1
|
Li H, Zhang R, Xie H, Zhou Y, Wang X. Key Amino Acids in RNA Polymerase and Helicase Proteins Regulate RNA Synthesis Efficiency in Porcine Reproductive and Respiratory Syndrome Virus. J Biol Chem 2025:110247. [PMID: 40383149 DOI: 10.1016/j.jbc.2025.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) exhibits rapid evolution due to its high mutation rate and frequent recombination, posing significant challenges for disease control. In this study, we investigated the molecular mechanisms underlying strain-specific variations in PRRSV replication phenotypes. Using reverse genetics and molecular biology approaches, we established a non-infectious replicon model that simulates PRRSV genomic replication and subgenomic (sg) mRNA transcription at the cellular level. This model enabled the evaluation of regulatory effects of viral non-structural proteins (nsps) and transcription-regulating sequences (TRSs) on viral replication and transcription, revealing the crucial roles of nsp9 and nsp12 in RNA synthesis. Furthermore, we developed a subgenomic replicon system (sg-Rep-PRRSV) driven by a minimal replication-transcription complex (mini-RTC) to investigate the impact of specific mutations in PRRSV replicase-associated proteins on viral RNA synthesis efficiency. Our findings demonstrated that mini-RTC components derived from XM-2020 exhibited significantly higher transcriptional driving efficiency compared to those from GD strain (p < 0.01). Site-directed mutagenesis analysis identified critical amino acid residues contributing to differential RNA synthesis efficiency between strains: E141N, N416H, and S591A in nsp9, and S51D, L57T, and K349E in nsp10. These adaptive mutations likely modulate the catalytic conformations of RNA-dependent RNA polymerase (RdRp) and helicase, ultimately contributing to the distinct replication phenotypes observed among PRRSV strains. Our findings provide an insight into the molecular mechanisms underlying PRRSV evolution and adaptation, which have significant implications for mitigating future PRRS outbreak risks and maintaining sustainable development of the swine industry.
Collapse
Affiliation(s)
- Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Honglin Xie
- School of Life Science and Engineering, Foshan University, Guangdong 528225, P. R. China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 210000, Jiangsu, China.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Wu W, Fang X, Jiang Y, Hu J, Zhou Q, Gao P, Zhang Y, Ge X, Han J, Guo X, Zhou L, Yang H. Ten years after introduction of NADC30-like strain in China: a novel chimeric porcine reproductive and respiratory syndrome vaccine candidate. Front Immunol 2025; 16:1585197. [PMID: 40406142 PMCID: PMC12095309 DOI: 10.3389/fimmu.2025.1585197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/08/2025] [Indexed: 05/26/2025] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically significant swine disease with extensive strain variation and limited heterologous protection. Modified live virus (MLV) vaccines developed by serially passaging the virus in monkey kidney cell lines have been widely used for more than 20 years. Lineage 1 virus, such as NADC30-like in China and L1C 1-4-4 strains in the United States, have gradually become the predominant strain or the dominant recombination isolate donor strain in recent years. MLVs licensed for use in the market supply low efficacy of heterologous protection ability against the NADC30-like strain, and a vaccine with improved safety and efficacy is therefore required. The method of virulence attenuation used for classical strains may not be applicable to the development of a vaccine against NADC30-like strains due to their low fidelity of replication. Methods Chimeric RvBJ-4-(ORF2-4)SX, RvBJ-4-(ORF5-6)SX, and RvBJ-4-(ORF2-6)SX were constructed by substituting minor structural proteins (GP2, GP3, and GP4), major structural proteins (GP5 and M) or both in NADC30-like CHsx1401 to classical strain backbone BJ-4. RvBJ-4-(ORF2-6)SX. Animal trials were conducted to assess the pathogenicity and protection of chimeric viruses. Results and Discussion Chimeric virus RvBJ-4-(ORF2-6)SX demonstrates a favorable balance between safety and efficacy, with limited pathogenicity and providing faster viremia clearance as well as reduced lung lesions in vaccinated/challenged pigs. A novel strategy for providing safe and effective immunological protection against NADC30-like strains has been introduced, with the potential for implementation in the field.
Collapse
Affiliation(s)
- Weixin Wu
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinyu Fang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yiyao Jiang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiameng Hu
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiongqiong Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Qiu M, Li S, Li S, Sun Z, Lin H, Yang S, Cui M, Qiu Y, Qi W, Yu X, Shang S, Tian K, Meurens F, Zhu J, Chen N. The GP2a 91/97/98 amino acid substitutions play critical roles in determining PRRSV tropism and infectivity but do not affect immune responses. J Virol 2025; 99:e0004825. [PMID: 40071920 PMCID: PMC11998492 DOI: 10.1128/jvi.00048-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/16/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) isolates share a restricted cellular tropism. Marc-145 cells derived from African green monkey are one of the few cell lines supporting PRRSV propagation in vitro and are commonly used for PRRS vaccine development. However, currently prevalent PRRSV isolates display different Marc-145 cell tropism while the exact determinant is not clarified yet. In this study, we identified for the first time that the 91/97/98 amino acid (aa) substitutions in GP2a of PRRSV play critical roles in determining Marc-145 adaptation. Specifically, multiple series of chimeric viruses were constructed based on four PRRSV infectious clones including Marc-145 adaptive HP-PRRSV-2 strain and Marc-145 non-adaptive NADC34-like PRRSV-2, NADC30-like PRRSV-2, and PRRSV-1 strains. The GP2a 91/97/98 aa substitutions are a sufficient and necessary determinant in NADC34-like and NADC30-like PRRSV-2, a sufficient but not necessary determinant in HP-PRRSV-2, a necessary but not sufficient determinant in PRRSV-1, respectively. In addition, the GP2a substitutions also influenced PRRSV infectivity in PAMs and piglets. Noticeably, the GP2a substitutions did not significantly affect the levels of neutralizing antibodies, porcine T follicular helper (Tfh) cells, and PRRSV-specific IFNγ secreting cells. Overall, our results not only provide new insights into PRRSV tropism and infectivity but also will facilitate PRRS vaccine development. IMPORTANCE Prevalent PRRSV isolates present different cell tropisms in vitro. Clarifying the exact determinant of PRRSV tropism is crucial for PRRSV isolation and vaccine development. By constructing chimeric viruses based on four representative PRRSV infectious clones, we identified for the first time that the 91/97/98 amino acid substitutions in GP2a play critical but distinct roles in determining Marc-145 cell tropism for different PRRSV strains. The GP2a 91/97/98 amino acid substitutions also affect PRRSV infectivity in PAMs and piglets but do not influence immune responses. This study not only deciphers an exact determinant of PRRSV tropism and infectivity but also has guiding significance for PRRS vaccine development.
Collapse
Affiliation(s)
- Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shuai Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Meng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, University of Montreal, Saint-Hyacinthe, Québec, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Liu X, Xu N, Song X, Zhuang L, Shen Q, Sun H. Scalable Production of Recombinant Adeno-Associated Virus Vectors Expressing Soluble Viral Receptors for Broad-Spectrum Inhibition of Porcine Reproductive and Respiratory Syndrome Virus Type 2. Vet Sci 2025; 12:366. [PMID: 40284868 PMCID: PMC12031001 DOI: 10.3390/vetsci12040366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/30/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors (SVRs) to treat and potentially eliminate PRRSV infections. This strategy involves fusing the virus-binding domains of two key cellular receptors, sialoadhesin (Sn4D) and CD163 (SRCR5-9), with an Fc fragment. We then used an insect cell-baculovirus expression vector system to produce the rAAV-SRCR59-Fc/Sn4D-Fc vector. Through a series of optimizations, we determined the best conditions for rAAV production, including a baculovirus co-infection ratio of 0.5:1.0, an initial insect cell density of 2.0 × 106 cells/mL, a fetal bovine serum concentration of 2%, and a culture temperature of 30 °C. Under these optimized conditions, we achieved a high titer of rAAV-SRCR59-Fc/Sn4D-Fc in a 2 L bioreactor, reaching 5.4 ± 0.9 × 109 infectious viral particles (IVPs)/mL. Notably, in vitro neutralization assays using a Transwell co-culture system demonstrated a 4.3 log reduction in viral titers across genetically diverse PRRSV-2 strains, including VR2332, JXA1, JS07, and SH1705. Collectively, this study provides a robust platform for large-scale rAAV production and highlights the potential of SVR-based gene therapy to address the antigenic diversity of PRRSV-2.
Collapse
Affiliation(s)
- Xiaoming Liu
- The Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (N.X.); (L.Z.); (Q.S.)
- The College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Nuo Xu
- The Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (N.X.); (L.Z.); (Q.S.)
| | - Xiaoli Song
- Jiangsu Provincial Animal Disease Control Center, 124 Caochangmen Street, Nanjing 210036, China;
| | - Linlin Zhuang
- The Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (N.X.); (L.Z.); (Q.S.)
| | - Qiuping Shen
- The Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China; (N.X.); (L.Z.); (Q.S.)
| | - Huaichang Sun
- The College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Han S, Oh D, Vanderheijden N, Xie J, Balmelle N, Tignon M, Nauwynck HJ. Monoclonal Antibodies Targeting Porcine Macrophages Are Able to Inhibit the Cell Entry of Macrophage-Tropic Viruses (PRRSV and ASFV). Viruses 2025; 17:167. [PMID: 40006922 PMCID: PMC11860747 DOI: 10.3390/v17020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV) cause serious economic losses to the swine industry worldwide. Both viruses show a tropism for macrophages, based on the use of specific entry mediators (e.g., Siglec-1 and CD163). Identifying additional mediators of viral entry is essential for advancing antiviral and vaccine development. In this context, monoclonal antibodies (mAbs) are valuable tools. This study employed a library of 166 mAbs targeting porcine alveolar macrophages (PAMs) to identify candidates capable of blocking early infection stages, including viral binding, internalization, and fusion. Immunofluorescence analysis revealed 74 mAbs with cytoplasmic staining and 70 mAbs with membrane staining. Fifteen reacted with blood monocytes as determined by flow cytometry. mAb blocking assays were performed at 4 °C and 37 °C to analyze the ability of mAbs to block PRRSV and/or ASFV infections in PAMs. The mAb 28C10 significantly blocked PRRSV (96% at 4 °C and 80% at 37 °C) and ASFV (64% at 4 °C and 81% at 37 °C) infections. The mAb 28G10B6 significantly blocked PRRSV (86% at 4 °C and 74% at 37 °C) and partially blocked ASFV (35% at 4 °C and 64% at 37 °C) infections. mAb 26B8F5-I only partially blocked PRRSV infection (65% at 4 °C and 46% at 37 °C). Western blotting and mass spectrometry identified the corresponding proteins as Siglec-1 (28C10; 250 kDa), MYH9 (28G10B6; 260 kDa), and ANXA1 (26B8F5-I; 37 kDa). Our findings are indicative that Siglec-1, MYH9, and ANXA1 play a role in PRRSV/ASFV entry into macrophages.
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nathalie Vanderheijden
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jiexiong Xie
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nadège Balmelle
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Marylène Tignon
- Service Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Brussels, Belgium
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
6
|
Amona FM, Pang Y, Gong X, Wang Y, Fang X, Zhang C, Chen X. Mechanism of PRRSV infection and antiviral role of polyphenols. Virulence 2024; 15:2417707. [PMID: 39432383 PMCID: PMC11497994 DOI: 10.1080/21505594.2024.2417707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is associated with the endemic outbreak of fever, anorexia, and abortion in pregnant sows, resulting in an enormous economic impact on the global swine industry. Current mainstream prophylactic agents and therapies have been developed to prevent PRRSV infection; however, they have limited efficacy. Therefore, there is an urgent need to develop novel antiviral strategies to prevent PRRSV infection and transmission. The identification of new PRRSV entry mediators, such as MYH9 and HSPA8; viral apoptotic mimicry; and TIM-induced macropinocytosis, to facilitate infection has led to a novel molecular understanding of the PRRSV infection mechanism, which can be utilized in the development of prophylactic agents and therapies for PRRSV infection. Polyphenols, complex chemical molecules with abundant biological activities derived from microorganisms and plants, have demonstrated great potential for controlling PRRSV infection via different mechanisms. To explore new possibilities for treating PRRSV infection with polyphenols, this review focuses on summarizing the pathogenesis of PRRSV, reviewing the potential antiviral mechanisms of polyphenols against PRRSV, and addressing the challenges associated with the widespread use of polyphenols.
