1
|
Abrahams RR, Majumder K. Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response. Viruses 2025; 17:494. [PMID: 40284937 PMCID: PMC12031541 DOI: 10.3390/v17040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Parvoviruses are small, single-stranded DNA viruses that have evolved sophisticated mechanisms to hijack host cell machinery for replication and persistence. One critical aspect of this interaction involves the manipulation of the host's DNA Damage Response (DDR) pathways. While the viral genome is comparatively simple, parvoviruses have developed strategies that cause significant DNA damage, activate DDR pathways, and disrupt the host cell cycle. This review will explore the impact of parvovirus infections on host genome stability, focusing on key viral species such as Adeno-Associated Virus (AAV), Minute Virus of Mice (MVM), and Human Bocavirus (HBoV), and their interactions with DDR proteins. Since parvoviruses are used as oncolytic agents and gene therapy vectors, a better understanding of cellular DDR pathways will aid in engineering potent anti-cancer agents and gene therapies for chronic diseases.
Collapse
Affiliation(s)
| | - Kinjal Majumder
- Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53707, USA;
| |
Collapse
|
2
|
Jaiswal R, Braud B, Hernandez-Ramirez K, Santosh V, Washington A, Escalante C. Cryo-EM structure of AAV2 Rep68 bound to integration site AAVS1: insights into the mechanism of DNA melting. Nucleic Acids Res 2025; 53:gkaf033. [PMID: 39883011 PMCID: PMC11780844 DOI: 10.1093/nar/gkaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
The Rep68 protein from Adeno-Associated Virus (AAV) is a multifunctional SF3 helicase that performs most of the DNA transactions necessary for the viral life cycle. During AAV DNA replication, Rep68 assembles at the origin of replication, catalyzing the DNA melting and nicking reactions during the hairpin rolling replication process to complete the second-strand synthesis of the AAV genome. We report the cryo-electron microscopy structures of Rep68 bound to the adeno-associated virus integration site 1 in different nucleotide-bound states. In the nucleotide-free state, Rep68 forms a heptameric complex around DNA, with three origin-binding domains (OBDs) bound to the Rep-binding element sequence, while three remaining OBDs form transient dimers with them. The AAA+ domains form an open ring without interactions between subunits and DNA. We hypothesize that the heptameric structure is crucial for loading Rep68 onto double-stranded DNA. The ATPγS complex shows that only three subunits associate with the nucleotide, leading to a conformational change that promotes the formation of both intersubunit and DNA interactions. Moreover, three phenylalanine residues in the AAA+ domain induce a steric distortion in the DNA. Our study provides insights into how an SF3 helicase assembles on DNA and provides insights into the DNA melting process.
Collapse
Affiliation(s)
- Rahul Jaiswal
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Brandon Braud
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Karen C Hernandez-Ramirez
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Vishaka Santosh
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Alexander Washington
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| | - Carlos R Escalante
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States
| |
Collapse
|
3
|
Chowdary P, Duran B, Batty P, Lowe G, Jones A, Pollard D, Boyce S, Motwani J, Amirloo B, Musgrave K, Hopper D, Classey S, Whitaker S, Dunn N, Bowyer A, Shapiro S. UKHCDO gene therapy taskforce: Guidance for implementation of haemophilia gene therapy into routine clinical practice for adults. Haemophilia 2025; 31:26-38. [PMID: 39565651 PMCID: PMC11780224 DOI: 10.1111/hae.15125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
INTRODUCTION 2022 was a landmark year with two adeno-associated viral vectors (AAVs) receiving conditional marketing authorization from EMA for the treatment of persons with severe haemophilia A and severe to moderately severe haemophilia B and a third in 2024. Gene therapy is a transformative, irreversible treatment with long-lasting effects, necessitating development of new clinical pathways to ensure optimal outcomes. AIM To develop a consensus framework and service specification for delivery of AAV gene therapy for haemophilia in adults within the UK using the hub-and-spoke model proposed by the European Association of Haemophilia and Allied Disorders and the European Haemophilia Consortium. METHODS The UK Haemophilia Centre Doctors Organisation (UKHCDO) set up a working party to develop expert consensus guidance, working with NHS England to ensure alignment with NHS England commissioning and the national service specification. RESULTS These guidelines detail the patient pathway, counselling and governance requirements for the hub-and-spoke model. The national service specification requires the hub site to manage governance for AAV-based gene therapy. Proposed regional and national multidisciplinary teams will harmonize clinical practices incorporating expertise from various specialities and professional groups. Key requirements identified include standardized documentation and multidisciplinary collaboration. Nationally agreed patient information and counselling checklists will streamline the informed consent process and facilitate data collection for long-term safety and efficacy monitoring. CONCLUSION These guidelines provide a structured framework for the delivery of liver-directed gene therapy. Whilst specific to the United Kingdom they provide a framework for the implementation of gene therapy in other countries for haemophilia and other monogenic disorders.
Collapse
Affiliation(s)
- Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis CentreRoyal Free HospitalLondonUK
- Department of HaematologyCancer InstitueUniversity College LondonLondonUK
| | - Beatriz Duran
- Pharmacy DepartmentManchester University NHS Foundation TrustManchesterUK
| | - Paul Batty
- Katharine Dormandy Haemophilia and Thrombosis CentreRoyal Free HospitalLondonUK
- Department of HaematologyCancer InstitueUniversity College LondonLondonUK
| | - Gillian Lowe
- West Midlands Adult Comprehensive Care Haemophilia CentreQueen Elizabeth HospitalBirminghamUK
| | - April Jones
- Haemophilia CentreRoyal Victoria InfirmaryThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Debra Pollard
- Katharine Dormandy Haemophilia and Thrombosis CentreRoyal Free HospitalLondonUK
| | - Sara Boyce
- University Hospital Southampton Haemophilia Comprehensive Care CentreSouthamptonUK
| | | | - Bahareh Amirloo
- Pharmacy DepartmentManchester University NHS Foundation TrustManchesterUK
| | - Kathryn Musgrave
- Haemophilia CentreRoyal Victoria InfirmaryThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - David Hopper
- Haemophilia CentreRoyal Victoria InfirmaryThe Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Stephen Classey
- Centre for Haemostasis and ThrombosisGuy's and St Thomas NHS Foundation TrustLondonUK
| | - Sarah Whitaker
- Southern Haemophilia NetworkBasingstoke and North Hampshire HospitalBasingstokeUK
| | - Nicola Dunn
- Katharine Dormandy Haemophilia and Thrombosis CentreRoyal Free HospitalLondonUK
| | - Annette Bowyer
- Department of CoagulationRoyal Hallamshire HospitalSheffieldUK
| | - Susan Shapiro
- Oxford Haemophilia and Thrombosis CentreOxford University HospitalsOxfordUK
- Radcliffe Department of MedicineOxford UniversityOxfordUK
| |
Collapse
|
4
|
Batty P, Lillicrap D. Adeno-associated viral vector integration: implications for long-term efficacy and safety. J Thromb Haemost 2024; 22:2945-2960. [PMID: 39097231 DOI: 10.1016/j.jtha.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024]
Abstract
Adeno-associated virus (AAV) vector gene therapy provides a promising platform for treatment of monogenic inherited disorders. Clinical studies have demonstrated long-term expression with reduction in bleeding using this approach for the treatment of hemophilia. Despite these advances, there are unknowns surrounding the natural history of recombinant AAV (rAAV) vectors and the cellular mechanisms mediating vector persistence. These unknowns underpin questions regarding long-term efficacy and safety. The predominant mechanism via which AAV is proposed to persist is in circular double-stranded extrachromosomal DNA structures (episomes) within the nucleus. Studies of wild-type AAV (WT-AAV) and rAAV have demonstrated that AAV also persists via integration into a host cell's DNA. It is important to determine whether these integration events can mediate expression or could result in any long-term safety concerns. WT-AAV infection affects a large proportion of the general population, which is thought to have no long-term sequelae. Recent studies have highlighted that this WT-AAV has been detected in cases of acute hepatitis in children and in a minority of cases of hepatocellular carcinoma. Integration following treatment using rAAV has also been reported in preclinical and clinical studies. There have been variable reports on the potential implications of integration for rAAV vectors, with data in some murine studies demonstrating recurrent integration with development of hepatocellular carcinoma. These findings have not been seen in other preclinical or clinical studies. In this review, we will summarize current understanding of the natural history of AAV (wild-type and recombinant) with a focus on genomic integration and cellular implications.
Collapse
Affiliation(s)
- Paul Batty
- Department of Haematology, Cancer Institute, University College London, London, United Kingdom; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
6
|
Kasimsetty A, Sabatino DE. Integration and the risk of liver cancer-Is there a real risk? J Viral Hepat 2024; 31 Suppl 1:26-34. [PMID: 38606944 DOI: 10.1111/jvh.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 04/13/2024]
Abstract
Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.
