1
|
Brayan MT, Alejandro AA, Quesada-Gómez C, Chaves-Olarte E, Elías BC. Polymorphonuclear neutrophil depletion in ileal tissues reduces the immunopathology induced by Clostridioides difficile toxins. Anaerobe 2025; 92:102947. [PMID: 40023364 DOI: 10.1016/j.anaerobe.2025.102947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/28/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
INTRODUCTION Clostridioides difficile, a leading cause of healthcare-associated infections, causes significant morbidity and mortality. Its pathogenesis centers on TcdA and TcdB toxins, which disrupt intestinal integrity, trigger inflammation, and promote extensive neutrophil infiltration. OBJECTIVE The main objective of this study was to evaluate the role of PMNs in CDI using neutrophil depletion in a murine-ileal-ligated loop. METHODS Mice were treated with C. difficile toxins TcdA, TcdB, and TcdBv, with PMN depletion achieved via intraperitoneal injections of Ly6G/Ly6C antibody. Histopathological analysis, cytokine quantification, and MPO activity assays were performed to assess the inflammatory and tissue damage responses. RESULTS PMN depletion significantly reduced histopathological damage and proinflammatory responses. TcdA induced the highest inflammation and epithelial damage, while TcdB showed lower activity, except for MPO. TcdBvNAP1's activity was comparable to that of TcdBNAP1 but less than TcdA. The findings indicate that TcdA's enterotoxin effects are more damaging than TcdBs from different strains and confirm the critical role of PMNs in CDI pathogenesis. CONCLUSION Our results show that PMN depletion reduced inflammatory responses and tissue damage, highlighting potential therapeutic strategies targeting PMN regulation. Further research on PMN extracellular traps (NETs) and their role in CDI is necessary to develop comprehensive treatments. Future studies should focus on combined in vivo and in vitro approaches to fully understand the pathological mechanisms and identify effective biomarkers for CDI therapy.
Collapse
Affiliation(s)
- Montoya-Torres Brayan
- International Center for Food Industry Excellence (ICFIE), Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, 79409, USA; Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica
| | - Alfaro-Alarcón Alejandro
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica; Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Carlos Quesada-Gómez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, Costa Rica
| | - Barquero-Calvo Elías
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica.
| |
Collapse
|
2
|
Zvonareva T, Courson DS, Purcell EB. Clostridioides difficile infection study models and prospectives for probing the microbe-host interface. J Bacteriol 2025; 207:e0040724. [PMID: 39912651 PMCID: PMC11925243 DOI: 10.1128/jb.00407-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Clostridioides difficile infection (CDI) is an urgent public health threat with a high rate of recurrence and limited treatment options. In vivo models have been indispensable in understanding CDI pathophysiology and establishing treatment protocols and continue to be essential in pre-clinal testing. More importantly, in vivo models offer the opportunity to probe the complex systemic host response to the microbe, which is impossible to recapitulate in vitro. Nonetheless, constraints related to the availability of animal models, cost, ethical considerations, and regulatory control limit their accessibility for basic research. Furthermore, physiological and habitual divergences between animal models and humans often result in poor translatability to human patients. In addition to being more accessible, in vitro CDI models offer more control over experimental parameters and allow dynamic analysis of early infection. In vitro fermentation offers models for probing microbe-microbe and microbe-microbiome interactions, while continuous multi-stage platforms allow opportunities to study C. difficile pathophysiology and treatment in context with human-derived microbiota. However, these platforms are not suitable for probing the host-pathogen interface, leaving the challenge of modeling early CDI unanswered. As a result, alternative in vitro co-culture platforms are being developed. This review evaluates the strengths and weaknesses of each approach, as well as future directions for C. difficile research.
Collapse
Affiliation(s)
- Tatiana Zvonareva
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | - David S. Courson
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| | - Erin B. Purcell
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| |
Collapse
|
3
|
Spigaglia P. Clostridioides difficile and Gut Microbiota: From Colonization to Infection and Treatment. Pathogens 2024; 13:646. [PMID: 39204246 PMCID: PMC11357127 DOI: 10.3390/pathogens13080646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Clostridioides difficile is the main causative agent of antibiotic-associated diarrhea (AAD) in hospitals in the developed world. Both infected patients and asymptomatic colonized individuals represent important transmission sources of C. difficile. C. difficile infection (CDI) shows a large range of symptoms, from mild diarrhea to severe manifestations such as pseudomembranous colitis. Epidemiological changes in CDIs have been observed in the last two decades, with the emergence of highly virulent types and more numerous and severe CDI cases in the community. C. difficile interacts with the gut microbiota throughout its entire life cycle, and the C. difficile's role as colonizer or invader largely depends on alterations in the gut microbiota, which C. difficile itself can promote and maintain. The restoration of the gut microbiota to a healthy state is considered potentially effective for the prevention and treatment of CDI. Besides a fecal microbiota transplantation (FMT), many other approaches to re-establishing intestinal eubiosis are currently under investigation. This review aims to explore current data on C. difficile and gut microbiota changes in colonized individuals and infected patients with a consideration of the recent emergence of highly virulent C. difficile types, with an overview of the microbial interventions used to restore the human gut microbiota.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy
| |
Collapse
|
4
|
Kempher ML, Shadid TM, Larabee JL, Ballard JD. A sequence invariable region in TcdB2 is required for toxin escape from Clostridioides difficile. J Bacteriol 2024; 206:e0009624. [PMID: 38888328 PMCID: PMC11323933 DOI: 10.1128/jb.00096-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Sequence differences among the subtypes of Clostridioides difficile toxin TcdB (2,366 amino acids) are broadly distributed across the entire protein, with the notable exception of 76 residues at the protein's carboxy terminus. This sequence invariable region (SIR) is identical at the DNA and protein level among the TcdB variants, suggesting this string of amino acids has undergone selective pressure to prevent alterations. The functional role of the SIR domain in TcdB has not been determined. Analysis of a recombinantly constructed TcdB mutant lacking the SIR domain did not identify changes in TcdB's enzymatic or cytopathic activities. To further assess the SIR region, we constructed a C. difficile strain with the final 228 bp deleted from the tcdB gene, resulting in the production of a truncated form of TcdB lacking the SIR (TcdB2∆2291-2366). Using a combination of approaches, we found in the absence of the SIR sequence TcdB2∆2291-2366 retained cytotoxic activity but was not secreted from C. difficile. TcdB2∆2291-2366 was not released from the cell under autolytic conditions, indicating the SIR is involved in a more discrete step in toxin escape from the bacterium. Fractionation experiments combined with antibody detection found that TcdB2∆2291-2366 accumulates at the cell membrane but is unable to complete steps in secretion beyond this point. These data suggest conservation of the SIR domain across variants of TcdB could be influenced by the sequence's role in efficient escape of the toxin from C. difficile. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic associated disease in the United States. The primary virulence factors produced by C. difficile are two large glucosylating toxins TcdA and TcdB. To date, several sequence variants of TcdB have been identified that differ in various functional properties. Here, we identified a highly conserved region among TcdB subtypes that is required for release of the toxin from C. difficile. This study reveals a putative role for the longest stretch of invariable sequence among TcdB subtypes and provides new details regarding toxin release into the extracellular environment. Improving our understanding of the functional roles of the conserved regions of TcdB variants aids in the development of new, broadly applicable strategies to treat CDI.