Collapse
Affiliation(s)
- Fructueux Modeste Amona
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yipeng Pang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingyu Gong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Yanhong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xingtang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Chunlei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Xi Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
7
|
Dey S, Bruner J, Brown M, Roof M, Chowdhury R. Identification and biophysical characterization of epitope atlas of Porcine Reproductive and Respiratory Syndrome Virus. Comput Struct Biotechnol J 2024; 23:3348-3357. [PMID: 39310279 PMCID: PMC11416235 DOI: 10.1016/j.csbj.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) have been a critical threat to swine health since 1987 due to its high mutation rate and substantial economic loss over half a billion dollar in USA. The rapid mutation rate of PRRSV presents a significant challenge in developing an effective vaccine. Even though surveillance and intervention studies have recently (2019) unveiled utilization of PRRSV glycoprotein 5 (GP5; encoded by ORF5 gene) to induce immunogenic reaction and production of neutralizing antibodies in porcine populations, the future viral generations can accrue escape mutations. In this study we identify 63 porcine-PRRSV protein-protein interactions which play primary or ancillary roles in viral entry and infection. Using genome-proteome annotation, protein structure prediction, multiple docking experiments, and binding energy calculations, we identified a list of 75 epitope locations on PRRSV proteins crucial for infection. Additionally, using machine learning-based diffusion model, we designed 56 stable immunogen peptides that contain one or more of these epitopes with their native tertiary structures stabilized through optimized N- and C-terminus flank sequences and interspersed with appropriate linker regions. Our workflow successfully identified numerous known interactions and predicted several novel PRRSV-porcine interactions. By leveraging the structural and sequence insights, this study paves the way for more effective, high-avidity, multi-valent PRRSV vaccines, and leveraging neural networks for immunogen design.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Jennifer Bruner
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Maria Brown
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Mike Roof
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
- Vaccines and Immunotherapeutics Platform, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| |
Collapse
|
8
|
Lei X, Jiang Y, Yu W, Chen X, Qin Y, Wang N, Yang Y. Intermolecular disulfide bond of PRRSV GP5 and M facilitates VLPs secretion and cell binding. Vet Microbiol 2024; 298:110249. [PMID: 39270333 DOI: 10.1016/j.vetmic.2024.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), the causative agent of porcine reproductive and respiratory syndrome (PRRS), continues to significantly impact on the global swine industry. GP5 and M are the primary structural proteins of PRRSV, playing crucial roles in the processes of virus attachment, entry, assembly and budding. The co-expression of GP5 and M can result in the formation of virus-like particles (VLPs). However, the underlying mechanisms remain incompletely understood. This study investigated the role of GP5-M interaction in VLPs secretion and cell binding. VLPs were generated by co-expressing GP5 and M via recombinant baculoviruses in Sf9 cells and confirmed by transmission electron microscopy. The secretion of VLPs was modulated by the expression levels of GP5 and M. Using the BirA technique, the GP5-M interaction was confirmed in Sf9 cells. Disruption of the N-terminally intermolecular disulfide bond between GP5 and M weakened, but did not completely abolish, the interaction between the proteins, leading to reduced VLPs secretion. Notably, the absence of this intermolecular disulfide bond resulted in the loss of VLPs' ability to bind to MARC-145 cells. In summary, our findings reveal the critical function of the intermolecular disulfide bond in GP5-M interaction, which significantly contributes to VLPs secretion and cell binding, and suggest potential interaction sites between GP5 and M.
Collapse
Affiliation(s)
- Xinnuo Lei
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP) & Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Yifan Jiang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP) & Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Wanting Yu
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP) & Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiuyue Chen
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP) & Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yiwen Qin
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP) & Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Naidong Wang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP) & Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yi Yang
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Laboratory of Functional Proteomics (LFP) & Research Center of Reverse Vaccinology (RCRV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
9
|
Rimayanti R, Khairullah AR, Lestari TD, Hernawati T, Mulyati S, Utama S, Damayanti R, Moses IB, Yanestria SM, Kusala MKJ, Raissa R, Fauziah I, Wibowo S, Prasetyo A, Awwanah M, Fauzia KA. Porcine reproductive and respiratory syndrome developments: An in-depth review of recent findings. Open Vet J 2024; 14:2138-2152. [PMID: 39553781 PMCID: PMC11563630 DOI: 10.5455/ovj.2024.v14.i9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/19/2024] [Indexed: 11/19/2024] Open
Abstract
The porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) belonging to the Arteriviridae family is the cause of PRRS disease. After being discovered for the first time in the United States in 1987, this illness quickly expanded to Canada. The disease was initially discovered in late 1990 in Germany, from where it quickly spread throughout Europe. The consequences of PRRSV lead to a number of epidemiological issues, including a sickness with a delayed immune response that permits extended viremia, which facilitates viral transmission. The virus penetrates the nasal epithelium, tonsils, lung macrophages, and uterine endometrium through the oronasal and genital pathways. Abortions performed late in pregnancy and premature or delayed deliveries resulting in dead and mummified fetuses, stillborn pigs, and weakly born piglets are indicative of reproductive syndrome. In the meanwhile, dyspnea, fever, anorexia, and lethargic behavior are signs of respiratory syndrome. The virus can be isolated from the tissue or serum of animals that have been infected to confirm the diagnosis. Pig movements and potential airborne dissemination are two ways that the virus can enter new herds and propagate through nose-to-nose contact or aerosols. Various supportive therapies may enhance infant survival, and antibiotics may or may not lessen the impact of secondary bacterial infections. The absence of simple diagnostic tests, the virus's airborne transmission, the occurrence of subclinical infections, and the virus's persistence in infected populations have all contributed to the failure of control efforts for PRRS.
Collapse
Affiliation(s)
- Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agung Prasetyo
- Research Center for Estate Crops, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Mo Awwanah
- Research Center for Applied Botany, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
10
|
Shaw TM, Huey D, Mousa-Makky M, Compaleo J, Nennig K, Shah AP, Jiang F, Qiu X, Klipsic D, Rowland RRR, Slukvin II, Sullender ME, Baldridge MT, Li H, Warren CJ, Bailey AL. The neonatal Fc receptor (FcRn) is a pan-arterivirus receptor. Nat Commun 2024; 15:6726. [PMID: 39112502 PMCID: PMC11306234 DOI: 10.1038/s41467-024-51142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Arteriviruses infect a variety of mammalian hosts, but the receptors used by these viruses to enter cells are poorly understood. We identified the neonatal Fc receptor (FcRn) as an important pro-viral host factor via comparative genome-wide CRISPR-knockout screens with multiple arteriviruses. Using a panel of cell lines and divergent arteriviruses, we demonstrate that FcRn is required for the entry step of arterivirus infection and serves as a molecular barrier to arterivirus cross-species infection. We also show that FcRn synergizes with another known arterivirus entry factor, CD163, to mediate arterivirus entry. Overexpression of FcRn and CD163 sensitizes non-permissive cells to infection and enables the culture of fastidious arteriviruses. Treatment of multiple cell lines with a pre-clinical anti-FcRn monoclonal antibody blocked infection and rescued cells from arterivirus-induced death. Altogether, this study identifies FcRn as a novel pan-arterivirus receptor, with implications for arterivirus emergence, cross-species infection, and host-directed pan-arterivirus countermeasure development.
Collapse
Affiliation(s)
- Teressa M Shaw
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Devra Huey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Makky Mousa-Makky
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jared Compaleo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Kylie Nennig
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Aadit P Shah
- Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fei Jiang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Xueer Qiu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Devon Klipsic
- Research Animal Resources and Compliance (RARC), University of Wisconsin-Madison, Madison, WI, USA
| | - Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Igor I Slukvin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Meagan E Sullender
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Haichang Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Cody J Warren
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA.
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.
| | - Adam L Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
11
|
Clilverd H, Li Y, Martín-Valls G, Aguirre L, Martín M, Cortey M, Mateu E. Selection of viral variants with enhanced transmission and reduced neutralization susceptibility alongside lateral introductions may explain the persistence of porcine reproductive and respiratory syndrome virus in vaccinated breeding herds. Virus Evol 2024; 10:veae041. [PMID: 38817667 PMCID: PMC11137674 DOI: 10.1093/ve/veae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
This study investigates the long-term evolutionary dynamics of porcine reproductive and respiratory syndrome virus (PRRSV-1) in an endemically infected and vaccinated pig herd. Over a one year and a half period, piglets from seven farrowing batches in a 300-sow PRRSV-vaccinated farm were monitored from birth to nine weeks of age by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Eighty-five PRRSV-positive samples were subjected to whole genome sequencing (Illumina Miseq), and 251 samples to open reading frame 5 (ORF5) sequencing. Farm-specific PRRSV variants' impact on anti-PRRSV antibodies was evaluated using enzyme-linked immunosorbent and neutralizing antibody assays. The replication kinetics and cytokine inhibition capabilities (IFN-α and TNF-α) of these variants were assessed in porcine alveolar macrophages. The study revealed fluctuating PRRSV-1 incidences in farrowing units and nurseries, attributed to two key evolutionary events: an escape variant emergence and a lateral introduction of a new strain. Initially, strain 1 variant α was swiftly replaced within weeks by variant 1β (99.5 per cent genomic similarity), with twenty-five amino acid mutations, primarily in nsp1α, GP2, GP3, and GP5, including an additional glycosylation site and a deletion downstream the neutralization epitope of GP5. This shift to 1β correlated with increased incidence in nurseries and higher viral loads, with sera from 1α-exposed animals showing reduced neutralization against 1β. Consistently for in vitro assays, variant 1β demonstrated enhanced replication in porcine alveolar macrophages but no difference regarding IFN-α or TNF-α responses. Later, a new strain (strain 2, 83.3 per cent similarity to strain 1) emerged and led to incidence resurgence because of the low cross reactivity with the previous antibodies. The study highlights PRRSV's rapid adaptability and challenges in controlling its spread, underscoring the necessity for more effective vaccines and eradication approaches.
Collapse
Affiliation(s)
- Hepzibar Clilverd
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Yanli Li
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Gerard Martín-Valls
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Laia Aguirre
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Marga Martín
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Martí Cortey
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Enric Mateu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
12
|
Rowland RR, Brandariz-Nuñez A. Role of N-linked glycosylation in porcine reproductive and respiratory syndrome virus (PRRSV) infection. J Gen Virol 2024; 105:001994. [PMID: 38776134 PMCID: PMC11165596 DOI: 10.1099/jgv.0.001994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/14/2024] [Indexed: 05/24/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRSV) is an enveloped single-stranded positive-sense RNA virus and one of the main pathogens that causes the most significant economical losses in the swine-producing countries. PRRSV is currently divided into two distinct species, PRRSV-1 and PRRSV-2. The PRRSV virion envelope is composed of four glycosylated membrane proteins and three non-glycosylated envelope proteins. Previous work has suggested that PRRSV-linked glycans are critical structural components for virus assembly. In addition, it has been proposed that PRRSV glycans are implicated in the interaction with host cells and critical for virus infection. In contrast, recent findings showed that removal of N-glycans from PRRSV does not influence virus infection of permissive cells. Thus, there are not sufficient evidences to indicate compellingly that N-glycans present in the PRRSV envelope play a direct function in viral infection. To gain insights into the role of N-glycosylation in PRRSV infection, we analysed the specific contribution of the envelope protein-linked N-glycans to infection of permissive cells. For this purpose, we used a novel strategy to modify envelope protein-linked N-glycans that consists of production of monoglycosylated PRRSV and viral glycoproteins with different glycan states. Our results showed that removal or alteration of N-glycans from PRRSV affected virus infection. Specifically, we found that complex N-glycans are required for an efficient infection in cell cultures. Furthermore, we found that presence of high mannose type glycans on PRRSV surface is the minimal requirement for a productive viral infection. Our findings also show that PRRSV-1 and PRRSV-2 have different requirements of N-glycan structure for an optimal infection. In addition, we demonstrated that removal of N-glycans from PRRSV does not affect viral attachment, suggesting that these carbohydrates played a major role in regulating viral entry. In agreement with these findings, by performing immunoprecipitation assays and colocalization experiments, we found that N-glycans present in the viral envelope glycoproteins are not required to bind to the essential viral receptor CD163. Finally, we found that the presence of N-glycans in CD163 is not required for PRRSV infection.