Collapse
Affiliation(s)
- Aradhana Kasimsetty
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Hadi M, Qutaiba B Allela O, Jabari M, Jasoor AM, Naderloo O, Yasamineh S, Gholizadeh O, Kalantari L. Recent advances in various adeno-associated viruses (AAVs) as gene therapy agents in hepatocellular carcinoma. Virol J 2024; 21:17. [PMID: 38216938 PMCID: PMC10785434 DOI: 10.1186/s12985-024-02286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Primary liver cancer, which is scientifically referred to as hepatocellular carcinoma (HCC), is a significant concern in the field of global health. It has been demonstrated that conventional chemotherapy, chemo-hormonal therapy, and conformal radiotherapy are ineffective against HCC. New therapeutic approaches are thus urgently required. Identifying single or multiple mutations in genes associated with invasion, metastasis, apoptosis, and growth regulation has resulted in a more comprehensive comprehension of the molecular genetic underpinnings of malignant transformation, tumor advancement, and host interaction. This enhanced comprehension has notably propelled the development of novel therapeutic agents. Therefore, gene therapy (GT) holds great promise for addressing the urgent need for innovative treatments in HCC. However, the complexity of HCC demands precise and effective therapeutic approaches. The adeno-associated virus (AAV) distinctive life cycle and ability to persistently infect dividing and nondividing cells have rendered it an alluring vector. Another appealing characteristic of the wild-type virus is its evident absence of pathogenicity. As a result, AAV, a vector that lacks an envelope and can be modified to transport DNA to specific cells, has garnered considerable interest in the scientific community, particularly in experimental therapeutic strategies that are still in the clinical stage. AAV vectors emerge as promising tools for HCC therapy due to their non-immunogenic nature, efficient cell entry, and prolonged gene expression. While AAV-mediated GT demonstrates promise across diverse diseases, the current absence of ongoing clinical trials targeting HCC underscores untapped potential in this context. Furthermore, gene transfer through hepatic AAV vectors is frequently facilitated by GT research, which has been propelled by several congenital anomalies affecting the liver. Notwithstanding the enthusiasm associated with this notion, recent discoveries that expose the integration of the AAV vector genome at double-strand breaks give rise to apprehensions regarding their enduring safety and effectiveness. This review explores the potential of AAV vectors as versatile tools for targeted GT in HCC. In summation, we encapsulate the multifaceted exploration of AAV vectors in HCC GT, underlining their transformative potential within the landscape of oncology and human health.
Collapse
Affiliation(s)
- Meead Hadi
- Department of Microbiology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mansoureh Jabari
- Medical Campus, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Asna Mahyazadeh Jasoor
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Omid Naderloo
- Department of Laboratory Sciences, Faculty of Medicine, Islamic Azad University of Gorgan Breanch, Gorgan, Iran
| | | | | | - Leila Kalantari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Martins KM, Breton C, Zheng Q, Zhang Z, Latshaw C, Greig JA, Wilson JM. Prevalent and Disseminated Recombinant and Wild-Type Adeno-Associated Virus Integration in Macaques and Humans. Hum Gene Ther 2023; 34:1081-1094. [PMID: 37930949 PMCID: PMC10659022 DOI: 10.1089/hum.2023.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 11/08/2023] Open
Abstract
Integration of naturally occurring adeno-associated viruses (AAV; wild-type AAV [wtAAV]) and those used in gene therapy (recombinant AAV [rAAV]) into host genomic DNA has been documented for over two decades. Results from mouse and dog studies have raised concerns of insertional mutagenesis and clonal expansion following AAV exposure, particularly in the context of gene therapy. This study aimed to characterize the genomic location, abundance, and expansion of wtAAV and rAAV integrations in macaque and human genomes. Using an unbiased, next-generation sequencing-based approach, we identified the genome-wide integration loci in tissue samples (primarily liver) in 168 nonhuman primates (NHPs) and 85 humans naïve to rAAV exposure and 86 NHPs treated with rAAV in preclinical studies. Our results suggest that rAAV and wtAAV integrations exhibit similar, broad distribution patterns across species, with a higher frequency in genomic regions highly vulnerable to DNA damage or close to highly transcribed genes. rAAV exhibited a higher abundance of unique integration loci, whereas wtAAV integration loci were associated with greater clonal expansion. This expansive and detailed characterization of AAV integration in NHPs and humans provides key translational insights, with important implications for the safety of rAAV as a gene therapy vector.
Collapse
Affiliation(s)
- Kelly M. Martins
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camilo Breton
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qi Zheng
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhe Zhang
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caitlin Latshaw
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenny A. Greig
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M. Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Morfopoulou S, Buddle S, Torres Montaguth OE, Atkinson L, Guerra-Assunção JA, Moradi Marjaneh M, Zennezini Chiozzi R, Storey N, Campos L, Hutchinson JC, Counsell JR, Pollara G, Roy S, Venturini C, Antinao Diaz JF, Siam A, Tappouni LJ, Asgarian Z, Ng J, Hanlon KS, Lennon A, McArdle A, Czap A, Rosenheim J, Andrade C, Anderson G, Lee JCD, Williams R, Williams CA, Tutill H, Bayzid N, Martin Bernal LM, Macpherson H, Montgomery KA, Moore C, Templeton K, Neill C, Holden M, Gunson R, Shepherd SJ, Shah P, Cooray S, Voice M, Steele M, Fink C, Whittaker TE, Santilli G, Gissen P, Kaufer BB, Reich J, Andreani J, Simmonds P, Alrabiah DK, Castellano S, Chikowore P, Odam M, Rampling T, Houlihan C, Hoschler K, Talts T, Celma C, Gonzalez S, Gallagher E, Simmons R, Watson C, Mandal S, Zambon M, Chand M, Hatcher J, De S, Baillie K, Semple MG, Martin J, Ushiro-Lumb I, Noursadeghi M, Deheragoda M, Hadzic N, Grammatikopoulos T, Brown R, Kelgeri C, Thalassinos K, Waddington SN, Jacques TS, Thomson E, Levin M, Brown JR, Breuer J. Genomic investigations of unexplained acute hepatitis in children. Nature 2023; 617:564-573. [PMID: 36996872 PMCID: PMC10170458 DOI: 10.1038/s41586-023-06003-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.
Collapse
Affiliation(s)
- Sofia Morfopoulou
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Sarah Buddle
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Oscar Enrique Torres Montaguth
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Laura Atkinson
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - José Afonso Guerra-Assunção
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mahdi Moradi Marjaneh
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
- Section of Virology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Riccardo Zennezini Chiozzi
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | - Nathaniel Storey
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luis Campos
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Ciaran Hutchinson
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John R Counsell
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Gabriele Pollara
- Division of Infection and Immunity, University College London, London, UK
| | - Sunando Roy
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cristina Venturini
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Juan F Antinao Diaz
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Ala'a Siam
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
| | - Luke J Tappouni
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Zeinab Asgarian
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Joanne Ng
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
| | - Killian S Hanlon
- Research Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander Lennon
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrew McArdle
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Agata Czap
- Division of Infection and Immunity, University College London, London, UK
| | - Joshua Rosenheim
- Division of Infection and Immunity, University College London, London, UK
| | - Catarina Andrade
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Glenn Anderson
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jack C D Lee
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rachel Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Charlotte A Williams
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Helena Tutill
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nadua Bayzid
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Luz Marina Martin Bernal
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Hannah Macpherson
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Kylie-Ann Montgomery
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Catherine Moore
- Wales Specialist Virology Centre, Public Health Wales Microbiology Cardiff, University Hospital of Wales, Cardiff, UK
| | - Kate Templeton
- Department of Medical Microbiology, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Claire Neill
- Public Health Agency Northern Ireland, Belfast, UK
| | - Matt Holden
- School of Medicine, University of St. Andrews, St. Andrews, UK
- Public Health Scotland, Edinburgh, UK
| | - Rory Gunson
- West of Scotland Specialist Virology Centre, Glasgow, UK
| | | | - Priyen Shah
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Samantha Cooray
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Marie Voice
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Michael Steele
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Colin Fink
- Micropathology Ltd, University of Warwick Science Park, Coventry, UK
| | - Thomas E Whittaker
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Giorgia Santilli
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | | | - Jana Reich
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Julien Andreani
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre Hospitalier Universitaire (CHU) Grenoble-Alpes, Grenoble, France
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dimah K Alrabiah
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sergi Castellano
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
- University College London Genomics, University College London, London, UK
| | | | - Miranda Odam
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Tommy Rampling
- Division of Infection and Immunity, University College London, London, UK
- UK Health Security Agency, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK
| | - Catherine Houlihan
- Division of Infection and Immunity, University College London, London, UK
- UK Health Security Agency, London, UK
- Department of Clinical Virology, University College London Hospitals, London, UK
| | | | | | | | | | | | | | | | | | | | | | - James Hatcher
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Surjo De
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | | | - Malcolm Gracie Semple
- Pandemic Institute, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Joanne Martin
- Centre for Genomics and Child Health, The Blizard Institute, Queen Mary University of London, London, UK
| | | | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | | | | | | | - Rachel Brown
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Chayarani Kelgeri
- Liver Unit, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Konstantinos Thalassinos
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Simon N Waddington
- Gene Transfer Technology Group, EGA-Institute for Women's Health, University College London, London, UK
- Medical Research Council Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Thomas S Jacques
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Emma Thomson
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Michael Levin
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Julianne R Brown
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Judith Breuer
- Infection, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
10
|
Asaad W, Volos P, Maksimov D, Khavina E, Deviatkin A, Mityaeva O, Volchkov P. AAV genome modification for efficient AAV production. Heliyon 2023; 9:e15071. [PMID: 37095911 PMCID: PMC10121408 DOI: 10.1016/j.heliyon.2023.e15071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/04/2023] Open
Abstract
The adeno-associated virus (AAV) is one of the most potent vectors in gene therapy. The experimental profile of this vector shows its efficiency and accepted safety, which explains its increased usage by scientists for the research and treatment of a wide range of diseases. These studies require using functional, pure, and high titers of vector particles. In fact, the current knowledge of AAV structure and genome helps improve the scalable production of AAV vectors. In this review, we summarize the latest studies on the optimization of scalable AAV production through modifying the AAV genome or biological processes inside the cell.
