1
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Abstract
Complement-opsonized HIV-1 triggers efficient antiviral type I interferon (IFN) responses in dendritic cells (DCs), which play an important role in protective responses at the earliest stages in retroviral infection. In contrast, HIV-1 suppresses or escapes sensing by STING- and MAVS-associated sensors. Here, we identified a complement receptor-mediated sensing pathway, where DCs are activated in CCR5/RLR (RIG-I/MDA5)/MAVS/TBK1-dependent fashion. Increased fusion of complement-opsonized HIV-1 via complement receptor 4 and CCR5 leads to increased incoming HIV-1 RNA in the cytoplasm, sensed by a nonredundant cooperative effect of RIG-I and MDA5. Moreover, complement-opsonized HIV-1 down-modulated the MAVS-suppressive Raf-1/PLK1 pathway, thereby opening the antiviral recognition pathway via MAVS. This in turn was followed by MAVS aggregation and subsequent TBK1/IRF3/NF-κB activation in DCs exposed to complement- but not non-opsonized HIV-1. Our data strongly suggest that complement is important in the induction of efficient antiviral immune responses by preventing HIV-1 suppressive mechanisms as well as inducing specific cytosolic sensors.
Collapse
|
3
|
Zaderer V, Posch W, Gstir R, Filipek PA, Bonn GK, Aramwit P, Huber LA, Wilflingseder D. P80 Natural Essence Exerts Efficient Anti-HIV-1- as Well as Adjuvant Effects in DCs. Vaccines (Basel) 2021; 9:976. [PMID: 34579213 PMCID: PMC8472994 DOI: 10.3390/vaccines9090976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), as well as complement, play a major role during human immunodeficiency virus 1 (HIV-1) entry and infection at mucosal sites. Together, DCs and complement are key points for understanding host defence against HIV-1 infection and for studying the impact of new drugs on the regulation of innate host-pathogen interactions and adaptive immunity. For this, we evaluated the antiviral effect of the P80 natural essence (Longan extract) on interactions of non- and complement-opsonized HIV-1 with DCs. In viability assays, we first illustrated the effects of P80 natural essence on DC function. We found that P80 concentrations above 1.5% caused increased cell death, while at concentrations between 0.5% and 1% the compound exerted efficient antiviral effects in DCs and illustrated an adjuvant effect regarding DC activation. DC maturation, as well as co-stimulatory capacity, were significantly improved by P80 natural essence via p38 MAPK phosphorylation in presence of the viral challenge independent of the opsonization pattern. These findings might be exploited for future therapeutic options to target DC subsets directly at mucosal sites by P80 natural essence and to block entry of both, non- and complement-opsonized HIV-1.
Collapse
Affiliation(s)
- Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.Z.); (W.P.)
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.Z.); (W.P.)
| | - Ronald Gstir
- ADSI—Austrian Drug Screening Institute GmbH, 6020 Innsbruck, Austria; (R.G.); (P.A.F.); (G.K.B.); (L.A.H.)
| | - Przemyslaw A. Filipek
- ADSI—Austrian Drug Screening Institute GmbH, 6020 Innsbruck, Austria; (R.G.); (P.A.F.); (G.K.B.); (L.A.H.)
| | - Günther K. Bonn
- ADSI—Austrian Drug Screening Institute GmbH, 6020 Innsbruck, Austria; (R.G.); (P.A.F.); (G.K.B.); (L.A.H.)
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Lukas A. Huber
- ADSI—Austrian Drug Screening Institute GmbH, 6020 Innsbruck, Austria; (R.G.); (P.A.F.); (G.K.B.); (L.A.H.)
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.Z.); (W.P.)
| |
Collapse
|
4
|
Svanberg C, Ellegård R, Crisci E, Khalid M, Borendal Wodlin N, Svenvik M, Nyström S, Birse K, Burgener A, Shankar EM, Larsson M. Complement-Opsonized HIV Modulates Pathways Involved in Infection of Cervical Mucosal Tissues: A Transcriptomic and Proteomic Study. Front Immunol 2021; 12:625649. [PMID: 34093520 PMCID: PMC8173031 DOI: 10.3389/fimmu.2021.625649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Genital mucosal transmission is the most common route of HIV spread. The initial responses triggered at the site of viral entry are reportedly affected by host factors, especially complement components present at the site, and this will have profound consequences on the outcome and pathogenesis of HIV infection. We studied the initial events associated with host-pathogen interactions by exposing cervical biopsies to free or complement-opsonized HIV. Opsonization resulted in higher rates of HIV acquisition/infection in mucosal tissues and emigrating dendritic cells. Transcriptomic and proteomic data showed a significantly more pathways and higher expression of genes and proteins associated with viral replication and pathways involved in different aspects of viral infection including interferon signaling, cytokine profile and dendritic cell maturation for the opsonized HIV. Moreover, the proteomics data indicate a general suppression by the HIV exposure. This clearly suggests that HIV opsonization alters the initial signaling pathways in the cervical mucosa in a manner that promotes viral establishment and infection. Our findings provide a foundation for further studies of the role these early HIV induced events play in HIV pathogenesis.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Elisa Crisci
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| | | | | | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden.,Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kenzie Birse
- National HIV and Retrovirology Labs, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Adam Burgener
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Raleigh, NC, Sweden
| |
Collapse
|
5
|