Collapse
Affiliation(s)
- Raymond R.R. Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
13
|
Liu B, Zheng X, Sun X, Wan B, Dong J, Zhou Z, Nan Y, Wu C. Characterization of in vitro viral neutralization targets of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) in alveolar macrophage and evaluation of protection potential against HP-PRRSV challenged based on combination of HP-PRRSV-structure proteins in vitro. Vet Microbiol 2024; 292:110035. [PMID: 38484577 DOI: 10.1016/j.vetmic.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global pork industry, resulting in substantial economic losses. Current control measures rely on modified live virus (MLV) vaccines with safety concerns. However, the lack of consensus on protective PRRSV antigens is impeding the development of effective and safety subunit vaccines. In this study, we conducted in vitro virus neutralization (VN) assays in MARC-145 and CRL-2843CD163/CD169 cell lines and primary porcine alveolar macrophages (PAMs) to systemically identify PRRSV structural proteins (SPs) recognized by virus-neutralizing antibodies in hyperimmune serum collected from piglets infected with highly pathogenic PRRSV (HP-PRRSV). Additionally, piglets immunized with different combinations of recombinant PRRSV-SPs were challenged with HP-PRRSV to evaluate their in vivo protection potential. Intriguingly, different in vitro VN activities of serum antibodies elicited by each PRRSV SP were observed depending on the cell type used in the VN assay. Notably, antibodies specific for GP3, GP4, and M exhibited highest in vitro VN activities in PAMs, correlating with complete protection (100% survival) against HP-PRRSV challenge in vivo after immunization of piglets with combination of GP3, GP4, M and N (GP3/GP4/M/N). Further analysis of lung pathology, weight gain, and viremia post-challenge revealed that the combination of GP3/GP4/M/N provided superior protective efficacy against severe infection. These findings underscore the potential of this SP combination to serve as an effective PRRSV subunit vaccine, marking a significant advancement in pork industry disease management.
Collapse
Affiliation(s)
- Bing Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangyu Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingjie Wan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianhui Dong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Innolever Biotechnology Co., Ltd., Yangling, Shaanxi 712100, China
| | - Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Nasser M, Wadie M, Farid A, El Amir A. The Contribution of Serum Sialic Acid Binding Immunoglobulin-Like Lectin 1(sSIGLEC-1) as an IFN I Signature Biomarker in the Progression of Atherosclerosis in Egyptian Systemic Lupus Erythematosus (SLE) Patients. Indian J Clin Biochem 2024; 39:291-298. [PMID: 38577132 PMCID: PMC10987406 DOI: 10.1007/s12291-023-01155-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 04/06/2024]
Abstract
Clinical symptoms of systemic lupus erythematosus (SLE), such as atherosclerosis and related cardiovascular diseases, are caused by inflammatory cytokines and endothelial cell damage. The serum sialic acid binding immunoglobulin-like lectin 1 (sSIGLEC-1) is thought to be an alternative biomarker of IFN signature and may have a role in the pathogenesis of atherosclerosis. The aim of the study was to measure the levels of sSIGLEC-1 in the serum of SLE patients in comparison to a control group and examine the associations between sSIGLEC-1, SLEDAI, lipid profile, oxidized low density lipoprotein (oxLDL), and carotid intima media thickness (CIMT) to investigate whether sSIGLEC-1 participates in the development of atherosclerosis. sSIGLEC-1 levels were tested in 53 patients and 20 volunteers using ELISA kit. Duplex measurements were performed on all subjects to measure CIMT. SLE patients had significantly higher values of sSIGLEC-1 (P < 0.0001), total cholesterol (P = 0.029), triglycerides (P = 0.001), low density lipoprotein (P = 0.032), oxLDL (P = 0.001), right CIMT (P = 0.0099) and a significantly lower value of high-density lipoprotein (P = 0.04) when compared to controls. sSIGLEC-1 had significant positive correlations with right CIMT (r = 0.5, P < 0.0002) and oxLDL (r = 0.67, P < 0.0001) in all SLE patients. When compared to non-dyslipidemic patients, the dyslipidemic group exhibited significantly higher levels of all previous parameters except HDL and left CIMT. Circulating form of SIGLEC-1 accelerates atherosclerosis and provides a simple way to predict the occurrence of atherosclerosis in SLE patients.
Collapse
Affiliation(s)
- Mohamed Nasser
- Immunology Section, Faculty of Science, Cairo University, Giza, Egypt
| | - Mary Wadie
- Rheumatology Section, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Alyaa Farid
- Immunology Section, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza El Amir
- Immunology Section, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Li W, Wang Y, Zhang M, Zhao S, Wang M, Zhao R, Chen J, Zhang Y, Xia P. Mass Spectrometry-Based Proteomic Analysis of Potential Host Proteins Interacting with GP5 in PRRSV-Infected PAMs. Int J Mol Sci 2024; 25:2778. [PMID: 38474030 DOI: 10.3390/ijms25052778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus causing a large economic impact on the swine industry. The structural protein GP5 of PRRSV plays a pivotal role in its pathogenicity and immune evasion. Virus-host interactions play a crucial part in viral replication and immune escape. Therefore, understanding the interactions between GP5 and host proteins are significant for porcine reproductive and respiratory syndrome (PRRS) control. However, the interaction network between GP5 and host proteins in primary porcine alveolar macrophages (PAMs) has not been reported. In this study, 709 GP5-interacting host proteins were identified in primary PAMs by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis revealed that these proteins were involved in multiple cellular processes, such as translation, protein transport, and protein stabilization. Subsequently, immunoprecipitation and immunofluorescence assay confirmed that GP5 could interact with antigen processing and presentation pathways related proteins. Finally, we found that GP5 may be a key protein that inhibits the antigen processing and presentation pathway during PRRSV infection. The novel host proteins identified in this study will be the candidates for studying the biological functions of GP5, which will provide new insights into PRRS prevention and vaccine development.
Collapse
Affiliation(s)
- Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Yueshuai Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Mengting Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Mengxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Ruijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
16
|
Liu B, Luo L, Shi Z, Ju H, Yu L, Li G, Cui J. Research Progress of Porcine Reproductive and Respiratory Syndrome Virus NSP2 Protein. Viruses 2023; 15:2310. [PMID: 38140551 PMCID: PMC10747760 DOI: 10.3390/v15122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is globally prevalent and seriously harms the economic efficiency of pig farming. Because of its immunosuppression and high incidence of mutant recombination, PRRSV poses a great challenge for disease prevention and control. Nonstructural protein 2 (NSP2) is the most variable functional protein in the PRRSV genome and can generate NSP2N and NSP2TF variants due to programmed ribosomal frameshifts. These variants are broad and complex in function and play key roles in numerous aspects of viral protein maturation, viral particle assembly, regulation of immunity, autophagy, apoptosis, cell cycle and cell morphology. In this paper, we review the structural composition, programmed ribosomal frameshift and biological properties of NSP2 to facilitate basic research on PRRSV and to provide theoretical support for disease prevention and control and therapeutic drug development.
Collapse
Affiliation(s)
- Benjin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Lingzhi Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Ziqi Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| | - Houbin Ju
- Shanghai Animal Disease Prevention and Control Center, Shanghai 201103, China;
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China;
| | - Jin Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150038, China; (B.L.); (L.L.); (Z.S.)
| |
Collapse
|
17
|
Pei Y, Lin C, Li H, Feng Z. Genetic background influences pig responses to porcine reproductive and respiratory syndrome virus. Front Vet Sci 2023; 10:1289570. [PMID: 37929286 PMCID: PMC10623566 DOI: 10.3389/fvets.2023.1289570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly infectious and economically significant virus that causes respiratory and reproductive diseases in pigs. It results in reduced productivity and increased mortality in pigs, causing substantial economic losses in the industry. Understanding the factors affecting pig responses to PRRSV is crucial to develop effective control strategies. Genetic background has emerged as a significant determinant of susceptibility and resistance to PRRSV in pigs. This review provides an overview of the basic infection process of PRRSV in pigs, associated symptoms, underlying immune mechanisms, and roles of noncoding RNA and alternative splicing in PRRSV infection. Moreover, it emphasized breed-specific variations in these aspects that may have implications for individual treatment options.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
18
|
Han S, Oh D, Xie J, Nauwynck HJ. Susceptibility of perivenous macrophages to PRRSV-1 subtype 1 LV and PRRSV-1 subtype 3 Lena using a new vein explant model. Front Cell Infect Microbiol 2023; 13:1223530. [PMID: 37554354 PMCID: PMC10406384 DOI: 10.3389/fcimb.2023.1223530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Vessel pathology such as increased permeability and blue discoloration is frequently observed with highly pathogenic PRRSV strains. However, data concerning the viral replication in the environment of blood vessels are absent. In the present study, ex vivo models with swine ear and hind leg vein explants were established to study the interaction of PRRSV-1 subtype 1 reference strain LV and highly pathogenic subtype 3 strain Lena with perivenous macrophages. The replication characteristics of these two strains were compared in vein explants by immunofluorescence analysis. The explants maintained a good viability during 48 hours of in vitro culture. We found that CD163-positive macrophages were mainly present around the veins and their number gradually decreased with increasing distance from the veins and longer incubation time. More CD163+Sn- cells than CD163+Sn+ cells (6.6 times more) were observed in the vein explants. The Lena strain demonstrated a higher replication level than the LV strain, with approximately 1.4-fold more infected cells in the surrounding areas of the ear vein and 1.1-fold more infected cells in the leg vein explants at 48 hours post inoculation. In both LV and Lena inoculated vein explants, most infected cells were identified as CD163+Sn+ (> 94%). In this study, an ex vivo vein model was successfully established, and our findings will contribute to a better understanding of the vein pathology during viral infections (e.g., PRRS, classical and African swine fever).
Collapse
Affiliation(s)
- Shaojie Han
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | |
Collapse
|
19
|
Cai H, Zhang H, Cheng H, Liu M, Wen S, Ren J. Progress in PRRSV Infection and Adaptive Immune Response Mechanisms. Viruses 2023; 15:1442. [PMID: 37515130 PMCID: PMC10385784 DOI: 10.3390/v15071442] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Since its discovery, Porcine reproductive and respiratory syndrome (PRRS) has had a huge impact on the farming industry. The virus that causes PRRS is Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and because of its genetic diversity and the complexity of the immune response, the eradication of PRRS has been a challenge. To provide scientific references for PRRSV control and vaccine development, this study describes the processes of PRRSV-induced infection and escape, as well as the host adaptive immune response to PRRSV. It also discusses the relationship between PRRSV and the adaptive immune response.
