1
|
Hong X, Schneider WM, Rice CM. Hepatitis B Virus Nucleocapsid Assembly. J Mol Biol 2025:169182. [PMID: 40316009 DOI: 10.1016/j.jmb.2025.169182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Hepatitis B virus (HBV), the prototypical member of the Hepadnaviridae family, is a DNA virus that replicates its genome through reverse transcription of a pregenomic RNA (pgRNA) precursor. The selective packaging of pgRNA and viral polymerase (Pol) into assembling capsids formed by the viral core protein-a process known as nucleocapsid assembly-is an essential step in the HBV lifecycle. Advances in cellular and cell-free systems have provided significant insights into the mechanisms underlying capsid assembly, Pol binding to pgRNA, Pol-pgRNA packaging, and initiation of genome replication. However, the absence of a cell-free system capable of reconstituting selective HBV Pol-pgRNA packaging into fully assembled capsids leaves fundamental questions about nucleocapsid assembly unanswered. This review summarizes the current knowledge of HBV nucleocapsid assembly, focusing on the interplay between Pol-pgRNA interactions, capsid formation, and regulation by host factors. It also highlights the contribution of cellular and cell-free systems to these discoveries and underscores the need for new approaches that reconstitute the complete HBV nucleocapsid assembly process. With the growing interest in developing nucleocapsid assembly inhibitors, some of which are currently in clinical trials, targeting Pol-pgRNA interactions and nucleocapsid assembly represents a promising therapeutic strategy for curing chronic hepatitis B.
Collapse
Affiliation(s)
- Xupeng Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
2
|
Xie C, Lu D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024; 598:110197. [PMID: 39098184 DOI: 10.1016/j.virol.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.
Collapse
Affiliation(s)
- Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong Province, 510632, China.
| |
Collapse
|
3
|
Arribas L, Menéndez-Arias L, Betancor G. May I Help You with Your Coat? HIV-1 Capsid Uncoating and Reverse Transcription. Int J Mol Sci 2024; 25:7167. [PMID: 39000271 PMCID: PMC11241228 DOI: 10.3390/ijms25137167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid is a protein core formed by multiple copies of the viral capsid (CA) protein. Inside the capsid, HIV-1 harbours all the viral components required for replication, including the genomic RNA and viral enzymes reverse transcriptase (RT) and integrase (IN). Upon infection, the RT transforms the genomic RNA into a double-stranded DNA molecule that is subsequently integrated into the host chromosome by IN. For this to happen, the viral capsid must open and release the viral DNA, in a process known as uncoating. Capsid plays a key role during the initial stages of HIV-1 replication; therefore, its stability is intimately related to infection efficiency, and untimely uncoating results in reverse transcription defects. How and where uncoating takes place and its relationship with reverse transcription is not fully understood, but the recent development of novel biochemical and cellular approaches has provided unprecedented detail on these processes. In this review, we present the latest findings on the intricate link between capsid stability, reverse transcription and uncoating, the different models proposed over the years for capsid uncoating, and the role played by other cellular factors on these processes.
Collapse
Affiliation(s)
- Laura Arribas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain;
| | - Gilberto Betancor
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| |
Collapse
|
4
|
Eghbalsaied S, Lawler C, Petersen B, Hajiyev RA, Bischoff SR, Frankenberg S. CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Ther 2024; 31:209-223. [PMID: 38177342 DOI: 10.1038/s41434-023-00434-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Base editors are a type of double-stranded break (DSB)-free gene editing technology that has opened up new possibilities for precise manipulation of mitochondrial DNA (mtDNA). This includes cytosine and adenosine base editors and more recently guanosine base editors. Because of having low off-target and indel rates, there is a growing interest in developing and evolving this research field. Here, we provide a detailed update on DNA base editors. While base editing has widely been used for nuclear genome engineering, the growing interest in applying this technology to mitochondrial DNA has been faced with several challenges. While Cas9 protein has been shown to enter mitochondria, use of smaller Cas proteins, such as Cas12a, has higher import efficiency. However, sgRNA transfer into mitochondria is the most challenging step. sgRNA structure and ratio of Cas protein to sgRNA are both important factors for efficient sgRNA entry into mitochondria. In conclusion, while there are still several challenges to be addressed, ongoing research in this field holds the potential for new treatments and therapies for mitochondrial disorders.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
- Department of Animal Science, Isfahan Branch, Islamic Azad University (IAU), Isfahan, Iran.
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.
| | - Clancy Lawler
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Germany
- eGenesis, 2706 HWY E, 53572, Mount Horeb, WI, USA
| | - Raul A Hajiyev
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Department of Computer Science, Kent State University, Kent, OH, USA
| | - Steve R Bischoff
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Foundry for Genome Engineering & Reproductive Medicine (FGERM), Miami, FL, USA
| | - Stephen Frankenberg
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Lovšin N, Gangupam B, Bergant Marušič M. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathogens 2024; 13:187. [PMID: 38535531 PMCID: PMC10974850 DOI: 10.3390/pathogens13030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Bhavani Gangupam
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| |
Collapse
|
6
|
O’Toole Á, Neher RA, Ndodo N, Borges V, Gannon B, Gomes JP, Groves N, King DJ, Maloney D, Lemey P, Lewandowski K, Loman N, Myers R, Omah IF, Suchard MA, Worobey M, Chand M, Ihekweazu C, Ulaeto D, Adetifa I, Rambaut A. APOBEC3 deaminase editing in mpox virus as evidence for sustained human transmission since at least 2016. Science 2023; 382:595-600. [PMID: 37917680 PMCID: PMC10880385 DOI: 10.1126/science.adg8116] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
Historically, mpox has been characterized as an endemic zoonotic disease that transmits through contact with the reservoir rodent host in West and Central Africa. However, in May 2022, human cases of mpox were detected spreading internationally beyond countries with known endemic reservoirs. When the first cases from 2022 were sequenced, they shared 42 nucleotide differences from the closest mpox virus (MPXV) previously sampled. Nearly all these mutations are characteristic of the action of APOBEC3 deaminases, host enzymes with antiviral function. Assuming APOBEC3 editing is characteristic of human MPXV infection, we developed a dual-process phylogenetic molecular clock that-inferring a rate of ~6 APOBEC3 mutations per year-estimates that MPXV has been circulating in humans since 2016. These observations of sustained MPXV transmission present a fundamental shift to the perceived paradigm of MPXV epidemiology as a zoonosis and highlight the need for revising public health messaging around MPXV as well as outbreak management and control.
Collapse
Affiliation(s)
- Áine O’Toole
- Institute of Ecology & Evolution, University of Edinburgh; Edinburgh, EH9 3FL, United Kingdom
| | - Richard A. Neher
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics; Basel, Switzerland
| | - Nnaemeka Ndodo
- Nigeria Centers for Disease Control and Prevention; Abuja, Nigeria
| | - Vitor Borges
- National Institute of Health Doutor Ricardo Jorge (INSA); Lisbon, Portugal
| | - Ben Gannon
- UK Health Security Agency, Porton Down; Salisbury, United Kingdom
| | - João Paulo Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA); Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Natalie Groves
- UK Health Security Agency; London, E14 5EA, United Kingdom
| | - David J King
- CBR Division, Defence Science and Technology Laboratory; Salisbury SP4 0JQ, United Kingdom
| | - Daniel Maloney
- Institute of Ecology & Evolution, University of Edinburgh; Edinburgh, EH9 3FL, United Kingdom
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven; Leuven, Belgium
| | | | - Nicholas Loman
- UK Health Security Agency; London, E14 5EA, United Kingdom
- University of Birmingham; Birmingham, United Kingdom
| | - Richard Myers
- UK Health Security Agency; London, E14 5EA, United Kingdom
| | - Ifeanyi F. Omah
- Institute of Ecology & Evolution, University of Edinburgh; Edinburgh, EH9 3FL, United Kingdom
- Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California; Los Angeles, California, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona; Tucson, Arizona, USA
| | - Meera Chand
- UK Health Security Agency; London, E14 5EA, United Kingdom
| | - Chikwe Ihekweazu
- Nigeria Centers for Disease Control and Prevention; Abuja, Nigeria
| | - David Ulaeto
- UK Health Security Agency; London, E14 5EA, United Kingdom
| | - Ifedayo Adetifa
- Nigeria Centers for Disease Control and Prevention; Abuja, Nigeria
| | - Andrew Rambaut
- Institute of Ecology & Evolution, University of Edinburgh; Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
7
|
Karagoz A, Tombuloglu H, Alsaeed M, Tombuloglu G, AlRubaish AA, Mahmoud A, Smajlović S, Ćordić S, Rabaan AA, Alsuhaimi E. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. J Infect Public Health 2023; 16:531-541. [PMID: 36801633 PMCID: PMC9908738 DOI: 10.1016/j.jiph.2023.02.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Monkeypox virus (MPXV) is a double-stranded DNA virus belonging to the Poxviridae family of the genus Orthopoxvirus with two different clades known as West African and Congo Basin. Monkeypox (MPX) is a zoonosis that arises from the MPXV and causes a smallpox-like disease. The endemic disease status of MPX was updated to an outbreak worldwide in 2022. Thus, the condition was declared a global health emergency independent of travel issues, accounting for the primary reason for its prevalence outside Africa. In addition to identified transmission mediators through animal-to-human and human-to-human, especially sexual transmission among men who have sex with men came to prominence in the 2022 global outbreak. Although the severity and prevalence of the disease differ depending on age and gender, some symptoms are commonly observed. Clinical signs such as fever, muscle and headache pain, swollen lymph nodes, and skin rashes in defined body regions are standard and an indicator for the first step of diagnosis. By following the clinical signs, laboratory diagnostic tests like conventional polymerase chain reaction (PCR) or real-time PCR (RT-PCR) are the most common and accurate diagnostic methods. Antiviral drugs such as tecovirimat, cidofovir, and brincidofovir are used for symptomatic treatment. There is no MPXV-specific vaccine; however, currently available vaccines against smallpox enhance the immunization rate. This comprehensive review covers the MPX disease history and the current state of knowledge by assessing broad topics and views related to disease origin, transmission, epidemiology, severity, genome organization and evolution, diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Aysel Karagoz
- Quality Assurance Department, Turk Pharmaceutical and Serum Ind. Inc., Ankara, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia.
| | - Moneerah Alsaeed
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia
| | - Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34221, Saudi Arabia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Amal Mahmoud
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt
| | - Samira Smajlović
- Laboratory Diagnostics Institute Dr. Dedić, Bihać 77000, Bosnia and Herzegovina
| | - Sabahudin Ćordić
- Cantonal hospital "Dr. Irfan Ljubijankić", Microbiological laboratory, Bihać 77000, Bosnia and Herzegovina
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition. The University of Haripur, Haripur 22610, Pakistan
| | - Ebtesam Alsuhaimi
- Biology Department, College of Science and Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
8
|
Khalfi P, Kennedy PT, Majzoub K, Asselah T. Hepatitis D virus: Improving virological knowledge to develop new treatments. Antiviral Res 2023; 209:105461. [PMID: 36396025 DOI: 10.1016/j.antiviral.2022.105461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/21/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Hepatitis delta virus (HDV), a satellite of hepatitis B virus (HBV), possesses the smallest viral genome known to infect animals. HDV needs HBV surface protein for secretion and entry into target liver cells. However, HBV is dispensable for HDV genome amplification, as it relies almost exclusively on cellular host factors for replication. HBV/HDV co-infections affect over 12 million people worldwide and constitute the most severe form of viral hepatitis. Co-infected individuals are at higher risk of developing liver cirrhosis and hepatocellular carcinoma compared to HBV mono-infected patients. Bulevirtide, an entry inhibitor, was conditionally approved in July 2020 in the European Union for adult patients with chronic hepatitis delta (CHD) and compensated liver disease. There are several drugs in development, including lonafarnib and interferon lambda, with different modes of action. In this review, we detail our current fundamental knowledge of HDV lifecycle and review antiviral treatments under development against this virus, outlining their respective mechanisms-of-action. Finally, we describe the antiviral effect these compounds are showing in ongoing clinical trials, discussing their promise and potential pitfalls for managing HDV infected patients.