Chinnapaka S, Yang KS, Samadi Y, Epperly MW, Hou W, Greenberger JS, Ejaz A, Rubin JP. Allogeneic adipose-derived stem cells mitigate acute radiation syndrome by the rescue of damaged bone marrow cells from apoptosis. Stem Cells Transl Med 2021; 10:1095-1114. [PMID: 33724714 PMCID: PMC8235137 DOI: 10.1002/sctm.20-0455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Acute radiation syndrome (ARS) is the radiation toxicity that can affect the hematopoietic, gastrointestinal, and nervous systems upon accidental radiation exposure within a short time. Currently, there are no effective and safe approaches to treat mass population exposure to ARS. Our study aimed to evaluate the therapeutic potential of allogeneic adipose‐derived stem cells (ASCs) for total body irradiation (TBI)‐induced ARS and understand the underlying mitigation mechanism. We employed 9.25 Gy TBI dose to C57BL/6 mice and studied the effect of allogeneic ASCs on mice survival and regeneration of the hematopoietic system. Our results indicate that intraperitoneal‐injected ASCs migrated to the bone marrow, rescued hematopoiesis, and improved the survival of irradiated mice. Our transwell coculture results confirmed the migration of ASCs to irradiated bone marrow and rescue hematopoietic activity. Furthermore, contact coculture of ASCs improved the survival and hematopoiesis of irradiated bone marrow in vitro. Irradiation results in DNA damage, upregulation of inflammatory signals, and apoptosis in bone marrow cells, while coculture with ASCs reduces apoptosis via activation of DNA repair and the antioxidation system. Upon exposure to irradiated bone marrow cells, ASCs secrete prosurvival and hematopoietic factors, such as GM‐CSF, MIP1α, MIP1β, LIX, KC, 1P‐10, Rantes, IL‐17, MCSF, TNFα, Eotaxin, and IP‐10, which reduces oxidative stress and rescues damaged bone marrow cells from apoptosis. Our findings suggest that allogeneic ASCs therapy is effective in mitigating TBI‐induced ARS in mice and may be beneficial for clinical adaptation to treat TBI‐induced toxicities. Further studies will help to advocate the scale‐up and adaptation of allogeneic ASCs as the radiation countermeasure.
Collapse
Affiliation(s)
- Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine S Yang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yasamin Samadi
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Abstract
The innate immune system is comprised of both cellular and humoral players that recognise and eradicate invading pathogens. Therefore, the interplay between retroviruses and innate immunity has emerged as an important component of viral pathogenesis. HIV-1 infection in humans that results in hematologic abnormalities and immune suppression is well represented by changes in the CD4/CD8 T cell ratio and consequent cell death causing CD4 lymphopenia. The innate immune responses by mucosal barriers such as complement, DCs, macrophages, and NK cells as well as cytokine/chemokine profiles attain great importance in acute HIV-1 infection, and thus, prevent mucosal capture and transmission of HIV-1. Conversely, HIV-1 has evolved to overcome innate immune responses through RNA-mediated rapid mutations, pathogen-associated molecular patterns (PAMPs) modification, down-regulation of NK cell activity and complement receptors, resulting in increased secretion of inflammatory factors. Consequently, epithelial tissues lining up female reproductive tract express innate immune sensors including anti-microbial peptides responsible for forming primary barriers and have displayed an effective potent anti-HIV activity during phase I/II clinical trials.
Collapse
|
7
|
Posch W, Bermejo-Jambrina M, Lass-Flörl C, Wilflingseder D. Role of Complement Receptors (CRs) on DCs in Anti-HIV-1 Immunity. Front Immunol 2020; 11:572114. [PMID: 33224139 PMCID: PMC7670068 DOI: 10.3389/fimmu.2020.572114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Upon entry of human immunodeficiency virus 1 (HIV-1) into the host, innate immune mechanisms are acting as a first line of defense, that considerably also modify adaptive immunity by the provision of specific signals. Innate and adaptive immune responses are intimately linked and dendritic cells (DCs) together with complement (C) play an important role in regulation of adaptive immunity. Initially, the role of complement was considered to primarily support – or COMPLEMENT - cytolytic actions of antibodies or antibody-complexed antigens (immune complexes, ICs) or directly kill the pathogens by complement-mediated lysis. Recently, the role of complement was revised and found to significantly augmenting and modulating adaptive immunity, in particular against viruses. Complement and DCs are therefore predestined to open novel avenues for antiviral research and potential therapeutic interventions. Recent studies on interactions of complement-opsonized HIV-1 with DCs demonstrated a high potential of such primed DCs to initiate efficient antiviral and cytotoxic anti-HIV-1 immunity and complement-coated viral particles shift DCs functions via CR3 and CR4 in an antithetic manner. This review will focus on our current knowledge of CR3 and CR4 actions on DCs during HIV-1 binding and the outcome of infection influenced by entry and signaling pathways.
Collapse
Affiliation(s)
- Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marta Bermejo-Jambrina
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Kumar NA, Kunnakkadan U, Thomas S, Johnson JB. In the Crosshairs: RNA Viruses OR Complement? Front Immunol 2020; 11:573583. [PMID: 33133089 PMCID: PMC7550403 DOI: 10.3389/fimmu.2020.573583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Complement, a part of the innate arm of the immune system, is integral to the frontline defense of the host against innumerable pathogens, which includes RNA viruses. Among the major groups of viruses, RNA viruses contribute significantly to the global mortality and morbidity index associated with viral infection. Despite multiple routes of entry adopted by these viruses, facing complement is inevitable. The initial interaction with complement and the nature of this interaction play an important role in determining host resistance versus susceptibility to the viral infection. Many RNA viruses are potent activators of complement, often resulting in virus neutralization. Yet, another facet of virus-induced activation is the exacerbation in pathogenesis contributing to the overall morbidity. The severity in disease and death associated with RNA virus infections shows a tip in the scale favoring viruses. Growing evidence suggest that like their DNA counterparts, RNA viruses have co-evolved to master ingenious strategies to remarkably restrict complement. Modulation of host genes involved in antiviral responses contributed prominently to the adoption of unique strategies to keep complement at bay, which included either down regulation of activation components (C3, C4) or up regulation of complement regulatory proteins. All this hints at a possible “hijacking” of the cross-talk mechanism of the host immune system. Enveloped RNA viruses have a selective advantage of not only modulating the host responses but also recruiting membrane-associated regulators of complement activation (RCAs). This review aims to highlight the significant progress in the understanding of RNA virus–complement interactions.