Collapse
Affiliation(s)
- Huanchang Cai
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Hewei Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang 471099, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang 471000, China
| | - Huai Cheng
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Min Liu
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
| | - Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Wenzhou 325035, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang 471000, China
| |
Collapse
|
20
|
Li X, Sun R, Guo Y, Zhang H, Xie R, Fu X, Zhang L, Zhang L, Li Z, Huang J. N-Acetyltransferase 9 Inhibits Porcine Reproductive and Respiratory Syndrome Virus Proliferation by N-Terminal Acetylation of the Structural Protein GP5. Microbiol Spectr 2023; 11:e0244222. [PMID: 36695606 PMCID: PMC9927549 DOI: 10.1128/spectrum.02442-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a serious threat to the global swine industry. As a typical immunosuppressive virus, PRRSV has developed a variety of complex mechanisms to escape the host innate immunity. In this study, we uncovered a novel immune escape mechanism of PRRSV infection. Here, we demonstrate for the first time that the endoplasmic reticulum (ER)-resident N-acetyltransferase Nat9 is an important host restriction factor for PRRSV infection. Nat9 inhibited PRRSV proliferation in an acetyltransferase activity-dependent manner. Mechanistically, glycoprotein 5 (GP5) of PRRSV was identified as interacting with Nat9 and being N-terminally acetylated by it, which generates a GP5 degradation signal, promoting the K27-linked-ubiquitination degradation of GP5 to decrease virion assembly. Meanwhile, the expression of Nat9 was inhibited during PRRSV infection. In detail, two transcription factors, ETV5 and SP1, were screened out as the key transcription factors binding to the core promoter region of Nat9, and the PRRSV nonstructural protein 1β (Nsp1β), Nsp4, Nsp9, and nucleocapsid (N) proteins were found to interfere significantly with the expression of ETV5 and SP1, thereby regulating the transcription activity of Nat9 and inhibiting the expression of Nat9. The findings suggest that PRRSV decreases the N-terminal acetylation of GP5 to support virion assembly by inhibiting the expression of Nat9. Taken together, our findings showed that PRRSV has developed complex mechanisms to inhibit Nat9 expression and trigger virion assembly. IMPORTANCE To ensure efficient replication, a virus must hijack or regulate multiple host factors for its own benefit. Understanding virus-host interactions and the molecular mechanisms of host resistance to PRRSV infection is necessary to develop effective strategies to control PRRSV. The N-acetyltransferase Nat9 plays important roles during virus infection. Here, we demonstrate that Nat9 exhibits an antiviral effect on PRRSV proliferation. The GP5 protein of PRRSV is targeted specifically by Nat9, which mediates GP5 N-terminal acetylation and degradation via a ubiquitination-dependent proteasomal pathway. However, PRRSV manipulates the transcription factors ETV5 and SP1 to inhibit the expression of Nat9 and promote virion assembly. Thus, we report a novel function of Nat9 in PRRSV infection and elucidate a new mechanism by which PRRSV can escape the host innate immunity, which may provide novel insights for the development of antiviral drugs.
Collapse
Affiliation(s)
- Xiaoyang Li
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Ruiqi Sun
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Yanyu Guo
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Huixia Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Ruyu Xie
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Xubin Fu
- Tianjin Ringpu Bio-technology Co., Ltd., Tianjin, China
| | - Lei Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Lilin Zhang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Zexing Li
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| | - Jinhai Huang
- School of Life Sciences, Tianjin Universitygrid.33763.32, Tianjin, China
| |
Collapse
|
21
|
Chaudhari J, Leme RA, Durazo-Martinez K, Sillman S, Workman AM, Vu HLX. A Single Amino Acid Substitution in Porcine Reproductive and Respiratory Syndrome Virus Glycoprotein 2 Significantly Impairs Its Infectivity in Macrophages. Viruses 2022; 14:v14122822. [PMID: 36560826 PMCID: PMC9781675 DOI: 10.3390/v14122822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a restricted tropism for macrophages and CD163 is a key receptor for infection. In this study, the PRRSV strain NCV1 was passaged on MARC-145 cells for 95 passages, and two plaque-clones (C1 and C2) were randomly selected for further analysis. The C1 virus nearly lost the ability to infect porcine alveolar macrophages (PAMs), as well as porcine kidney cells expressing porcine CD163 (PK15-pCD163), while the C2 virus replicates well in these two cell types. Pretreatment of MARC-145 cells with an anti-CD163 antibody nearly blocked C1 virus infection, indicating that the virus still required CD163 to infect cells. The C1 virus carried four unique amino acid substitutions: three in the nonstructural proteins and a K160I in GP2. The introduction of an I160K substitution in GP2 of the C1 virus restored its infectivity in PAMs and PK15-pCD163 cells, while the introduction of a K160I substitution in GP2 of the low-passaged, virulent PRRSV strain NCV13 significantly impaired its infectivity. Importantly, pigs inoculated with the rNCV13-K160I mutant exhibited lower viremia levels and lung lesions than those infected with the parental rNCV13. These results demonstrated that the K160 residue in GP2 is one of the key determinants of PRRSV tropism.
Collapse
Affiliation(s)
- Jayeshbhai Chaudhari
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Raquel Arruda Leme
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Clinal Research Department, Dechra Pharmaceuticals, Londrina 86030, Brazil
| | - Kassandra Durazo-Martinez
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Aspen M. Workman
- United State Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Hiep L. X. Vu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-402-472-4528
| |
Collapse
|
22
|
Using Alphafold2 to Predict the Structure of the Gp5/M Dimer of Porcine Respiratory and Reproductive Syndrome Virus. Int J Mol Sci 2022; 23:ijms232113209. [DOI: 10.3390/ijms232113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus is a positive-stranded RNA virus of the family Arteriviridae. The Gp5/M dimer, the major component of the viral envelope, is required for virus budding and is an antibody target. We used alphafold2, an artificial-intelligence-based system, to predict a credible structure of Gp5/M. The short disulfide-linked ectodomains lie flat on the membrane, with the exception of the erected N-terminal helix of Gp5, which contains the antibody epitopes and a hypervariable region with a changing number of carbohydrates. The core of the dimer consists of six curved and tilted transmembrane helices, and three are from each protein. The third transmembrane regions extend into the cytoplasm as amphiphilic helices containing the acylation sites. The endodomains of Gp5 and M are composed of seven β-strands from each protein, which interact via β-strand seven. The area under the membrane forms an open cavity with a positive surface charge. The M and Orf3a proteins of coronaviruses have a similar structure, suggesting that all four proteins are derived from the same ancestral gene. Orf3a, like Gp5/M, is acylated at membrane-proximal cysteines. The role of Gp5/M during virus replication is discussed, in particular the mechanisms of virus budding and models of antibody-dependent virus neutralization.
Collapse
|
23
|
Activating Fc Gamma Receptors and Viral Receptors Are Required for Antibody-Dependent Enhancement of Porcine Reproductive and Respiratory Syndrome Virus Infection. Vet Sci 2022; 9:vetsci9090470. [PMID: 36136686 PMCID: PMC9504219 DOI: 10.3390/vetsci9090470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Porcine reproductive and respiratory syndrome virus (PRRSV)-specific sub- or non-neutralizing antibodies promote the adhesion and internalization of the virion into host cells. This phenomenon is known as antibody-dependent enhancement (ADE) of PRRSV infection. It has long been accepted that Fc gamma receptors (FcγRs) are responsible for mediating ADE of virus infection. However, few researchers pay attention to the role of the virus receptors in the ADE of virus infection. In this study, we showed that activating FcγRs (FcγRI and FcγRIII) were responsible for mediating PRRSV-ADE infection. Simultaneously, we showed that the viral receptors (sialoadhesin and CD163) were involved in FcγR-mediated PRRSV-ADE infection. The extracellular domains 1-6 of sialoadhesin and the scavenger receptor cysteine-rich 5 domain of CD163 might play central roles in PRRSV-ADE infection. In conclusion, our studies indicated that activating FcγRs and virus receptors were required for PRRSV-ADE infection. Our findings should allow a more precise understanding of the structural basis for the mechanism of PRRSV-ADE infection, which would provide references for screening targets of novel PRRS vaccines or antiviral drugs against the PRRSV. Abstract Antibody-dependent enhancement (ADE) is an event in preexisting sub-, or non-neutralizing antibodies increasing the viral replication in its target cells. ADE is one crucial factor that intensifies porcine reproductive and respiratory syndrome virus (PRRSV) infection and results in PRRSV-persistent infection. Nevertheless, the exact mechanisms of PRRSV-ADE infection are poorly understood. In the current research, the results of the ADE assay showed that porcine immunoglobulin G (IgG) specific for the PRRSV significantly enhanced PRRSV proliferation in porcine alveolar macrophages (PAMs), suggesting that the ADE activity of PRRSV infection existed in pig anti-PRRSV IgG. The results of the RNA interference assay showed that knockdown of the Fc gamma receptor I (FcγRI) or FcγRIII gene significantly suppressed the ADE activity of PRRSV infection in PAMs, suggesting that FcγRI and FcγRIII were responsible for mediating PRRSV-ADE infection. In addition, the results of the antibody blocking assay showed that specific blocking of the Sn1, 2, 3, 4, 5, or 6 extracellular domain of the sialoadhesin (Sn) protein or selective blockade of the scavenger receptor cysteine-rich (SRCR) 5 domain of the CD163 molecule significantly repressed the ADE activity of PRRSV infection in PAMs, suggesting that Sn and CD163 were involved in FcγR-mediated PRRSV-ADE infection. The Sn1–6 domains of porcine Sn protein and the SRCR 5 domain of porcine CD163 molecule might play central roles in the ADE of PRRSV infection. In summary, our studies indicated that activating FcγRs (FcγRI and FcγRIII) and viral receptors (Sn and CD163) were required for ADE of PRRSV infection. Our findings provided a new insight into PRRSV infection that could be enhanced by FcγRs and PRRSV receptors-mediated PRRSV-antibody immune complexes (ICs), which would deepen our understanding of the mechanisms of PRRSV-persistent infection via the ADE pathway.
Collapse
|
24
|
Ramos-Martínez IE, Ramos-Martínez E, Segura-Velázquez RÁ, Saavedra-Montañez M, Cervantes-Torres JB, Cerbón M, Papy-Garcia D, Zenteno E, Sánchez-Betancourt JI. Heparan Sulfate and Sialic Acid in Viral Attachment: Two Sides of the Same Coin? Int J Mol Sci 2022; 23:ijms23179842. [PMID: 36077240 PMCID: PMC9456526 DOI: 10.3390/ijms23179842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022] Open
Abstract
Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Edgar Ramos-Martínez
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - René Álvaro Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Manuel Saavedra-Montañez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jacquelynne Brenda Cervantes-Torres
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dulce Papy-Garcia
- Glycobiology, Cell Growth ant Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), F-94010 Créteil, France
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence:
| |
Collapse
|
25
|
Li R, Qiao S, Zhang G. Reappraising host cellular factors involved in attachment and entry to develop antiviral strategies against porcine reproductive and respiratory syndrome virus. Front Microbiol 2022; 13:975610. [PMID: 35958155 PMCID: PMC9360752 DOI: 10.3389/fmicb.2022.975610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a highly contagious disease that brings tremendous economic losses to the global swine industry. As an intracellular obligate pathogen, PRRSV infects specific host cells to complete its replication cycle. PRRSV attachment to and entry into host cells are the first steps to initiate the replication cycle and involve multiple host cellular factors. In this review, we recapitulated recent advances on host cellular factors involved in PRRSV attachment and entry, and reappraised their functions in these two stages, which will deepen the understanding of PRRSV infection and provide insights to develop promising antiviral strategies against the virus.