Collapse
Affiliation(s)
- Megan L. Kempher
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
- Department of
Chemistry and Biochemistry, University of
Oklahoma, Norman,
Oklahoma, USA
| | - Tyler M. Shadid
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jason L. Larabee
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| | - Jimmy D. Ballard
- Department of
Microbiology and Immunology, University of Oklahoma Health Sciences
Center, Oklahoma City,
Oklahoma, USA
| |
Collapse
|
5
|
Meléndez-Sánchez D, Hernández L, Ares M, Méndez Tenorio A, Flores-Luna L, Torres J, Camorlinga-Ponce M. Genomic and phenotypic studies among Clostridioides difficile isolates show a high prevalence of clade 2 and great diversity in clinical isolates from Mexican adults and children with healthcare-associated diarrhea. Microbiol Spectr 2024; 12:e0394723. [PMID: 38864670 PMCID: PMC11218462 DOI: 10.1128/spectrum.03947-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024] Open
Abstract
Clostridioides difficile (C. difficile) is widely distributed in the intestinal tract of humans, animals, and in the environment. It is the most common cause of diarrhea associated with the use of antimicrobials in humans and among the most common healthcare-associated infections worldwide. Its pathogenesis is mainly due to the production of toxin A (TcdA), toxin B (TcdB), and a binary toxin (CDT), whose genetic variants may be associated with disease severity. We studied genetic diversity in 39 C. difficile isolates from adults and children attended at two Mexican hospitals, using different gene and genome typing methods and investigated their association with in vitro expression of toxins. Whole-genome sequencing in 39 toxigenic C. difficile isolates were used for multilocus sequence typing, tcdA, and tcdB typing sequence type, and phylogenetic analysis. Strains were grown in broth media, and expression of toxin genes was measured by real-time PCR and cytotoxicity in cell-culture assays. Clustering of strains by genome-wide phylogeny matched clade classification, forming different subclusters within each clade. The toxin profile tcdA+/tcdB+/cdt+ and clade 2/ST1 were the most prevalent among isolates from children and adults. Isolates presented two TcdA and three TcdB subtypes, of which TcdA2 and TcdB2 were more prevalent. Prevalent clades and toxin subtypes in strains from children differed from those in adult strains. Toxin gene expression or cytotoxicity was not associated with genotyping or toxin subtypes. In conclusion, genomic and phenotypic analysis shows high diversity among C. difficile isolates from patients with healthcare-associated diarrhea. IMPORTANCE Clostridioides difficile is a toxin-producing bacterial pathogen recognized as the most common cause of diarrhea acquired primarily in healthcare settings. This bacterial species is diverse; its global population has been divided into five different clades using multilocus sequence typing, and strains may express different toxin subtypes that may be related to the clades and, importantly, to the severity and progression of disease. Genotyping of children strains differed from adults suggesting toxins might present a reduced toxicity. We studied extensively cytotoxicity, expression of toxins, whole genome phylogeny, and toxin typing in clinical C. difficile isolates. Most isolates presented a tcdA+/ tcdB+/cdt+ pattern, with high diversity in cytotoxicity and clade 2/ST1 was the most prevalent. However, they all had the same TcdA2/TcdB2 toxin subtype. Advances in genomics and bioinformatics tools offer the opportunity to understand the virulence of C. difficile better and find markers for better clinical use.
Collapse
Affiliation(s)
- D. Meléndez-Sánchez
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Laura Hernández
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Miguel Ares
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, Instituto Mexicano del Seguro Social, México City, México
| | - A. Méndez Tenorio
- Laboratorio de Bioinformática y Biotecnología Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | - Lourdes Flores-Luna
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, Instituto Mexicano del Seguro Social, México City, México
| | - M. Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, UMAE Pediatría, Instituto Mexicano del Seguro Social, México City, México
| |
Collapse
|
6
|
Norman KM, Lang GA, Shadid TM, Honold ST, Reel JM, Cox MA, Ballard JD, Lang ML. Clostridioides difficile toxin B subverts germinal center and antibody recall responses by stimulating a drug-treatable CXCR4-dependent mechanism. Cell Rep 2024; 43:114245. [PMID: 38761377 PMCID: PMC11210377 DOI: 10.1016/j.celrep.2024.114245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Recurrent Clostridioides difficile infection (CDI) results in significant morbidity and mortality. We previously established that CDI in mice does not protect against reinfection and is associated with poor pathogen-specific B cell memory (Bmem), recapitulating our observations with human Bmem. Here, we demonstrate that the secreted toxin TcdB2 is responsible for subversion of Bmem responses. TcdB2 from an endemic C. difficile strain delayed immunoglobulin G (IgG) class switch following vaccination, attenuated IgG recall to a vaccine booster, and prevented germinal center formation. The mechanism of TcdB2 action included increased B cell CXCR4 expression and responsiveness to its ligand CXCL12, accounting for altered cell migration and a failure of germinal center-dependent Bmem. These results were reproduced in a C. difficile infection model, and a US Food and Drug Administration (FDA)-approved CXCR4-blocking drug rescued germinal center formation. We therefore provide mechanistic insights into C. difficile-associated pathogenesis and illuminate a target for clinical intervention to limit recurrent disease.
Collapse
Affiliation(s)
- Kaylee M Norman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Gillian A Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Tyler M Shadid
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Sydney T Honold
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Jessica M Reel
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Maureen A Cox
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA.
| |
Collapse
|
7
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
8
|
Doyle DA, DeAngelis PL, Ballard JD. CSPG4-dependent cytotoxicity for C. difficile TcdB is influenced by extracellular calcium and chondroitin sulfate. mSphere 2024; 9:e0009424. [PMID: 38470254 PMCID: PMC11036797 DOI: 10.1128/msphere.00094-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
TcdB is an intracellular bacterial toxin indispensable to Clostridioides difficile infections. The ability to use chondroitin sulfate proteoglycan 4 (CSPG4) as a primary cell surface receptor is evolutionarily conserved by the two major variants of TcdB. As CSPG4 does not typically undergo receptor-mediated endocytosis, we sought to identify environmental factors that stabilize interactions between TcdB and CSPG4 to promote cell binding and entry into the cytosol. Using a series of TcdB receptor-binding mutants and cell lines with various receptor expression profiles, we discovered that extracellular Ca2+ promotes receptor-specific interactions with TcdB. Specifically, TcdB exhibits preferential binding to CSPG4 in the presence of Ca2+, with the absence of Ca2+ resulting in CSPG4-independent cell surface interactions. Furthermore, Ca2+ did not enhance TcdB binding to chondroitin sulfate (CS), the sole glycosaminoglycan of CSPG4. Instead, CS was found to impact the rate of cell entry by TcdB. Collectively, results from this study indicate that Ca2+ enhances cell binding by TcdB and CS interactions contribute to subsequent steps in cell entry. IMPORTANCE Clostridioides difficile is a leading cause of antibiotic-associated gastrointestinal illness, and many disease pathologies are caused by the toxin TcdB. TcdB engages multiple cell surface receptors, with receptor tropisms differing among the variants of the toxin. Chondroitin sulfate proteoglycan 4 (CSPG4) is a critical receptor for multiple forms of TcdB, and insights into TcdB-CSPG4 interactions are applicable to many disease-causing strains of C. difficile. CSPG4 is modified by chondroitin sulfate (CS) and contains laminin-G repeats stabilized by Ca2+, yet the relative contributions of CS and Ca2+ to TcdB cytotoxicity have not been determined. This study demonstrates distinct roles in TcdB cell binding and cell entry for Ca2+ and CS, respectively. These effects are specific to CSPG4 and contribute to the activities of a prominent isoform of TcdB that utilizes this receptor. These findings advance an understanding of factors contributing to TcdB's mechanism of action and contribution to C. difficile disease.