Collapse
Affiliation(s)
- Nisha Asok Kumar
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India.,Manipal Academy of Higher Education, Manipal, India
| | - Umerali Kunnakkadan
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India.,Department of Biotechnology, University of Kerala, Thiruvananthapuram, India
| | - Sabu Thomas
- Cholera and Biofilm Research Lab, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - John Bernet Johnson
- Viral Disease Biology, Department of Pathogen Biology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
9
|
Bermejo-Jambrina M, Blatzer M, Jauregui-Onieva P, Yordanov TE, Hörtnagl P, Valovka T, Huber LA, Wilflingseder D, Posch W. CR4 Signaling Contributes to a DC-Driven Enhanced Immune Response Against Complement-Opsonized HIV-1. Front Immunol 2020; 11:2010. [PMID: 32922405 PMCID: PMC7457048 DOI: 10.3389/fimmu.2020.02010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/24/2020] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) possess intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. In turn, HIV-1 has evolved strategies to evade innate immune sensing by DCs resulting in suboptimal maturation and poor antiviral immune responses. We previously showed that complement-opsonized HIV-1 (HIV-C) was able to efficiently infect various DC subsets significantly higher than non-opsonized HIV-1 (HIV) and therefore also mediate a higher antiviral immunity. Thus, complement coating of HIV-1 might play a role with respect to viral control occurring early during infection via modulation of DCs. To determine in detail which complement receptors (CRs) expressed on DCs was responsible for infection and superior pro-inflammatory and antiviral effects, we generated stable deletion mutants for the α-chains of CR3, CD11b, and CR4, CD11c using CRISPR/Cas9 in THP1-derived DCs. We found that CD11c deletion resulted in impaired DC infection as well as antiviral and pro-inflammatory immunity upon exposure to complement-coated HIV-1. In contrast, sole expression of CD11b on DCs shifted the cells to an anti-inflammatory, regulatory DC type. We here illustrated that CR4 comprised of CD11c and CD18 is the major player with respect to DC infection associated with a potent early pro-inflammatory immune response. A more detailed characterization of CR3 and CR4 functions using our powerful tool might open novel avenues for early therapeutic intervention during HIV-1 infection.
Collapse
Affiliation(s)
- Marta Bermejo-Jambrina
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michael Blatzer
- Experimental Neuropathology Unit, Infection and Epidemiology Department, Institute Pasteur, Paris, France
| | - Paula Jauregui-Onieva
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Teodor E Yordanov
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute for Blood Transfusion and Immunological Department, Innsbruck, Austria
| | - Taras Valovka
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Agrawal P, Sharma S, Pal P, Ojha H, Mullick J, Sahu A. The imitation game: a viral strategy to subvert the complement system. FEBS Lett 2020; 594:2518-2542. [DOI: 10.1002/1873-3468.13856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/10/2020] [Accepted: 05/23/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Palak Agrawal
- Complement Biology Laboratory National Centre for Cell Science S. P. Pune University Campus Ganeshkhind Pune 411007 India
| | - Samriddhi Sharma
- Complement Biology Laboratory National Centre for Cell Science S. P. Pune University Campus Ganeshkhind Pune 411007 India
| | - Pradipta Pal
- Complement Biology Laboratory National Centre for Cell Science S. P. Pune University Campus Ganeshkhind Pune 411007 India
| | - Hina Ojha
- Complement Biology Laboratory National Centre for Cell Science S. P. Pune University Campus Ganeshkhind Pune 411007 India
| | - Jayati Mullick
- Microbial Containment Complex ICMR‐National Institute of Virology Pune 411021 India
| | - Arvind Sahu
- Complement Biology Laboratory National Centre for Cell Science S. P. Pune University Campus Ganeshkhind Pune 411007 India
| |
Collapse
|
11
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
12
|
Schönfeld M, Knackmuss U, Chandorkar P, Hörtnagl P, Hope TJ, Moris A, Bellmann-Weiler R, Lass-Flörl C, Posch W, Wilflingseder D. Co- but not Sequential Infection of DCs Boosts Their HIV-Specific CTL-Stimulatory Capacity. Front Immunol 2019; 10:1123. [PMID: 31178863 PMCID: PMC6542955 DOI: 10.3389/fimmu.2019.01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 05/02/2019] [Indexed: 11/27/2022] Open
Abstract
Pathogenic bacteria and their microbial products activate dendritic cells (DCs) at mucosal surfaces during sexually transmitted infections (STIs) and therefore might also differently shape DC functions during co-infection with HIV-1. We recently illustrated that complement (C) coating of HIV-1 (HIV-C), as primarily found during the acute phase of infection before appearance of HIV-specific antibodies, by-passed SAMHD1-mediated restriction in DCs and therefore mediated an increased DC activation and antiviral capacity. To determine whether the superior antiviral effects of HIV-C-exposed DCs also apply during STIs, we developed a co-infection model in which DCs were infected with Chlamydia spp. simultaneously (HIV-C/Chlam-DCs or HIV/Chlam-DCs) or a sequential infection model, where DCs were exposed to Chlamydia for 3 or 24 h (Chlam-DCs) followed by HIV-1 infection. Co-infection of DCs with HIV-1 and Chlamydia significantly boosted the CTL-stimulatory capacity compared to HIV-1-loaded iDCs and this boost was independent on the opsonization pattern. This effect was lost in the sequential infection model, when opsonized HIV-1 was added delayed to Chlamydia-loaded DCs. The reduction in the CTL-stimulatory capacity of Chlam-DCs was not due to lower HIV-1 binding or infection compared to iDCs or HIV-C/Chlam-DCs, but due to altered fusion and internalization mechanisms within DCs. The CTL-stimulatory capacity of HIV-C in Chlam-DCs correlated with significantly reduced viral fusion compared to iDCs and HIV-C/Chlam-DCs and illustrated considerably increased numbers of HIV-C-containing vacuoles than iDCs. The data indicate that Chlamydia co-infection of DCs mediates a transient boost of their HIV-specific CTL-stimulatory and antiviral capacity, while in the sequential infection model this is reversed and associated with hazard to the host.