Collapse
Affiliation(s)
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
26
|
Fragoso-Saavedra M, Ramírez-Estudillo C, Peláez-González DL, Ramos-Flores JO, Torres-Franco G, Núñez-Muñoz L, Marcelino-Pérez G, Segura-Covarrubias MG, González-González R, Ruiz-Medrano R, Xoconostle-Cázares B, Gayosso-Vázquez A, Reyes-Maya S, Ramírez-Andoney V, Alonso-Morales RA, Vega-López MA. Combined Subcutaneous-Intranasal Immunization With Epitope-Based Antigens Elicits Binding and Neutralizing Antibody Responses in Serum and Mucosae Against PRRSV-2 and SARS-CoV-2. Front Immunol 2022; 13:848054. [PMID: 35432364 PMCID: PMC9008747 DOI: 10.3389/fimmu.2022.848054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
New vaccine design approaches, platforms, and immunization strategies might foster antiviral mucosal effector and memory responses to reduce asymptomatic infection and transmission in vaccinated individuals. Here, we investigated a combined parenteral and mucosal immunization scheme to induce local and serum antibody responses, employing the epitope-based antigens 3BT and NG19m. These antigens target the important emerging and re-emerging viruses PRRSV-2 and SARS-CoV-2, respectively. We assessed two versions of the 3BT protein, which contains conserved epitopes from the GP5 envelope protein of PRRSV-2: soluble and expressed by the recombinant baculovirus BacDual-3BT. On the other hand, NG19m, comprising the receptor-binding motif of the S protein of SARS-CoV-2, was evaluated as a soluble recombinant protein only. Vietnamese mini-pigs were immunized employing different inoculation routes: subcutaneous, intranasal, or a combination of both (s.c.-i.n.). Animals produced antigen-binding and neut1ralizing antibodies in serum and mucosal fluids, with varying patterns of concentration and activity, depending on the antigen and the immunization schedule. Soluble 3BT was a potent immunogen to elicit binding and neutralizing antibodies in serum, nasal mucus, and vaginal swabs. The vectored immunogen BacDual-3BT induced binding antibodies in serum and mucosae, but PRRSV-2 neutralizing activity was found in nasal mucus exclusively when administered intranasally. NG19m promoted serum and mucosal binding antibodies, which showed differing neutralizing activity. Only serum samples from subcutaneously immunized animals inhibited RBD-ACE2 interaction, while mini-pigs inoculated intranasally or via the combined s.c.-i.n. scheme produced subtle neutralizing humoral responses in the upper and lower respiratory mucosae. Our results show that intranasal immunization, alone or combined with subcutaneous delivery of epitope-based antigens, generates local and systemic binding and neutralizing antibodies. Further investigation is needed to evaluate the capability of the induced responses to prevent infection and reduce transmission.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carmen Ramírez-Estudillo
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Diana L. Peláez-González
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge O. Ramos-Flores
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gustavo Torres-Franco
- Unidad de Producción y Experimentación de Animales de Laboratorio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leandro Núñez-Muñoz
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriel Marcelino-Pérez
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - María G. Segura-Covarrubias
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Rogelio González-González
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Beatriz Xoconostle-Cázares
- Laboratorio de Biología Molecular de Plantas, Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amanda Gayosso-Vázquez
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Silvia Reyes-Maya
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Vianey Ramírez-Andoney
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rogelio A. Alonso-Morales
- Laboratorio de Genética Molecular, Departamento de Genética y Bioestadística, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marco A. Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
27
|
Pamornchainavakul N, Kikuti M, Paploski IAD, Makau DN, Rovira A, Corzo CA, VanderWaal K. Measuring How Recombination Re-shapes the Evolutionary History of PRRSV-2: A Genome-Based Phylodynamic Analysis of the Emergence of a Novel PRRSV-2 Variant. Front Vet Sci 2022; 9:846904. [PMID: 35400102 PMCID: PMC8990846 DOI: 10.3389/fvets.2022.846904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
While the widespread and endemic circulation of porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) causes persistent economic losses to the U.S. swine industry, unusual increases of severe cases associated with the emergence of new genetic variants are a major source of concern for pork producers. Between 2020 and 2021, such an event occurred across pig production sites in the Midwestern U.S. The emerging viral clade is referred to as the novel sub-lineage 1C (L1C) 1-4-4 variant. This genetic classification is based on the open reading frame 5 (ORF5) gene. However, although whole genome sequence (WGS) suggested that this variant represented the emergence of a new strain, the true evolutionary history of this variant remains unclear. To better elucidate the variant's evolutionary history, we conducted a recombination detection analysis, time-scaled phylogenetic estimation, and discrete trait analysis on a set of L1C-1-4-4 WGSs (n = 19) alongside other publicly published WGSs (n = 232) collected over a 26-year period (1995–2021). Results from various methodologies consistently suggest that the novel L1C variant was a descendant of a recombinant ancestor characterized by recombination at the ORF1a gene between two segments that would be otherwise classified as L1C and L1A in the ORF5 gene. Based on analysis of different WGS fragments, the L1C-1-4-4 variant descended from an ancestor that existed around late 2018 to early 2019, with relatively high substitution rates in the proximal ORF1a as well as ORF5 regions. Two viruses from 2018 were found to be the closest relatives to the 2020-21 outbreak strain but had different recombination profiles, suggesting that these viruses were not direct ancestors. We also assessed the overall frequency of putative recombination amongst ORF5 and other parts of the genome and found that recombination events which leave detectable numbers of descendants are not common. However, the rapid spread and high virulence of the L1C-1-4-4 recombinant variant demonstrates that inter-sub-lineage recombination occasionally found amongst the U.S. PRRSV-2 might be an evolutionary mechanisms that contributed to this emergence. More generally, recombination amongst PRRSV-2 accelerates genetic change and increases the chance of the emergence of high fitness variants.
Collapse
|
28
|
Heat Shock Protein Member 8 (HSPA8) Is Involved in Porcine Reproductive and Respiratory Syndrome Virus Attachment and Internalization. Microbiol Spectr 2022; 10:e0186021. [PMID: 35138165 PMCID: PMC8826899 DOI: 10.1128/spectrum.01860-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a porcine arterivirus, causes severe financial losses to global swine industry. Despite much research, the molecular mechanisms of PRRSV infection remains to be fully elucidated. In the current study, we uncovered the involvement of heat shock protein member 8 (HSPA8) in PRRSV attachment and internalization during infection for the first time. In detail, HSPA8 was identified to interact with PRRSV glycoprotein 4 (GP4), a major determinant for viral cellular tropism, dependent on its carboxy-terminal peptide-binding (PB) domain. Chemical inhibitors and specific small interference RNAs (siRNAs) targeting HSPA8 significantly suppressed PRRSV infection as indicated by decreased viral RNA abundance, infectivity, and titers. Especially, PRRSV attachment was inhibited by interference of its binding to HSPA8 with mouse anti-HSPA8 polyclonal antibodies (pAbs) and recombinant soluble HSPA8 protein. HSPA8 was further shown to participate in PRRSV internalization through clathrin-dependent endocytosis (CME). Collectively, these results demonstrate that HSPA8 is important for PRRSV attachment and internalization, which is a potential target to prevent and control the viral infection. IMPORTANCE PRRSV has caused huge economic losses to the pork industry around the world. Currently, safe and effective strategies are still urgently required to prevent and control PRRSV infection. As the first steps, PRRSV attachment and internalization are initiated by interactions between viral envelope proteins and host cell receptors/factors, which are not fully understood yet. Here, we identified the interaction between PRRSV GP4 and HSPA8, and demonstrated that HSPA8 was involved in PRRSV attachment and internalization. This work deepens our understanding of the molecular mechanisms involved in PRRSV infection, and provides novel insights for the development of antiviral drugs and vaccines against the virus.
Collapse
|
29
|
Xu D, Wang X, Zhang X, Li F, Zhang D, Li X, Zhang Y, Zhao Y, Song Q, Cheng J, Zhao L, Wang J, Li W, Zhou B, Lin C, Wang W. Polymorphisms in the ovine GP5 gene associated with blood physiological indices. Anim Biotechnol 2021:1-11. [PMID: 34904532 DOI: 10.1080/10495398.2021.2013859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to analyze the effects of polymorphisms in GP5 on blood physiological indices of 1065 sheep. The coefficients of variation of the red blood cell count (RBC), hemoglobin concentration (HGB), mean platelet volume (MPV), mean erythrocyte hemoglobin content (MCH), and red blood cell distribution-coefficient of variation (RDW-CV) were greater than 10%, and there was a very significant correlation between the main indices such as RBC, white blood cell, and platelet count (PLT) and most other indices (p < 0.01). qRT-PCR showed that GP5 was expressed in the heart, liver, spleen, lung, kidney, rumen, duodenum, muscle, tail fat, and lymph tissue, with significantly higher expression in the lymph. Subsequently, we detected single nucleotide polymorphisms (SNPs) in GP5 from group, which identified synonymous mutation g.657 T > C in the first exon of GP5. Association analysis showed significant correlations between the SNP and the physiological traits (p < 0.05), in which the RBC, neutrophilic granulocyte (NEUT) and RDW-CV values in sheep with the TC genotype and TT genotype were markedly lower than those in the CC genotype (p < 0.05). Thus, GP5 polymorphisms could be candidate biomarkers to screen blood physiological indices.
Collapse
Affiliation(s)
- Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qizhi Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
30
|
Comparison of Primary Virus Isolation in Pulmonary Alveolar Macrophages and Four Different Continuous Cell Lines for Type 1 and Type 2 Porcine Reproductive and Respiratory Syndrome Virus. Vaccines (Basel) 2021; 9:vaccines9060594. [PMID: 34205087 PMCID: PMC8229515 DOI: 10.3390/vaccines9060594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) has a highly restricted cellular tropism. In vivo, the virus primarily infects tissue-specific macrophages in the nose, lungs, tonsils, and pharyngeal lymphoid tissues. In vitro however, the MARC-145 cell line is one of the few PRRSV susceptible cell lines that are routinely used for in vitro propagation. Previously, several PRRSV non-permissive cell lines were shown to become susceptible to PRRSV infection upon expression of recombinant entry receptors (e.g., PK15Sn-CD163, PK15S10-CD163). In the present study, we examined the suitability of different cell lines as a possible replacement of primary pulmonary alveolar macrophages (PAM) cells for isolation and growth of PRRSV. The susceptibility of four different cell lines (PK15Sn-CD163, PK15S10-CD163, MARC-145, and MARC-145Sn) for the primary isolation of PRRSV from PCR positive sera (both PRRSV1 and PRRSV2) was compared with that of PAM. To find possible correlations between the cell tropism and the viral genotype, 54 field samples were sequenced, and amino acid residues potentially associated with the cell tropism were identified. Regarding the virus titers obtained with the five different cell types, PAM gave the highest mean virus titers followed by PK15Sn-CD163, PK15S10-CD163, MARC-145Sn, and MARC-145. The titers in PK15Sn-CD163 and PK15S10-CD163 cells were significantly correlated with virus titers in PAM for both PRRSV1 (p < 0.001) and PRRSV2 (p < 0.001) compared with MARC-145Sn (PRRSV1: p = 0.22 and PRRSV2: p = 0.03) and MARC-145 (PRRSV1: p = 0.04 and PRRSV2: p = 0.12). Further, a possible correlation between cell tropism and viral genotype was assessed using PRRSV whole genome sequences in a Genome-Wide-Association Study (GWAS). The structural protein residues GP2:187L and N:28R within PRRSV2 sequences were associated with their growth in MARC-145. The GP5:78I residue for PRRSV2 and the Nsp11:155F residue for PRRSV1 was linked to a higher replication on PAM. In conclusion, PK15Sn-CD163 and PK15S10-CD163 cells are phenotypically closely related to the in vivo target macrophages and are more suitable for virus isolation and titration than MARC-145/MARC-145Sn cells. The residues of PRRSV proteins that are potentially related with cell tropism will be further investigated in the future.