Collapse
|
11
|
Shitik EM, Shalik IK, Yudkin DV. AAV- based vector improvements unrelated to capsid protein modification. Front Med (Lausanne) 2023; 10:1106085. [PMID: 36817775 PMCID: PMC9935841 DOI: 10.3389/fmed.2023.1106085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) is the leading platform for delivering genetic constructs in vivo. To date, three AAV-based gene therapeutic agents have been approved by the FDA and are used in clinical practice. Despite the distinct advantages of gene therapy development, it is clear that AAV vectors need to be improved. Enhancements in viral vectors are mainly associated with capsid protein modifications. However, there are other structures that significantly affect the AAV life cycle and transduction. The Rep proteins, in combination with inverted terminal repeats (ITRs), determine viral genome replication, encapsidation, etc. Moreover, transgene cassette expression in recombinant variants is directly related to AAV production and transduction efficiency. This review discusses the ways to improve AAV vectors by modifying ITRs, a transgene cassette, and the Rep proteins.
Collapse
|
12
|
A link between severe hepatitis in children and adenovirus 41 and adeno-associated virus 2 infections. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over the past few months there have been reports of severe acute hepatitis in several hundred, otherwise healthy, immunocompetent young children. Several deaths have been recorded and a relatively large proportion of the patients have needed liver transplants. Most of the cases, so far, have been seen in the UK and in North America, but it has also been reported in many other European countries, the Middle East and Asia. Most common viruses have been ruled out as a causative agent; hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) were not detected, nor were Epstein–Barr virus (EBV), cytomegalovirus (CMV) and human immunodeficiency virus (HIV) in many cases. A small proportion of the children had been infected with SARS-CoV-2 but these seem to be in a minority; similarly, almost none of the children had been vaccinated against COVID-19. Significantly, many of the patients were infected with adenovirus 41 (HAdV-F41). Previously, HAdV-41 had not been linked to hepatitis and is usually considered to cause gastroenteritis in both immunocompetent and immunocompromised patients. In two most recent studies, adeno-associated virus 2 (AAV2) was detected in almost all patients, together with species C and F HAdVs and human herpesvirus 6B (HHV6B). Here, I discuss the possibility that a change in tropism of HAdV-41 and changes in AAV2 may be responsible for their links to acute hepatitis.
Collapse
|
13
|
Wu F, Sambamurti K, Sha S. Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss. J Assoc Res Otolaryngol 2022; 23:569-578. [PMID: 36002664 PMCID: PMC9613825 DOI: 10.1007/s10162-022-00866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
Adeno-associated viruses (AAVs) are viral vectors that offer an excellent platform for gene therapy due to their safety profile, persistent gene expression in non-dividing cells, target cell specificity, lack of pathogenicity, and low immunogenicity. Recently, gene therapy for genetic hearing loss with AAV transduction has shown promise in animal models. However, AAV transduction for gene silencing or expression to prevent or manage acquired hearing loss is limited. This review provides an overview of AAV as a leading gene delivery vector for treating genetic hearing loss in animal models. We highlight the advantages and shortcomings of AAV for investigating the mechanisms and preventing acquired hearing loss. We predict that AAV-mediated gene manipulation will be able to prevent acquired hearing loss.
Collapse
Affiliation(s)
- Fan Wu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Suhua Sha
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Walton Research Building, Room 403-E, 39 Sabin Street, Charleston, SC, 29425, USA.
| |
Collapse
|
14
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
15
|
Belova L, Lavrov A, Smirnikhina S. Organoid transduction using recombinant adeno-associated viral vectors: Challenges and opportunities. Bioessays 2022; 44:e2200055. [PMID: 35832008 DOI: 10.1002/bies.202200055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/16/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Cellular 3D structures, for example, organoids, are an excellent model for studying and developing treatments for various diseases, including hereditary ones. Therefore, they are increasingly being used in biomedical research. From the point of view of safety and efficacy, recombinant adeno-associated viral (rAAV) vectors are currently most in demand for the delivery of various transgenes for gene replacement therapy or other applications. The delivery of transgenes using rAAV vectors to various types of organoids is an urgent task, however, it is associated with a number of problems that are discussed in this review. Cellular heterogeneity and specifics of cultivation of 3D structures determine the complexity of rAAV delivery and are sometimes associated with low transduction efficiency. This review surveys the main ways to solve emerging problems and increase the efficiency of transgene delivery using rAAVs to organoids. A clear understanding of the stage of development of the organoid, its cellular composition and the presence of surface receptors will allow obtaining high levels of organoid transduction with existing rAAV vectors.
Collapse
|
16
|
Qin X, Li S, Li X, Pei D, Liu Y, Ding Y, Liu L, Bi H, Shi X, Guo Y, Fang E, Huang F, Yu L, Zhu L, An Y, Valencia CA, Li Y, Dong B, Zhou Y. Development of an Adeno-Associated Virus-Vectored SARS-CoV-2 Vaccine and Its Immunogenicity in Mice. Front Cell Infect Microbiol 2022; 12:802147. [PMID: 35310850 PMCID: PMC8927296 DOI: 10.3389/fcimb.2022.802147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Owing to the outbreak of the novel coronavirus (SARS-CoV-2) worldwide at the end of 2019, the development of a SARS-CoV-2 vaccine became an urgent need. In this study, we developed a type 9 adeno-associated virus vectored vaccine candidate expressing a dimeric receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S protein) and evaluated its immunogenicity in a murine model. The vaccine candidate, named AAV9-RBD virus, was constructed by inserting a signal peptide to the N-terminus of two copies of RBD, spaced by a linker, into the genome of a type 9 adeno-associated virus. In vitro assays showed that HeLa cells infected by the recombinant AAV virus expressed high levels of the recombinant RBD protein, mostly found in the cell culture supernatant. The recombinant AAV9-RBD virus was cultured and purified. The genome titer of the purified recombinant AAV9-RBD virus was determined to be 2.4 × 1013 genome copies/mL (GC/mL) by Q-PCR. Balb/c mice were immunized with the virus by intramuscular injection or nasal drip administration. Eight weeks after immunization, neutralizing antibodies against the new coronavirus pseudovirus were detected in the sera of all mice; the mean neutralizing antibody EC50 values were 517.7 ± 292.1 (n=10) and 682.8 ± 454.0 (n=10) in the intramuscular injection group and nasal drip group, respectively. The results of this study showed that the recombinant AAV9-RBD virus may be used for the development of a SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Xi Qin
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiang Li
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Dening Pei
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Liu
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Youxue Ding
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Lan Liu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Hua Bi
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xinchang Shi
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Ying Guo
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Enyue Fang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Fang Huang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lei Yu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Liuqiang Zhu
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yifang An
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
| | - C. Alexander Valencia
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| | - Biao Dong
- Department of Geriatrics and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| | - Yong Zhou
- Department of Recombinant Products, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Biao Dong, ; Yong Zhou,
| |
Collapse
|
17
|
Muhuri M, Levy DI, Schulz M, McCarty D, Gao G. Durability of transgene expression after rAAV gene therapy. Mol Ther 2022; 30:1364-1380. [PMID: 35283274 PMCID: PMC9077371 DOI: 10.1016/j.ymthe.2022.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/09/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) gene therapy has the potential to transform the lives of patients with certain genetic disorders by increasing or restoring function to affected tissues. Following the initial establishment of transgene expression, it is unknown how long the therapeutic effect will last, although animal and emerging human data show that expression can be maintained for more than 10 years. The durability of therapeutic response is key to long-term treatment success, especially since immune responses to rAAV vectors may prevent re-dosing with the same therapy. This review explores the non-immunological and immunological processes that may limit or improve durability and the strategies that can be used to increase the duration of the therapeutic effect.
Collapse
Affiliation(s)
- Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
18
|
Scott S, Hallwirth CV, Hartkopf F, Grigson S, Jain Y, Alexander IE, Bauer DC, O W Wilson L. Isling: a tool for detecting integration of wild-type viruses and clinical vectors. J Mol Biol 2021; 434:167408. [PMID: 34929203 DOI: 10.1016/j.jmb.2021.167408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
Detecting viral and vector integration events is a key step when investigating interactions between viral and host genomes. This is relevant in several fields, including virology, cancer research and gene therapy. For example, investigating integrations of wild-type viruses such as human papillomavirus and hepatitis B virus has proven to be crucial for understanding the role of these integrations in cancer. Furthermore, identifying the extent of vector integration is vital for determining the potential for genotoxicity in gene therapies. To address these questions, we developed isling, the first tool specifically designed for identifying viral integrations in both wild-type and vector from next-generation sequencing data. Isling addresses complexities in integration behaviour including integration of fragmented genomes and integration junctions with ambiguous locations in a host or vector genome, and can also flag possible vector recombinations. We show that isling is up to 1.6-fold faster and up to 170% more accurate than other viral integration tools, and performs well on both simulated and real datasets. Isling is therefore an efficient and application-agnostic tool that will enable a broad range of investigations into viral and vector integration. These include comparisons between integrations of wild-type viruses and gene therapy vectors, as well as assessing the genotoxicity of vectors and understanding the role of viruses in cancer.