Collapse
Affiliation(s)
- Pierre Khalfi
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France
| | - Patrick T Kennedy
- The Blizard Institute, Queen Mary University of London, The Royal London Hospital, Barts Health NHS Trust, London, UK
| | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS-UMR 5535, Montpellier 34293 cedex 5, France.
| | - Tarik Asselah
- Université de Paris, Cité CRI, INSERM UMR 1149, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, France.
| |
Collapse
|
9
|
Das S, Wang W, Ganesan M, Fonseca-Lanza F, Cobb DA, Bybee G, Sun Y, Guo L, Hanson B, Cohen SM, Gendelman HE, Osna NA, Edagwa BJ, Poluektova LY. An ultralong-acting tenofovir ProTide nanoformulation achieves monthslong HBV suppression. SCIENCE ADVANCES 2022; 8:eade9582. [PMID: 36563152 PMCID: PMC9788773 DOI: 10.1126/sciadv.ade9582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/21/2023]
Abstract
Treatment of chronic hepatitis B virus (HBV) requires lifelong daily therapy. However, suboptimal adherence to the existing daily therapy has led to the need for ultralong-acting antivirals. A lipophilic and hydrophobic ProTide was made by replacing the alanyl isopropyl ester present in tenofovir alafenamide (TAF) with a docosyl phenyl alanyl ester, now referred to as M1TFV. NM1TFV and nanoformulated TAF (NTAF) nanocrystals were formulated by high-pressure homogenization. A single intramuscular injection of NM1TFV, but not NTAF, delivered at a dose of TFV equivalents (168 milligrams per kilogram) demonstrated monthslong antiviral activities in both HBV-transgenic and human hepatocyte transplanted TK-NOG mice. The suppression of HBV DNA in blood was maintained for 3 months. Laboratory experiments on HBV-transfected HepG2.2.15 cells affirmed the animal results and the critical role of docosanol in the sustained NM1TFV antiviral responses. These results provide clear "proof of concept" toward an emerging therapeutic paradigm for the treatment and prevention of HBV infection.
Collapse
Affiliation(s)
- Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Franchesca Fonseca-Lanza
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Denise A. Cobb
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Grace Bybee
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Yimin Sun
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lili Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brandon Hanson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Natalia A. Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Hu J, Wang H, Yang L, Wu S, Li Y, Li Y, Li Z. Compound IMB-Z inhibits hepatitis B virus replication through increasing APOBEC3G expression and incorporation into viral nucleocapsids. J Glob Antimicrob Resist 2022; 31:371-378. [PMID: 36396043 DOI: 10.1016/j.jgar.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES As a host restriction factor, apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or A3G) has been shown to suppress the replication of several viruses including hepatitis B virus (HBV). Recently, we reported that IMB-Z, a N-phenylbenzamide derivative, could inhibit Enterovirus 71 replication, and A3G mediated its antiviral activity. Whether IMB-Z exhibits an inhibitory effect on HBV replication has not been investigated. MATERIAL AND METHODS HBV DNA, pregenomic RNA (pgRNA), core protein, and capsid levels were determined by a qPCR assay or Southern blot, Northern blot, Western blot, and particle gel assay, respectively. Mutation analysis of HBV DNAs was conducted by a differential DNA denaturation PCR assay. A3G encapsidation into HBV nucleocapsids was examined by Western blot analysis after ultracentrifugation and a co-immunoprecipitation (IP) assay between HBV core and A3G proteins. RESULTS In the present study, we found that IMB-Z could considerably inhibit HBV replication in HepAD38 cells. Interestingly, IMB-Z did not alter the HBV pgRNA production but could reduce the level of core protein, viral nucleocapsids, and core-associated DNA, as well as cccDNA intracellular amplification. Similar to the action of IMB-Z's inhibition of Enterovirus 71 replication, we found that IMB-Z's inhibition of HBV replication was associated with increased level of A3G. Mechanistically, we demonstrated that the inhibitory effect of IMB-Z is independent of the cytidine deaminase activity of A3G and is exerted by increasing its incorporation into viral nucleocapsids. CONCLUSIONS Our results indicate that IMB-Z inhibits HBV through pharmacological induction A3G expression and incorporation into HBV nucleocapsids.
Collapse
Affiliation(s)
- Jin Hu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiqiang Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Yang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yanping Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhuorong Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Gigante CM, Korber B, Seabolt MH, Wilkins K, Davidson W, Rao AK, Zhao H, Smith TG, Hughes CM, Minhaj F, Waltenburg MA, Theiler J, Smole S, Gallagher GR, Blythe D, Myers R, Schulte J, Stringer J, Lee P, Mendoza RM, Griffin-Thomas LA, Crain J, Murray J, Atkinson A, Gonzalez AH, Nash J, Batra D, Damon I, McQuiston J, Hutson CL, McCollum AM, Li Y. Multiple lineages of monkeypox virus detected in the United States, 2021-2022. Science 2022; 378:560-565. [PMID: 36264825 DOI: 10.1126/science.add4153] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Monkeypox is a viral zoonotic disease endemic in Central and West Africa. In May 2022, dozens of non-endemic countries reported hundreds of monkeypox cases, most with no epidemiological link to Africa. We identified two lineages of monkeypox virus (MPXV) among two 2021 and seven 2022 US monkeypox cases: the major 2022 outbreak variant called B.1 and a minor contemporaneously sampled variant called A.2. Analyses of mutations among these two variants revealed an extreme preference for GA-to-AA mutations indicative of human APOBEC3 cytosine deaminase activity among Clade IIb MPXV (previously West African, Nigeria) sampled since 2017. Such mutations were not enriched within other MPXV clades. These findings suggest that APOBEC3 editing may be a recurrent and a dominant driver of MPXV evolution within the current outbreak.
Collapse
Affiliation(s)
- Crystal M Gigante
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA; New Mexico Consortium, Los Alamos, NM, USA
| | - Matthew H Seabolt
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.,Leidos Inc., Reston, VA 20190, USA
| | - Kimberly Wilkins
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Whitni Davidson
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Agam K Rao
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hui Zhao
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Todd G Smith
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christine M Hughes
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Faisal Minhaj
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michelle A Waltenburg
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Theiler
- ISR-3: Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Jamaica Plain, MA, USA
| | - Glen R Gallagher
- Massachusetts Department of Public Health, Jamaica Plain, MA, USA
| | - David Blythe
- Infectious Disease Epidemiology and Outbreak Response Bureau, Maryland Department of Health, Baltimore, MD, USA
| | - Robert Myers
- Infectious Disease Epidemiology and Outbreak Response Bureau, Maryland Department of Health, Baltimore, MD, USA
| | - Joann Schulte
- Dallas County Health and Human Services Public Health Laboratory, Dallas, Texas, USA
| | - Joey Stringer
- Dallas County Health and Human Services Public Health Laboratory, Dallas, Texas, USA
| | - Philip Lee
- Florida Department of Health Bureau of Public Health Laboratories-Jacksonville, Jacksonville, FL, USA
| | - Rafael M Mendoza
- Florida Department of Health in Broward County, Hollywood, FL, USA
| | - LaToya A Griffin-Thomas
- Virginia Department of General Services, Division of Consolidated Laboratory Services, Richmond, VA, USA
| | - Jenny Crain
- Virginia Department of Health, Richmond, VA, USA
| | - Jade Murray
- Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | - Annette Atkinson
- Utah Department of Health and Human Services, Salt Lake City, UT, USA
| | | | - June Nash
- Sacramento County Public Health, Sacramento, CA, USA
| | - Dhwani Batra
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Inger Damon
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jennifer McQuiston
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Christina L Hutson
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Andrea M McCollum
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Yu Li
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
12
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
13
|
Yang X, Dai J, Yao S, An J, Wen G, Jin H, Zhang L, Zheng L, Chen X, Yi Z, Tuo B. APOBEC3B: Future direction of liver cancer research. Front Oncol 2022; 12:996115. [PMID: 36203448 PMCID: PMC9530283 DOI: 10.3389/fonc.2022.996115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Liver cancer is one of the most common cancers in the world, and the rate of liver cancer is high due to the of its illness. The main risk factor for liver cancer is infection with the hepatitis B virus (HBV), but a considerable number of genetic and epigenetic factors are also directly or indirectly involved in the underlying pathogenesis of liver cancer. In particular, the apolipoprotein B mRNA editing enzyme, catalytic peptide-like protein (APOBEC) family (DNA or mRNA editor family), which has been the focus of virology research for more than a decade, has been found to play a significant role in the occurrence and development of various cancers, providing a new direction for the research of liver cancer. APOBEC3B is a cytosine deaminase that controls a variety of biological processes, such as protein expression, innate immunity, and embryonic development, by participating in the process of cytidine deamination to uridine in DNA and RNA. In humans, APOBEC3B has long been known as a DNA editor for limiting viral replication and transcription. APOBEC3B is widely expressed at low levels in a variety of normal tissues and organs, but it is significantly upregulated in different types of tumor tissues and tumor lines. Thus, APOBEC3B has received increasing attention in various cancers, but the role of APOBEC3B in the occurrence and development of liver cancer due to infection with HBV remains unclear. This review provides a brief introduction to the pathogenesis of hepatocellular carcinoma induced by HBV, and it further explores the latest results of APOBEC3B research in the development of HBV and liver cancer, thereby providing new directions and strategies for the treatment and prevention of liver cancer.