Collapse
|
31
|
Zhang M, Han X, Osterrieder K, Veit M. Palmitoylation of the envelope membrane proteins GP5 and M of porcine reproductive and respiratory syndrome virus is essential for virus growth. PLoS Pathog 2021; 17:e1009554. [PMID: 33891658 PMCID: PMC8099100 DOI: 10.1371/journal.ppat.1009554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/05/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped positive-strand RNA virus in the Arteiviridae family, is a major pathogen affecting pigs worldwide. The membrane (glyco)proteins GP5 and M form a disulfide-linked dimer, which is a major component of virions. GP5/M are required for virus budding, which occurs at membranes of the exocytic pathway. Both GP5 and M feature a short ectodomain, three transmembrane regions, and a long cytoplasmic tail, which contains three and two conserved cysteines, respectively, in close proximity to the transmembrane span. We report here that GP5 and M of PRRSV-1 and -2 strains are palmitoylated at the cysteines, regardless of whether the proteins are expressed individually or in PRRSV-infected cells. To completely prevent S-acylation, all cysteines in GP5 and M have to be exchanged. If individual cysteines in GP5 or M were substituted, palmitoylation was reduced, and some cysteines proved more important for efficient palmitoylation than others. Neither infectious virus nor genome-containing particles could be rescued if all three cysteines present in GP5 or both present in M were replaced in a PRRSV-2 strain, indicating that acylation is essential for virus growth. Viruses lacking one or two acylation sites in M or GP5 could be rescued but grew to significantly lower titers. GP5 and M lacking acylation sites form dimers and GP5 acquires Endo-H resistant carbohydrates in the Golgi apparatus suggesting that trafficking of the membrane proteins to budding sites is not disturbed. Likewise, GP5 lacking two acylation sites is efficiently incorporated into virus particles and these viruses exhibit no reduction in cell entry. We speculate that multiple fatty acids attached to GP5 and M in the endoplasmic reticulum are required for clustering of GP5/M dimers at Golgi membranes and constitute an essential prerequisite for virus assembly. Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus in the order Nidovirales, is an important pathogen for pigs. Despite its importance in veterinary medicine, basic structural and functional features of its membrane proteins have not been elucidated. Here, we provide evidence for palmitoylation of the PRRSV major membrane proteins GP5 and M at a cluster of membrane-near cysteines. Fatty acid attachment is required for virus growth, since removal of all acylation sites from either M or GP5 prevents recue of infectious particles. Furthermore, viruses lacking individual acylation sites in M and GP5 grow to significantly lower titers in cell culture. The specific infectivity and cell entry of viruses lacking two acylation sites in Gp5 is, however, not reduced. Likewise, these viruses revealed no effect on dimerization of GP5 with M, its transport to budding sites, and incorporation into virus particles. Since cells transfected with a cDNA expressing non-acylated GP5, or non-acylated M release no virus-like particles into the supernatant we propose that the fatty acids are required for the budding process. They might trigger assembly of GP5/M dimers to form a coat inside the lipid bilayer that induces membrane curvature.
Collapse
Affiliation(s)
- Minze Zhang
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Xiaoliang Han
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Klaus Osterrieder
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Michael Veit
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
32
|
The Function of the PRRSV-Host Interactions and Their Effects on Viral Replication and Propagation in Antiviral Strategies. Vaccines (Basel) 2021; 9:vaccines9040364. [PMID: 33918746 PMCID: PMC8070056 DOI: 10.3390/vaccines9040364] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) affects the global swine industry and causes disastrous economic losses each year. The genome of PRRSV is an enveloped single-stranded positive-sense RNA of approximately 15 kb. The PRRSV replicates primarily in alveolar macrophages of pig lungs and lymphatic organs and causes reproductive problems in sows and respiratory symptoms in piglets. To date, studies on how PRRSV survives in the host, the host immune response against viral infections, and pathogenesis, have been reported. PRRSV vaccines have been developed, including inactive virus, modified live virus, attenuated live vaccine, DNA vaccine, and immune adjuvant vaccines. However, there are certain problems with the durability and effectiveness of the licensed vaccines. Moreover, the high variability and fast-evolving populations of this RNA virus challenge the design of PRRSV vaccines, and thus effective vaccines against PRRSV have not been developed successfully. As is well known, viruses interact with the host to escape the host’s immune response and then replicate and propagate in the host, which is the key to virus survival. Here, we review the complex network and the mechanism of PRRSV–host interactions in the processes of virus infection. It is critical to develop novel antiviral strategies against PRRSV by studying these host–virus interactions and structures to better understand the molecular mechanisms of PRRSV immune escape.
Collapse
|
33
|
Comparison of ZMAC and MARC-145 Cell Lines for Improving Porcine Reproductive and Respiratory Syndrome Virus Isolation from Clinical Samples. J Clin Microbiol 2021; 59:JCM.01757-20. [PMID: 33268540 DOI: 10.1128/jcm.01757-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/28/2020] [Indexed: 11/20/2022] Open
Abstract
The MARC-145 cell line is commonly used to isolate porcine reproductive and respiratory syndrome virus (PRRSV) for diagnostics, research, and vaccine production, but it yields frustratingly low success rates of virus isolation (VI). The ZMAC cell line, derived from porcine alveolar macrophages, has become available, but its utilization for PRRSV VI from clinical samples has not been evaluated. This study compared PRRSV VI results in ZMAC and MARC-145 cells from 375 clinical samples (including 104 lung, 140 serum, 90 oral fluid, and 41 processing fluid samples). The PRRSV VI success rate was very low in oral fluids and processing fluids regardless of whether ZMAC cells or MARC-145 cells were used. Success rates of PRRSV VI from lung and serum samples were significantly higher in ZMAC than in MARC-145 cells. Lung and serum samples with threshold cycle (CT ) values of <30 had better VI success. PRRSV-2 in genetic lineages 1 and 8 was isolated more successfully in ZMAC cells than in MARC-145 cells, whereas PRRSV-2 in genetic lineage 5 was isolated in the two cell lines with similar success rates. For samples with positive VI in both ZMAC and MARC-145 cells, 14 of 23 PRRSV-2 isolates had similar titers in the two cell lines. A total of 51 of 95 (53.7%) ZMAC-obtained PRRSV-2 or PRRSV-1 isolates grew in MARC-145 cells, and all 46 (100%) MARC-145-obtained isolates grew in ZMAC cells. In summary, ZMAC cells allow better isolation of a wide range of PRRSV field strains; however, not all of the ZMAC-obtained PRRSV isolates grow in MARC-145 cells. This report provides important guidelines to improve isolation of PRRSV from clinical samples for further characterization and/or for producing autogenous vaccines.
Collapse
|
34
|
Ma H, Li X, Li J, Zhao Z, Zhang H, Hao G, Chen H, Qian P. Immunization with a recombinant fusion of porcine reproductive and respiratory syndrome virus modified GP5 and ferritin elicits enhanced protective immunity in pigs. Virology 2020; 552:112-120. [PMID: 33152628 DOI: 10.1016/j.virol.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/19/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused huge economic losses in the swine industry worldwide. Live and inactivated vaccines have only been partially successful in generating protective immune responses. The PRRS virus (PRRSV) glycoprotein 5 (GP5) is a major viral antigenic target and is thus suitable for development of genetically engineered PRRSV vaccines. Here, a modified GP5 and ferritin were fused and expressed using a baculovirus system to generate a GP5m-ferritin nanoparticle vaccine. We demonstrated that the GP5m-ferritin vaccine elicited higher serum antibody titers in pigs than inactivated PRRSV. Moreover, immunization with GP5m-Ft promoted a Th1-dominant cellular immune response and enhanced specific T-lymphocyte immune responses. GP5m-ferritin-vaccinated pigs had significantly lower mean rectal temperatures, respiratory scores, viremia, and macroscopic and microscopic lung lesion scores post-challenge compared with unvaccinated pigs. These results indicated that GP5m-ferritin subunit vaccines can elicit specific protective immune responses and represent promising vaccine candidates.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, Henan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Jianglong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Zekai Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
35
|
Meas S, Mekvichitsaeng P, Roshorm YM. Co-expression of self-cleaved multiple proteins derived from Porcine Reproductive and Respiratory Syndrome Virus by bi-cistronic and tri-cistronic DNA vaccines. Protein Expr Purif 2020; 177:105763. [PMID: 32971295 DOI: 10.1016/j.pep.2020.105763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome caused by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) remains one of the important diseases in swine industry. A vaccine that is safe, effective and also elicit broad immune response against multiple antigens is desirable. In this study, we developed multi-cistronic DNA vaccines capable of co-expressing multiple structural proteins derived from PRRSV. To preserve the structure and function of each antigen protein, we employed self-cleaving 2A peptides to mediate separation of multiple proteins expressed by multi-cistronic genes. Six bi-cistronic genes encoding PRRSV GP5 and M proteins were generated, by which each construct contains different 2A sequences derived from Foot-and-mouth disease virus (F2A), porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A) either with or without furin cleavage site (Fu). Vectored by the mammalian expression plasmid pTH, all six bi-cistronic genes co-expressed the proteins GP5 and M at comparable level. Importantly, all six types of 2A sequences could mediate a complete self-cleavage of the GP5 and M. We next generated tri-cistronic DNA vaccines co-expressing the PRRSV proteins GP5, M and N. All homologous and heterologous combinations of P2A and F2A in tri-cistronic genes yielded a complete self-cleavage of the GP5, M and N proteins. Our study reports a success in co-expression of multiple PRRSV structural proteins in discrete form from a single vaccine and confirms feasibility of developing one single vaccine that provides broad immune responses against PRRSV.
Collapse
Affiliation(s)
- Sochanwattey Meas
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Phenjun Mekvichitsaeng
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Yaowaluck Maprang Roshorm
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand; Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
36
|
Lu Y, Gillam F, Cao QM, Rizzo A, Meng XJ, Zhang C. Hepatitis B core antigen-based vaccine demonstrates cross-neutralization against heterologous North American Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2) strains. J Virol Methods 2020; 285:113945. [PMID: 32735804 DOI: 10.1016/j.jviromet.2020.113945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023]
Abstract
The U.S. swine industry have been bearing the financial impact of Porcine Reproductive and Respiratory Syndrome (PRRS) for decades. Absent of a safe and efficacious vaccine to combat PRRS virus's genetic heterogeneity, it remains a costly disease on pig farms across the country. We have developed virus-like-particle (VLP) based vaccines that incorporate 4 PRRSV epitopes in the hepatitis B core antigen (HBcAg) backbone. Administration of the vaccines in female BALB/C mice resulted in extremely significant PRRSV epitope specific antibody response. One vaccine candidate GP3-4 was able to mount a significant viral neutralizing response against both parental PRRSV strain VR2385 and heterologous PRRSV strain NADC20, showing a promising potential for cross-protection against PRRSV.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Qian M Cao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Amy Rizzo
- University Veterinarian & Animal Resources, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - X J Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
37
|
Kong L, Wu L, Guo Z, Mu L, Yang Y, Bian X, Li B, Pan X, Fu S, Ye J. A Siglec-1-like lectin from Nile tilapia (Oreochromis niloticus) possesses functions of agglutination and mediation of macrophage phagocytic activity. FISH & SHELLFISH IMMUNOLOGY 2020; 102:203-210. [PMID: 32330627 DOI: 10.1016/j.fsi.2020.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Siglec-1, one of the sialic acid-binding immunoglobulin-type lectins, is closely related to the recognition of host-pathogen and cell-cell interactions in the adaptive and innate immune systems. In this communication, a Siglec-1-like gene (OnSiglec-1-like) from Nile tilapia (Oreochromis niloticus) was analyzed. Relative expression revealed that the OnSiglec-1-like was expressed in all tested tissues, and the highest expression was found in the anterior kidney. Upon Streptococcus agalactiae (S. agalactiae) infection, the expression of OnSiglec-1-like was up-regulated in anterior kidney and spleen significantly in vivo. Additionally, the same phenomenon was observed in anterior kidney leukocytes upon LPS and S. agalactiae challenges as well in vitro. Western-blotting and ELISA analyses revealed that recombinant OnSiglec-1-like protein possessed high binding activity to LTA, LPS and S. agalactiae. Further, the recombinant OnSiglec-1-like was able to agglutinate S. agalactiae. Moreover, with the digestion of specific sialidase, the phagocytic ability of macrophages to S. agalactiae was greatly enhanced. Taken together, these results indicated that the Siglec-1-like possesses conserved functions of agglutination and promotion of macrophage phagocytic activity in Nile tilapia.