Collapse
Affiliation(s)
- Manuela Schönfeld
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulla Knackmuss
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Parul Chandorkar
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute for Blood Transfusion and Immunological Department, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas John Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Arnaud Moris
- Sorbonne Université, INSERM, CNRS, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Fcγ Receptor Type I (CD64)-Mediated Impairment of the Capacity of Dendritic Cells to Activate Specific CD8 T Cells by IgG-opsonized Friend Virus. Viruses 2019; 11:v11020145. [PMID: 30744065 PMCID: PMC6410291 DOI: 10.3390/v11020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs) express Fcγ receptors (FcγRs) for the binding immune complexes (ICs) consisting of IgG and antigens (Ags). IC–FcγR interactions have been demonstrated to enhance activation and antigen-presenting functions of DCs. Utilizing Friend virus (FV), an oncogenic mouse retrovirus, we investigated the effect of IgG-opsonization of retroviral particles on the infection of DCs and the subsequent presentation of viral antigens by DCs to virus-specific CD8 T cells. We found that opsonization by virus-specific non-neutralizing IgG abrogated DC infection and as a consequence significantly reduced the capacity of DCs to activate virus-specific CD8 T cells. Effects of IgG-opsonization were mediated by the high-affinity FcγR type I, CD64, expressed on DCs. Our results suggest that different opsonization patterns on the retroviral surface modulate infection and antigen-presenting functions of DCs, whereby, in contrast to complement, IgG reduces the capacity of DCs to activate cytotoxic T cell (CTL) responses.
Collapse
|
14
|
Quach QH, Ang SK, Chu JHJ, Kah JCY. Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. Acta Biomater 2018; 78:224-235. [PMID: 30099200 DOI: 10.1016/j.actbio.2018.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Dengue results in substantial human morbidity and significant socio-economic impacts, but a specific dengue therapeutic is not available. The currently available dengue vaccine has low efficacy and high rate of adverse effects, necessitating different strategies for the development of a safer and more efficient vaccine against dengue virus. We describe here a hybrid combination of different-sized gold nanoparticles (AuNPs) and domain III of envelope glycoprotein derived from serotype 2 of dengue virus (EDIII) as dengue subunit vaccine. The efficacy of the EDIII-functionalized AuNPs (AuNP-E) to induce neutralizing antibody in BALB/c mice is evaluated. Obtained results show that AuNP-E induced a high level of antibody which mediates serotype-specific neutralization of dengue virus. More importantly, the level of antibody is dependent on both the size of AuNPs and the concentration of AuNP-E, implicating the possibility to modulate it through adjusting these parameters. These results represent an important step towards the development of tetravalent AuNP-based subunit dengue vaccine. STATEMENT OF SIGNIFICANCE This research presents a novel subunit vaccine against dengue virus using a hybrid comprising gold nanoparticles (AuNPs) and domain III of envelop protein (EDIII). We proved the neutralizing activity of anti-EDIII antibody induced in immunized mice on Dengue virus serotype 2 in an AuNP core size and concentration dependent manner. The hybrid concept behind this work could also be adopted for the development of a tetravalent vaccine against four serotypes of Dengue virus.