Collapse
Affiliation(s)
- Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Dai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Biguang Tuo,
| |
Collapse
|
14
|
Markers of Immune Activation and Inflammation Are Associated with Higher Levels of Genetically-Intact HIV in HIV-HBV Co-Infected Individuals. J Virol 2022; 96:e0058822. [PMID: 35916523 PMCID: PMC9400477 DOI: 10.1128/jvi.00588-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Co-infection with hepatitis B (HBV) and human immunodeficiency virus (HIV) increases overall and liver-related mortality. In order to identify interactions between these two viruses in vivo, full-length HIV proviruses were sequenced from a cohort of HIV-HBV co-infected participants and from a cohort of HIV mono-infected participants recruited from Bangkok, Thailand, both before the initiation of antiretroviral therapy (ART) and after at least 2 years of ART. The co-infected individuals were found to have higher levels of genetically-intact HIV proviruses than did mono-infected individuals pre-therapy. In these co-infected individuals, higher levels of genetically-intact HIV proviruses or proviral genetic-diversity were also associated with higher levels of sCD14 and CXCL10, suggesting that immune activation is linked to more genetically-intact HIV proviruses. Three years of ART decreased the overall level of HIV proviruses, with fewer genetically-intact proviruses being identified in co-infected versus mono-infected individuals. However, ART increased the frequency of certain genetic defects within proviruses and the expansion of identical HIV sequences. IMPORTANCE With the increased availability and efficacy of ART, co-morbidities are now one of the leading causes of death in HIV-positive individuals. One of these co-morbidities is co-infection with HBV. However, co-infections are still relatively understudied, especially in countries where such co-infections are endemic. Furthermore, these countries have different subtypes of HIV circulating than the commonly studied HIV subtype B. We believe that our study serves this understudied niche and provides a novel approach to investigating the impact of HBV co-infection on HIV infection. We examine co-infection at the molecular level in order to investigate indirect associations between the two viruses through their interactions with the immune system. We demonstrate that increased immune inflammation and activation in HBV co-infected individuals is associated with higher HIV viremia and an increased number of genetically-intact HIV proviruses in peripheral blood cells. This leads us to hypothesize that inflammation could be a driver in the increased mortality rate of HIV-HBV co-infected individuals.
Collapse
|
15
|
Early Emergence of 5' Terminally Deleted Coxsackievirus-B3 RNA Forms Is Associated with Acute and Persistent Infections in Mouse Target Tissues. Vaccines (Basel) 2022; 10:vaccines10081203. [PMID: 36016091 PMCID: PMC9413645 DOI: 10.3390/vaccines10081203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Major EV-B populations characterized by 5′ terminal deletions (5′TD) have been shown to be associated with the development of myocarditis and type 1 diabetes in mice or humans. To date, the dynamics of EV-B 5′TD-RNA forms’ emergence during the course of infection and their impact on cellular functions remain unclear. Using a RACE-PCR approach in CVB3/28-infected mouse organs, we showed an early (3 days post infection, DPI) emergence of major 5′TD populations associated with minor full-length RNA forms. Viral replication activities with infectious particle production were associated with heart, liver, and pancreas acute inflammatory lesions, whereas clearance of viral RNA without organ lesions was observed in the brain, lung, intestines, and muscles from 3 to 7 DPI. At 28 DPI, low viral RNA levels, +/-RNA ratios < 5 associated with viral protein 1 expression revealed a persistent infection in the heart and pancreas. This persistent infection was characterized by molecular detection of only 5′TD RNA forms that were associated with dystrophin cleavage in the heart and insulin production impairment in beta-pancreatic cells. These results demonstrated that major EV-B 5′TD RNA forms can be early selected during systemic infection and that their maintenance may drive EV-induced acute and persistent infections with target cell dysfunctions.
Collapse
|
16
|
Abstract
The evolutionary history of hepatobiliary cancers is embedded in their genomes. By analysing their catalogue of somatic mutations and the DNA sequence context in which they occur, it is possible to infer the mechanisms underpinning tumorigenesis. These mutational signatures reflect the exogenous and endogenous origins of genetic damage as well as the capacity of hepatobiliary cells to repair and replicate DNA. Genomic analysis of thousands of patients with hepatobiliary cancers has highlighted the diversity of mutagenic processes active in these malignancies, highlighting a prominent source of the inter-cancer-type, inter-patient, intertumour and intratumoural heterogeneity that is observed clinically. However, a substantial proportion of mutational signatures detected in hepatocellular carcinoma and biliary tract cancer remain of unknown cause, emphasizing the important contribution of processes yet to be identified. Exploiting mutational signatures to retrospectively understand hepatobiliary carcinogenesis could advance preventative management of these aggressive tumours as well as potentially predict treatment response and guide the development of therapies targeting tumour evolution.
Collapse
|
17
|
Taura M, Frank JA, Takahashi T, Kong Y, Kudo E, Song E, Tokuyama M, Iwasaki A. APOBEC3A regulates transcription from interferon-stimulated response elements. Proc Natl Acad Sci U S A 2022; 119:e2011665119. [PMID: 35549556 PMCID: PMC9171812 DOI: 10.1073/pnas.2011665119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
APOBEC3A (A3A) is a cytidine deaminase that inactivates a variety of viruses through introduction of lethal mutations to the viral genome. Additionally, A3A can suppress HIV-1 transcription in a deaminase-independent manner by binding to the long terminal repeat of proviral HIV-1. However, it is unknown whether A3A targets additional host genomic loci for repression. In this study, we found that A3A suppresses gene expression by binding TTTC doublets that are in close proximity to each other. However, one TTTC motif is sufficient for A3A binding. Because TTTC doublets are present in interferon (IFN)-stimulated response elements (ISRE), we hypothesized that A3A may impact IFN-stimulated gene (ISG) expression. After scanning the human genome for TTTC doublet occurrences, we discovered that these motifs are enriched in the proximal promoters of genes associated with antiviral responses and type I IFN (IFN-I) signaling. As a proof of principle, we examined whether A3A can impact ISG15 expression. We found that A3A binding to the ISRE inhibits phosphorylated STAT-1 binding and suppresses ISG15 induction in response to IFN-I treatment. Consistent with these data, our RNA-sequencing analyses indicate that A3A loss results in increased IFN-I–dependent induction of several ISGs. This study revealed that A3A plays an unexpected role in ISG regulation and suggests that A3A contributes to a negative feedback loop during IFN signaling.
Collapse
Affiliation(s)
- Manabu Taura
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 565-0871 Suita, Japan
| | - John A. Frank
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Takehiro Takahashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT 06520
| | - Eriko Kudo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Eric Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
18
|
Kitamura K, Fukano K, Que L, Li Y, Wakae K, Muramatsu M. Activities of endogenous APOBEC3s and uracil-DNA-glycosylase affect the hypermutation frequency of hepatitis B virus cccDNA. J Gen Virol 2022; 103. [PMID: 35438620 DOI: 10.1099/jgv.0.001732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) plays a key role in the persistence of viral infection. We have previously shown that overexpression of an antiviral factor APOBEC3G (A3G) induces hypermutation in duck HBV (DHBV) cccDNA, whereas uracil-DNA-glycosylase (UNG) reduces these mutations. In this study, using cell-culture systems, we examined whether endogenous A3s and UNG affect HBV cccDNA mutation frequency. IFNγ stimulation induced a significant increase in endogenous A3G expression and cccDNA hypermutation. UNG inhibition enhanced the IFNγ-mediated hypermutation frequency. Transfection of reconstructed cccDNA revealed that this enhanced hypermutation caused a reduction in viral replication. These results suggest that the balance of endogenous A3s and UNG activities affects HBV cccDNA mutation and replication competency.
Collapse
Affiliation(s)
- Kouichi Kitamura
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Lusheng Que
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yingfang Li
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| |
Collapse
|
19
|
Khalfi P, Suspène R, Caval V, Thiers V, Beauclair G, Marchio A, Bekondi C, Amougou Atsama M, Camengo-Police SM, Noah Noah D, Njouom R, Blanc H, Vallet T, Vignuzzi M, Pineau P, Vartanian JP. APOBEC3C S188I polymorphism enhances context specific editing of Hepatitis B virus genome. J Infect Dis 2022; 226:891-895. [PMID: 35022749 DOI: 10.1093/infdis/jiac003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/10/2022] [Indexed: 11/12/2022] Open
Abstract
A single nucleotide polymorphism in APOBEC3C (serine to isoleucine in position 188) is present in ~10% of African populations and greatly enhances restriction against HIV-1 and SIV by improving dimerization and DNA processivity of the enzyme. In this study, we demonstrated in culture and in infected patients that HBV could be edited by APOBEC3CS188I. Using next generation sequencing, we demonstrated that APOBEC3CS188I led to an enhanced editing activity in a more specific 5'TpCpA->5'TpTpA context. This constitutes a new hallmark of this enzyme which could be used to determine its impact on HBV or nuclear DNA.
Collapse
Affiliation(s)
- Pierre Khalfi
- Department of Virology, Institut Pasteur, Université de Paris, Paris, France.,Complexité du Vivant, ED515, Sorbonne Université, Paris, France
| | - Rodolphe Suspène
- Department of Virology, Institut Pasteur, Université de Paris, Paris, France
| | - Vincent Caval
- Department of Virology, Institut Pasteur, Université de Paris, Paris, France
| | - Valérie Thiers
- Department of Virology, Institut Pasteur, Université de Paris, Paris, France
| | - Guillaume Beauclair
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Agnès Marchio
- Nuclear Organization and Oncogenesis unit, INSERM U993, Institut Pasteur, Université de Paris, Paris, France
| | - Claudine Bekondi
- Retrovirology and Oncogenic Viruses unit, Institut Pasteur de Bangui, Bangui, République Centrafricaine
| | | | | | - Dominique Noah Noah
- Gastroenterology Service, Hôpital de l'Amitié, Bangui, République Centrafricaine
| | - Richard Njouom
- Virology Service, Centre Pasteur du Cameroun, Yaoundé, Cameroun
| | - Hervé Blanc
- Viral Populations and Pathogenesis unit, Institut Pasteur, Université de Paris, Paris, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis unit, Institut Pasteur, Université de Paris, Paris, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis unit, Institut Pasteur, Université de Paris, Paris, France
| | - Pascal Pineau
- Nuclear Organization and Oncogenesis unit, INSERM U993, Institut Pasteur, Université de Paris, Paris, France
| | | |
Collapse
|
20
|
Zhang Y, Chen X, Cao Y, Yang Z. Roles of APOBEC3 in hepatitis B virus (HBV) infection and hepatocarcinogenesis. Bioengineered 2021; 12:2074-2086. [PMID: 34043485 PMCID: PMC8806738 DOI: 10.1080/21655979.2021.1931640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
APOBEC3 (A3) cytidine deaminases inhibit hepatitis B virus (HBV) infection and play vital roles in maintaining a variety of biochemical processes, including the regulation of protein expression and innate immunity. Emerging evidence indicates that the deaminated deoxycytidine biochemical activity of A3 proteins in single-stranded DNA makes them a double-edged sword. These enzymes can cause cellular genetic mutations at replication forks or within transcription bubbles, depending on the physiological state of the cell and the phase of the cell cycle. Under pathological conditions, aberrant expression of A3 genes with improper deaminase activity regulation may threaten genomic stability and eventually lead to cancer development. This review attempted to summarize the antiviral activities and underlying mechanisms of A3 editing enzymes in HBV infections. Moreover, the correlations between A3 genes and hepatocarcinogenesis were also elucidated.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary HospitalSchool of Medicine, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Gorczynski RM, Lindley RA, Steele EJ, Wickramasinghe NC. Nature of Acquired Immune Responses, Epitope Specificity and Resultant Protection from SARS-CoV-2. J Pers Med 2021; 11:1253. [PMID: 34945725 PMCID: PMC8708741 DOI: 10.3390/jpm11121253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The primary global response to the SARS-CoV-2 pandemic has been to bring to the clinic as rapidly as possible a number of vaccines that are predicted to enhance immunity to this viral infection. While the rapidity with which these vaccines have been developed and tested (at least for short-term efficacy and safety) is commendable, it should be acknowledged that this has occurred despite the lack of research into, and understanding of, the immune elements important for natural host protection against the virus, making this endeavor a somewhat unique one in medical history. In contrast, as pointed out in the review below, there were already important past observations that suggested that respiratory infections at mucosal surfaces were susceptible to immune clearance by mechanisms not typical of infections caused by systemic (blood-borne) pathogens. Accordingly, it was likely to be important to understand the role for both innate and acquired immunity in response to viral infection, as well as the optimum acquired immune resistance mechanisms for viral clearance (B cell or antibody-mediated, versus T cell mediated). This information was needed both to guide vaccine development and to monitor its success. We have known that many pathogens enter into a quasi-symbiotic relationship with the host, with each undergoing sequential change in response to alterations the other makes to its presence. The subsequent evolution of viral variants which has caused such widespread concern over the last 3-6 months as host immunity develops was an entirely predictable response. What is still not known is whether there will be other unexpected side-effects of the deployment of novel vaccines in humans which have yet to be characterized, and, if so, how and if these can be avoided. We conclude by remarking that to ignore a substantial body of well-attested immunological research in favour of expediency is a poor way to proceed.