Collapse
Affiliation(s)
- D. Annie Doyle
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
9
|
Paparella AS, Brew I, Hong HA, Ferriera W, Cutting S, Lamiable-Oulaidi F, Popadynec M, Tyler PC, Schramm VL. Isofagomine Inhibits Multiple TcdB Variants and Protects Mice from Clostridioides difficile-Induced Mortality. ACS Infect Dis 2024; 10:928-937. [PMID: 38334357 DOI: 10.1021/acsinfecdis.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Clostridioides difficile causes life-threatening diarrhea and is one of the leading causes of nosocomial infections. During infection, C. difficile releases two gut-damaging toxins, TcdA and TcdB, which are the primary determinants of disease pathogenesis and are important therapeutic targets. Once in the cytosol of mammalian cells, TcdA and TcdB use UDP-glucose to glucosylate host Rho GTPases, which leads to cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the glucocation transition state of the glucosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified, and therefore, evaluation of isofagomine inhibition against multiple toxin variants is required. Here, we show that isofagomine inhibits the glucosyltransferase domain of multiple TcdB variants and protects TcdB-induced cell rounding of the most common full-length toxin variants. Furthermore, we demonstrate that isofagomine protects against C. difficile-induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection also permitted the recovery of the gastrointestinal microbiota, an important barrier to preventing recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile-induced morbidity and mortality.
Collapse
Affiliation(s)
- Ashleigh S Paparella
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Isabella Brew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Huynh A Hong
- SporeGen Ltd., The London BioScience Innovation Centre, London NW1 0NH, U.K
| | - William Ferriera
- SporeGen Ltd., The London BioScience Innovation Centre, London NW1 0NH, U.K
| | - Simon Cutting
- SporeGen Ltd., The London BioScience Innovation Centre, London NW1 0NH, U.K
| | - Farah Lamiable-Oulaidi
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Michael Popadynec
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
10
|
Sah P, Knighten BA, Reidy MA, Zenewicz LA. Polyamines and hypusination are important for Clostridioides difficile toxin B (TcdB)-mediated activation of group 3 innate lymphocytes (ILC3s). Infect Immun 2023; 91:e0023623. [PMID: 37861311 PMCID: PMC10652861 DOI: 10.1128/iai.00236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial gastrointestinal tract bacterial infections. We lack fully effective reliable treatments for this pathogen, and there is a critical need to better understand how C. difficile interacts with our immune system. Group 3 innate lymphocytes (ILC3s) are rare immune cells localized within mucosal tissues that protect against bacterial infections. Upon activation, ILC3s secrete high levels of the cytokine interleukin-22 (IL-22), which is a critical regulator of tissue responses during infection. C. difficile toxin B (TcdB), the major virulence factor, directly activates ILC3s, resulting in high IL-22 levels. We previously reported that polyamines are important in the activation of ILC3s by the innate cytokine interleukin-23 (IL-23) but did not identify a specific mechanism. In this study, we examine how a pathogen impacts a metabolic pathway important for immune cell function and hypothesized that polyamines are important in TcdB-mediated ILC3 activation. We show that TcdB upregulates the polyamine biosynthesis pathway, and the inhibition of the pathway decreases TcdB-mediated ILC3 activation. Two polyamines, putrescine and spermidine, are involved. Spermidine is the key polyamine in the hypusination of eukaryotic initiation factor 5A (eIF5A), and the inhibition of eIF5A reduced ILC3 activation. Thus, there is potential to leverage polyamines in ILC3s to promote activation of ILC3s during C. difficile infection and other bacterial infections where ILC3s serve a protective role.
Collapse
Affiliation(s)
- Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bailey A. Knighten
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Megan A. Reidy
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
11
|
Childress KO, Cencer CS, Tyska MJ, Lacy DB. Nectin-3 and shed forms of CSPG4 can serve as epithelial cell receptors for Clostridioides difficile TcdB. mBio 2023; 14:e0185723. [PMID: 37747247 PMCID: PMC10653914 DOI: 10.1128/mbio.01857-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 09/26/2023] Open
Abstract
IMPORTANCE Toxin B (TcdB) is a major virulence factor of Clostridioides difficile, a Gram-positive pathogen that is a leading cause of hospital-acquired diarrhea. While previous studies have established that TcdB can engage multiple cell surface receptors in vitro, little is known about how these interactions promote disease and where these receptors localize on colonic tissue. Here, we used immunofluorescence microscopy to visualize Nectin-3 and CSPG4 on tissue, revealing unexpected localization of both receptors on colonic epithelial cells. We show that Nectin-3, which was previously characterized as an adherens junction protein, is also localized to the brush border of colonocytes. Staining for CSPG4 revealed that it is present along epithelial cell junctions, suggesting that it is shed by fibroblasts along the crypt-surface axis. Collectively, our study provides new insights into how TcdB can gain access to the receptors Nectin-3 and CSPG4 to intoxicate colonic epithelial cells.
Collapse
Affiliation(s)
- Kevin O. Childress
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Caroline S. Cencer
- Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Matthew J. Tyska
- Department of Cell and Development Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Paparella AS, Brew I, Hong HA, Ferriera W, Cutting S, Lamiable-Oulaidi F, Popadynec M, Tyler PC, Schramm VL. Isofagomine inhibits multiple TcdB variants and protects mice from Clostridioides difficile induced mortality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558375. [PMID: 37781587 PMCID: PMC10541099 DOI: 10.1101/2023.09.19.558375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Clostridioides difficile causes life-threatening diarrhea and is the leading cause of healthcare associated bacterial infections in the United States. During infection, C. difficile releases the gut-damaging toxins, TcdA and TcdB, the primary determinants of disease pathogenesis and are therefore therapeutic targets. TcdA and TcdB contain a glycosyltransferase domain that uses UDP-glucose to glycosylate host Rho GTPases, causing cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the oxocarbenium ion transition state of the glycosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified and therefore, evaluation of isofagomine inhibition against multiple toxin variants are required. Here we show that Isofagomine inhibits the glycosyltransferase activity of multiple TcdB variants and also protects TcdB toxin-induced cell rounding of the most common full-length toxin variants. Further, isofagomine protects against C. difficile induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection permitted recovery of the gastrointestinal microbiota, an important barrier to prevent recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile induced morbidity and mortality.