Collapse
|
15
|
Abstract
Regulatory T cells (Tregs) are immunosuppressive cells of the immune system that control autoimmune reactivity. Tregs also respond during immune reactions to infectious agents in order to limit immunopathological damage from potent effectors such as CD8+ cytolytic T lymphocytes. We have used the Friend virus (FV) model of retroviral infection in mice to investigate how viral infections induce Tregs. During acute FV infection, there is significant activation and expansion of thymus-derived (natural) Tregs that suppress virus-specific CD8+ T cell responses. Unlike conventional T cells, the responding Tregs are not virus specific, so the mechanisms that induce their expansion are of great interest. We now show that B cells provide essential signals for Treg expansion during FV infection. Treg responses are greatly diminished in B cell-deficient mice but can be restored by adoptive transfers of B cells at the time of infection. The feeble Treg responses in B cell-deficient mice are associated with enhanced virus-specific CD8+ T cell responses and accelerated virus control during the first 2 weeks of infection. In vitro experiments demonstrated that B cells promote Treg activation and proliferation through a glucocorticoid-induced receptor superfamily member 18 (GITR) ligand-dependent mechanism. Thus, B cells play paradoxically opposing roles during FV infection. They provide proliferative signals to immunsosuppressive Tregs, which slows early virus control, and they also produce virus-specific antibodies, which are essential for long-term virus control. When infectious agents invade a host, numerous immunological mechanisms are deployed to limit their replication, neutralize their spread, and destroy the host cells harboring the infection. Since immune responses also have a strong capacity to damage host cells and tissues, their magnitude, potency, and duration are under regulatory control. Regulatory T cells are an important component of this control, and the mechanisms that induce them to respond and exert immunosuppressive regulation are of great interest. In the current report, we show that B cells, the cells responsible for making pathogen-specific antibodies, are also involved in promoting the expansion of regulatory T cells during a retroviral infection. In vitro studies demonstrated that they do so via stimulation of the Tregs through interactions between cell surface molecules: GITR interactions with its ligand (GITRL) on B cells and GITR on regulatory T cells. These findings point the way toward therapeutics to better treat infections and autoimmune diseases.
Collapse
|
16
|
Posch W, Lass-Flörl C, Wilflingseder D. Generation of Human Monocyte-derived Dendritic Cells from Whole Blood. J Vis Exp 2016. [PMID: 28060313 DOI: 10.3791/54968] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) recognize foreign structures of different pathogens, such as viruses, bacteria, and fungi, via a variety of pattern recognition receptors (PRRs) expressed on their cell surface and thereby activate and regulate immunity. The major function of DCs is the induction of adaptive immunity in the lymph nodes by presenting antigens via MHC I and MHC II molecules to naïve T lymphocytes. Therefore, DCs have to migrate from the periphery to the lymph nodes after the recognition of pathogens at the sites of infection. For in vitro experiments or DC vaccination strategies, monocyte-derived DCs are routinely used. These cells show similarities in physiology, morphology, and function to conventional myeloid dendritic cells. They are generated by interleukin 4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation of monocytes isolated from healthy donors. Here, we demonstrate how monocytes are isolated and stimulated from anti-coagulated human blood after peripheral blood mononuclear cell (PBMC) enrichment by density gradient centrifugation. Human monocytes are differentiated into immature DCs and are ready for experimental procedures in a non-clinical setting after 5 days of incubation.
Collapse
Affiliation(s)
- Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck;
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck
| |
Collapse
|
17
|
Suresh R, Chandrasekaran P, Sutterwala FS, Mosser DM. Complement-mediated 'bystander' damage initiates host NLRP3 inflammasome activation. J Cell Sci 2016; 129:1928-39. [PMID: 27006116 DOI: 10.1242/jcs.179291] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/15/2016] [Indexed: 12/27/2022] Open
Abstract
Complement activation has long been associated with inflammation, primarily due to the elaboration of the complement anaphylotoxins C5a and C3a. In this work, we demonstrate that the phagocytosis of complement-opsonized particles promotes host inflammatory responses by a new mechanism that depends on the terminal complement components (C5b-C9). We demonstrate that during the phagocytosis of complement-opsonized particles, the membrane attack complex (MAC) of complement can be transferred from the activating particle to the macrophage plasma membrane by a 'bystander' mechanism. This MAC-mediated bystander damage initiates NLRP3 inflammasome activation, resulting in caspase-1 activation and IL-1β and IL-18 secretion. Inflammasome activation is not induced when macrophages phagocytize unopsonized particles or particles opsonized with serum deficient in one of the terminal complement components. The secretion of IL-1β and IL-18 by macrophages depends on NLRP3, ASC (also known as PYCARD) and caspase-1, as macrophages deficient in any one of these components fail to secrete these cytokines following phagocytosis. The phagocytosis of complement-opsonized particles increases leukocyte recruitment and promotes T helper 17 cell (TH17) biasing. These findings reveal a new mechanism by which complement promotes inflammation and regulates innate and adaptive immunity.
Collapse
Affiliation(s)
- Rahul Suresh
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Prabha Chandrasekaran
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Fayyaz S Sutterwala
- The Inflammation Program, Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA 52241, USA
| | - David M Mosser
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
18
|
Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells. PLoS Pathog 2015; 11:e1005005. [PMID: 26121641 PMCID: PMC4485899 DOI: 10.1371/journal.ppat.1005005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. We here give insight into a substantial novel way of dendritic cell modulation at least during acute HIV-1 infection by triggering integrin receptor signaling. We found that complement-opsonization of the virus is able to relieve SAMHD1 restriction in DCs, thereby initiating strong maturation and co-stimulatory capacity of the cells and stimulating efficient cellular and humoral antiviral immune responses. This newly described way of DC modulation by complement might be exploited to find novel therapeutic targets promoting DC immune functions against HIV.
