci are accountable for up to 20% of all cases of infective endocarditis, with Enterococcus faecalis being the primary causative isolate. Infective endocarditis is a life-threatening infection of the endocardium that results in the formation of vegetations. Based on a literature review, this paper provides an overview of the virulence factors associated with E. faecalis infective endocarditis. Furthermore, it reports the effects of active or passive immunization against some of these involved factors. Individual virulence factors: Nine virulence factors have in particular been associated with E. faecalis infective endocarditis. Absence of these factors entailed attenuation of strains in both mixed- and mono-bacterial infection endocarditis models as well as in in vitro and ex vivo assays when compared to their virulence factor expressing parental strains. Pathogenesis: The virulence factors promote a broad spectrum of events that together allow for disease development and progression. The infection is initiated through bacterial binding to ligands present at the site of infection after which the colonization can be accelerated through inter-bacterial attachment and modulation of the host immune response. The formation and growth of the vegetation provide protection and promote growth. Controlled degeneration of the vegetation appears to increase the likelihood of embolization and dissemination, without exposing protected bacteria. Prophylactic immunization: In most cases, active and passive immunization against associated virulence factors provided partial protection. Future prospects: There is a need for further evaluation of the known virulence factors. Immunization against two or more virulence factors might be an effective prophylactic tool.
Collapse
Affiliation(s)
- Kristian T Madsen
- Dept. of Clinical Microbiology, Odense University Hospital and Clinical Department, University of Southern Denmark, Denmark
| | - Marianne N Skov
- Dept. of Clinical Microbiology, Odense University Hospital and Clinical Department, University of Southern Denmark, Denmark
| | - Sabine Gill
- Dept. of Cardiology, Odense University Hospital, Odense, Denmark
| | - Michael Kemp
- Dept. of Clinical Microbiology, Odense University Hospital and Clinical Department, University of Southern Denmark, Denmark
| |
Collapse
|
47
|
Differential Penicillin-Binding Protein 5 (PBP5) Levels in the Enterococcus faecium Clades with Different Levels of Ampicillin Resistance. Antimicrob Agents Chemother 2016; 61:AAC.02034-16. [PMID: 27821450 DOI: 10.1128/aac.02034-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Ampicillin resistance in Enterococcus faecium is a serious concern worldwide, complicating the treatment of E. faecium infections. Penicillin-binding protein 5 (PBP5) is considered the main ampicillin resistance determinant in E. faecium The three known E. faecium clades showed sequence variations in the pbp5 gene that are associated with their ampicillin resistance phenotype; however, these changes alone do not explain the array of resistance levels observed among E. faecium clinical strains. We aimed to determine if the levels of PBP5 are differentially regulated between the E. faecium clades, with the hypothesis that variations in PBP5 levels could help account for the spectrum of ampicillin MICs seen in E. faecium We studied pbp5 mRNA levels and PBP5 protein levels as well as the genetic environment upstream of pbp5 in 16 E. faecium strains that belong to the different E. faecium clades and for which the ampicillin MICs covered a wide range. Our results found that pbp5 and PBP5 levels are increased in subclade A1 and A2 ampicillin-resistant strains compared to those in clade B and subclade A2 ampicillin-susceptible strains. Furthermore, we found evidence of major clade-associated rearrangements in the region upstream of pbp5, including large DNA fragment insertions, deletions, and single nucleotide polymorphisms, that may be associated with the differential regulation of PBP5 levels between the E. faecium clades. Overall, these findings highlight the contribution of the clade background to the regulation of PBP5 abundance and point to differences in the region upstream of pbp5 as likely contributors to the differential expression of ampicillin resistance.
Collapse
|
48
|
Avilés-Reyes A, Miller JH, Lemos JA, Abranches J. Collagen-binding proteins of Streptococcus mutans and related streptococci. Mol Oral Microbiol 2016; 32:89-106. [PMID: 26991416 DOI: 10.1111/omi.12158] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
The ability of Streptococcus mutans to interact with collagen through the expression of collagen-binding proteins (CBPs) bestows this oral pathogen with an alternative to the sucrose-dependent mechanism of colonization classically attributed to caries development. Based on the abundance and distribution of collagen throughout the human body, stringent adherence to this molecule grants S. mutans with the opportunity to establish infection at different host sites. Surface proteins, such as SpaP, WapA, Cnm and Cbm, have been shown to bind collagen in vitro, and it has been suggested that these molecules play a role in colonization of oral and extra-oral tissues. However, robust collagen binding is not achieved by all strains of S. mutans, particularly those that lack Cnm or Cbm. These observations merit careful dissection of the contribution from these different CBPs towards tissue colonization and virulence. In this review, we will discuss the current understanding of mechanisms used by S. mutans and related streptococci to colonize collagenous tissues, and the possible contribution of CBPs to infections in different sites of the host.
Collapse
Affiliation(s)
- A Avilés-Reyes
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - J H Miller
- Department of Anesthesiology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - J A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - J Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection. Infect Immun 2016; 84:1491-1500. [PMID: 26930703 DOI: 10.1128/iai.01396-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P < 0.001 to 0.048), that reconstitution of empA restored virulence in the UTI model, and that deletion of empA also resulted in attenuation in an infective endocarditis model (P = 0.0088). Our results indicate that EmpA and EmpB, but not EmpC, contribute to biofilm and adherence to ECM proteins; however, all the Emp pilins are important for E. faecium to cause infection in the urinary tract.
Collapse
|
50
|
Paganelli FL, Huebner J, Singh KV, Zhang X, van Schaik W, Wobser D, Braat JC, Murray BE, Bonten MJM, Willems RJL, Leavis HL. Genome-wide Screening Identifies Phosphotransferase System Permease BepA to Be Involved in Enterococcus faecium Endocarditis and Biofilm Formation. J Infect Dis 2016; 214:189-95. [PMID: 26984142 DOI: 10.1093/infdis/jiw108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/07/2016] [Indexed: 02/02/2023] Open
Abstract
Enterococcus faecium is a common cause of nosocomial infections, of which infective endocarditis is associated with substantial mortality. In this study, we used a microarray-based transposon mapping (M-TraM) approach to evaluate a rat endocarditis model and identified a gene, originally annotated as "fruA" and renamed "bepA," putatively encoding a carbohydrate phosphotransferase system (PTS) permease (biofilm and endocarditis-associated permease A [BepA]), as important in infective endocarditis. This gene is highly enriched in E. faecium clinical isolates and absent in commensal isolates that are not associated with infection. Confirmation of the phenotype was established in a competition experiment of wild-type and a markerless bepA mutant in a rat endocarditis model. In addition, deletion of bepA impaired biofilm formation in vitro in the presence of 100% human serum and metabolism of β-methyl-D-glucoside. β-glucoside metabolism has been linked to the metabolism of glycosaminoglycans that are exposed on injured heart valves, where bacteria attach and form vegetations. Therefore, we propose that the PTS permease BepA is directly implicated in E. faecium pathogenesis.
Collapse
Affiliation(s)
- Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Johannes Huebner
- Division of Pediatric Infectious Diseases, Hauner Children's Hospital, Ludwigs-Maximilian Universität München Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Germany
| | - Kavindra V Singh
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens
| | - Xinglin Zhang
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Dominique Wobser
- Center for Infectious Disease and Travel Medicine, University Medical Center Freiburg, Germany
| | - Johanna C Braat
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Barbara E Murray
- Department of Internal Medicine, Division of Infectious Diseases Center for the Study of Emerging and Re-emerging Pathogens Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston
| | - Marc J M Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Helen L Leavis
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|