Collapse
Affiliation(s)
- Linghe Kong
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| | - Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Yanjian Yang
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xunbin Pan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Shengli Fu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
38
|
Abstract
Siglecs are sialic acid (Sia) recognizing immunoglobulin-like receptors expressed on the surface of all the major leukocyte lineages in mammals. Siglecs recognize ubiquitous Sia epitopes on various glycoconjugates in the cell glycocalyx and transduce signals to regulate immunological and inflammatory activities of these cells. The subset known as CD33-related Siglecs is principally inhibitory receptors that suppress leukocyte activation, and recent research has shown that a number of bacterial pathogens use Sia mimicry to engage these Siglecs as an immune evasion strategy. Conversely, Siglec-1 is a macrophage phagocytic receptor that engages GBS and other sialylated bacteria to promote effective phagocytosis and antigen presentation for the adaptive immune response, whereas certain viruses and parasites use Siglec-1 to gain entry to immune cells as a proximal step in the infectious process. Siglecs are positioned in crosstalk with other host innate immune sensing pathways to modulate the immune response to infection in complex ways. This chapter summarizes the current understanding of Siglecs at the host-pathogen interface, a field of study expanding in breadth and medical importance, and which provides potential targets for immune-based anti-infective strategies.
Collapse
Affiliation(s)
- Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 10051, Taiwan.
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, 9500 Gilman Drive Mail Code 0760, La Jolla, CA, 92093, USA
| |
Collapse
|
39
|
Liu Y, Li R, Zhang Y, Qiao S, Chen XX, Zhang G. Porcine reproductive and respiratory syndrome virus up-regulates sialoadhesin via IFN-STAT signaling to facilitate its infection. Microb Pathog 2020; 142:104112. [PMID: 32126255 DOI: 10.1016/j.micpath.2020.104112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused huge economic losses to global swine industry. Porcine sialoadhesin (poSn) was previously reported to be a putative receptor for the causative agent, PRRS virus (PRRSV). In the current study, we first observed that PRRSV infection up-regulated expression of poSn in a dose- and time-dependent manner. Subsequently, we found that PRRSV-triggered transcription of type I interferons (IFNs) was involved in poSn up-regulation through the IFN-signal transducer and activator of transcription (STAT) signaling cascade. Interestingly, poSn up-regulation was shown to promote PRRSV infection during post-entry process. Taken together, this work deepens our understanding of PRRSV pathogenesis and provides a novel idea on its establishment of persistent infection, which will be interesting to unravel the detailed mechanisms in the future.
Collapse
Affiliation(s)
- Yingqi Liu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Yuyang Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China.
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
40
|
Liu Y, Li R, Qiao S, Chen XX, Deng R, Zhang G. Porcine sialoadhesin suppresses type I interferon production to support porcine reproductive and respiratory syndrome virus infection. Vet Res 2020; 51:18. [PMID: 32093750 PMCID: PMC7038599 DOI: 10.1186/s13567-020-00743-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant threat to the global swine industry. Porcine sialoadhesin (poSn) has been previously shown to mediate PRRSV attachment and internalization. In the current study, we report its unidentified role in antagonism of type I interferon (IFN) production during PRRSV infection. We determined that poSn facilitated PRRSV infection via inhibition of type I IFN transcription. Mechanistically, poSn interacted with a 12 kDa DNAX-activation protein (DAP12), which was dependent on residues 51–57 within DAP12 transmembrane domain (TMD). PRRSV exploited the poSn-DAP12 pathway to attenuate activation of nuclear factor-kappa B (NF-κB). More importantly, the poSn-DAP12 pathway was involved in inhibiting poly (I:C)-triggered IFN production. All these results reveal a novel role of poSn in suppressing host antiviral responses, which deepens our understanding of PRRSV pathogenesis.
Collapse
Affiliation(s)
- Yingqi Liu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
41
|
Zhang L, Xu R, Wei F, Li W, Li X, Zhang G, Xia P. Activation of sialoadhesin down-regulates the levels of innate antiviral cytokines in porcine alveolar macrophages in vitro. Virus Res 2019; 275:197792. [PMID: 31669458 DOI: 10.1016/j.virusres.2019.197792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/19/2019] [Accepted: 10/20/2019] [Indexed: 01/20/2023]
Abstract
Porcine sialoadhesin (pSn) is a crucial porcine reproductive and respiratory syndrome virus (PRRSV) receptor mediating the attachment and internalization of virus into its major target cells, porcine alveolar macrophages (PAMs). However, the role of pSn in innate antiviral immune response has not yet been investigated. In this study, our results showed that PRRSV down-regulated significantly the mRNA levels of IFN-α, IFN-β, IFN-γ, IFN-λ1, IFN-λ3 and IFN-λ4 and up-regulated significantly the mRNA levels of IL-10 and pSn in infected PAMs in vitro, suggesting that PRRSV infection inhibited the transcription of innate antiviral cytokines in host cells. Our results also showed that selective activation of pSn down-regulated significantly the mRNA levels of IFN-α, IFN-β, IFN-γ, IFN-λ1, IFN-λ3, IFN-λ4 and TNF-α and up-regulated significantly the mRNA level of IL-10 in PAMs in vitro, suggesting that pSn signaling inhibited the transcription of innate antiviral cytokines. Further results showed that pSn1, pSn2, pSn3, pSn4 and pSn5 domains of pSn were responsible for the inhibition of levels of innate antiviral cytokines. In conclusion, our results suggested that pSn suppressed innate antiviral immune response by down-regulating the levels of innate antiviral cytokines in PAMs. It was possible that PRRSV-pSn interaction may suppress innate antiviral immune response to PRRSV infection by repressing the production of innate antiviral cytokines.
Collapse
Affiliation(s)
- Liujun Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Ruiqin Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Fengling Wei
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Wen Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Xiangtong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China.
| | - Pingan Xia
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, No. 95 Wen Hua Road, Zhengzhou, 450002, China.
| |
Collapse
|
42
|
Elizondo-Quiroga D, Zapata-Cuellar L, Uribe-Flores JA, Gaona-Bernal J, Camacho-Villegas TA, Manuel-Cabrera CA, Trujillo-Ortega ME, Ramírez-Hernández G, Herradora-Lozano MA, Mercado-García MDC, Gutiérrez Ortega A. An Escherichia coli-Expressed Porcine Reproductive and Respiratory Syndrome Virus Chimeric Protein Induces a Specific Immunoglobulin G Response in Immunized Piglets. Viral Immunol 2019; 32:370-382. [PMID: 31644382 DOI: 10.1089/vim.2019.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) still poses a threat to the swine industry worldwide. Currently, commercial vaccines against PRRSV, which consist of modified live or inactivated virus, reduce symptoms and viremia in immunized pigs, but efficacy against heterologous strains is variable. This has led to the development of subunit vaccines that contain viral antigens that show the highest variability. In this work, a chimeric protein comprising short amino acid sequences from glycoprotein 3 (GP3), glycoprotein 4 (GP4), glycoprotein 5 (GP5), and M (matrix protein) proteins of PRRSV was designed and expressed in Escherichia coli. This protein, designated as PRRSVchim, was purified by immobilized metal affinity chromatography and evaluated. PRRSVchim was identified by immunoglobulin G (IgG) presence in serum samples from PRRSV-positive pigs. Also, the protein probed to be antigenic in immunized mice and piglets and provided some degree of protection against challenge with a PRRSV field isolate. These results show the potential of PRRSVchim protein for both PRRSV diagnostic and immunoprophylaxis.
Collapse
Affiliation(s)
- Darwin Elizondo-Quiroga
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Lorena Zapata-Cuellar
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - José Alberto Uribe-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Tanya Amanda Camacho-Villegas
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - María Elena Trujillo-Ortega
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gerardo Ramírez-Hernández
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marco Antonio Herradora-Lozano
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - María Del Cármen Mercado-García
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Abel Gutiérrez Ortega
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
43
|
Xue B, Hou G, Zhang G, Huang J, Li L, Nan Y, Mu Y, Wang L, Zhang L, Han X, Ren X, Zhao Q, Wu C, Wang J, Zhou EM. MYH9 Aggregation Induced by Direct Interaction With PRRSV GP5 Ectodomain Facilitates Viral Internalization by Permissive Cells. Front Microbiol 2019; 10:2313. [PMID: 31649651 PMCID: PMC6794372 DOI: 10.3389/fmicb.2019.02313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/23/2019] [Indexed: 01/23/2023] Open
Abstract
Prevention and control of infection by porcine reproductive and respiratory syndrome virus (PRRSV) remains a challenge, due to our limited understanding of the PRRSV invasion mechanism. Our previous study has shown that PRRSV glycoprotein GP5 interacts with MYH9 C-terminal domain protein (PRA). Here we defined that the first ectodomain of GP5 (GP5-ecto-1) directly interacted with PRA and this interaction triggered PRA and endogenous MYH9 to form filament assembly. More importantly, MYH9 filament assembly was also formed in GP5-ecto-1-transfected MARC-145 cells. Notably, PRRSV infection of MARC-145 cells and porcine alveolar macrophages also induced endogenous MYH9 aggregation and polymerization that were required for subsequent PRRSV internalization. Moreover, overexpression of S100A4, a MYH9-specific disassembly inducer, in MARC-145 cells significantly resulted in diminished MYH9 aggregation and marked inhibition of subsequent virion internalization and infection by both PRRSV-1 and PRRSV-2 isolates. The collective results of this work reveal a novel molecular mechanism employed by MYH9 that helps PRRSV gain entry into permissive cells.
Collapse
Affiliation(s)
- Biyun Xue
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Gaopeng Hou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Guixi Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingjing Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Liangliang Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yuchen Nan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yang Mu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Lu Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ximeng Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xiaolei Ren
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qin Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Chunyan Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
44
|
Dong H, Zhou L, Ge X, Guo X, Han J, Yang H. Antiviral effect of 25-hydroxycholesterol against porcine reproductive and respiratory syndrome virus in vitro. Antivir Ther 2019; 23:395-404. [PMID: 29561734 DOI: 10.3851/imp3232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes economically huge losses to the pig industry worldwide. Current control of PRRSV infection remains inadequate although various means have been implemented. Thus, investigating novel antiviral therapeutics to combat PRRSV infection is essential. In the present study, the antiviral effect in vitro of 25-hydroxycholesterol (25HC) against PRRSV was investigated. METHODS Cell viability assay was performed to examine the impact of 25HC on the cell viability. Indirect immunofluorescence assay and virus titration were utilized to evaluate the levels of PRRSV growth. Viral attachment assay, penetration assay and release assay were conducted to investigate the antiviral mechanism of 25HC against PRRSV. Real-time RT-PCR assay was used to analyse the effect of 25HC on the genome synthesis of PRRSV. RESULTS We demonstrated that the growth of PRRSV was significantly inhibited in 25HC-pretreated cells and PRRSV-infected cells by 25HC. Moreover, 25HC could impair the attachment and entry of PRRSV in vitro, but not affect viral genome synthesis and virion release. CONCLUSIONS Our findings clearly indicate that 25HC can exert antiviral effect against PRRSV infection in vitro, suggesting that 25HC might be a novel potential agent to control PRRSV infection.