Collapse
|
19
|
Wilflingseder D, Schroll A, Hackl H, Gallasch R, Frampton D, Lass-Flörl C, Pancino G, Saez-Cirion A, Lambotte O, Weiss L, Kellam P, Trajanoski Z, Geijtenbeek T, Weiss G, Posch W. Immediate T-Helper 17 Polarization Upon Triggering CD11b/c on HIV-Exposed Dendritic Cells. J Infect Dis 2015; 212:44-56. [PMID: 25583169 DOI: 10.1093/infdis/jiv014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
Early on in human immunodeficiency virus (HIV) type 1 infection, gut T-helper (Th) 17 cells are massively depleted leading eventually to compromised intestinal barrier function and excessive immune activation. In contrast, the functional Th17 cell compartment of the gut is well-maintained in nonpathogenic simian immunodeficiency virus infection as well as HIV-1 long-term nonprogressors. Here, we show that dendritic cells (DCs) loaded with HIV-1 bearing high surface complement levels after incubation in plasma from HIV-infected individuals secreted significantly higher concentrations of Th17-polarizing cytokines than DCs exposed to nonopsonized HIV-1. The enhanced Th17-polarizing capacity of in vitro-generated and BDCA-1(+) DCs directly isolated from blood was linked to activation of ERK. In addition, C3a produced from DCs exposed to complement-opsonized HIV was associated with the higher Th17 polarization. Our in vitro and ex vivo data, therefore, indicate that complement opsonization of HIV-1 strengthens DC-mediated antiviral immune functions by simultaneously triggering Th17 expansion and intrinsic C3 formation via DC activation.
Collapse
Affiliation(s)
| | - Andrea Schroll
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| | - Ralf Gallasch
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| | - Dan Frampton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge University College London, Windeyer Institute, United Kingdom
| | | | | | | | - Olivier Lambotte
- INSERM U1012, Régulation de la Réponse Immune, Infection VIH1 et Autoimmunité, Université Paris Sud APHP, Service de Médecine Interne, Hôpitaux Universitaires Paris Sud Faculté de Médecine Paris Sud, Le Kremlin Bicêtre, France
| | - Laurence Weiss
- Unité de Régulation des Infections Rétrovirales APHP Hôpital Européen Georges Pompidou, Paris
| | - Paul Kellam
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge University College London, Windeyer Institute, United Kingdom
| | - Zlatko Trajanoski
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Austria
| | - Teunis Geijtenbeek
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Günter Weiss
- Department of Internal Medicine VI, Clinical Immunology and Infectious Diseases
| | | |
Collapse
|
20
|
Price PJR, Bánki Z, Scheideler A, Stoiber H, Verschoor A, Sutter G, Lehmann MH. Complement component C5 recruits neutrophils in the absence of C3 during respiratory infection with modified vaccinia virus Ankara. THE JOURNAL OF IMMUNOLOGY 2014; 194:1164-8. [PMID: 25548218 DOI: 10.4049/jimmunol.1301410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Efficient leukocyte migration is important for an effective host response to viral infection and the development of adaptive immunity. The poxvirus strain modified vaccinia virus Ankara (MVA), a safe and efficient viral vector, rapidly induces chemokine expression and respiratory recruitment of leukocytes, which is unique among vaccinia viruses. In addition to chemokines, the complement system contributes to the attraction and activation of different types of leukocytes. Using a murine model of intranasal infection, we show in this study that MVA-induced neutrophil recruitment depends on complement component C5. Remarkably, we find that C5 mediates neutrophil recruitment to the lung, even in the absence of the central complement component C3. Our findings argue for complement C5 activation during MVA infection of the lung via a C3-independent pathway, which enables rapid recruitment of neutrophils.
Collapse
Affiliation(s)
- Philip J R Price
- Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, Munich 80539, Germany; German Centre for Infection Research, Partner Site Munich, Munich 80539, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Angelika Scheideler
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Abteilung für Vergleichende Medizin, Neuherberg 85764, Germany; and
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Admar Verschoor
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich 81675, Germany
| | - Gerd Sutter
- Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, Munich 80539, Germany; German Centre for Infection Research, Partner Site Munich, Munich 80539, Germany
| | - Michael H Lehmann
- Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, Munich 80539, Germany; German Centre for Infection Research, Partner Site Munich, Munich 80539, Germany;
| |
Collapse
|
21
|
Saez-Cirion A, Jacquelin B, Barré-Sinoussi F, Müller-Trutwin M. Immune responses during spontaneous control of HIV and AIDS: what is the hope for a cure? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130436. [PMID: 24821922 PMCID: PMC4024229 DOI: 10.1098/rstb.2013.0436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
HIV research has made rapid progress and led to remarkable achievements in recent decades, the most important of which are combination antiretroviral therapies (cART). However, in the absence of a vaccine, the pandemic continues, and additional strategies are needed. The 'towards an HIV cure' initiative aims to eradicate HIV or at least bring about a lasting remission of infection during which the host can control viral replication in the absence of cART. Cases of spontaneous and treatment-induced control of infection offer substantial hope. Here, we describe the scientific knowledge that is lacking, and the priorities that have been established for research into a cure. We discuss in detail the immunological lessons that can be learned by studying natural human and animal models of protection and spontaneous control of viraemia or of disease progression. In particular, we describe the insights we have gained into the immune mechanisms of virus control, the impact of early virus-host interactions and why chronic inflammation, a hallmark of HIV infection, is an obstacle to a cure. Finally, we enumerate current interventions aimed towards improving the host immune response.