Collapse
Affiliation(s)
- Suzanne Scott
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Felix Hartkopf
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Susanna Grigson
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Yatish Jain
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, Australia; The Sydney Children's Hospitals Network, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia; Discipline of Child and Adolescent Health,Faculty of Medicine and Health,The University of Sydney, Sydney, New South Wales, Australia
| | - Denis C Bauer
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Discipline of Child and Adolescent Health,Faculty of Medicine and Health,The University of Sydney, Sydney, New South Wales, Australia; Macquarie University, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie Park, Australia.
| | - Laurence O W Wilson
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, North Ryde, Australia; Macquarie University, Applied BioSciences, Faculty of Science and Engineering, Macquarie Park, Australia.
| |
Collapse
|
19
|
Mnyandu N, Limani SW, Arbuthnot P, Maepa MB. Advances in designing Adeno-associated viral vectors for development of anti-HBV gene therapeutics. Virol J 2021; 18:247. [PMID: 34903258 PMCID: PMC8670254 DOI: 10.1186/s12985-021-01715-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the five decades having passed since discovery of the hepatitis B virus (HBV), together with development of an effective anti-HBV vaccine, infection with the virus remains a serious public health problem and results in nearly 900,000 annual deaths worldwide. Current therapies do not eliminate the virus and viral replication typically reactivates after treatment withdrawal. Hence, current endeavours are aimed at developing novel therapies to achieve a functional cure. Nucleic acid-based therapeutic approaches are promising, with several candidates showing excellent potencies in preclinical and early stages of clinical development. However, this class of therapeutics is yet to become part of standard anti-HBV treatment regimens. Obstacles delaying development of gene-based therapies include lack of clinically relevant delivery methods and a paucity of good animal models for preclinical characterisation. Recent studies have demonstrated safety and efficiency of Adeno-associated viral vectors (AAVs) in gene therapy. However, AAVs do have flaws and this has prompted research aimed at improving design of novel and artificially synthesised AAVs. Main goals are to improve liver transduction efficiencies and avoiding immune clearance. Application of AAVs to model HBV replication in vivo is also useful for characterising anti-HBV gene therapeutics. This review summarises recent advances in AAV engineering and their contributions to progress with anti-HBV gene therapy development.
Collapse
Affiliation(s)
- Njabulo Mnyandu
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shonisani Wendy Limani
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mohube Betty Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
20
|
Galibert L, Hyvönen A, Eriksson RAE, Mattola S, Aho V, Salminen S, Albers JD, Peltola SK, Weman S, Nieminen T, Ylä-Herttuala S, Lesch HP, Vihinen-Ranta M, Airenne KJ. Functional roles of the membrane-associated AAV protein MAAP. Sci Rep 2021; 11:21698. [PMID: 34737404 PMCID: PMC8568889 DOI: 10.1038/s41598-021-01220-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.
Collapse
Affiliation(s)
| | - Amira Hyvönen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.511728.8FinVector, Kuopio, Finland
| | - Reetta A. E. Eriksson
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Salla Mattola
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Vesa Aho
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | - Sami Salminen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | | | | - Saija Weman
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Tiina Nieminen
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland ,grid.9668.10000 0001 0726 2490A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland ,grid.410705.70000 0004 0628 207XGene Therapy Unit and Research Center, Kuopio University Hospital, Kuopio, Finland
| | - Hanna P. Lesch
- Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Maija Vihinen-Ranta
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyväskylä, Finland
| | | |
Collapse
|
21
|
Boftsi M, Whittle FB, Wang J, Shepherd P, Burger LR, Kaifer KA, Lorson CL, Joshi T, Pintel DJ, Majumder K. The adeno-associated virus 2 (AAV2) genome and rep 68/78 proteins interact with cellular sites of DNA damage. Hum Mol Genet 2021; 31:985-998. [PMID: 34652429 DOI: 10.1093/hmg/ddab300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear DNA viruses simultaneously access cellular factors that aid their life cycle while evading inhibitory factors by localizing to distinct nuclear sites. Adeno-Associated Viruses (AAVs), which are Dependoviruses in the family Parvovirinae, are non-enveloped icosahedral viruses, that have been developed as recombinant AAV vectors (rAAV) to express transgenes. AAV2 expression and replication occur in nuclear viral replication centers (VRCs), which relies on cellular replication machinery as well as coinfection by helper viruses such as adenoviruses or herpesviruses, or exogenous DNA damage to host cells. AAV2 infection induces a complex cellular DNA damage response (DDR), either in response to viral DNA or viral proteins expressed in the host nucleus during infection, where VRCs colocalize with DDR proteins. We have previously developed a modified iteration of a viral chromosome conformation capture (V3C-seq) assay to show that the autonomous parvovirus Minute Virus of Mice (MVM) localizes to cellular sites of DNA damage to establish and amplify its replication. Similar V3C-seq assays to map AAV2 show that the AAV2 genome colocalized with cellular sites of DNA damage under both non-replicating and replicating conditions. The AAV2 non-structural protein Rep 68/78, also localized to cellular DDR sites during both non-replicating and replicating infections, and also when ectopically expressed. Ectopically expressed Rep could be efficiently re-localized to DDR sites induced by micro-irradiation. Recombinant AAV2 gene therapy vector genomes derived from AAV2 localized to sites of cellular DNA damage to a lesser degree, suggesting that the Inverted Terminal Repeat (ITR) origins of replication were insufficient for targeting.
Collapse
Affiliation(s)
- Maria Boftsi
- Pathobiology Area Graduate Program.,Christopher S. Bond Life Sciences Center
| | | | - Juexin Wang
- Christopher S. Bond Life Sciences Center.,Department of Electrical Engineering and Computer Science
| | | | | | - Kevin A Kaifer
- Christopher S. Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Christian L Lorson
- Christopher S. Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center.,Department of Electrical Engineering and Computer Science.,MU Informatics Institute.,Department of Health Management and Informatics
| | - David J Pintel
- Christopher S. Bond Life Sciences Center.,Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Columbia, MO USA 65211
| | - Kinjal Majumder
- Institute for Molecular Virology.,McArdle Laboratory for Cancer Research.,University of Wisconsin-Carbone Cancer Center
| |
Collapse
|
22
|
Buscara L, Gross DA, Daniele N. Of rAAV and Men: From Genetic Neuromuscular Disorder Efficacy and Toxicity Preclinical Studies to Clinical Trials and Back. J Pers Med 2020; 10:E258. [PMID: 33260623 PMCID: PMC7768510 DOI: 10.3390/jpm10040258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuromuscular disorders are a large group of rare pathologies characterised by skeletal muscle atrophy and weakness, with the common involvement of respiratory and/or cardiac muscles. These diseases lead to life-long motor deficiencies and specific organ failures, and are, in their worst-case scenarios, life threatening. Amongst other causes, they can be genetically inherited through mutations in more than 500 different genes. In the last 20 years, specific pharmacological treatments have been approved for human usage. However, these "à-la-carte" therapies cover only a very small portion of the clinical needs and are often partially efficient in alleviating the symptoms of the disease, even less so in curing it. Recombinant adeno-associated virus vector-mediated gene transfer is a more general strategy that could be adapted for a large majority of these diseases and has proved very efficient in rescuing the symptoms in many neuropathological animal models. On this solid ground, several clinical trials are currently being conducted with the whole-body delivery of the therapeutic vectors. This review recapitulates the state-of-the-art tools for neuron and muscle-targeted gene therapy, and summarises the main findings of the spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) trials. Despite promising efficacy results, serious adverse events of various severities were observed in these trials. Possible leads for second-generation products are also discussed.
Collapse
Affiliation(s)
| | - David-Alexandre Gross
- Genethon, 91000 Evry, France; (L.B.); (D.-A.G.)
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | | |
Collapse
|
23
|
Brommel CM, Cooney AL, Sinn PL. Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease. Hum Gene Ther 2020; 31:985-995. [PMID: 32718227 PMCID: PMC7495917 DOI: 10.1089/hum.2020.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
The list of successful gene therapy trials using adeno-associated virus (AAV)-based vectors continues to grow and includes a wide range of monogenic diseases. Replication incompetent AAV genomes typically remain episomal and expression dilutes as cells divide and die. Consequently, long-term transgene expression from AAV is best suited for quiescent cell types, such as retinal cells, myocytes, or neurons. For genetic diseases that involve cells with steady turnover, AAV-conferred correction may require routine readministration, where every dose carries the risk of developing an adaptive immune response that renders treatment ineffective. Here, we discuss innovative approaches to permanently modify the host genome using AAV-based platforms, thus potentially requiring only a single dose. Such approaches include using AAV delivery of DNA transposons, homologous recombination templates into safe harbors, and nucleases for targeting integration. In tissues with continual cell turnover, genetic modification of progenitor cell populations will help ensure persistent therapeutic outcomes. Combining the safety profile of AAV-based gene therapy vectors with the ability to integrate a therapeutic transgene creates novel solutions to the challenge of lifelong curative treatments for human genetic diseases.