Collapse
Affiliation(s)
- Reginald M. Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Robyn A. Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC 3000, Australia;
- GMDx Group Ltd., Melbourne, VIC 3000, Australia
| | - Edward J. Steele
- C.Y.O’Connor ERADE Village Foundation, Piara Waters, Perth, WA 6207, Australia;
- Melville Analytics Pty Ltd., Melbourne, VIC 3000, Australia
| | - Nalin Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, Buckingham MK18 1EG, UK;
- Centre for Astrobiology, University of Ruhuna, Matara 81000, Sri Lanka
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
| |
Collapse
|
22
|
Lindley RA, Steele EJ. Analysis of SARS-CoV-2 haplotypes and genomic sequences during 2020 in Victoria, Australia, in the context of putative deficits in innate immune deaminase anti-viral responses. Scand J Immunol 2021; 94:e13100. [PMID: 34940992 PMCID: PMC8646704 DOI: 10.1111/sji.13100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023]
Abstract
The SARS-CoV-2 epidemic infections in Australia during 2020 were small in number in epidemiological terms and are well described. The SARS-CoV-2 genomic sequence data of many infected patients have been largely curated in a number of publicly available databases, including the corresponding epidemiological data made available by the Victorian Department of Health and Human Services. We have critically analysed the available SARS-CoV-2 haplotypes and genomic sequences in the context of putative deficits in innate immune APOBEC and ADAR deaminase anti-viral responses. It is now known that immune impaired elderly co-morbid patients display clear deficits in interferon type 1 (α/β) and III (λ) stimulated innate immune gene cascades, of which APOBEC and ADAR induced expression are part. These deficiencies may help explain some of the clear genetic patterns in SARS-CoV-2 genomes isolated in Victoria, Australia, during the 2nd Wave (June-September, 2020). We tested the hypothesis that predicted lowered innate immune APOBEC and ADAR anti-viral deaminase responses in a significant proportion of elderly patients would be consistent with/reflected in a low level of observed mutagenesis in many isolated SARS-CoV-2 genomes. Our findings are consistent with this expectation. The analysis also supports the conclusions of the Victorian government's Department of Health that essentially one variant or haplotype infected Victorian aged care facilities where the great majority (79%) of all 820 SARS-CoV-2 associated deaths occurred. The implications of our data analysis for other localized epidemics and efficient coronavirus vaccine design and delivery are discussed.
Collapse
Affiliation(s)
- Robyn A. Lindley
- GMDxgen Pty LtdMelbourneVictoriaAustralia
- Department of Clinical Pathology, The Victorian Comprehensive Cancer Centre, Faculty of MedicineDentistry & Health SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Melville Analytics Pty LtdMelbourneVictoriaAustralia
| | - Edward J. Steele
- Melville Analytics Pty LtdMelbourneVictoriaAustralia
- CYO'Connor ERADE Village Foundation24 Genomics RisePiara WatersAustralia
| |
Collapse
|
23
|
Chen Z, Eggerman TL, Bocharov AV, Baranova IN, Vishnyakova TG, Patterson AP. APOBEC3-induced mutation of the hepatitis virus B DNA genome occurs during its viral RNA reverse transcription into (-)-DNA. J Biol Chem 2021; 297:100889. [PMID: 34181944 PMCID: PMC8321922 DOI: 10.1016/j.jbc.2021.100889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
APOBEC3s are innate single-stranded DNA cytidine-to-uridine deaminases that catalyze mutations in both pathogen and human genomes with significant roles in human disease. However, how APOBEC3s mutate a single-stranded DNA that is available momentarily during DNA transcription or replication in vivo remains relatively unknown. In this study, utilizing hepatitis B virus (HBV) viral mutations, we evaluated the mutational characteristics of individual APOBEC3s with reference to the HBV replication process through HBV whole single-strand (-)-DNA genome mutation analyses. We found that APOBEC3s induced C-to-T mutations from the HBV reverse transcription start site continuing through the whole (-)-DNA transcript to the termination site with variable efficiency, in an order of A3B >> A3G > A3H-II or A3C. A3B had a 3-fold higher mutation efficiency than A3H-II or A3C with up to 65% of all HBV genomic cytidines being converted into uridines in a single mutation event, consistent with the A3B localized hypermutation signature in cancer, namely, kataegis. On the other hand, A3C expression led to a 3-fold higher number of mutation-positive HBV genome clones, although each individual clone had a lower number of C-to-T mutations. Like A3B, A3C preferred both 5'-TC and 5'-CC sequences, but to a lesser degree. The APOBEC3-induced HBV mutations were predominantly detected in the HBV rcDNA but were not detectable in other intermediates including HBV cccDNA and pgRNA by primer extension of their PCR amplification products. These data demonstrate that APOBEC3-induced HBV genome mutations occur predominantly when the HBV RNA genome was reversely transcribed into (-)-DNA in the viral capsid.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas L Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander V Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Irina N Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Tatyana G Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Amy P Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA; National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
24
|
Yin J, Chen X, Li N, Han X, Liu W, Pu R, Wu T, Ding Y, Zhang H, Zhao J, Han X, Wang H, Cheng S, Cao G. Compartmentalized evolution of hepatitis B virus contributes differently to the prognosis of hepatocellular carcinoma. Carcinogenesis 2021; 42:461-470. [PMID: 33247709 DOI: 10.1093/carcin/bgaa127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Serum hepatitis B virus (HBV) mutations can predict hepatocellular carcinoma (HCC) occurrence. We aimed to clarify if HBV evolves synchronously in the sera, adjacent liver and tumors and predict HCC prognosis equally. A total of 203 HBV-positive HCC patients with radical hepatectomy in Shanghai, China, during 2011-15 were enrolled in this prospective study. Quasispecies complexity (QC) in HBV core promoter region was assessed using clone-based sequencing. We performed RNA sequencing on tumors and paired adjacent tissues of another 15 HCC patients and analyzed it with three public data sets containing 127 samples. HBV QC was positively correlated to APOBEC3s' expression level (r = 0.28, P < 0.001), higher in the adjacent tissues than in the tumors (P = 6.50e-3), and higher in early tumors than in advanced tumors (P = 0.039). The evolutionary distance between the sera-derived HBV strains and the tumor-derived ones was significantly longer than that between the sera-derived ones and the adjacent tissue-derived ones (P < 0.001). Multivariate Cox regression analyses indicated that high HBV QC in the sera predicted an unfavorable overall survival (P = 0.002) and recurrence-free survival (RFS; P = 0.004) in HCC, whereas, in the tumors, it predicted a favorable RFS (P < 0.001). APOBECs-related HBV mutations, including G1764A, were more frequent in the sera than in the adjacent tissues. High-frequent A1762T/G1764A in the sera predicted an unfavorable RFS (P < 0.001), whereas, in the tumors, it predicted a favorable RFS (P = 0.035). In conclusion, HBV evolves more advanced in the sera than in the tumors. HBV QC and A1762T/G1764A in the sera and tumors have contrary prognostic effects in HCC.
Collapse
Affiliation(s)
- Jianhua Yin
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Xi Chen
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Nan Li
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Xuewen Han
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Wenbin Liu
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Rui Pu
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Ting Wu
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Yibo Ding
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Hongwei Zhang
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Jun Zhao
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Hongyang Wang
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, China
| | - Shuqun Cheng
- Department of Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Faculty of Navy Medicine, Second Military Medical University, 8 Panshan Rd, Yangpu District, Shanghai 200433, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, China
| |
Collapse
|
25
|
Infection of Bronchial Epithelial Cells by the Human Adenoviruses A12, B3, and C2 Differently Regulates the Innate Antiviral Effector APOBEC3B. J Virol 2021; 95:e0241320. [PMID: 33853956 DOI: 10.1128/jvi.02413-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human adenoviruses (HAdVs) are a large family of DNA viruses that include more than 100 genotypes divided into seven species (A to G) and induce respiratory tract infections, gastroenteritis, and conjunctivitis. Genetically modified adenoviruses are also used as vaccines, gene therapies, and anticancer treatments. The APOBEC3s are a family of cytidine deaminases that restrict viruses by introducing mutations in their genomes. Viruses developed different strategies to cope with the APOBEC3 selection pressure, but nothing is known on the interplay between the APOBEC3s and the HAdVs. In this study, we focused on three HAdV strains: the B3 and C2 strains, as they are very frequent, and the A12 strain, which is less common but is oncogenic in animal models. We demonstrated that the three HAdV strains induce a similar APOBEC3B upregulation at the transcriptional level. At the protein level, however, APOBEC3B is abundantly expressed during HAdV-A12 and -C2 infection and shows a nuclear distribution. On the contrary, APOBEC3B is barely detectable in HAdV-B3-infected cells. APOBEC3B deaminase activity is detected in total protein extracts upon HAdV-A12 and -C2 infection. Bioinformatic analysis demonstrates that the HAdV-A12 genome bears a stronger APOBEC3 evolutionary footprint than that of the HAdV-C2 and HAdV-B3 genomes. Our results show that HAdV infection triggers the transcriptional upregulation of the antiviral innate effector APOBEC3B. The discrepancies between the APOBEC3B mRNA and protein levels might reflect the ability of some HAdV strains to antagonize the APOBEC3B protein. These findings point toward an involvement of APOBEC3B in HAdV restriction and evolution. IMPORTANCE The APOBEC3 family of cytosine deaminases has important roles in antiviral innate immunity and cancer. Notably, APOBEC3A and APOBEC3B are actively upregulated by several DNA tumor viruses and contribute to transformation by introducing mutations in the cellular genome. Human adenoviruses (HAdVs) are a large family of DNA viruses that cause generally asymptomatic infections in immunocompetent adults. HAdVs encode several oncogenes, and some HAdV strains, like HAdV-A12, induce tumors in hamsters and mice. Here, we show that HAdV infection specifically promotes the expression of the APOBEC3B gene. We report that infection with the A12 strain induces a strong expression of an enzymatically active APOBEC3B protein in bronchial epithelial cells. We provide bioinformatic evidence that HAdVs' genomes and notably the A12 genome are under APOBEC3 selection pressure. Thus, APOBEC3B might contribute to adenoviral restriction, diversification, and oncogenic potential of particular strains.