Collapse
Affiliation(s)
- Ashleigh S. Paparella
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Isabella Brew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Huynh A. Hong
- SporeGen Ltd, The London BioScience Innovation Centre, London, United Kingdom
| | - William Ferriera
- SporeGen Ltd, The London BioScience Innovation Centre, London, United Kingdom
| | - Simon Cutting
- SporeGen Ltd, The London BioScience Innovation Centre, London, United Kingdom
| | - Farah Lamiable-Oulaidi
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Michael Popadynec
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Peter C. Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
13
|
Hu C, Garey KW. Nonmammalian models to study Clostridioides difficile infection; a systematic review. Anaerobe 2023; 79:102694. [PMID: 36626950 PMCID: PMC9975065 DOI: 10.1016/j.anaerobe.2023.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Clostridioide difficile is the leading cause of diarrhea disease worldwide and is a CDC-designated urgent threat level pathogen. Mammalian models are commonly utilized as gold standard to study the pathogenesis of C. difficile infection (CDI); however, alternatives are needed due to cost, higher throughput ability, and mammalian animal ethics. Nonmammalian models such as great wax worm, nematode, fruit fly, and zebrafish have been used as CDI models. This review provides a comprehensive summary of nonmammalian models used to study CDI. Multiple studies were identified using these models to study C. difficile infection, pathogenicity, colonization, host immunity, and therapy. Translational outcomes and strength and weakness of each nonmammalian model are discussed.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, 77204, USA.
| |
Collapse
|
14
|
Chen P, Jin R. Receptor binding mechanisms of Clostridioides difficile toxin B and implications for therapeutics development. FEBS J 2023; 290:962-969. [PMID: 34862749 PMCID: PMC9344982 DOI: 10.1111/febs.16310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 12/29/2022]
Abstract
Clostridioides difficile is classified as an urgent antibiotic resistance threat by the Centers for Disease Control and Prevention (CDC). C. difficile infection (CDI) is mainly caused by the C. difficile exotoxin TcdB, which invades host cells via receptor-mediated endocytosis. However, many natural variants of TcdB have been identified including some from the hypervirulent strains, which pose significant challenges for developing effective CDI therapies. Here, we review the recent research progress on the molecular mechanisms by which TcdB recognizes Frizzed proteins (FZDs) and chondroitin sulfate proteoglycan 4 (CSPG4) as two major host receptors. We suggest that the receptor-binding sites and several previously identified neutralizing epitopes on TcdB are ideal targets for the development of broad-spectrum inhibitors to protect against diverse TcdB variants.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, 92697, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, 92697, USA
| |
Collapse
|
15
|
Yin C, Song Z, Wang X, Li H, Liu Y, Wang Q, Feng X, Song X. Development and clinical application of a rapid, visually interpretable polymerase spiral reaction for tcdB gene of Clostridioides difficile in fecal cultures. FEMS Microbiol Lett 2023; 370:fnad080. [PMID: 37537148 DOI: 10.1093/femsle/fnad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023] Open
Abstract
In the surveillance of outbreaks of Clostridioides difficile infection, the rapid detection and diagnosis of C. difficile remain a major challenge. Polymerase spiral reaction (PSR) is a nucleic acid amplification technique that uses mixed primers and the strand displacement activity of Bst DNA polymerase to achieve a pair of primers and a single enzyme in an isothermal environment. The primer design is simple, the reaction is efficient, and a color indicator can be used to visualize the result. In this study, we developed a rapid and visually interpretable PSR to detect C. difficile by analyzing artificially contaminated feces samples and clinical isolates from patient feces samples. We designed two pairs of primers for a PSR that specifically targeted the conserved tcdB gene of C. difficile. The amplification results were visualized with the chromogenic dye hydroxynaphthol blue. The entire process was accomplished in 50 min at 64°C, with high specificity. The limit of detection of C. difficile with PSR was 150 fg/μl genomic DNA or 2 × 10 CFU/ml in artificially contaminated feces samples. With this method, we analyzed four clinical isolates and also compared the PSR with an isolation-and-culture detection method, polymerase chain reaction, and the Sanger sequencing. The four clinical isolates were found positive for tcdB, which confirmed the high specificity of the primers. The positive rates of tcdB in toxigenic C. difficile detected with PSR, PCR, and Sanger sequencing were 100%. The proportions of toxin types in these clinical C. difficile strains were 50% tcdA+tcdB+CDT- and 50% tcdA+tcdB+CDT+. The assay described should extend our understanding of the incidence of C. difficile. This may allow the rapid diagnosis and screening of C. difficile-related disease outbreaks in the field.
Collapse
Affiliation(s)
- Caihong Yin
- Department of Hygienic Inspection, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Zhanyun Song
- Changchun Customs Technology Center, 4448 Freedom Road, Changchun, China
| | - Xianghui Wang
- Changchun Customs Technology Center, 4448 Freedom Road, Changchun, China
| | - Hui Li
- Changchun Customs Technology Center, 4448 Freedom Road, Changchun, China
| | - Yue Liu
- Department of Hygienic Inspection, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Qiulin Wang
- Department of Hygienic Inspection, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Xin Feng
- School of Public Health, College of Veterinary Medicine, Jilin University, 5333 Xi 'an Road, Changchun, China
| | - Xiuling Song
- Department of Hygienic Inspection, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun 130021, China
| |
Collapse
|
16
|
Wen GL, Li SH, Qin Z, Yang YJ, Bai LX, Ge WB, Liu XW, Li JY. Isolation, molecular typing and antimicrobial resistance of Clostridium difficile in dogs and cats in Lanzhou city of Northwest China. Front Vet Sci 2022; 9:1032945. [DOI: 10.3389/fvets.2022.1032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/20/2022] Open
Abstract
Clostridium difficile infection (CDI) in human and animals belonged usually to antibiotic-associated diarrhea, ranging in severity from mild to life-threatening intestinal tract illnesses. This study aimed to isolation and characterization, toxin genes test, molecular typing, and drug sensitivity of Clostridium difficile (C. difficile) which were isolated from clinical diseased dogs and cats. A total of 247 clinical samples were collected from five animal hospitals in Lanzhou City of Northwest China, of which dogs and cats accounted for 74.9% (185/247) and 25.1% (62/247), respectively. We successfully identified 24 C. difficile strains by 16S rRNA and Matrix-Assisted Laser Desorption/Ionization Time of Fight Mass Spectroscopy (MALDI-TOF-MS). 10.3% (19/185) of dogs and 8.1% (5/62) of cats were positive for C. difficile. Among them, 16 strains were toxic and 8 were non-toxic, with a toxic rate of 57.9% (11/19) in dogs and 100% (5/5) in cats. A total of 10 STs and 10 RTs were identified in this study. The percentages of ST42 (RT106) and ST2 (RT014/LW01) among 16 toxic strains were 41.7 and 12.5%, respectively. However, ST3 (RT001), ST1 (RT027), ST133 (LW04), and ST-UN (LW04) had only one strain. ST42 (RT106) was the most common genotype and RT027 strain was first isolated in China from pets. Antimicrobial susceptibility test showed that isolates were extremely sensitive to vancomycin and metronidazole but were resistant to erythromycin and ciprofloxacin. The drug resistant rates to clindamycin, levofloxacin, moxifloxacin and meropenem were 62.5, 20.8, 16.7, and 8.3%, respectively. In conclusion, C. difficile was quietly prevalent in dogs and cats in Lanzhou city with RT106 and RT014 as the main ribotypes. The CDI in pets should be paying more attention and further studies are needed.