Collapse
Affiliation(s)
| | - Ashley L. Cooney
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Patrick L. Sinn
- Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Wang Z, Li M, Ji Y, Yang M, Yang W, Wang J, Li W. Development of a novel bivalent baculovirus vectors for complement resistance and sustained transgene expression and its application in anti-angiogenesis gene therapy. Biomed Pharmacother 2019; 123:109765. [PMID: 31846843 DOI: 10.1016/j.biopha.2019.109765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022] Open
Abstract
Baculovirus (BV) is a potential gene delivery vector but only mediates transient transgene expression and easily inactivated by human complement. To this end, we intend to develop a novel bivalent BV vector for complement resistance and sustained transgene expression, and evaluate its effect in anti-angiogenesis gene therapy. The results showed that the hybrid bivalent BV significantly prolonged the expression of enhanced green fluorescent protein (eGFP) in vitro for at least 90 days at over 109 a.u. total fluorescence intensity, and exhibited significantly higher complement resistance. The control BV-mediated eGFP expression gradually declined within 15 days and showed lower transduction efficiency. In vivo studies confirmed that the hybrid bivalent BV exhibited longer duration of eGFP expression and higher transduction efficacy than the control BVs. Based on these findings, we further constructed a hybrid BV expressing the antiangiogenic fusion protein containing human endostatin and angiostatin (hEA). The hybrid BV-expressed hEA significantly prolonged the expression level of hEA with enhanced anti-angiogenic activities compared to the control groups, as evidenced by ELISA, cell proliferation, migration and tubular formation assays. With the stable expression of hEA, the hybrid BV conferred hEA more significant inhibitory effect on hepatocellular carcinoma tumor growth and significantly extended the life span of mice. These data implicate that the SB-based BV surface display system may have broad prospects as a novel platform for gene therapy of tumors.
Collapse
Affiliation(s)
- Zhisheng Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China; Laboratory Animal Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China.
| | - Mengting Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Yonggan Ji
- School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Mengmeng Yang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Wen Yang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Jinbao Wang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, PR China
| | - Wei Li
- Department of Urology, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, PR China.
| |
Collapse
|
25
|
Li C, Mishra AS, Gil S, Wang M, Georgakopoulou A, Papayannopoulou T, Hawkins RD, Lieber A. Targeted Integration and High-Level Transgene Expression in AAVS1 Transgenic Mice after In Vivo HSC Transduction with HDAd5/35++ Vectors. Mol Ther 2019; 27:2195-2212. [PMID: 31494053 DOI: 10.1016/j.ymthe.2019.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Our goal is the development of in vivo hematopoietic stem cell (HSC) transduction technology with targeted integration. To achieve this, we modified helper-dependent HDAd5/35++ vectors to express a CRISPR/Cas9 specific to the "safe harbor" adeno-associated virus integration site 1 (AAVS1) locus and to provide a donor template for targeted integration through homology-dependent repair. We tested the HDAd-CRISPR + HDAd-donor vector system in AAVS1 transgenic mice using a standard ex vivo HSC gene therapy approach as well as a new in vivo HSC transduction approach that involves HSC mobilization and intravenous HDAd5/35++ injections. In both settings, the majority of treated mice had transgenes (GFP or human γ-globin) integrated into the AAVS1 locus. On average, >60% of peripheral blood cells expressed the transgene after in vivo selection with low-dose O6BG/bis-chloroethylnitrosourea (BCNU). Ex vivo and in vivo HSC transduction and selection studies with HDAd-CRISPR + HDAd-globin-donor resulted in stable γ-globin expression at levels that were significantly higher (>20% γ-globin of adult mouse globin) than those achieved in previous studies with a SB100x-transposase-based HDAd5/35++ system that mediates random integration. The ability to achieve therapeutically relevant transgene expression levels after in vivo HSC transduction and selection and targeted integration make our HDAd5/35++-based vector system a new tool in HSC gene therapy.
Collapse
Affiliation(s)
- Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Arpit Suresh Mishra
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Sucheol Gil
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Meng Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - Aphrodite Georgakopoulou
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Box 357720, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Box 357720, Seattle, WA 98195, USA.
| |
Collapse
|
26
|
Methylation Status of the Adeno-Associated Virus Type 2 (AAV2). Viruses 2019; 11:v11010038. [PMID: 30634383 PMCID: PMC6356613 DOI: 10.3390/v11010038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 11/16/2022] Open
Abstract
To analyze the methylation status of wild-type adeno-associated virus type 2 (AAV2), bisulfite PCR sequencing (BPS) of the packaged viral genome and its integrated form was performed and 262 of the total 266 CG dinucleotides (CpG) were mapped. In virion-packaged DNA, the ratio of the methylated cytosines ranged between 0⁻1.7%. In contrast, the chromosomally integrated AAV2 genome was hypermethylated with an average of 76% methylation per CpG site. The methylation level showed local minimums around the four known AAV2 promoters. To study the effect of methylation on viral rescue and replication, the replication initiation capability of CpG methylated and non-CpG methylated AAV DNA was compared. The in vitro hypermethylation of the viral genome does not inhibit its rescue and replication from a plasmid transfected into cells. This insensitivity of the viral replicative machinery to methylation may permit the rescue of the integrated heavily methylated AAV genome from the host's chromosomes.
Collapse
|
27
|
Pan Y, Lv J, Pan D, Yang M, Ju H, Zhou J, Zhu L, Zhang Y. Retrofitting baculoviral vector with Sleeping Beauty transposon system: competent for long-term reporter gene imaging in vivo. Appl Microbiol Biotechnol 2018; 102:1933-1943. [PMID: 29356866 DOI: 10.1007/s00253-018-8780-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Reporter gene imaging is widely used for non-invasively detecting tumorigenesis, trafficking therapeutic cells, and monitoring treatment effect. Baculoviral vectors (BVs) have been utilized as transgenic vectors in the reporter gene imaging systems in recent years. However, BV-mediated report gene imaging can only provide short-term investigation due to its transient transgene expression, which is incompetent for the long-term applications. In the current study, we reconstructed a series of hybrid BVs with several elements, to investigate the feasibility of this hybrid BV-mediated long-term reporter gene imaging in vivo. We showed that with the indispensable assistance of a positive-selection process, hybrid BV containing Sleeping Beauty 100× (SB) transposon system (BV-SB) could significantly prolong the enhanced green fluorescent protein (eGFP) expression for at least 180 days in vitro at nearly 100% eGFP positive percentage and over 1011 arbitrary unit total fluorescence intensity, whereas other hybrid BV-mediated transgene expression gradually faded in only 20 days. Furthermore, BV-SB-mediated eGFP fluorescent reporter gene imaging monitored tumorigenesis in the nude mice for at least 35 days. In addition, we exploited the glucagon-like peptide 1 receptor (glp-1r) gene as a radionuclide reporter gene for in vivo micro-PET imaging. At 50th day post-tumor transplantation, the micro-PET imaging showed considerable radiotracer-receptor-binding in vivo, resulted by stable high level of BV-SB-mediated GLP-1R expression in tumor. In summary, we retrofitted BV with the SB transposon system to make it competent for the long-term reporter gene imaging in vivo, which might broaden the application scopes of BV in the long-term molecular imaging and other biomedicine research fields.
Collapse
Affiliation(s)
- Yu Pan
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Jing Lv
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Huijun Ju
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Jinxin Zhou
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Liying Zhu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
28
|
Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating Gene Therapy Vectors. Hematol Oncol Clin North Am 2017; 31:753-770. [DOI: 10.1016/j.hoc.2017.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Reinert K, Dadi TH, Ehrhardt M, Hauswedell H, Mehringer S, Rahn R, Kim J, Pockrandt C, Winkler J, Siragusa E, Urgese G, Weese D. The SeqAn C++ template library for efficient sequence analysis: A resource for programmers. J Biotechnol 2017; 261:157-168. [PMID: 28888961 DOI: 10.1016/j.jbiotec.2017.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND The use of novel algorithmic techniques is pivotal to many important problems in life science. For example the sequencing of the human genome (Venter et al., 2001) would not have been possible without advanced assembly algorithms and the development of practical BWT based read mappers have been instrumental for NGS analysis. However, owing to the high speed of technological progress and the urgent need for bioinformatics tools, there was a widening gap between state-of-the-art algorithmic techniques and the actual algorithmic components of tools that are in widespread use. We previously addressed this by introducing the SeqAn library of efficient data types and algorithms in 2008 (Döring et al., 2008). RESULTS The SeqAn library has matured considerably since its first publication 9 years ago. In this article we review its status as an established resource for programmers in the field of sequence analysis and its contributions to many analysis tools. CONCLUSIONS We anticipate that SeqAn will continue to be a valuable resource, especially since it started to actively support various hardware acceleration techniques in a systematic manner.
Collapse
Affiliation(s)
- Knut Reinert
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany.
| | - Temesgen Hailemariam Dadi
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - Marcel Ehrhardt
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - Hannes Hauswedell
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - Svenja Mehringer
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - René Rahn
- Algorithmic Bioinformatics, Institute for Bioinformatics, FU Berlin, Takustrasse 9, 14195 Berlin, Germany
| | - Jongkyu Kim
- Efficient Algorithms for -Omics Data, Max Planck Institute for Molecular Genetics, Ihnestrasse 62-73, 14195 Berlin, Germany
| | - Christopher Pockrandt
- Efficient Algorithms for -Omics Data, Max Planck Institute for Molecular Genetics, Ihnestrasse 62-73, 14195 Berlin, Germany
| | - Jörg Winkler
- Efficient Algorithms for -Omics Data, Max Planck Institute for Molecular Genetics, Ihnestrasse 62-73, 14195 Berlin, Germany
| | | | - Gianvito Urgese
- Department of Control and Computer Engineering, Politecnico di Torino, Italy
| | | |
Collapse
|
30
|
Janovitz T, Wong S, Young NS, Oliveira T, Falck-Pedersen E. Parvovirus B19 integration into human CD36+ erythroid progenitor cells. Virology 2017; 511:40-48. [PMID: 28806616 DOI: 10.1016/j.virol.2017.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 12/16/2022]
Abstract
The pathogenic autonomous human parvovirus B19 (B19V) productively infects erythroid progenitor cells (EPCs). Functional similarities between B19V nonstructural protein (NS1), a DNA binding endonuclease, and the Rep proteins of Adeno-Associated Virus (AAV) led us to hypothesize that NS1 may facilitate targeted nicking of the human genome and B19 vDNA integration. We adapted an integration capture sequencing protocol (IC-Seq) to screen B19V infected human CD36+ EPCs for viral integrants, and discovered 40,000 unique B19V integration events distributed throughout the human genome. Computational analysis of integration patterns revealed strong correlations with gene intronic regions, H3K9me3 sites, and the identification of 41 base pair consensus sequence with an octanucleotide core motif. The octanucleotide core has homology to a single region of B19V, adjacent to the P6 promoter TATA box. We present the first direct evidence that B19V infection of erythroid progenitor cells disrupts the human genome and facilitates viral DNA integration.