Collapse
|
26
|
Ren F, Li W, Zhao S, Wang L, Wang Q, Li M, Xiang A, Guo Y. A3G-induced mutations show a low prevalence and exhibit plus-strand regional distribution in hepatitis B virus DNA from patients with non-hepatocellular carcinoma (HCC) and HCC. J Med Virol 2021; 93:3672-3678. [PMID: 32779759 DOI: 10.1002/jmv.26418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/28/2022]
Abstract
APOBEC3G (A3G) cytidine deaminase is an innate immune restriction factor that can edit and inhibit hepatitis B virus (HBV) replication. The preferred target of A3G is deamination of the third cytosine of 5'CCC to form a mutant marker 5'CC C → K. However, the distribution of A3G-induced mutations on HBV DNA during infection is not well characterized. To provide clarity, we obtained the HBV DNA sequences from HBV infected individuals with and without hepatocellular carcinoma (HCC and non-HCC, respectively), from the NCBI database, and calculated the r values of A3G-induced 5'CC C → K mutation prevalence in HBV DNA. A3G-induced mutations were weakly prevalent and mainly distributed in the plus strand of HBV DNA (r = 1.407). The mutations on the minus strand were weaker (r = .8189). There were A3G-induced mutation regions in the 1200 to 2000 nt region of the plus strand and the 1600 to 1500 nt region of the minus strand. There was no significant difference in the r values of A3G-induced mutations in HBV DNA between the HCC and non-HCC groups. However, the rvalue of the plus strand 2400 to 2800 nt regions of HCC derived HBV DNA (r = 4.2) was significantly higher than that of the same regions of non-HCC derived HBV DNA (r = 1.21). These findings clarify the weak prevalence and preferred plus-strand distribution of A3G-induced mutations on HBV DNA from HCC and non-HCC. These findings may provide valuable clues regarding the interaction mechanism between A3G and HBV DNA and inform HCC screening.
Collapse
Affiliation(s)
- FengLing Ren
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - WeiNa Li
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - ShuDong Zhao
- YinChuan Women and Children Healthcare Hospital, Yinchuan, Ningxia, China
| | - Li Wang
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qin Wang
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Meng Li
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - An Xiang
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - YanHai Guo
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Simmonds P, Ansari MA. Extensive C->U transition biases in the genomes of a wide range of mammalian RNA viruses; potential associations with transcriptional mutations, damage- or host-mediated editing of viral RNA. PLoS Pathog 2021; 17:e1009596. [PMID: 34061905 PMCID: PMC8195396 DOI: 10.1371/journal.ppat.1009596] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/11/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
The rapid evolution of RNA viruses has been long considered to result from a combination of high copying error frequencies during RNA replication, short generation times and the consequent extensive fixation of neutral or adaptive changes over short periods. While both the identities and sites of mutations are typically modelled as being random, recent investigations of sequence diversity of SARS coronavirus 2 (SARS-CoV-2) have identified a preponderance of C->U transitions, proposed to be driven by an APOBEC-like RNA editing process. The current study investigated whether this phenomenon could be observed in datasets of other RNA viruses. Using a 5% divergence filter to infer directionality, 18 from 36 datasets of aligned coding region sequences from a diverse range of mammalian RNA viruses (including Picornaviridae, Flaviviridae, Matonaviridae, Caliciviridae and Coronaviridae) showed a >2-fold base composition normalised excess of C->U transitions compared to U->C (range 2.1x-7.5x), with a consistently observed favoured 5' U upstream context. The presence of genome scale RNA secondary structure (GORS) was the only other genomic or structural parameter significantly associated with C->U/U->C transition asymmetries by multivariable analysis (ANOVA), potentially reflecting RNA structure dependence of sites targeted for C->U mutations. Using the association index metric, C->U changes were specifically over-represented at phylogenetically uninformative sites, potentially paralleling extensive homoplasy of this transition reported in SARS-CoV-2. Although mechanisms remain to be functionally characterised, excess C->U substitutions accounted for 11-14% of standing sequence variability of structured viruses and may therefore represent a potent driver of their sequence diversification and longer-term evolution.
Collapse
Affiliation(s)
- Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - M. Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Golsaz-Shirazi F, Shokri F. Cross talk between hepatitis B virus and innate immunity of hepatocytes. Rev Med Virol 2021; 32:e2256. [PMID: 34021666 DOI: 10.1002/rmv.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Innate immunity plays a major role in controlling viral infections. Recent exploration of sodium taurocholate co-transporting polypeptide receptor as specific hepatitis B virus (HBV) receptor in human hepatocytes has provided appropriate cell culture tools to study the innate immunity of hepatocytes and its cross talk with HBV. In this review, we give a brief update on interaction between HBV and innate immunity using the currently available in vitro cellular models that support the complete life cycle of HBV. We will discuss how HBV can act as a 'stealth' virus to counteract the innate immune responses mediated by the pathogen recognition receptors of hepatocytes and escape the first line of surveillance of the host immune system. We give an overview of the cellular components of innate immunity that present in these in vitro models and discuss how activating these innate immunity components may contribute to the eradication of HBV infection.
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Garcia-Garcia S, Cortese MF, Rodríguez-Algarra F, Tabernero D, Rando-Segura A, Quer J, Buti M, Rodríguez-Frías F. Next-generation sequencing for the diagnosis of hepatitis B: current status and future prospects. Expert Rev Mol Diagn 2021; 21:381-396. [PMID: 33880971 DOI: 10.1080/14737159.2021.1913055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatitis B virus (HBV) causes a complex and persistent infection with a major impact on patients health. Viral-genome sequencing can provide valuable information for characterizing virus genotype, infection dynamics and drug and vaccine resistance. AREAS COVERED This article reviews the current literature to describe the next-generation sequencing progress that facilitated a more comprehensive study of HBV quasispecies in diagnosis and clinical monitoring. EXPERT OPINION HBV variability plays a key role in liver disease progression and treatment efficacy. Second-generation sequencing improved the sensitivity for detecting and quantifying mutations, mixed genotypes and viral recombination. Third-generation sequencing enables the analysis of the entire HBV genome, although the high error rate limits its use in clinical practice.
Collapse
Affiliation(s)
- Selene Garcia-Garcia
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Francesca Cortese
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Rodríguez-Algarra
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Tabernero
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
| | - Ariadna Rando-Segura
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Josep Quer
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
- Liver Unit, Liver Disease Laboratory-Viral Hepatitis, Vall d'Hebron Institut Recerca-Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Maria Buti
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
- Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
| | - Francisco Rodríguez-Frías
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma De Barcelona, Barcelona Spain
- Clinical Biochemistry Research Group, Vall d'Hebron Institut Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas, Instituto De Salud Carlos III, Madrid Spain
| |
Collapse
|
30
|
Bubie A, Zoulim F, Testoni B, Miles B, Posner M, Villanueva A, Losic B. Landscape of oncoviral genotype and co-infection via human papilloma and hepatitis B viral tumor in situ profiling. iScience 2021; 24:102368. [PMID: 33889830 PMCID: PMC8050859 DOI: 10.1016/j.isci.2021.102368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/07/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
The role of oncoviral genotype and co-infection driving oncogenesis remains unclear. We have developed a scalable, high throughput tool for sensitive and precise oncoviral genotype deconvolution. Using tumor RNA sequencing data, we applied it to 537 virally infected liver, cervical, and head and neck tumors, providing the first comprehensive integrative landscape of tumor-viral gene expression, viral antigen immunogenicity, patient survival, and mutational profiling organized by tumor oncoviral genotype. We find that HBV and HPV genotype and co-infection serve as significant predictors of patient survival and immune activation. Finally, we demonstrate that HPV genotype is more associated with viral oncogene expression than cancer type, implying that expression may be similar across episomal and stochastic integration-based infections. While oncoviral infections are known risk factors for oncogenesis, viral genotype and co-infection are shown to strongly associate with disease progression, patient survival, mutational signatures, and putative tumor neoantigen immunogenicity, facilitating novel clinical associations with infections. ViralMine parses oncoviral genotypes and co-infection from in situ tumor data Oncoviral genotyping of TCGA CESC, HNSC, and LIHC cohorts Tumor fitness, immunogenicity, and mutational signatures associate with oncoviral genotype
Collapse
Affiliation(s)
- Adrian Bubie
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Fabien Zoulim
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Barbara Testoni
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Lyon, 69008, France
| | - Brett Miles
- Department of Otolaryngology Head and Neck Surgery, New York, NY 10029, USA
| | - Marshall Posner
- Division of Hematology Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Augusto Villanueva
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA.,Division of Liver Diseases, Division of Hematology/Oncology, Department of Medicine, Graduate School of Biomedical Sciences, Tisch Cancer Institute, Diabetes, Obesity, and Metabolism Institute, New York, NY 10029, USA
| | - Bojan Losic
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA.,Division of Liver Diseases, Division of Hematology/Oncology, Department of Medicine, Graduate School of Biomedical Sciences, Tisch Cancer Institute, Diabetes, Obesity, and Metabolism Institute, New York, NY 10029, USA
| |
Collapse
|
31
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
32
|
The evolution and clinical impact of hepatitis B virus genome diversity. Nat Rev Gastroenterol Hepatol 2020; 17:618-634. [PMID: 32467580 DOI: 10.1038/s41575-020-0296-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
The global burden of hepatitis B virus (HBV) is enormous, with 257 million persons chronically infected, resulting in more than 880,000 deaths per year worldwide. HBV exists as nine different genotypes, which differ in disease progression, natural history and response to therapy. HBV is an ancient virus, with the latest reports greatly expanding the host range of the Hepadnaviridae (to include fish and reptiles) and casting new light on the origins and evolution of this viral family. Although there is an effective preventive vaccine, there is no cure for chronic hepatitis B, largely owing to the persistence of a viral minichromosome that is not targeted by current therapies. HBV persistence is also facilitated through aberrant host immune responses, possibly due to the diverse intra-host viral populations that can respond to host-mounted and therapeutic selection pressures. This Review summarizes current knowledge on the influence of HBV diversity on disease progression and treatment response and the potential effect on new HBV therapies in the pipeline. The mechanisms by which HBV diversity can occur both within the individual host and at a population level are also discussed.