Collapse
|
17
|
Tian S, Xiong X, Zeng J, Wang S, Tremblay BJM, Chen P, Chen B, Liu M, Chen P, Sheng K, Zeve D, Qi W, Breault DT, Rodríguez C, Gerhard R, Jin R, Doxey AC, Dong M. Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants. Nat Commun 2022; 13:6786. [PMID: 36351897 PMCID: PMC9646764 DOI: 10.1038/s41467-022-33964-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Toxin B (TcdB) is a major exotoxin responsible for diseases associated with Clostridioides difficile infection. Its sequence variations among clinical isolates may contribute to the difficulty in developing effective therapeutics. Here, we investigate receptor-binding specificity of major TcdB subtypes (TcdB1 to TcdB12). We find that representative members of subtypes 2, 4, 7, 10, 11, and 12 do not recognize the established host receptor, frizzled proteins (FZDs). Using a genome-wide CRISPR-Cas9-mediated screen, we identify tissue factor pathway inhibitor (TFPI) as a host receptor for TcdB4. TFPI is recognized by a region in TcdB4 that is homologous to the FZD-binding site in TcdB1. Analysis of 206 TcdB variant sequences reveals a set of six residues within this receptor-binding site that defines a TFPI binding-associated haplotype (designated B4/B7) that is present in all TcdB4 members, a subset of TcdB7, and one member of TcdB2. Intragenic micro-recombination (IR) events have occurred around this receptor-binding region in TcdB7 and TcdB2 members, resulting in either TFPI- or FZD-binding capabilities. Introduction of B4/B7-haplotype residues into TcdB1 enables dual recognition of TFPI and FZDs. Finally, TcdB10 also recognizes TFPI, although it does not belong to the B4/B7 haplotype, and shows species selectivity: it recognizes TFPI of chicken and to a lesser degree mouse, but not human, dog, or cattle versions. These findings identify TFPI as a TcdB receptor and reveal IR-driven changes on receptor-specificity among TcdB variants.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaozhe Xiong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ji Zeng
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Siyu Wang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Benjamin Jean-Marie Tremblay
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peng Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Min Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Pengsheng Chen
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kuanwei Sheng
- Wyss Institute for Bioinspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Wanshu Qi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - César Rodríguez
- Faculty of Microbiology & CIET, University of Costa Rica, San José, Costa Rica
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Andrew C Doxey
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Mileto SJ, Hutton ML, Walton SL, Das A, Ioannidis LJ, Ketagoda D, Quinn KM, Denton KM, Hansen DS, Lyras D. Bezlotoxumab prevents extraintestinal organ damage induced by Clostridioides difficile infection. Gut Microbes 2022; 14:2117504. [PMID: 36045589 PMCID: PMC9450906 DOI: 10.1080/19490976.2022.2117504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the most common cause of infectious antibiotic-associated diarrhea, with disease mediated by two major toxins TcdA and TcdB. In severe cases, systemic disease complications may arise, resulting in fatal disease. Systemic disease in animal models has been described, with thymic damage an observable consequence of severe disease in mice. Using a mouse model of C. difficile infection, we examined this disease phenotype, focussing on the thymus and serum markers of systemic disease. The efficacy of bezlotoxumab, a monoclonal TcdB therapeutic, to prevent toxin mediated systemic disease complications was also examined. C. difficile infection causes toxin-dependent thymic damage and CD4+CD8+ thymocyte depletion in mice. These systemic complications coincide with changes in biochemical markers of liver and kidney function, including increased serum urea and creatinine, and hypoglycemia. Administration of bezlotoxumab during C. difficile infection prevents systemic disease and thymic atrophy, without blocking gut damage, suggesting the leakage of gut contents into circulation may influence systemic disease. As the thymus has such a crucial role in T cell production and immune system development, these findings may have important implications in relapse of C. difficile disease and impaired immunity during C. difficile infection. The prevention of thymic atrophy and reduced systemic response following bezlotoxumab treatment, without altering colonic damage, highlights the importance of systemic disease in C. difficile infection, and provides new insights into the mechanism of action for this therapeutic.Abbreviations: Acute kidney injury (AKI); Alanine Transaminase (ALT); Aspartate Aminotransferase (AST); C. difficile infection (CDI); chronic kidney disease (CKD); combined repetitive oligo-peptides (CROPS); cardiovascular disease (CVD); Double positive (DP); hematoxylin and eosin (H&E); immunohistochemical (IHC); multiple organ dysfunction syndrome (MODS); phosphate buffered saline (PBS); standard error of the mean (SEM); surface layer proteins (SLP); Single positive (SP); wild-type (WT).
Collapse
Affiliation(s)
- Steven J. Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Melanie L. Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Sarah L. Walton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Antariksh Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Lisa J. Ioannidis
- Walter and Eliza Hall Insitiute, Infectious Diseases and Immune Defence Division, Parkville, Australia,Department of Medical Biology, the University of Melbourne, Parkville, Australia
| | - Don Ketagoda
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kylie M. Quinn
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia,RMIT University School of Biomedical and Health Sciences, Chronic Inflammatory and Infectious Diseases Program, Bundoora, Australia
| | - Kate M. Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Diana S. Hansen
- Walter and Eliza Hall Insitiute, Infectious Diseases and Immune Defence Division, Parkville, Australia,Department of Medical Biology, the University of Melbourne, Parkville, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia,CONTACT Dena Lyras Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria3800, Australia
| |
Collapse
|
19
|
Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol 2022; 20:285-298. [PMID: 34837014 PMCID: PMC9018519 DOI: 10.1038/s41579-021-00660-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Clostridioides difficile is a Gram-positive anaerobe that can cause a spectrum of disorders that range in severity from mild diarrhoea to fulminant colitis and/or death. The bacterium produces up to three toxins, which are considered the major virulence factors in C. difficile infection. These toxins promote inflammation, tissue damage and diarrhoea. In this Review, we highlight recent biochemical and structural advances in our understanding of the mechanisms that govern host-toxin interactions. Understanding how C. difficile toxins affect the host forms a foundation for developing novel strategies for treatment and prevention of C. difficile infection.
Collapse
Affiliation(s)
- Shannon L. Kordus
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - Audrey K. Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,These authors contributed equally: Shannon L. Kordus, Audrey K. Thomas
| | - D. Borden Lacy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA,Center for Structural Biology, Vanderbilt University, Nashville, TN, USA,The Veterans Affairs, Tennessee Valley Healthcare, System, Nashville, TN, USA,
| |
Collapse
|
20
|
Pope RL, Chitrakar A, Sah P, Shadid T, Ballard JD, Zenewicz LA. Clostridioides difficile Toxin B Activates Group 3 Innate Lymphocytes. Infect Immun 2022; 90:e0007322. [PMID: 35377172 PMCID: PMC9022501 DOI: 10.1128/iai.00073-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/20/2022] Open
Abstract
Group 3 innate lymphocytes (ILC3s) are rare immune cells localized in mucosal tissues, especially the gastrointestinal (GI) tract. Despite their rarity, they are a major source of the cytokine interleukin-22 (IL-22), which protects the GI epithelium during inflammation and infection. Although ILC3s have been demonstrated to be important for defense against Clostridioides difficile infection, the exact mechanisms through which they sense productive infection and become activated to produce IL-22 remain poorly understood. In this study, we identified a novel mechanism of ILC3 activation after exposure to C. difficile. Toxin B (TcdB) from C. difficile directly induced production of IL-22 in ILC3s, and this induction was dependent on the glucosyltransferase activity of the toxin, which inhibits small GTPases. Pharmacological inhibition of the small GTPase Cdc42 also enhanced IL-22 production in ILC3s, indicating that Cdc42 is a negative regulator of ILC3 activation. Further gene expression analysis revealed that treatment with TcdB modulated the expression of several inflammation-related genes in ILC3s. These findings demonstrate that C. difficile toxin-mediated inhibition of Cdc42 leads to the activation of ILC3s, providing evidence for how these cells are recruited into the immune response against the pathobiont.