Collapse
Affiliation(s)
- Tyler Janovitz
- Tri-Institutional MD-PhD Program, USA; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Susan Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Erik Falck-Pedersen
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
31
|
Deletion of the B-B' and C-C' regions of inverted terminal repeats reduces rAAV productivity but increases transgene expression. Sci Rep 2017; 7:5432. [PMID: 28710345 PMCID: PMC5511163 DOI: 10.1038/s41598-017-04054-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/09/2017] [Indexed: 11/30/2022] Open
Abstract
Inverted terminal repeats (ITRs) of the adeno-associated virus (AAV) are essential for rescue, replication, packaging, and integration of the viral genome. While ITR mutations have been identified in previous reports, we designed a new truncated ITR lacking the B-B’ and C-C’ regions named as ITRΔBC and investigated its effects on viral genome replication, packaging, and expression of recombinant AAV (rAAV). The packaging ability was compared between ITRΔBC rAAV and wild-type (wt) ITR rAAV. Our results showed the productivity of ITRΔBC rAAV was reduced 4-fold, which is consistent with the 8-fold decrease in the replication of viral genomic DNA of ITRΔBC rAAV compared with wt ITR rAAV. Surprisingly, transgene expression was significantly higher for ITRΔBC rAAV. A preliminary exploration of the underlying mechanisms was carried out by inhibiting and degrading the ataxia telangiectasia mutated (ATM) protein and the Mre11 complex (MRN), respectively, since the rAAV expression was inhibited by the ATM and/or MRN through cis interaction or binding with wt ITRs. We demonstrated that the inhibitory effects were weakened on ITRΔBC rAAV expression. This study suggests deletion in ITR can affect the transgene expression of AAV, which provides a new way to improve the AAV expression through ITRs modification.
Collapse
|
32
|
Hagedorn C, Schnödt-Fuchs M, Boehme P, Abdelrazik H, Lipps HJ, Büning H. S/MAR Element Facilitates Episomal Long-Term Persistence of Adeno-Associated Virus Vector Genomes in Proliferating Cells. Hum Gene Ther 2017; 28:1169-1179. [PMID: 28665147 DOI: 10.1089/hum.2017.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are one of the most frequently applied gene transfer systems in research and human clinical trials. Since AAV vectors do not possess an integrase activity, application is restricted to terminally differentiated tissues if transgene expression is required long term. To overcome this limitation and to generate AAV vectors that persist episomally in dividing cells, AAV vector genomes were equipped with a scaffold/matrix attachment region (S/MAR). After a mild antibiotic selection, cells transduced with AAV-S/MAR established colonies that maintained long-term transgene expression (>50 population doublings) from replicating AAV vector episomes in the absence of further selection. Unexpectedly, with a lesser but still significant efficiency, the control vector (AAV-ΔS/MAR), a standard single-stranded AAV vector, also established stable transgene-expressing colonies, most of which were maintained as replicating episomes rather than integrated vector genomes. Thus, based on the result in HeLa cells, it is concluded that AAV vector genomes per se possess the ability to establish episomal maintenance in proliferating cells, a feature that can be enhanced by incorporation of a foreign genomic element such as an S/MAR element.
Collapse
Affiliation(s)
- Claudia Hagedorn
- 1 Institute of Cell Biology, ZBAF, University of Witten/Herdecke , Witten, Germany
| | - Maria Schnödt-Fuchs
- 2 Laboratory for AAV Vector Development, Center for Molecular Medicine Cologne (CMMC), University of Cologne , Cologne, Germany .,3 Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany .,4 German Center for Infection Research (DZIF) , partner sites Bonn-Cologne and Hannover-Braunschweig
| | - Philip Boehme
- 1 Institute of Cell Biology, ZBAF, University of Witten/Herdecke , Witten, Germany .,5 Institute of Virology and Microbiology, ZBAF, University of Witten/Herdecke , Witten, Germany
| | - Heba Abdelrazik
- 2 Laboratory for AAV Vector Development, Center for Molecular Medicine Cologne (CMMC), University of Cologne , Cologne, Germany .,6 Clinical Pathology Department, Faculty of Medicine, Cairo University , Cairo, Egypt
| | - Hans J Lipps
- 1 Institute of Cell Biology, ZBAF, University of Witten/Herdecke , Witten, Germany
| | - Hildegard Büning
- 2 Laboratory for AAV Vector Development, Center for Molecular Medicine Cologne (CMMC), University of Cologne , Cologne, Germany .,3 Department I of Internal Medicine, University Hospital Cologne , Cologne, Germany .,4 German Center for Infection Research (DZIF) , partner sites Bonn-Cologne and Hannover-Braunschweig.,7 Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany
| |
Collapse
|
33
|
Luo Y, Frederick A, Martin JM, Scaria A, Cheng SH, Armentano D, Wadsworth SC, Vincent KA. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines. Hum Gene Ther Methods 2017; 28:124-138. [PMID: 28504553 DOI: 10.1089/hgtb.2016.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.
Collapse
Affiliation(s)
- Yuxia Luo
- 1 Sanofi Genzyme , Framingham, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
34
|
A Novel Ideal Radionuclide Imaging System for Non-invasively Cell Monitoring built on Baculovirus Backbone by Introducing Sleeping Beauty Transposon. Sci Rep 2017; 7:43879. [PMID: 28262785 PMCID: PMC5338331 DOI: 10.1038/srep43879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/30/2017] [Indexed: 12/17/2022] Open
Abstract
Sleeping Beauty (SB) transposon is an attractive tool in stable transgene integration both in vitro and in vivo; and we introduced SB transposon into recombinant sodium-iodide symporter baculovirus system (Bac-NIS system) to facilitate long-term expression of recombinant sodium-iodide symporter. In our study, two hybrid baculovirus systems (Bac-eGFP-SB-NeoR and Bac-NIS-SB-NeoR) were successfully constructed and used to infect U87 glioma cells. After G418 selection screening, the Bac-eGFP-SB-NeoR-U87 cells remained eGFP positive, at the 18th and 196th day post transfection (96.03 ± 0.21% and 97.43 ± 0.81%), while eGFP positive population declined significantly at 18 days in cells transfected with unmodified baculovirus construct. NIS gene expression by Bac-NIS-SB-NeoR-U87 cells was also maintained for 28 weeks as determined by radioiodine uptake assay, reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot (WB) assay. When transplanted in mice, Bac-NIS-SB-NeoR-U87 cells also expressed NIS gene stably as monitored by SPECT imaging for 43 days until the tumor-bearing mice were sacrificed. Herein, we showed that incorporation of SB in Bac-NIS system (hybrid Bac-NIS-SB-NeoR) can achieve a long-term transgene expression and can improve radionuclide imaging in cell tracking and monitoring in vivo.
Collapse
|
35
|
High Prevalence of Infectious Adeno-associated Virus (AAV) in Human Peripheral Blood Mononuclear Cells Indicative of T Lymphocytes as Sites of AAV Persistence. J Virol 2017; 91:JVI.02137-16. [PMID: 27928011 DOI: 10.1128/jvi.02137-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/30/2016] [Indexed: 01/20/2023] Open
Abstract
Seroepidemiology shows that infections with adeno-associated virus (AAV) are widespread, but diverse AAV serotypes isolated from humans or nonhuman primates have so far not been proven to be causes of human disease. In view of the increasing success of AAV-derived vectors in human gene therapy, definition of the in vivo sites of wild-type AAV persistence and the clinical consequences of its reactivation is becoming increasingly urgent. Here, we identify the presumed cell type for AAV persistence in the human host by highly sensitive AAV PCRs developed for the full spectrum of human AAV serotypes. In genomic-DNA samples from leukocytes of 243 healthy blood donors, 34% were found to be AAV positive, predominantly AAV type 2 (AAV2) (77%), AAV5 (19%), and additional serotypes. Roughly 11% of the blood donors had mixed AAV infections. AAV prevalence was dramatically increased in immunosuppressed patients, 76% of whom were AAV positive. Of these, at least 45% displayed mixed infections. Follow-up of single blood donors over 2 years allowed repeated detection of the initial and/or additional AAV serotypes, suggestive of fluctuating, persistent infection. Leukocyte separation revealed that AAV resided in CD3+ T lymphocytes, perceived as the putative in vivo site of AAV persistence. Moreover, infectious AAVs of various serotypes could be rescued and propagated from numerous samples. The high prevalence and broad spectrum of human AAVs in leukocytes closely follow AAV seroepidemiology. Immunosuppression obviously enhances AAV replication in parallel with activation of human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), reminiscent of herpesvirus-induced AAV activation. IMPORTANCE Adeno-associated virus is viewed as apathogenic and replication defective, requiring coinfection with adenovirus or herpesvirus for productive infection. In vivo persistence of a defective virus requires latency in specialized cell types to escape the host immune response until viral spread becomes possible. Reactivation from latency can be induced by diverse stimuli, including infections, typically induced upon host immunosuppression. We show for the first time that infectious AAV is highly prevalent in human leukocytes, specifically T lymphocytes, and that AAV is strongly amplified upon immunosuppression, along with reactivation of latent human herpesviruses. In the absence of an animal model to study the AAV life cycle, our findings in the human host will advance the understanding of AAV latency, reactivation, and in vivo pathogenesis.