Collapse
Affiliation(s)
| | | | | | - M. Müller-Trutwin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| |
Collapse
|
22
|
Dupont A, Mohamed F, Salehen N, Glenn S, Francescut L, Adib R, Byrne S, Brewin H, Elliott I, Richards L, Dimitrova P, Schwaeble W, Ivanovska N, Kadioglu A, Machado LR, Andrew PW, Stover C. Septicaemia models using Streptococcus pneumoniae and Listeria monocytogenes: understanding the role of complement properdin. Med Microbiol Immunol 2014; 203:257-71. [PMID: 24728387 PMCID: PMC4118039 DOI: 10.1007/s00430-013-0324-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/18/2013] [Indexed: 01/24/2023]
Abstract
Streptococcus pneumoniae and Listeria monocytogenes, pathogens which can cause severe infectious disease in human, were used to infect properdin-deficient and wildtype mice. The aim was to deduce a role for properdin, positive regulator of the alternative pathway of complement activation, by comparing and contrasting the immune response of the two genotypes in vivo. We show that properdin-deficient and wildtype mice mounted antipneumococcal serotype-specific IgM antibodies, which were protective. Properdin-deficient mice, however, had increased survival in the model of streptococcal pneumonia and sepsis. Low activity of the classical pathway of complement and modulation of FcγR2b expression appear to be pathogenically involved. In listeriosis, however, properdin-deficient mice had reduced survival and a dendritic cell population that was impaired in maturation and activity. In vitro analyses of splenocytes and bone marrow-derived myeloid cells support the view that the opposing outcomes of properdin-deficient and wildtype mice in these two infection models is likely to be due to a skewing of macrophage activity to an M2 phenotype in the properdin-deficient mice. The phenotypes observed thus appear to reflect the extent to which M2- or M1-polarised macrophages are involved in the immune responses to S. pneumoniae and L. monocytogenes. We conclude that properdin controls the strength of immune responses by affecting humoral as well as cellular phenotypes during acute bacterial infection and ensuing inflammation.
Collapse
Affiliation(s)
- Aline Dupont
- Department of Infection, Immunity and Inflammation, Maurice Shock Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kandasamy M, Ying PC, Ho AWS, Sumatoh HR, Schlitzer A, Hughes TR, Kemeny DM, Morgan BP, Ginhoux F, Sivasankar B. Complement mediated signaling on pulmonary CD103(+) dendritic cells is critical for their migratory function in response to influenza infection. PLoS Pathog 2013; 9:e1003115. [PMID: 23326231 PMCID: PMC3542115 DOI: 10.1371/journal.ppat.1003115] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/20/2012] [Indexed: 01/13/2023] Open
Abstract
Trafficking of lung dendritic cells (DCs) to the draining lymph node (dLN) is a crucial step for the initiation of T cell responses upon pathogen challenge. However, little is known about the factors that regulate lung DC migration to the dLN. In this study, using a model of influenza infection, we demonstrate that complement component C3 is critically required for efficient emigration of DCs from the lung to the dLN. C3 deficiency affect lung DC-mediated viral antigen transport to the dLN, resulting in severely compromised priming of virus-specific T cell responses. Consequently, C3-deficient mice lack effector T cell response in the lungs that affected viral clearance and survival. We further show that direct signaling by C3a and C5a through C3aR and C5aR respectively expressed on lung DCs is required for their efficient trafficking. However, among lung DCs, only CD103+ DCs make a significant contribution to lung C5a levels and exclusively produce high levels of C3 and C5 during influenza infection. Collectively, our findings show that complement has a profound impact on immune regulation by controlling tissue DC trafficking and highlights a potential utility for complement as an adjuvant in novel vaccine strategies. Influenza is a global health problem frequented by epidemics and pandemics. Current vaccines against influenza offer limited protection hence the need for reformulation and repeated vaccination. There is a pressing need to develop newer vaccines that are able to generate T cell response. In order to develop such vaccines, there is a need to understand how T cell responses are generated during influenza infection. Influenza specific T cell responses are generated by the dendritic cells (DCs) in the lung. Upon influenza infection, DCs in the lung carry viral peptides to the draining lymph node (dLN) to initiate an immune response. Thus, migration of DCs from the lung to the dLN is an important step in the initiation of influenza specific T cell response. We now show that activation products of the complement system interact with their receptors on the DCs, which signals for the DCs to migrate from the lung to the dLN. Thus, our results reveal a previously unknown function for complement in mediating lung DC migration during influenza infection and highlight its potential as an adjuvant in novel vaccine strategies.
Collapse
Affiliation(s)
- Matheswaran Kandasamy
- Infection and Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Poon C. Ying
- Infection and Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Adrian W. S. Ho
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hermi R. Sumatoh
- Infection and Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Andreas Schlitzer
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Timothy R. Hughes
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - David M. Kemeny
- Immunology Programme and Department of Microbiology, National University of Singapore, Singapore
| | - B. Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Baalasubramanian Sivasankar
- Infection and Immunity Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- * E-mail:
| |
Collapse
|
24
|
Posch W, Cardinaud S, Hamimi C, Fletcher A, Mühlbacher A, Loacker K, Eichberger P, Dierich MP, Pancino G, Lass-Flörl C, Moris A, Saez-Cirion A, Wilflingseder D. Antibodies attenuate the capacity of dendritic cells to stimulate HIV-specific cytotoxic T lymphocytes. J Allergy Clin Immunol 2012; 130:1368-74.e2. [PMID: 23063584 DOI: 10.1016/j.jaci.2012.08.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/07/2012] [Accepted: 08/17/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND Control of HIV is suggested to depend on potent effector functions of the virus-specific CD8(+) T-cell response. Antigen opsonization can modulate the capture of antigen, its presentation, and the priming of specific CD8(+) T-cell responses. OBJECTIVE We have previously shown that opsonization of retroviruses acts as an endogenous adjuvant for dendritic cell (DC)-mediated induction of specific cytotoxic T lymphocytes (CTLs). However, in some HIV-positive subjects, high levels of antibodies and low levels of complement fragments coat the HIV surface. METHODS Therefore we analyzed the effect of IgG opsonization on the antigen-presenting capacity of DCs by using CD8(+) T-cell proliferation assays after repeated prime boosting, by measuring the antiviral activity against HIV-infected autologous CD4(+) T cells, and by determining IFN-γ secretion from HIV-specific CTL clones. RESULTS We find that DCs exposed to IgG-opsonized HIV significantly decreased the HIV-specific CD8(+) T-cell response compared with the earlier described efficient CD8(+) T-cell activation induced by DCs loaded with complement-opsonized HIV. DCs exposed to HIV bearing high surface IgG levels after incubation in plasma from HIV-infected subjects acted as weak stimulators for HIV-specific CTL clones. In contrast, HIV opsonized with plasma from patients exhibiting high complement and low IgG deposition on the viral surface favored significantly higher activation of HIV-specific CD8(+) T-cell clones. CONCLUSION Our ex vivo and in vitro observations provide the first evidence that IgG opsonization of HIV is associated with a decreased CTL-stimulatory capacity of DCs.