Collapse
|
33
|
Poulain F, Lejeune N, Willemart K, Gillet NA. Footprint of the host restriction factors APOBEC3 on the genome of human viruses. PLoS Pathog 2020; 16:e1008718. [PMID: 32797103 PMCID: PMC7449416 DOI: 10.1371/journal.ppat.1008718] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/26/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
APOBEC3 enzymes are innate immune effectors that introduce mutations into viral genomes. These enzymes are cytidine deaminases which transform cytosine into uracil. They preferentially mutate cytidine preceded by thymidine making the 5'TC motif their favored target. Viruses have evolved different strategies to evade APOBEC3 restriction. Certain viruses actively encode viral proteins antagonizing the APOBEC3s, others passively face the APOBEC3 selection pressure thanks to a depleted genome for APOBEC3-targeted motifs. Hence, the APOBEC3s left on the genome of certain viruses an evolutionary footprint. The aim of our study is the identification of these viruses having a genome shaped by the APOBEC3s. We analyzed the genome of 33,400 human viruses for the depletion of APOBEC3-favored motifs. We demonstrate that the APOBEC3 selection pressure impacts at least 22% of all currently annotated human viral species. The papillomaviridae and polyomaviridae are the most intensively footprinted families; evidencing a selection pressure acting genome-wide and on both strands. Members of the parvoviridae family are differentially targeted in term of both magnitude and localization of the footprint. Interestingly, a massive APOBEC3 footprint is present on both strands of the B19 erythroparvovirus; making this viral genome one of the most cleaned sequences for APOBEC3-favored motifs. We also identified the endemic coronaviridae as significantly footprinted. Interestingly, no such footprint has been detected on the zoonotic MERS-CoV, SARS-CoV-1 and SARS-CoV-2 coronaviruses. In addition to viruses that are footprinted genome-wide, certain viruses are footprinted only on very short sections of their genome. That is the case for the gamma-herpesviridae and adenoviridae where the footprint is localized on the lytic origins of replication. A mild footprint can also be detected on the negative strand of the reverse transcribing HIV-1, HIV-2, HTLV-1 and HBV viruses. Together, our data illustrate the extent of the APOBEC3 selection pressure on the human viruses and identify new putatively APOBEC3-targeted viruses.
Collapse
Affiliation(s)
- Florian Poulain
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Noémie Lejeune
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Kévin Willemart
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| | - Nicolas A. Gillet
- Namur Research Institute for Life Sciences (NARILIS), Integrated Veterinary Research Unit (URVI), University of Namur, Namur, Belgium
| |
Collapse
|
34
|
Bockmann JH, Stadler D, Xia Y, Ko C, Wettengel JM, Schulze Zur Wiesch J, Dandri M, Protzer U. Comparative Analysis of the Antiviral Effects Mediated by Type I and III Interferons in Hepatitis B Virus-Infected Hepatocytes. J Infect Dis 2020; 220:567-577. [PMID: 30923817 DOI: 10.1093/infdis/jiz143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/27/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Type III interferons (IFNs) (λ1-3) activate similar signaling cascades as type I IFNs (α and β) via different receptors. Since IFN-α and lymphotoxin-β activate cytosine deamination and subsequent purging of nuclear hepatitis B virus (HBV) DNA, we investigated whether IFN-β and -λ may also induce these antiviral effects in differentiated HBV-infected hepatocytes. METHODS After determining the biological activity of IFN-α2, -β1, -λ1, and -λ2 in differentiated hepatocytes, their antiviral effects were analyzed in HBV-infected primary human hepatocytes and HepaRG cells. RESULTS Type I and III IFNs reduced nuclear open-circle DNA and covalently closed circular DNA (cccDNA) levels in HBV-infected cells. IFN-β and -λ were at least as efficient as IFN-α. Differential DNA-denaturing polymerase chain reaction and sequencing analysis revealed G-to-A sequence alterations of HBV cccDNA in IFN-α, -β, and -λ-treated liver cells indicating deamination. All IFNs induced apolipoprotein B messenger RNA-editing enzyme-catalytic polypeptide-like (APOBEC) deaminases 3A and 3G within 24 hours of treatment, but IFN-β and -λ induced longer-lasting expression of APOBEC deaminases in comparison to IFN-α. CONCLUSIONS IFN-β, IFN-λ1, and IFN-λ2 induce cccDNA deamination and degradation at least as efficiently as IFN-α, indicating that these antiviral cytokines are interesting candidates for the design of new therapeutic strategies aiming at cccDNA reduction and HBV cure.
Collapse
Affiliation(s)
- Jan-Hendrik Bockmann
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Daniela Stadler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Yuchen Xia
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,State Key Laboratory of Virology, School of Basic Medical Sciences, Wuhan University, China
| | - Chunkyu Ko
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Jochen M Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich
| | - Julian Schulze Zur Wiesch
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich.,German Center for Infection Research, Munich and Hamburg partner sites, Germany
| |
Collapse
|
35
|
Elalfy H, Besheer T, Elhammady D, Mesery AE, Shaltout SW, El-Maksoud MA, Amin AI, Bekhit AN, Aziz MAE, El-Bendary M. Pathological characterization of occult hepatitis B virus infection in hepatitis C virus-associated or non-alcoholic steatohepatitis-related hepatocellular carcinoma. World J Meta-Anal 2020; 8:67-77. [DOI: 10.13105/wjma.v8.i2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
|
36
|
Ni L, Li C, Li Y. Correlation of APOBEC3G expression with liver function indexes of patients with chronic hepatitis B and comparison in chronic hepatitis B, liver cirrhosis and liver cancer. Oncol Lett 2020; 19:2562-2567. [PMID: 32194760 DOI: 10.3892/ol.2020.11257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
Correlation of APOBEC3G expression with liver function indexes of patients with chronic hepatitis B and its expression in chronic hepatitis B, liver cirrhosis and liver cancer were investigated to evaluated the significance of APOBEC3G. Fifty-eight patients with chronic hepatitis B were selected, including 20 cases of chronic hepatitis B, 19 cases of liver cirrhosis and 19 cases of liver cancer. Liver function indexes were detected and analyzed, and messenger ribonucleic acid (mRNA) and protein expression levels of APOBEC3G in liver tissues were detected via reverse transcription-polymerase chain reaction (RT-PCR), western blotting and immunohistochemistry, followed by correlation analysis. Certain liver function indexes had significant differences among the three groups of patients (P<0.05). Results of RT-PCR, Western blotting and immunohistochemistry confirmed that the content of APOBEC3G in liver tissues was the highest in patients with chronic hepatitis B, slightly lower in patients with liver cirrhosis and the lowest in patients with liver cancer. The content of APOBEC3G mRNA in liver tissues had a certain correlation with the content of alanine aminotransferase (ALT) (r2 =0.34, P<0.05). Other liver function indexes had no significant correlations with APOBEC3G (P>0.05). APOBEC3G expression has a certain correlation with some liver function indexes of patients with chronic hepatitis B. There are significant differences in the expression level of APOBEC3G in patients with hepatitis, liver cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Lina Ni
- Department of Blood Transfusion, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| | - Chuanbao Li
- Department of Hepatobiliary Surgery, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| | - Yingbo Li
- Department of Blood Transfusion, Weihai Central Hospital, Wendeng, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
37
|
The Solo Play of TERT Promoter Mutations. Cells 2020; 9:cells9030749. [PMID: 32204305 PMCID: PMC7140675 DOI: 10.3390/cells9030749] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
The reactivation of telomerase reverse transcriptase (TERT) protein is the principal mechanism of telomere maintenance in cancer cells. Mutations in the TERT promoter (TERTp) are a common mechanism of TERT reactivation in many solid cancers, particularly those originating from slow-replicating tissues. They are associated with increased TERT levels, telomere stabilization, and cell immortalization and proliferation. Much effort has been invested in recent years in characterizing their prevalence in different cancers and their potential as biomarkers for tumor stratification, as well as assessing their molecular mechanism of action, but much remains to be understood. Notably, they appear late in cell transformation and are mutually exclusive with each other as well as with other telomere maintenance mechanisms, indicative of overlapping selective advantages and of a strict regulation of TERT expression levels. In this review, we summarized the latest literature on the role and prevalence of TERTp mutations across different cancer types, highlighting their biased distribution. We then discussed the need to maintain TERT levels at sufficient levels to immortalize cells and promote proliferation while remaining within cell sustainability levels. A better understanding of TERT regulation is crucial when considering its use as a possible target in antitumor strategies.
Collapse
|
38
|
McDaniel YZ, Wang D, Love RP, Adolph MB, Mohammadzadeh N, Chelico L, Mansky LM. Deamination hotspots among APOBEC3 family members are defined by both target site sequence context and ssDNA secondary structure. Nucleic Acids Res 2020; 48:1353-1371. [PMID: 31943071 PMCID: PMC7026630 DOI: 10.1093/nar/gkz1164] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
The human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3, A3) family member proteins can deaminate cytosines in single-strand (ss) DNA, which restricts human immunodeficiency virus type 1 (HIV-1), retrotransposons, and other viruses such as hepatitis B virus, but can cause a mutator phenotype in many cancers. While structural information exists for several A3 proteins, the precise details regarding deamination target selection are not fully understood. Here, we report the first parallel, comparative analysis of site selection of A3 deamination using six of the seven purified A3 member enzymes, oligonucleotides having 5'TC3' or 5'CT3' dinucleotide target sites, and different flanking bases within diverse DNA secondary structures. A3A, A3F and A3H were observed to have strong preferences toward the TC target flanked by A or T, while all examined A3 proteins did not show a preference for a TC target flanked by a G. We observed that the TC target was strongly preferred in ssDNA regions rather than dsDNA, loop or bulge regions, with flanking bases influencing the degree of preference. CT was also shown to be a potential deamination target. Taken together, our observations provide new insights into A3 enzyme target site selection and how A3 mutagenesis impacts mutation rates.