Collapse
Affiliation(s)
- Rosemary L. Pope
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alisha Chitrakar
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tyler Shadid
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
21
|
Structures of distant diphtheria toxin homologs reveal functional determinants of an evolutionarily conserved toxin scaffold. Commun Biol 2022; 5:375. [PMID: 35440624 PMCID: PMC9018708 DOI: 10.1038/s42003-022-03333-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/30/2022] [Indexed: 01/29/2023] Open
Abstract
Diphtheria toxin (DT) is the archetype for bacterial exotoxins implicated in human diseases and has played a central role in defining the field of toxinology since its discovery in 1888. Despite being one of the most extensively characterized bacterial toxins, the origins and evolutionary adaptation of DT to human hosts remain unknown. Here, we determined the first high-resolution structures of DT homologs outside of the Corynebacterium genus. DT homologs from Streptomyces albireticuli (17% identity to DT) and Seinonella peptonophila (20% identity to DT), despite showing no toxicity toward human cells, display significant structural similarities to DT sharing both the overall Y-shaped architecture of DT as well as the individual folds of each domain. Through a systematic investigation of individual domains, we show that the functional determinants of host range extend beyond an inability to bind cellular receptors; major differences in pH-induced pore-formation and cytosolic release further dictate the delivery of toxic catalytic moieties into cells, thus providing multiple mechanisms for a conserved structural fold to adapt to different hosts. Our work provides structural insights into the expanding DT family of toxins, and highlights key transitions required for host adaptation. Toxic proteins are responsible for the disease symptoms accompanying bacterial infections. Sugiman-Marangos et al. report crystal structures of two diphtheria toxin homologs, therefore providing structural insights into this family of toxins and the evolutionary adaptation of these toxins to human hosts.
Collapse
|
22
|
Luo J, Yang Q, Zhang X, Zhang Y, Wan L, Zhan X, Zhou Y, He L, Li D, Jin D, Zhen Y, Huang J, Li Y, Tao L. TFPI is a colonic crypt receptor for TcdB from hypervirulent clade 2 C. difficile. Cell 2022; 185:980-994.e15. [PMID: 35303428 DOI: 10.1016/j.cell.2022.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.
Collapse
Affiliation(s)
- Jianhua Luo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China; School of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Li Wan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yao Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Liuqing He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Danyang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Dazhi Jin
- Center of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanyan Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Liang Tao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
23
|
Heber S, Barthold L, Baier J, Papatheodorou P, Fois G, Frick M, Barth H, Fischer S. Inhibition of Clostridioides difficile Toxins TcdA and TcdB by Ambroxol. Front Pharmacol 2022; 12:809595. [PMID: 35058787 PMCID: PMC8764291 DOI: 10.3389/fphar.2021.809595] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides (C.) difficile produces the exotoxins TcdA and TcdB, which are the predominant virulence factors causing C. difficile associated disease (CDAD). TcdA and TcdB bind to target cells and are internalized via receptor-mediated endocytosis. Translocation of the toxins’ enzyme subunits from early endosomes into the cytosol depends on acidification of endosomal vesicles, which is a prerequisite for the formation of transmembrane channels. The enzyme subunits of the toxins translocate into the cytosol via these channels where they are released after auto-proteolytic cleavage. Once in the cytosol, both toxins target small GTPases of the Rho/Ras-family and inactivate them by mono-glucosylation. This in turn interferes with actin-dependent processes and ultimately leads to the breakdown of the intestinal epithelial barrier and inflammation. So far, therapeutic approaches to treat CDAD are insufficient, since conventional antibiotic therapy does not target the bacterial protein toxins, which are the causative agents for the clinical symptoms. Thus, directly targeting the exotoxins represents a promising approach for the treatment of CDAD. Lately, it was shown that ambroxol (Ax) prevents acidification of intracellular organelles. Therefore, we investigated the effect of Ax on the cytotoxic activities of TcdA and TcdB. Ax significantly reduced toxin-induced morphological changes as well as the glucosylation of Rac1 upon intoxication with TcdA and TcdB. Most surprisingly, Ax, independent of its effects on endosomal acidification, decreased the toxins’ intracellular enzyme activity, which is mediated by a catalytic glucosyltransferase domain. Considering its undoubted safety profile, Ax might be taken into account as therapeutic option in the context of CDAD.
Collapse
Affiliation(s)
- Sebastian Heber
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Lara Barthold
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Jan Baier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
24
|
Chen P, Zeng J, Liu Z, Thaker H, Wang S, Tian S, Zhang J, Tao L, Gutierrez CB, Xing L, Gerhard R, Huang L, Dong M, Jin R. Structural basis for CSPG4 as a receptor for TcdB and a therapeutic target in Clostridioides difficile infection. Nat Commun 2021; 12:3748. [PMID: 34145250 PMCID: PMC8213806 DOI: 10.1038/s41467-021-23878-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
C. difficile is a major cause of antibiotic-associated gastrointestinal infections. Two C. difficile exotoxins (TcdA and TcdB) are major virulence factors associated with these infections, and chondroitin sulfate proteoglycan 4 (CSPG4) is a potential receptor for TcdB, but its pathophysiological relevance and the molecular details that govern recognition remain unknown. Here, we determine the cryo-EM structure of a TcdB–CSPG4 complex, revealing a unique binding site spatially composed of multiple discontinuous regions across TcdB. Mutations that selectively disrupt CSPG4 binding reduce TcdB toxicity in mice, while CSPG4-knockout mice show reduced damage to colonic tissues during C. difficile infections. We further show that bezlotoxumab, the only FDA approved anti-TcdB antibody, blocks CSPG4 binding via an allosteric mechanism, but it displays low neutralizing potency on many TcdB variants from epidemic hypervirulent strains due to sequence variations in its epitopes. In contrast, a CSPG4-mimicking decoy neutralizes major TcdB variants, suggesting a strategy to develop broad-spectrum therapeutics against TcdB. Chondroitin sulfate proteoglycan 4 (CSPG4) is a potential receptor for C. difficile toxin B (TcdB) during C. difficile infections (CDIs). Here, the cryo-EM structure of a TcdB–CSPG4 complex and CDI mouse models offer insights into CSPG4 role in CDIs and suggest a therapeutic strategy targeting TcdB.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Ji Zeng
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Hatim Thaker
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Siyu Wang
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA.,Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Songhai Tian
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Liang Tao
- Center for Infectious Disease Research, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Craig B Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Li Xing
- UC Irvine Materials Research Institute (IMRI), University of California, Irvine, CA, USA
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Department of Surgery, Harvard Medical School, Boston, MA, USA.