Collapse
Affiliation(s)
- Wilfried Posch
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ejaz A, Ammann CG, Werner R, Huber G, Oberhauser V, Hörl S, Schimmer S, Dittmer U, von Laer D, Stoiber H, Bánki Z. Targeting viral antigens to CD11c on dendritic cells induces retrovirus-specific T cell responses. PLoS One 2012; 7:e45102. [PMID: 23028784 PMCID: PMC3444473 DOI: 10.1371/journal.pone.0045102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/13/2012] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DC) represent the most potent antigen presenting cells and induce efficient cytotoxic T lymphocyte (CTL) responses against viral infections. Targeting antigens (Ag) to receptors on DCs is a promising strategy to enhance antitumor and antiviral immune responses induced by DCs. Here, we investigated the potential of CD11c-specific single-chain fragments (scFv) fused to an immunodominant peptide of Friend retrovirus for induction of virus-specific T cell responses by DCs. In vitro CD11c-specific scFv selectively targeted viral antigens to DCs and thereby significantly improved the activation of virus-specific T cells. In vaccination experiments DCs loaded with viral Ag targeted to CD11c provided improved rejection of FV-derived tumors and efficiently primed virus-specific CTL responses after virus challenge. Since the induction of strong virus-specific T cell responses is critical in viral infections, CD11c targeted protein vaccines might provide means to enhance the cellular immune response to prophylactic or therapeutic levels.
Collapse
Affiliation(s)
- Asim Ejaz
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Christoph G. Ammann
- Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria
| | - Roland Werner
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Georg Huber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Verena Oberhauser
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Susanne Hörl
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Simone Schimmer
- Institute of Virology, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University of Duisburg-Essen, Essen, Germany
| | - Dorothee von Laer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
26
|
|
27
|
Abstract
The complement system functions as an immune surveillance system that rapidly responds to infection. Activation of the complement system by specific recognition pathways triggers a protease cascade, generating cleavage products that function to eliminate pathogens, regulate inflammatory responses, and shape adaptive immune responses. However, when dysregulated, these powerful functions can become destructive and the complement system has been implicated as a pathogenic effector in numerous diseases, including infectious diseases. This review highlights recent discoveries that have identified critical roles for the complement system in the pathogenesis of viral infection.
Collapse
Affiliation(s)
- Kristina A Stoermer
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | |
Collapse
|
28
|
Bila C, Oberhauser V, Ammann CG, Ejaz A, Huber G, Schimmer S, Messer R, Pekna M, von Laer D, Dittmer U, Hasenkrug KJ, Stoiber H, Bánki Z. Complement opsonization enhances friend virus infection of B cells and thereby amplifies the virus-specific CD8+ T cell response. J Virol 2011; 85:1151-5. [PMID: 21047954 PMCID: PMC3019994 DOI: 10.1128/jvi.01821-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/25/2010] [Indexed: 11/20/2022] Open
Abstract
B cells are one of the targets of Friend virus (FV) infection, a well-established mouse model often used to study retroviral infections in vivo. Although B cells may be effective in stimulating cytotoxic T lymphocyte responses, studies involving their role in FV infection have mainly focused on neutralizing antibody production. Here we show that polyclonal activation of B cells promotes their infection with FV both in vitro and in vivo. Furthermore, we demonstrate that complement opsonization of Friend murine leukemia virus (F-MuLV) enhances infection of B cells, which correlates with increased potency of B cells to activate FV-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Custodio Bila
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Verena Oberhauser
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Christoph G. Ammann
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Asim Ejaz
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Georg Huber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Simone Schimmer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Ron Messer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Marcela Pekna
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Dorothee von Laer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Ulf Dittmer
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Kim J. Hasenkrug
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Zoltán Bánki
- Division of Virology, Innsbruck Medical University, Innsbruck, Austria, Institute of Virology, University of Duisburg-Essen, Essen, Germany, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
29
|
Pyaram K, Yadav VN, Reza MJ, Sahu A. Virus–complement interactions: an assiduous struggle for dominance. Future Virol 2010. [DOI: 10.2217/fvl.10.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complement system is a major component of the innate immune system that recognizes invading pathogens and eliminates them by means of an array of effector mechanisms, in addition to using direct lytic destruction. Viruses, in spite of their small size and simple composition, are also deftly recognized and neutralized by the complement system. In turn, as a result of years of coevolution with the host, viruses have developed multiple mechanisms to evade the host complement. These complex interactions between the complement system and viruses have been an area of focus for over three decades. In this article, we provide a broad overview of the field using key examples and up-to-date information on the complement-evasion strategies of viruses.
Collapse
Affiliation(s)
- Kalyani Pyaram
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Viveka Nand Yadav
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | - Malik Johid Reza
- National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|