Collapse
Affiliation(s)
- Yumeng Z McDaniel
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Dake Wang
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
| | - Robin P Love
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Madison B Adolph
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Nazanin Mohammadzadeh
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Linda Chelico
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Louis M Mansky
- Veterinary Medicine Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455 USA
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455 USA
- Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
39
|
Forlani G, Shallak M, Ramia E, Tedeschi A, Accolla RS. Restriction factors in human retrovirus infections and the unprecedented case of CIITA as link of intrinsic and adaptive immunity against HTLV-1. Retrovirology 2019; 16:34. [PMID: 31783769 PMCID: PMC6884849 DOI: 10.1186/s12977-019-0498-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Immunity against pathogens evolved through complex mechanisms that only for sake of simplicity are defined as innate immunity and adaptive immunity. Indeed innate and adaptive immunity are strongly intertwined each other during evolution. The complexity is further increased by intrinsic mechanisms of immunity that rely on the action of intracellular molecules defined as restriction factors (RFs) that, particularly in virus infections, counteract the action of pathogen gene products acting at different steps of virus life cycle. Main body and conclusion Here we provide an overview on the nature and the mode of action of restriction factors involved in retrovirus infection, particularly Human T Leukemia/Lymphoma Virus 1 (HTLV-1) infection. As it has been extensively studied by our group, special emphasis is given to the involvement of the MHC class II transactivator CIITA discovered in our laboratory as regulator of adaptive immunity and subsequently as restriction factor against HIV-1 and HTLV-1, a unique example of dual function linking adaptive and intrinsic immunity during evolution. We describe the multiple molecular mechanisms through which CIITA exerts its restriction on retroviruses. Of relevance, we review the unprecedented findings pointing to a concerted action of several restriction factors such as CIITA, TRIM22 and TRIM19/PML in synergizing against retroviral replication. Finally, as CIITA profoundly affects HTLV-1 replication by interacting and inhibiting the function of HTLV-1 Tax-1 molecule, the major viral product associated to the virus oncogenicity, we also put forward the hypothesis of CIITA as counteractor of HTLV-1-mediated cancer initiation.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Mariam Shallak
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Elise Ramia
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Alessandra Tedeschi
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, School of Medicine, University of Insubria, Via Ottorino Rossi 9, 21100, Varese, Italy.
| |
Collapse
|
40
|
Wang D, Li X, Li J, Lu Y, Zhao S, Tang X, Chen X, Li J, Zheng Y, Li S, Sun R, Yan M, Yu D, Cao G, Yang Y. APOBEC3B interaction with PRC2 modulates microenvironment to promote HCC progression. Gut 2019; 68:1846-1857. [PMID: 31154396 DOI: 10.1136/gutjnl-2018-317601] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE APOBEC3B (A3B), a cytidine deaminase acting as a contributor to the APOBEC mutation pattern in many kinds of tumours, is upregulated in patients with hepatocellular carcinoma (HCC). However, APOBEC mutation patterns are absent in HCC. The mechanism of how A3B affects HCC progression remains elusive. DESIGN A3B -promoter luciferase reporter and other techniques were applied to elucidate mechanisms of A3B upregulation in HCC. A3B overexpression and knockdown cell models, immunocompetent and immune-deficient mouse HCC model were conducted to investigate the influence of A3B on HCC progression. RNA-seq, flow cytometry and other techniques were conducted to analyse how A3B modulated the cytokine to enhance the recruitment of myeloid--derived suppressor cells (MDSCs) and tumour--associated macrophages (TAMs). RESULTS A3B upregulation through non-classical nuclear factor-κB (NF-κB)signalling promotes HCC growth in immunocompetent mice, associated with an increase of MDSCs, TAMs and programmed cell death1 (PD1) exprssed CD8+ T cells. A CCR2 antagonist suppressed TAMs and MDSCs infiltration and delayed tumour growth in A3B and A3BE68Q/E255Q- expressing mouse tumours. Mechanistically, A3B upregulation in HCC depresses global H3K27me3 abundance via interaction with polycomb repressor complex 2 (PRC2) and reduces an occupancy of H3K27me3 on promoters of the chemokine CCL2 to recruit massive TAMs and MDSCs. CONCLUSION Our observations uncover a deaminase-independent role of the A3B in modulating the HCC microenvironment and demonstrate a proof for the concept of targeting A3B in HCC immunotherapy.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cytidine Deaminase/biosynthesis
- Cytidine Deaminase/genetics
- DNA, Neoplasm/genetics
- Disease Progression
- Gene Expression Regulation, Neoplastic
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Minor Histocompatibility Antigens/biosynthesis
- Minor Histocompatibility Antigens/genetics
- Promoter Regions, Genetic
- Tumor Microenvironment/physiology
Collapse
Affiliation(s)
- Duowei Wang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xianjing Li
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiani Li
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuan Lu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Sen Zhao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xinying Tang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xin Chen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiaying Li
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yan Zheng
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shuran Li
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Rui Sun
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ming Yan
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Decai Yu
- Department of General Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
41
|
Ren F, Li W, Xiang A, Wang L, Li M, Guo Y. Distribution and difference of APOBEC-induced mutations in the TpCpW context of HBV DNA between HCC and non-HCC. J Med Virol 2019; 92:53-61. [PMID: 31429946 DOI: 10.1002/jmv.25572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/10/2019] [Indexed: 12/30/2022]
Abstract
Hepatitis B virus (HBV) DNA is vulnerable to editing by human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) cytidine deaminases. However, the distribution of APOBEC-induced mutations on HBV DNA is not well characterized. To this end, we obtained the HBV DNA sequence of HBV-infected individuals with and without hepatocellular carcinoma (HCC and non-HCC groups, respectively) from NCBI database and calculated the rapo values of APOBEC-induced TpCpW→TpKpW mutation prevalence in HBV DNA. The results showed that the APOBEC-induced mutations were mainly distributed in the minus strand of non-HCC-derived HBV DNA (rapo = 2.04), while the mutation on the plus-strand was weaker (rapo = 0.99). There were high APOBEC-induced mutation regions in the minus strand of HBV DNA 1 to 1000 nucleotides (nts) region and in the plus-strand of HBV DNA 1000 to 1500 nts region; the mutations in the 1 to 1000 nts region were mainly TpCpW→TpTpW mutation types (total T/G: 111/18) and a number of these were missense mutations (missense/synonymous: 35/94 in P gene, 17/15 in S gene, and 5/10 in X gene). The difference between minus to plus-strand rapo of HCC-derived HBV DNA (1.96) was greater than that of the non-HCC group (1.05). The minus-strand rapo of HCC-derived HBV DNA regions 1000 to1500nts and 1500 to 2000 nts (rapo = 4.2 and 4.2) was also higher than that of the same regions of non-HCC-derived HBV DNA (rapo = 1.2 and 1.1). Finally, the ratio of minus to plus-strand rapo was used to distinguish HCC-derived HBV DNA from non-HCC-derived HBV DNA. This study unraveled the distribution characteristics of APOBEC-induced mutations on double strands of HBV DNA from HCC and non-HCC samples. Our findings would help understand the mechanism of APOBECs on HBV DNA and may provide important insights for the screening of HCC.
Collapse
Affiliation(s)
- FengLing Ren
- Department of Environmental and Occupational Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - WeiNa Li
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - An Xiang
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Li Wang
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Meng Li
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - YanHai Guo
- Department of Biopharmaceutics, Air Force Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
42
|
Different antiviral activities of natural APOBEC3C, APOBEC3G, and APOBEC3H variants against hepatitis B virus. Biochem Biophys Res Commun 2019; 518:26-31. [PMID: 31400856 DOI: 10.1016/j.bbrc.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022]
Abstract
Some APOBEC3 family members have antiviral activity against retroviruses and DNA viruses. Hepatitis B virus (HBV) is a DNA virus that is the major causative factor of severe liver diseases such as cirrhosis and hepatocellular carcinoma. To determine whether APOBEC3 variants in humans have different anti-HBV activities, we evaluated natural variants of APOBEC3C, APOBEC3G, and APOBEC3H using an HBV-replicating cell culture model. Our data demonstrate that the APOBEC3C variant S188I had increased restriction activity and hypermutation frequency against HBV DNA. In contrast, the APOBEC3G variant H186R did not alter the anti-HBV and hypermutation activities. Among APOBEC3H polymorphisms (hap I-VII) and splicing variants (SV-200, SV-183, SV-182, and SV-154), hap II SV-183 showed the strongest restriction activity. These data suggest that the genetic variations in APOBEC3 genes may affect the efficiency of HBV elimination in humans.
Collapse
|
43
|
Liu W, Wu J, Yang F, Ma L, Ni C, Hou X, Wang L, Xu A, Song J, Deng Y, Xian L, Li Z, Wang S, Chen X, Yin J, Han X, Li C, Zhao J, Cao G. Genetic Polymorphisms Predisposing the Interleukin 6-Induced APOBEC3B-UNG Imbalance Increase HCC Risk via Promoting the Generation of APOBEC-Signature HBV Mutations. Clin Cancer Res 2019; 25:5525-5536. [PMID: 31152021 DOI: 10.1158/1078-0432.ccr-18-3083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/04/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE APOBEC3-UNG imbalance contributes to hepatitis B virus (HBV) inhibition and somatic mutations. We aimed to explore the associations between hepatocellular carcinoma (HCC) risk and genetic polymorphisms predisposing the imbalance.Experimental Design: Genetic polymorphisms at APOBEC3 promoter and UNG enhancer regions were genotyped in 5,621 participants using quantitative PCR. HBV mutations (nt.1600-nt.1945, nt.2848-nt.155) were determined by Sanger sequencing. Dual-luciferase reporter assay was applied to detect the transcriptional activity. Effects of APOBEC3B/UNG SNPs and expression levels on HCC prognosis were evaluated with a cohort of 400 patients with HCC and public databases, respectively. RESULTS APOBEC3B rs2267401-G allele and UNG rs3890995-C allele significantly increased HCC risk. rs2267401-G allele was significantly associated with the generation of APOBEC-signature HBV mutation whose frequency consecutively increased from asymptomatic HBV carriers to patients with HCC. Multiplicative interaction of rs2267401-G allele with rs3890995-C allele increased HCC risk, with an adjusted OR (95% confidence interval) of 1.90 (1.34-2.81). rs2267401 T-to-G and rs3890995 T-to-C conferred increased activities of APOBEC3B promoter and UNG enhancer, respectively. IL6 significantly increased APOBEC3B promoter activity and inhibited UNG enhancer activity, and these effects were more evident in those carrying rs2267401-G and rs3890995-C, respectively. APOBEC3B rs2267401-GG genotype, higher APOBEC3B expression, and higher APOBEC3B/UNG expression ratio in HCCs indicated poor prognosis. APOBEC-signature somatic mutation predicts poor prognosis in HBV-free HCCs rather than in HBV-positive ones. CONCLUSIONS Polymorphic genotypes predisposing the APOBEC3B-UNG imbalance in IL6-presenting microenvironment promote HCC development, possibly via promoting the generation of high-risk HBV mutations. This can be transformed into specific prophylaxis of HBV-caused HCC.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianfeng Wu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Fan Yang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Longteng Ma
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Chong Ni
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Ling Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Aijing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Linfeng Xian
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Shuo Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Chengzhong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jun Zhao
- Department of Liver Cancer Surgery, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China. .,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, China
| |
Collapse
|
44
|
Kostyushev D, Brezgin S, Kostyusheva A, Zarifyan D, Goptar I, Chulanov V. Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell Mol Life Sci 2019; 76:1779-1794. [PMID: 30673820 PMCID: PMC11105500 DOI: 10.1007/s00018-019-03021-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major cause of viral persistence and chronic hepatitis B. CRISPR/Cas9 nucleases can specifically target HBV cccDNA for decay, but off-target effects of nucleases in the human genome limit their clinical utility. CRISPR/Cas9 systems from four different species were co-expressed in cell lines with guide RNAs targeting conserved regions of the HBV genome. CRISPR/Cas9 systems from Streptococcus pyogenes (Sp) and Streptococcus thermophilus (St) targeting conserved regions of the HBV genome blocked HBV replication and, most importantly, resulted in degradation of over 90% of HBV cccDNA by 6 days post-transfection. Degradation of HBV cccDNA was impaired by inhibition of non-homologous end-joining pathway and resulted in an erroneous repair of HBV cccDNA. HBV cccDNA methylation also affected antiviral activity of CRISPR/Cas9. Single-nucleotide HBV genetic variants did not impact anti-HBV activity of St CRISPR/Cas9, suggesting its utility in targeting many HBV variants. However, two or more mismatches impaired or blocked CRISPR/Cas9 activity, indicating that host DNA will not likely be targeted. Deep sequencing revealed that Sp CRISPR/Cas9 induced off-target mutagenesis, whereas St CRISPR/Cas9 had no effect on the host genome. St CRISPR/Cas9 system represents the safest system with high anti-HBV activity.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- Viral Hepatitis Laboratory, Central Research Institute of Epidemiology, 3A Novogireevskaya Street, Moscow, 111123, Russian Federation.