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
25
|
Knight DR, Imwattana K, Kullin B, Guerrero-Araya E, Paredes-Sabja D, Didelot X, Dingle KE, Eyre DW, Rodríguez C, Riley TV. Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. eLife 2021; 10:64325. [PMID: 34114561 PMCID: PMC8241443 DOI: 10.7554/elife.64325] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, and pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI–III. The emergence of these three novel genomospecies predates clades C1–5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work may impact the diagnosis of CDI.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia
| | - Korakrit Imwattana
- School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Brian Kullin
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Enzo Guerrero-Araya
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millenium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millenium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile.,Department of Biology, Texas A&M University, College Station, United States
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Kate E Dingle
- Nuffield Department of Clinical Medicine, University of Oxford, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas V Riley
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
26
|
Leslie JL, Jenior ML, Vendrov KC, Standke AK, Barron MR, O'Brien TJ, Unverdorben L, Thaprawat P, Bergin IL, Schloss PD, Young VB. Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant. mBio 2021; 12:e00522-21. [PMID: 33785619 PMCID: PMC8092246 DOI: 10.1128/mbio.00522-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile, a Gram-positive, spore-forming bacterium, is the primary cause of infectious nosocomial diarrhea. Antibiotics are a major risk factor for C. difficile infection (CDI), as they disrupt the gut microbial community, enabling increased germination of spores and growth of vegetative C. difficile To date, the only single-species bacterial preparation that has demonstrated efficacy in reducing recurrent CDI in humans is nontoxigenic C. difficile Using multiple infection models, we determined that precolonization with a less virulent strain is sufficient to protect from challenge with a lethal strain of C. difficile, surprisingly even in the absence of adaptive immunity. Additionally, we showed that protection is dependent on high levels of colonization by the less virulent strain and that it is mediated by exclusion of the invading strain. Our results suggest that reduction of amino acids, specifically glycine following colonization by the first strain of C. difficile, is sufficient to decrease germination of the second strain, thereby limiting colonization by the lethal strain.IMPORTANCE Antibiotic-associated colitis is often caused by infection with the bacterium Clostridioides difficile In this study, we found that reduction of the amino acid glycine by precolonization with a less virulent strain of C. difficile is sufficient to decrease germination of a second strain. This finding demonstrates that the axis of competition for nutrients can include multiple life stages. This work is important, as it is the first to identify a possible mechanism through which precolonization with C. difficile, a current clinical therapy, provides protection from reinfection. Furthermore, our work suggests that targeting nutrients utilized by all life stages could be an improved strategy for bacterial therapeutics that aim to restore colonization resistance in the gut.
Collapse
Affiliation(s)
- Jhansi L Leslie
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew L Jenior
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kimberly C Vendrov
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexandra K Standke
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Madeline R Barron
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tricia J O'Brien
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lavinia Unverdorben
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ingrid L Bergin
- The Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Badilla-Lobo A, Rodríguez C. Microbiological features, epidemiology, and clinical presentation of Clostridioidesdifficile strains from MLST Clade 2: A narrative review. Anaerobe 2021; 69:102355. [PMID: 33711422 DOI: 10.1016/j.anaerobe.2021.102355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is an emerging One Health pathogen and a common etiologic agent of diarrhea, both in healthcare settings and the community. This bacterial species is highly diverse, and its global population has been classified in eight clades by multilocus sequence typing (MLST). The C. difficile MLST Clade 2 includes the NAP1/RT027/ST01 strain, which is highly recognized due to its epidemicity and association with severe disease presentation and mortality. By contrast, the remaining 83 sequence types (STs) that compose this clade have received much less attention. In response to this shortcoming, we reviewed articles published in English between 1999 and 2020 and collected information for 27 Clade 2 STs, with an emphasis on STs 01, 67, 41 and 188/231/365. Our analysis provides evidence of large phenotypic differences that preclude support of the rather widespread notion that ST01 and Clade 2 strains are "hypervirulent". Moreover, it revealed a profound lack of (meta)data for nearly 70% of the Clade 2 STs that have been identified in surveillance efforts. Targeted studies aiming to relate wet-lab and bioinformatics results to patient and clinical parameters should be performed to gain a more in-depth insight into the biology of this intriguing group of C. difficile isolates.
Collapse
Affiliation(s)
- Adriana Badilla-Lobo
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, and Master's Program in Microbiology, Parasitology, Clinical Chemistry and Immunology, Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
28
|
Pan Z, Zhang Y, Luo J, Li D, Zhou Y, He L, Yang Q, Dong M, Tao L. Functional analyses of epidemic Clostridioides difficile toxin B variants reveal their divergence in utilizing receptors and inducing pathology. PLoS Pathog 2021; 17:e1009197. [PMID: 33507919 PMCID: PMC7842947 DOI: 10.1371/journal.ppat.1009197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile toxin B (TcdB) is a key virulence factor that causes C. difficile associated diseases (CDAD) including diarrhea and pseudomembranous colitis. TcdB can be divided into multiple subtypes/variants based on their sequence variations, of which four (TcdB1-4) are dominant types found in major epidemic isolates. Here, we find that these variants are highly diverse in their receptor preference: TcdB1 uses two known receptors CSPG4 and Frizzled (FZD) proteins, TcdB2 selectively uses CSPG4, TcdB3 prefers to use FZDs, whereas TcdB4 uses neither CSPG4 nor FZDs. By creating chimeric toxins and systematically switching residues between TcdB1 and TcdB3, we determine that regions in the N-terminal cysteine protease domain (CPD) are involved in CSPG4-recognition. We further evaluate the pathological effects induced by TcdB1-4 with a mouse intrarectal installation model. TcdB1 leads to the most severe overall symptoms, followed by TcdB2 and TcdB3. When comparing the TcdB2 and TcdB3, TcdB2 causes stronger oedema while TcdB3 induces severer inflammatory cell infiltration. These findings together demonstrate divergence in the receptor preference and further lead to colonic pathology for predominant TcdB subtypes. Clostridioides difficile is a major cause of nosocomial and community-associated gastrointestinal infections. The bacterium produces three exotoxins including TcdA, TcdB, and CDT, of which TcdB is known as a key virulence factor causing the diseases. Since C. difficile was first linked to antibiotic-associated infections in 1978, a large number of clinically relevant strains were characterized and many of them were found to harbor some variant forms of TcdB. In this study, we examined four predominant TcdB variants from epidemic C. difficile strains. We found that these variants are highly diverse in preference to the known receptors, CSPG4 and Frizzled proteins. By conducting a systematically designed mutagenesis study, we determined that TcdB interacts with CSPG4 via regions across multiple domains. We also found that TcdB variants could induce distinguishable pathological phenotypes in a mouse model, suggesting C. difficile strains harboring divergent TcdB variants might exhibit different disease progression. Our study provides new insights into the toxicology and pathology of C. difficile toxin variants.