Collapse
|
36
|
|
37
|
Abstract
Here we review the recent literature on Hemophilia gene transfer/therapy. Gene therapy is one of several new technologies being developed as a treatment for bleeding disorders. We will discuss current and pending clinical efforts and attempt to relate how the field is trending. In doing so, we will focus on the use of recombinant Adeno-associated viral (rAAV) vector-mediated gene transfer since all currently active trials are using this vector. Recent exciting results embody nearly 20 years of preclinical and translational research. After several early clinical attempts, therapeutic factor levels that can now be achieved reflect several modifications of the original vectors. Patterns of results are slowly starting to emerge as different AAV vectors are being tested. As with any new technology, there are drawbacks, and the potential for immune/inflammatory and oncogenic risks have emerged and will be discussed.
Collapse
Affiliation(s)
- Peter Ward
- a Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai, One Gustave Levy Place , New York City , NY , USA
| | - Christopher E Walsh
- a Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai, One Gustave Levy Place , New York City , NY , USA
| |
Collapse
|
38
|
|
39
|
Cui P, Löber U, Alquezar-Planas DE, Ishida Y, Courtiol A, Timms P, Johnson RN, Lenz D, Helgen KM, Roca AL, Hartman S, Greenwood AD. Comprehensive profiling of retroviral integration sites using target enrichment methods from historical koala samples without an assembled reference genome. PeerJ 2016; 4:e1847. [PMID: 27069793 PMCID: PMC4824918 DOI: 10.7717/peerj.1847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Retroviral integration into the host germline results in permanent viral colonization of vertebrate genomes. The koala retrovirus (KoRV) is currently invading the germline of the koala (Phascolarctos cinereus) and provides a unique opportunity for studying retroviral endogenization. Previous analysis of KoRV integration patterns in modern koalas demonstrate that they share integration sites primarily if they are related, indicating that the process is currently driven by vertical transmission rather than infection. However, due to methodological challenges, KoRV integrations have not been comprehensively characterized. Results. To overcome these challenges, we applied and compared three target enrichment techniques coupled with next generation sequencing (NGS) and a newly customized sequence-clustering based computational pipeline to determine the integration sites for 10 museum Queensland and New South Wales (NSW) koala samples collected between the 1870s and late 1980s. A secondary aim of this study sought to identify common integration sites across modern and historical specimens by comparing our dataset to previously published studies. Several million sequences were processed, and the KoRV integration sites in each koala were characterized. Conclusions. Although the three enrichment methods each exhibited bias in integration site retrieval, a combination of two methods, Primer Extension Capture and hybridization capture is recommended for future studies on historical samples. Moreover, identification of integration sites shows that the proportion of integration sites shared between any two koalas is quite small.
Collapse
Affiliation(s)
- Pin Cui
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ulrike Löber
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute of Biochemistry & Biology, University of Potsdam, Potsdam, Germany
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alexandre Courtiol
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Peter Timms
- University of the Sunshine Coast, Sippy Downs Queensland, Australia
| | - Rebecca N Johnson
- Australian Centre for Wildlife Genomics, Australian Museum, Sydney, Australia
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Kristofer M Helgen
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stefanie Hartman
- Institute of Biochemistry & Biology, University of Potsdam, Potsdam, Germany
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
40
|
A Regulatory Element Near the 3' End of the Adeno-Associated Virus rep Gene Inhibits Adenovirus Replication in cis by Means of p40 Promoter-Associated Short Transcripts. J Virol 2016; 90:3981-93. [PMID: 26842470 DOI: 10.1128/jvi.03120-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Adeno-associated virus (AAV) has long been known to inhibit helper adenovirus (Ad) replication independently of AAV Rep protein expression. More recently, replication of Ad serotype 5 (Ad5)/AAV serotype 2 (AAV-2) hybrid vectors was shown to be inhibited incisby a sequence near the 3' end of AAVrep, termed the Rep inhibition sequence for adenoviral replication (RIS-Ad). RIS-Ad functions independently of Rep protein expression. Here we demonstrate that inhibition of adenoviral replication by RIS-Ad requires an active AAV p40 promoter and the 5' half of the intron. In addition, Ad inhibition is critically dependent on the integrity of the p40 transcription start site (TSS) leading to short p40-associated transcripts. These do not give rise to effector molecules capable of inhibiting adenoviral replication intrans, like small polypeptides or microRNAs. Our data point to an inhibitory mechanism in which RNA polymerase II (Pol II) pauses directly downstream of the p40 promoter, leading to interference of the stalled Pol II transcription complex with the adenoviral replication machinery. Whereas inhibition by RIS-Ad is mediated exclusively incis, it can be overcome by providing a replication-competent adenoviral genome intrans Moreover, the inhibitory effect of RIS-Ad is not limited to AAV-2 but could also be shown for the corresponding regions of other AAV serotypes, including AAV-5. These findings have important implications for the future generation of Ad5/AAV hybrid vectors. IMPORTANCE Insertion of sequences from the 3' part of therepgene of adeno-associated virus (AAV) into the genome of its helper adenovirus strongly reduces adenoviral genome replication. We could show that this inhibition is mediated exclusively inciswithout the involvement oftrans-acting regulatory RNAs or polypeptides but nevertheless requires an active AAV-2 p40 promoter and p40-associated short transcripts. Our results suggest a novel inhibitory mechanism that has so far not been described for AAV and that involves stalled RNA polymerase II complexes and their interference with adenoviral DNA replication. Such a mechanism would have important implications both for the generation of adenoviral vectors expressing the AAVrepandcapgenes and for the regulation of AAV gene expression in the absence and presence of helper virus.
Collapse
|
41
|
Abstract
Recombinant AAV vectors (rAAV) are considered as very efficient tools for in vivo gene transfer. Accordingly, several preclinical and clinical gene therapy trials use these vectors to treat inherited and acquired diseases. rAAV vectors possess the capacity to persist for a long term in the transduced tissue in a transcriptionally active, extra-chromosomal (episomal) form. However, many studies have shown that a significant fraction of the rAAV genomes can also nonspecifically integrate into the host cell genome thus raising the possibility of insertional mutagenesis events. This review summarizes the current knowledge on integration of wild type and rAAV genomes and highlights the major questions which remain unresolved.
Collapse
Affiliation(s)
- Axel Rossi
- Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, équipe NucléoVir, École normale supérieure de Lyon, 46, allée d'Italie, 69007 Lyon, France
| | - Anna Salvetti
- Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, équipe NucléoVir, École normale supérieure de Lyon, 46, allée d'Italie, 69007 Lyon, France
| |
Collapse
|
42
|
Sleeping Beauty Transposon Vectors in Liver-directed Gene Delivery of LDLR and VLDLR for Gene Therapy of Familial Hypercholesterolemia. Mol Ther 2015; 24:620-35. [PMID: 26670130 DOI: 10.1038/mt.2015.221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/04/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmid-based Sleeping Beauty (SB) transposon vectors were developed and used to deliver genes for low-density lipoprotein and very-low-density lipoprotein receptors (LDLR and VLDLR, respectively) or lacZ reporter into liver of an LDLR-deficient mouse model of familial hypercholesterolemia (FH). SB transposase, SB100x, was used to integrate the therapeutic transposons into mice livers for evaluating the feasibility of the vectors in reducing high blood cholesterol and the progression of atherosclerosis. Hydrodynamic gene delivery of transposon-VLDLR into the livers of the mice resulted in initial 17-19% reductions in plasma cholesterol, and at the later time points, in a significant stabilization of the cholesterol level for the 6.5-month duration of the study compared to the control mice. Transposon-LDLR-treated animals also demonstrated a trend of stabilization in the cholesterol levels in the long term. Vector-treated mice had slightly less lipid accumulation in the liver and reduced aortic atherosclerosis. Clinical chemistry and histological analyses revealed normal liver function and morphology comparable to that of the controls during the follow-up with no safety issues regarding the vector type, transgenes, or the gene transfer method. The study demonstrates the safety and potential benefits of the SB transposon vectors in the treatment of FH.
Collapse
|
43
|
Musayev FN, Zarate-Perez F, Bishop C, Burgner JW, Escalante CR. Structural Insights into the Assembly of the Adeno-associated Virus Type 2 Rep68 Protein on the Integration Site AAVS1. J Biol Chem 2015; 290:27487-99. [PMID: 26370092 DOI: 10.1074/jbc.m115.669960] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 11/06/2022] Open
Abstract
Adeno-associated virus (AAV) is the only eukaryotic virus with the property of establishing latency by integrating site-specifically into the human genome. The integration site known as AAVS1 is located in chromosome 19 and contains multiple GCTC repeats that are recognized by the AAV non-structural Rep proteins. These proteins are multifunctional, with an N-terminal origin-binding domain (OBD) and a helicase domain joined together by a short linker. As a first step to understand the process of site-specific integration, we proceeded to characterize the recognition and assembly of Rep68 onto the AAVS1 site. We first determined the x-ray structure of AAV-2 Rep68 OBD in complex with the AAVS1 DNA site. Specificity is achieved through the interaction of a glycine-rich loop that binds the major groove and an α-helix that interacts with a downstream minor groove on the same face of the DNA. Although the structure shows a complex with three OBD molecules bound to the AAVS1 site, we show by using analytical centrifugation and electron microscopy that the full-length Rep68 forms a heptameric complex. Moreover, we determined that a minimum of two direct repeats is required to form a stable complex and to melt DNA. Finally, we show that although the individual domains bind DNA poorly, complex assembly requires oligomerization and cooperation between its OBD, helicase, and the linker domains.