Collapse
Affiliation(s)
- Hong Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
45
|
Suematsu R, Miyamoto T, Saijo S, Yamasaki S, Tada Y, Yoshida H, Miyake Y. Identification of lipophilic ligands of Siglec5 and -14 that modulate innate immune responses. J Biol Chem 2019; 294:16776-16788. [PMID: 31551352 DOI: 10.1074/jbc.ra119.009835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/02/2019] [Indexed: 01/22/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of cell-surface immune receptors that bind to sialic acid at terminal glycan residues. Siglecs also recognize nonsialic acid ligands, many of which remain to be characterized. Here, we found that Siglec5 and Siglec14 recognize lipid compounds produced by Trichophyton, a fungal genus containing several pathogenic species. Biochemical approaches revealed that the Siglec ligands are fungal alkanes and triacylglycerols, an unexpected finding that prompted us to search for endogenous lipid ligands of Siglecs. Siglec5 weakly recognized several endogenous lipids, but the mitochondrial lipid cardiolipin and the anti-inflammatory lipid 5-palmitic acid-hydroxystearic acid exhibited potent ligand activity on Siglec5. Further, the hydrophobic stretch in the Siglec5 N terminus region was found to be required for efficient recognition of these lipids. Notably, this hydrophobic stretch was dispensable for recognition of sialic acid. Siglec5 inhibited cell activation upon ligand binding, and accordingly, the lipophilic ligands suppressed interleukin-8 (IL-8) production in Siglec5-expressing human monocytic cells. Siglec14 and Siglec5 have high sequence identity in the extracellular region, and Siglec14 also recognized the endogenous lipids. However, unlike Siglec5, Siglec14 transduces activating signals upon ligand recognition. Indeed, the endogenous lipids induced IL-8 production in Siglec14-expressing human monocytic cells. These results indicated that Siglec5 and Siglec14 can recognize lipophilic ligands that thereby modulate innate immune responses. To our knowledge, this is the first study reporting the binding of Siglecs to lipid ligands, expanding our understanding of the biological function and importance of Siglecs in the innate immunity.
Collapse
Affiliation(s)
- Rie Suematsu
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan.,Department of Rheumatology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.,Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
| | - Yoshifumi Tada
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Hiroki Yoshida
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga 849-8501, Japan
| |
Collapse
|
46
|
Porcine Reproductive and Respiratory Syndrome Virus Activates Lipophagy To Facilitate Viral Replication through Downregulation of NDRG1 Expression. J Virol 2019; 93:JVI.00526-19. [PMID: 31189711 PMCID: PMC6694807 DOI: 10.1128/jvi.00526-19] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Autophagy maintains cellular homeostasis by degrading organelles, proteins, and lipids in lysosomes. Autophagy is involved in the innate and adaptive immune responses to a variety of pathogens. Some viruses can hijack host autophagy to enhance their replication. However, the role of autophagy in porcine reproductive and respiratory syndrome virus (PRRSV) infection is unclear. Here, we show that N-Myc downstream-regulated gene 1 (NDRG1) deficiency induced autophagy, which facilitated PRRSV replication by regulating lipid metabolism. NDRG1 mRNA is expressed ubiquitously in most porcine tissues and most strongly in white adipose tissue. PRRSV infection downregulated the expression of NDRG1 mRNA and protein, while NDRG1 deficiency contributed to PRRSV RNA replication and progeny virus assembly. NDRG1 deficiency reduced the number of intracellular lipid droplets (LDs), but the expression levels of key genes in lipogenesis and lipolysis were not altered. Our results also show that NDRG1 deficiency promoted autophagy and increased the subsequent yields of hydrolyzed free fatty acids (FFAs). The reduced LD numbers, increased FFA levels, and enhanced PRRSV replication were abrogated in the presence of an autophagy inhibitor. Overall, our findings suggest that NDRG1 plays a negative role in PRRSV replication by suppressing autophagy and LD degradation.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-positive-stranded RNA virus, causes acute respiratory distress in piglets and reproductive failure in sows. It has led to tremendous economic losses in the swine industry worldwide since it was first documented in the late 1980s. Vaccination is currently the major strategy used to control the disease. However, conventional vaccines and other strategies do not provide satisfactory or sustainable prevention. Therefore, safe and effective strategies to control PRRSV are urgently required. The significance of our research is that we demonstrate a previously unreported relationship between PRRSV, NDRG1, and lipophagy in the context of viral infection. Furthermore, our data point to a new role for NDRG1 in autophagy and lipid metabolism. Thus, NDRG1 and lipophagy will have significant implications for understanding PRRSV pathogenesis for developing new therapeutics.
Collapse
|
47
|
Nonmuscle Myosin Heavy Chain IIA Recognizes Sialic Acids on Sialylated RNA Viruses To Suppress Proinflammatory Responses via the DAP12-Syk Pathway. mBio 2019; 10:mBio.00574-19. [PMID: 31064828 PMCID: PMC6509187 DOI: 10.1128/mbio.00574-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NMHC-IIA, a subunit of nonmuscle myosin IIA (NM-IIA), takes part in diverse physiological processes, including cell movement, cell shape maintenance, and signal transduction. Recently, NMHC-IIA has been demonstrated to be a receptor or factor contributing to viral infections. Here, we identified that NMHC-IIA recognizes sialic acids on sialylated RNA viruses, vesicular stomatitis virus (VSV) and porcine reproductive and respiratory syndrome virus (PRRSV). Upon recognition, NMHC-IIA associates with the transmembrane region of DAP12 to recruit Syk. Activation of the DAP12-Syk pathway impairs the host antiviral proinflammatory cytokine production and signaling cascades. More importantly, sialic acid mimics and sialylated RNA viruses enable the antagonism of LPS-triggered proinflammatory responses through engaging the NMHC-IIA–DAP12-Syk pathway. These results actually support that NMHC-IIA is involved in negative modulation of the host innate immune system, which provides a molecular basis for prevention and control of the sialylated RNA viruses and treatment of inflammatory diseases. Viral infections induce proinflammatory signaling cascades and inflammatory cytokine production, which is precisely regulated for host benefits. In the current study, we unravel a previously unappreciated role of nonmuscle myosin heavy chain IIA (NMHC-IIA) as a negative regulator in inflammatory responses. We identified that cell surface NMHC-IIA recognized sialic acids on sialylated RNA viruses during early infections and interacted with an immune adaptor DNAX activation protein of 12 kDa (DAP12) to recruit downstream spleen tyrosine kinase (Syk), leading to suppressed virus-triggered proinflammatory responses. More importantly, recognition of sialylated RNA viruses or sialic acid mimics by NMHC-IIA was shown to inhibit lipopolysaccharide (LPS)-induced proinflammatory responses via the DAP12-Syk pathway. These findings uncover a novel negative regulation mechanism of proinflammatory responses and provide a molecular basis to design anti-inflammatory drugs.
Collapse
|
48
|
Stoian AMM, Rowland RRR. Challenges for Porcine Reproductive and Respiratory Syndrome (PRRS) Vaccine Design: Reviewing Virus Glycoprotein Interactions with CD163 and Targets of Virus Neutralization. Vet Sci 2019; 6:vetsci6010009. [PMID: 30658381 PMCID: PMC6466263 DOI: 10.3390/vetsci6010009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
One of the main participants associated with the onset and maintenance of the porcine respiratory disease complex (PRDC) syndrome is porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus that has plagued the swine industry for 30 years. The development of effective PRRS vaccines, which deviate from live virus designs, would be an important step towards the control of PRRS. Potential vaccine antigens are found in the five surface proteins of the virus, which form covalent and multiple noncovalent interactions and possess hypervariable epitopes. Consequences of this complex surface structure include antigenic variability and escape from immunity, thus presenting challenges in the development of new vaccines capable of generating broadly sterilizing immunity. One potential vaccine target is the induction of antibody that disrupts the interaction between the macrophage CD163 receptor and the GP2, GP3, and GP4 heterotrimer that protrudes from the surface of the virion. Studies to understand this interaction by mapping mutations that appear following the escape of virus from neutralizing antibody identify the ectodomain regions of GP5 and M as important immune sites. As a target for antibody, GP5 possesses a conserved epitope flanked by N-glycosylation sites and hypervariable regions, a pattern of conserved epitopes shared by other viruses. Resolving this apparent conundrum is needed to advance PRRS vaccine development.
Collapse
Affiliation(s)
- Ana M M Stoian
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
49
|
Xie J, Trus I, Oh D, Kvisgaard LK, Rappe JCF, Ruggli N, Vanderheijden N, Larsen LE, Lefèvre F, Nauwynck HJ. A Triple Amino Acid Substitution at Position 88/94/95 in Glycoprotein GP2a of Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV1) Is Responsible for Adaptation to MARC-145 Cells. Viruses 2019; 11:v11010036. [PMID: 30626009 PMCID: PMC6356402 DOI: 10.3390/v11010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023] Open
Abstract
The Meat Animal Research Center-145 (MARC-145) cell line has been proven to be valuable for viral attenuation regarding vaccine development and production. Cell-adaptation is necessary for the efficient replication of porcine reproductive and respiratory syndrome virus (PRRSV) in these cells. Multiple sequence analysis revealed consistent amino acid substitutions in GP2a (V88F, M94I, F95L) of MARC-145 cell-adapted strains. To investigate the putative effect of these substitutions, mutations at either position 88, 94, 95, and their combinations were introduced into two PRRSV1 (13V091 and IVI-1173) infectious clones followed by the recovery of viable recombinants. When comparing the replication kinetics in MARC-145 cells, a strongly positive effect on the growth characteristics of the 13V091 strain (+2.1 log10) and the IVI-1173 strain (+1.7 log10) compared to wild-type (WT) virus was only observed upon triple amino acid substitution at positions 88 (V88F), 94 (M94I), and 95 (F95L) of GP2a, suggesting that the triple mutation is a determining factor in PRRSV1 adaptation to MARC-145 cells.
Collapse
Affiliation(s)
- Jiexiong Xie
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Dayoung Oh
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Lise K Kvisgaard
- National Veterinary Institute, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - Julie C F Rappe
- The Institute of Virology and Immunology IVI, 3147 Mittelhäusern and Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, 3147 Mittelhäusern and Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland.
| | - Nathalie Vanderheijden
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Lars E Larsen
- National Veterinary Institute, Technical University of Denmark, 2800 Lyngby, Denmark.
| | - François Lefèvre
- INRA, Molecular Immunology and Virology Unit, 78350 Jouy-en-Josas, France.
| | - Hans J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
50
|
Platycodin D Suppresses Type 2 Porcine Reproductive and Respiratory Syndrome Virus In Primary and Established Cell Lines. Viruses 2018; 10:v10110657. [PMID: 30469357 PMCID: PMC6266211 DOI: 10.3390/v10110657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a continuous threat to the pork industry as it continues to cause significant economic loss worldwide. Currently, vaccination strategies provide very limited protection against PRRSV transmission. Consequently, there is an urgent need to develop new antiviral strategies. Platycodin D (PD) is one of the major bioactive triterpenoid saponins derived from Platycodon grandiflorum, a traditional Chinese medicine used as an expectorant for pulmonary diseases and a remedy for respiratory disorders. Here, we demonstrate that PD exhibits potent activity against PRRSV infection in Marc-145 cells and primary porcine alveolar macrophages. PD exhibited broad-spectrum inhibitory activities in vitro against high pathogenic type 2 PRRSV GD-HD strain and GD-XH strain as well as classical CH-1a and VR2332 strains. PD at concentrations ranging 1–4 μM significantly inhibited PRRSV RNA synthesis, viral protein expression and progeny virus production in a dose-dependent manner. EC50 values of PD against four tested PRRSV strains infection in Marc-145 cells ranged from 0.74 to 1.76 μM. Mechanistically, PD inhibited PRRSV replication by directly interacting with virions therefore affecting multiple stages of the virus life cycle, including viral entry and progeny virus release. In addition, PD decreased PRRSV- and LPS-induced cytokine (IFN-α, IFN-β, IL-1α, IL-6, IL-8 and TNF-α) production in PAMs. Altogether, our findings suggested that PD is a potent inhibitor of PPRSV infection in vitro. However, further in vivo studies are necessary to confirm PD as a potential novel and effective PPRSV inhibitor in swine.
Collapse
|