| | - Sergey Brezgin
- Viral Hepatitis Laboratory, Central Research Institute of Epidemiology, 3A Novogireevskaya Street, Moscow, 111123, Russian Federation
- Institute of Immunology, Federal Medical Biological Agency, Moscow, 115478, Russian Federation
| | - Anastasiya Kostyusheva
- Viral Hepatitis Laboratory, Central Research Institute of Epidemiology, 3A Novogireevskaya Street, Moscow, 111123, Russian Federation
| | - Dmitry Zarifyan
- Viral Hepatitis Laboratory, Central Research Institute of Epidemiology, 3A Novogireevskaya Street, Moscow, 111123, Russian Federation
| | - Irina Goptar
- Viral Hepatitis Laboratory, Central Research Institute of Epidemiology, 3A Novogireevskaya Street, Moscow, 111123, Russian Federation
- Izmerov Research Institute of Occupational Health, Moscow, 105275, Russian Federation
| | - Vladimir Chulanov
- Viral Hepatitis Laboratory, Central Research Institute of Epidemiology, 3A Novogireevskaya Street, Moscow, 111123, Russian Federation
- Sechenov University, Moscow, 119146, Russian Federation
| |
Collapse
|
45
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
46
|
Hypoxia-induced human deoxyribonuclease I is a cellular restriction factor of hepatitis B virus. Nat Microbiol 2019; 4:1196-1207. [PMID: 30936483 DOI: 10.1038/s41564-019-0405-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/11/2019] [Indexed: 12/17/2022]
Abstract
Numerous human APOBEC3 cytidine deaminases have proven to be, inter alia, host cell restriction factors for retroviruses and hepadnaviruses. Although they can bind to genomic RNA and become encapsidated, they are only catalytically active on single-stranded DNA. As there are many cellular deoxyribonucleases (DNases), we hypothesized that a parallel could be struck between APOBEC3 and DNases. For human hepatitis B virus (HBV), we show that DNase I can considerably reduce the virion genome copy number from a variety of transfected or infected cells. DNASE1 is overexpressed and encapsidated in HBV particles in vitro in hypoxic environments and in vivo in cirrhotic patient livers as well as in the serum of infected patients. The use of CoCl2 and dimethyloxalylglycine, mimetic agents used to induce hypoxia by inhibiting prolyl hydroxylase enzymes that stabilize hypoxia-inducible factor (HIF)-1α, showed that the formation of HIF-1α/HIF-1β heterodimers results in the induction of DNASE1. Indeed, transfection with HIF-1α and HIF-1β expression constructs upregulated DNASE1. These findings suggest that human DNase I can impact HBV replication through the catabolism of the DNA genome within the capsid. The activity of DNases in general may explain in part the high frequency of empty or 'light' hepatitis B virions observed in vivo.
Collapse
|
47
|
Yao J, Tanaka M, Takenouchi N, Ren Y, Lee SI, Fujisawa JI. Induction of APOBEC3B cytidine deaminase in HTLV-1-infected humanized mice. Exp Ther Med 2019; 17:3701-3708. [PMID: 30988755 DOI: 10.3892/etm.2019.7375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma (ATL). Following viral infection with HTLV-1, certain infected cells exhibit clonal proliferation. Additional genetic and epigenetic changes in these clonally proliferating cells provide them with the selective advantage of growth, which eventually results in ATL. The precise mechanism, however, has yet to be completely elucidated. It has previously been established that APOBEC3 enzymes are potent host-antiviral restriction factors. Conversely, previous studies have reported that the A3B level is increased in tumor virus infections, such as those caused by HBV and HPV, suggesting that A3B exerts a function as a mutagen. Therefore, the present study analyzed the expression of APOBEC3 family members in various HTLV-1 infection states. No significant differences were observed in the expression between healthy donors and patients with HTLV-1-associated myelopathy. Although no significant changes in the expressions of A3C, A3D, A3F and A3G between uninfected and HTLV-1-infected mice were observed, an increased A3B expression was observed in a short-term humanized mouse model following HTLV-1 infection. In a long-term humanized mouse model following HTLV-1 infection, the gene expression array data exhibited an apparent increase in A3B and CADM1, which are indicators of ATL. Collectively, the results of the present study suggest that A3B is likely involved in the development of ATL in HTLV-1-infected humanized mice.
Collapse
Affiliation(s)
- Jinchun Yao
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Masakazu Tanaka
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan.,Division of Molecular Pathology, Center for Chronic Viral Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Yihua Ren
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Sung-Il Lee
- Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Jun-Ichi Fujisawa
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
48
|
Mussil B, Suspène R, Caval V, Durandy A, Wain-Hobson S, Vartanian JP. Genotoxic stress increases cytoplasmic mitochondrial DNA editing by human APOBEC3 mutator enzymes at a single cell level. Sci Rep 2019; 9:3109. [PMID: 30816165 PMCID: PMC6395610 DOI: 10.1038/s41598-019-39245-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/23/2018] [Indexed: 01/23/2023] Open
Abstract
Human cells are stressed by numerous mechanisms that can lead to leakage of mitochondrial DNA (mtDNA) to the cytoplasm and ultimately apoptosis. This agonist DNA constitutes a danger to the cell and is counteracted by cytoplasmic DNases and APOBEC3 cytidine deamination of DNA. To investigate APOBEC3 editing of leaked mtDNA to the cytoplasm, we performed a PCR analysis of APOBEC3 edited cytoplasmic mtDNA (cymtDNA) at the single cell level for primary CD4+ T cells and the established P2 EBV blast cell line. Up to 17% of primary CD4+ T cells showed signs of APOBEC3 edited cymtDNA with ~50% of all mtDNA sequences showing signs of APOBEC3 editing - between 1500-5000 molecules. Although the P2 cell line showed a much lower frequency of stressed cells, the number of edited mtDNA molecules in such cells was of the same order. Addition of the genotoxic molecules, etoposide or actinomycin D increased the number of cells showing APOBEC3 edited cymtDNA to around 40%. These findings reveal a very dynamic image of the mitochondrial network, which changes considerably under stress. APOBEC3 deaminases are involved in the catabolism of mitochondrial DNA to circumvent chronic immune stimulation triggered by released mitochondrial DNA from damaged cells.
Collapse
Affiliation(s)
- Bianka Mussil
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France
- Unit of Infection Models, German Primate Centre, Kellnerweg 4, D-37077, Goettingen, Germany
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France
| | - Anne Durandy
- INSERM UMR 1163, The Human Lymphohematopoiesis Laboratory, Institut Imagine, 24 boulevard du Montparnasse, F-75015, Paris, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, 28 rue du Dr. Roux, F-75724, Paris cedex 15, France.
| |
Collapse
|
49
|
Liu S, Huang S, Chen F, Zhao L, Yuan Y, Francis SS, Fang L, Li Z, Lin L, Liu R, Zhang Y, Xu H, Li S, Zhou Y, Davies RW, Liu Q, Walters RG, Lin K, Ju J, Korneliussen T, Yang MA, Fu Q, Wang J, Zhou L, Krogh A, Zhang H, Wang W, Chen Z, Cai Z, Yin Y, Yang H, Mao M, Shendure J, Wang J, Albrechtsen A, Jin X, Nielsen R, Xu X. Genomic Analyses from Non-invasive Prenatal Testing Reveal Genetic Associations, Patterns of Viral Infections, and Chinese Population History. Cell 2018; 175:347-359.e14. [DOI: 10.1016/j.cell.2018.08.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/12/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023]
|
50
|
Strategy of Human Cytomegalovirus To Escape Interferon Beta-Induced APOBEC3G Editing Activity. J Virol 2018; 92:JVI.01224-18. [PMID: 30045985 DOI: 10.1128/jvi.01224-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/26/2023] Open
Abstract
The apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established. Here, we have assessed gene expression and deaminase activity of various APOBEC3 gene family members in HCMV-infected primary human foreskin fibroblasts (HFFs). Specifically, we show that APOBEC3G (A3G) gene products and, to a lesser degree, those of A3F but not of A3A, are upregulated in HCMV-infected HFFs. We also show that HCMV-mediated induction of A3G expression is mediated by interferon beta (IFN-β), which is produced early during HCMV infection. However, knockout or overexpression of A3G does not affect HCMV replication, indicating that A3G is not a restriction factor for HCMV. Finally, through a bioinformatics approach, we show that HCMV has evolved mutational robustness against IFN-β by limiting the presence of A3G hot spots in essential open reading frames (ORFs) of its genome. Overall, our findings uncover a novel immune evasion strategy by HCMV with profound implications for HCMV infections.IMPORTANCE APOBEC3 family of proteins plays a pivotal role in intrinsic immunity defense mechanisms against multiple viral infections, including retroviruses, through the deamination activity. However, the currently available data on APOBEC3 editing mechanisms upon HCMV infection remain unclear. In the present study, we show that particularly the APOBEC3G (A3G) member of the deaminase family is strongly induced upon infection with HCMV in fibroblasts and that its upregulation is mediated by IFN-β. Furthermore, we were able to demonstrate that neither A3G knockout nor A3G overexpression appears to modulate HCMV replication, indicating that A3G does not inhibit HCMV replication. This may be explained by HCMV escape strategy from A3G activity through depletion of the preferred nucleotide motifs (hot spots) from its genome. The results may shed light on antiviral potential of APOBEC3 activity during HCMV infection, as well as the viral counteracting mechanisms under A3G-mediated selective pressure.
Collapse
|