Collapse
Affiliation(s)
- Faik N Musayev
- From the Department of Medicinal Chemistry, School of Pharmacy, and
| | - Francisco Zarate-Perez
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Clayton Bishop
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - John W Burgner
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Carlos R Escalante
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
44
|
Millet R, Jolinon N, Nguyen XN, Berger G, Cimarelli A, Greco A, Bertrand P, Odenthal M, Büning H, Salvetti A. Impact of the MRN Complex on Adeno-Associated Virus Integration and Replication during Coinfection with Herpes Simplex Virus 1. J Virol 2015; 89:6824-34. [PMID: 25903339 PMCID: PMC4468484 DOI: 10.1128/jvi.00171-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Adeno-associated virus (AAV) is a helper-dependent parvovirus that requires coinfection with adenovirus (AdV) or herpes simplex virus 1 (HSV-1) to replicate. In the absence of the helper virus, AAV can persist in an episomal or integrated form. Previous studies have analyzed the DNA damage response (DDR) induced upon AAV replication to understand how it controls AAV replication. In particular, it was shown that the Mre11-Rad50-Nbs1 (MRN) complex, a major player of the DDR induced by double-stranded DNA breaks and stalled replication forks, could negatively regulate AdV and AAV replication during coinfection. In contrast, MRN favors HSV-1 replication and is recruited to AAV replication compartments that are induced in the presence of HSV-1. In this study, we examined the role of MRN during AAV replication induced by HSV-1. Our results indicated that knockdown of MRN significantly reduced AAV DNA replication after coinfection with wild-type (wt) HSV-1 or HSV-1 with the polymerase deleted. This effect was specific to wt AAV, since it did not occur with recombinant AAV vectors. Positive regulation of AAV replication by MRN was dependent on its DNA tethering activity but did not require its nuclease activities. Importantly, knockdown of MRN also negatively regulated AAV integration within the human AAVS1 site, both in the presence and in the absence of HSV-1. Altogether, this work identifies a new function of MRN during integration of the AAV genome and demonstrates that this DNA repair complex positively regulates AAV replication in the presence of HSV-1. IMPORTANCE Viral DNA genomes trigger a DNA damage response (DDR), which can be either detrimental or beneficial for virus replication. Adeno-associated virus (AAV) is a defective parvovirus that requires the help of an unrelated virus such as adenovirus (AdV) or herpes simplex virus 1 (HSV-1) for productive replication. Previous studies have demonstrated that the cellular Mre11-Rad50-Nbs1 (MRN) complex, a sensor and regulator of the DDR, negatively regulates AAV replication during coinfection with AdV, which counteracts this effect by inactivating the complex. Here, we demonstrate that MRN positively regulates AAV replication during coinfection with HSV-1. Importantly, our study also indicates that MRN also favors integration of AAV genomes within the human AAVS1 site. Altogether, this work indicates that MRN differentially regulates AAV replication depending on the helper virus which is present and identifies a new function of this DNA repair complex during AAV integration.
Collapse
Affiliation(s)
- Rachel Millet
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| | - Nelly Jolinon
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France
| | - Xuan-Nhi Nguyen
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| | - Gregory Berger
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France
| | - Andrea Cimarelli
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| | - Anna Greco
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| | - Pascale Bertrand
- INSERM U967, CEA, Université Paris Diderot, Université Paris Sud, CEA DSV, Institut de Radiobiologie Moléculaire et Cellulaire, Fontenay-aux-Roses, France
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Cologne, Germany Center for Molecular Medicine of Cologne, University of Cologne, Cologne, Germany
| | - Hildegard Büning
- Center for Molecular Medicine of Cologne, University of Cologne, Cologne, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany German Center for Infection Research, Bonn-Cologne Partner Site, Bonn-Cologne, Germany
| | - Anna Salvetti
- International Center for Research in Infectiology, INSERM U1111, CNRS UMR5308, Lyon, France Ecole Normale Supérieure de Lyon, Lyon, France Université de Lyon, UCB-Lyon 1, Lyon, France LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
45
|
Presence of a trs-Like Motif Promotes Rep-Mediated Wild-Type Adeno-Associated Virus Type 2 Integration. J Virol 2015; 89:7428-32. [PMID: 25972561 DOI: 10.1128/jvi.00426-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022] Open
Abstract
High-throughput integration site (IS) analysis of wild-type adeno-associated virus type 2 (wtAAV2) in human dermal fibroblasts (HDFs) and HeLa cells revealed that juxtaposition of a Rep binding site (RBS) and terminal resolution site (trs)-like motif leads to a 4-fold-increased probability of wtAAV integration. Electrophoretic mobility shift assays (EMSAs) confirmed binding of Rep to off-target RBSs. For the first time, we show Rep protein off-target nicking activity, highlighting the importance of the nicking substrate for Rep-mediated integration.
Collapse
|
46
|
Stutika C, Hüser D, Weger S, Rutz N, Heßler M, Heilbronn R. Definition of herpes simplex virus helper functions for the replication of adeno-associated virus type 5. J Gen Virol 2014; 96:840-850. [PMID: 25535322 DOI: 10.1099/vir.0.000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adeno-associated virus (AAV) type 5 represents the genetically most distant AAV serotype and the only one isolated directly from human tissue. Seroepidemiological evidence suggests herpes simplex virus (HSV) as a helper virus for human AAV5 infections, underlining the in vivo relevance of the AAV-herpesvirus relationship. In this study we analysed, for the first time, HSV helper functions for productive AAV5 replication, and compared these to AAV2. Using a combination of HSV strains and plasmids for individual genes, the previously defined HSV helper functions for AAV2 replication were shown to induce AAV5 gene expression, DNA replication and production of infectious progeny. The helper functions comprise the replication genes for ICP8 (UL29), helicase-primase (UL5/8/52), and DNA polymerase (UL30/42). HSV immediate-early genes for ICP0 and ICP4 further enhanced AAV5 replication, mainly by induction of rep gene expression. In the presence of HSV helper functions, AAV5 Rep co-localized with ICP8 in nuclear replication compartments, and HSV alkaline exonuclease (UL12) enhanced AAV5 replication, similarly to AAV2. UL12, in combination with ICP8, was shown to induce DNA strand exchange on partially double-stranded templates to resolve and repair concatemeric HSV replication intermediates. Similarly, concatemeric AAV replication intermediates appeared to be processed to yield AAV unit-length molecules, ready for AAV packaging. Taken together, our findings show that productive AAV5 replication is promoted by the same combination of HSV helper functions as AAV2.
Collapse
Affiliation(s)
- Catrin Stutika
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Daniela Hüser
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Stefan Weger
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Natalja Rutz
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Melanie Heßler
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| | - Regine Heilbronn
- Institute of Virology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
47
|
Turunen TAK, Laakkonen JP, Alasaarela L, Airenne KJ, Ylä-Herttuala S. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye. J Gene Med 2014; 16:40-53. [PMID: 24464652 DOI: 10.1002/jgm.2756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/18/2013] [Accepted: 01/22/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. METHODS We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. RESULTS The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. CONCLUSIONS Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Tytteli Anni Kaarina Turunen
- A. I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
48
|
Adeno-associated virus type 2 wild-type and vector-mediated genomic integration profiles of human diploid fibroblasts analyzed by third-generation PacBio DNA sequencing. J Virol 2014; 88:11253-63. [PMID: 25031342 DOI: 10.1128/jvi.01356-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy.
Collapse
|
49
|
Comparative next-generation sequencing of adeno-associated virus inverted terminal repeats. Biotechniques 2014; 56:269-73. [DOI: 10.2144/000114170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 04/04/2014] [Indexed: 11/23/2022] Open
Abstract
The inverted terminal repeats (ITRs) of adeno-associated virus (AAV) are notoriously difficult to sequence owing to their high GC-content (70%) and palindromic sequences that result in the formation of a very stable, 125 bp long, T-shaped hairpin structure. Here we evaluate the performance of two widely used next-generation sequencing platforms, 454 GS FLX (Roche) and MiSeq Benchtop Sequencer (Illumina), in analyzing ITRs in comparatively sequencing linear amplification-meditated PCR (LAM-PCR) amplicons derived from AAV-concatemeric structures. While our data indicate that both platforms can sequence complete ITRs, efficiencies (MiSeq: 0.11% of sequence reads; 454: 0.02% of reads), frequencies (MiSeq: 171 full ITRs, 454: 3 full ITRs), and rates of deviation from the derived ITR consensus sequence (MiSeq: 0.8%–1.3%; 454: 0.5%) did differ. These results suggest that next-generation sequencing platforms can be used to specifically detect ITR mutations and sequence complete ITRs.
Collapse
|
50
|
Wilmes GM, Carey KL, Hicks SW, Russell HH, Stevenson JA, Kocjan P, Lutz SR, Quesenberry RS, Shulga-Morskoy SV, Lewis ME, Clark E, Medik V, Cooper AB, Reczek EE. Non-viral adeno-associated virus-based platform for stable expression of antibody combination therapeutics. MAbs 2014; 6:957-67. [PMID: 24758837 DOI: 10.4161/mabs.28917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures.
Collapse
|