Collapse
Affiliation(s)
- Zhenrui Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jianhua Luo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Danyang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yao Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Liuqing He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Qi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, Massechusetts, United States of America
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, Massechusetts, United States of America
- * E-mail: (MD); (LT)
| | - Liang Tao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
- * E-mail: (MD); (LT)
| |
Collapse
|
29
|
Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B. PLoS Pathog 2020; 16:e1009181. [PMID: 33370413 PMCID: PMC7853461 DOI: 10.1371/journal.ppat.1009181] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/02/2021] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is the major worldwide cause of antibiotic-associated gastrointestinal infection. A pathogenicity locus (PaLoc) encoding one or two homologous toxins, toxin A (TcdA) and toxin B (TcdB), is essential for C. difficile pathogenicity. However, toxin sequence variation poses major challenges for the development of diagnostic assays, therapeutics, and vaccines. Here, we present a comprehensive phylogenomic analysis of 8,839 C. difficile strains and their toxins including 6,492 genomes that we assembled from the NCBI short read archive. A total of 5,175 tcdA and 8,022 tcdB genes clustered into 7 (A1-A7) and 12 (B1-B12) distinct subtypes, which form the basis of a new method for toxin-based subtyping of C. difficile. We developed a haplotype coloring algorithm to visualize amino acid variation across all toxin sequences, which revealed that TcdB has diversified through extensive homologous recombination throughout its entire sequence, and formed new subtypes through distinct recombination events. In contrast, TcdA varies mainly in the number of repeats in its C-terminal repetitive region, suggesting that recombination-mediated diversification of TcdB provides a selective advantage in C. difficile evolution. The application of toxin subtyping is then validated by classifying 351 C. difficile clinical isolates from Brigham and Women's Hospital in Boston, demonstrating its clinical utility. Subtyping partitions TcdB into binary functional and antigenic groups generated by intragenic recombinations, including two distinct cell-rounding phenotypes, whether recognizing frizzled proteins as receptors, and whether it can be efficiently neutralized by monoclonal antibody bezlotoxumab, the only FDA-approved therapeutic antibody. Our analysis also identifies eight universally conserved surface patches across the TcdB structure, representing ideal targets for developing broad-spectrum therapeutics. Finally, we established an open online database (DiffBase) as a central hub for collection and classification of C. difficile toxins, which will help clinicians decide on therapeutic strategies targeting specific toxin variants, and allow researchers to monitor the ongoing evolution and diversification of C. difficile.
Collapse
|
30
|
Shah HB, Smith K, Scott EJ, Larabee JL, James JA, Ballard JD, Lang ML. Human C. difficile toxin-specific memory B cell repertoires encode poorly neutralizing antibodies. JCI Insight 2020; 5:138137. [PMID: 32663199 PMCID: PMC7455132 DOI: 10.1172/jci.insight.138137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a leading cause of nosocomial infection responsible for significant morbidity and mortality with limited options for therapy. Secreted C. difficile toxin B (TcdB) is a major contributor to disease pathology, and select TcdB-specific Abs may protect against disease recurrence. However, the high frequency of recurrence suggests that the memory B cell response, essential for new Ab production following C. difficile reexposure, is insufficient. We therefore isolated TcdB-specific memory B cells from individuals with a history of C. difficile infection and performed single-cell deep sequencing of their Ab genes. Herein, we report that TcdB-specific memory B cell-encoded antibodies showed somatic hypermutation but displayed limited isotype class switch. Memory B cell-encoded mAb generated from the gene sequences revealed low to moderate affinity for TcdB and a limited ability to neutralize TcdB. These findings indicate that memory B cells are an important factor in C. difficile disease recurrence.
Collapse
Affiliation(s)
- Hemangi B. Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Kenneth Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, and
| | - Edgar J. Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Jason L. Larabee
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Judith A. James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, and
- Departments of Medicine and Pathology, OUHSC, University of Oklahoma, Oklahoma City, Oklahoma, USA
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| | - Mark L. Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC)
| |
Collapse
|
31
|
Shen E, Zhu K, Li D, Pan Z, Luo Y, Bian Q, He L, Song X, Zhen Y, Jin D, Tao L. Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin B. Commun Biol 2020; 3:347. [PMID: 32620855 PMCID: PMC7335066 DOI: 10.1038/s42003-020-1078-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile toxins (TcdA and TcdB) are major exotoxins responsible for C. difficile infection (CDI) associated diseases. The previously reported TcdB variants showed distinct biological features, immunoactivities, and potential pathogenicity in disease progression. Here, we performed global comparisons of amino acid sequences of both TcdA and TcdB from 3,269 C. difficile genomes and clustered them according to the evolutionary relatedness. We found that TcdB was much diverse and could be divided into eight subtypes, of which four were first described. Further analysis indicates that the tcdB gene undergoes accelerated evolution to maximize diversity. By tracing TcdB subtypes back to their original isolates, we found that the distribution of TcdB subtypes was not completely aligned with the phylogeny of C. difficile. These findings suggest that the tcdB genes not only frequently mutate, but also continuously transfer and exchange among C. difficile strains. Shen et al. compare the amino acid sequences of bacterial toxins TcdA and TcdB from 3,269 Clostridioides difficile genomes to identify four new TcdB subtypes. They find that TcdB was more diverse in amino acid sequence than TcdA. This study suggests that the tcdB genes not only frequently mutate, but they also continuously transfer and exchange among C. difficile strains.
Collapse
Affiliation(s)
- Enhui Shen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Kangli Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Danyang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zhenrui Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qiao Bian
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Liuqing He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Liang Tao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
32
|
Wu Q, Savidge TC. Systems approaches for the clinical diagnosis of Clostridioides difficile infection. Transl Res 2020; 220:57-67. [PMID: 32272094 DOI: 10.1016/j.trsl.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022]
Abstract
Clostridioides difficile infection (CDI) is an urgent threat to global public health. Patient susceptibility to C. difficile is highly dependent on host immune status and gut dysbiosis resulting in loss of protective microbiota consortia that prevent spore germination, pathogen colonization, and disease pathogenesis. Recent clinical studies highlight the problems of differentiating symptomatic CDI from asymptomatic C. difficile carriage in patients with diarrhea. In this review, we consider how integration of microbiome and host immune systems biology data may aid in the clinical diagnosis of CDI when validated against gold standard testing and combined with standard microbiology laboratory assays.
Collapse
Affiliation(s)
- Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
33
|
Clostridioides difficile infection damages colonic stem cells via TcdB, impairing epithelial repair and recovery from disease. Proc Natl Acad Sci U S A 2020; 117:8064-8073. [PMID: 32198200 DOI: 10.1073/pnas.1915255117] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal infections often induce epithelial damage that must be repaired for optimal gut function. While intestinal stem cells are critical for this regeneration process [R. C. van der Wath, B. S. Gardiner, A. W. Burgess, D. W. Smith, PLoS One 8, e73204 (2013); S. Kozar et al., Cell Stem Cell 13, 626-633 (2013)], how they are impacted by enteric infections remains poorly defined. Here, we investigate infection-mediated damage to the colonic stem cell compartment and how this affects epithelial repair and recovery from infection. Using the pathogen Clostridioides difficile, we show that infection disrupts murine intestinal cellular organization and integrity deep into the epithelium, to expose the otherwise protected stem cell compartment, in a TcdB-mediated process. Exposure and susceptibility of colonic stem cells to intoxication compromises their function during infection, which diminishes their ability to repair the injured epithelium, shown by altered stem cell signaling and a reduction in the growth of colonic organoids from stem cells isolated from infected mice. We also show, using both mouse and human colonic organoids, that TcdB from epidemic ribotype 027 strains does not require Frizzled 1/2/7 binding to elicit this dysfunctional stem cell state. This stem cell dysfunction induces a significant delay in recovery and repair of the intestinal epithelium of up to 2 wk post the infection peak. Our results uncover a mechanism by which an enteric pathogen subverts repair processes by targeting stem cells during infection and preventing epithelial regeneration, which prolongs epithelial barrier impairment and creates an environment in which disease recurrence is likely.
Collapse
|
34
|
Affiliation(s)
- Nicholas A. Turner
- Duke University Medical Center, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, United States of America
- Duke University Medical Center, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, United States of America
- * E-mail:
| | - Becky A. Smith
- Duke University Medical Center, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, United States of America
- Duke University Medical Center, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, United States of America
| | - Sarah S. Lewis
- Duke University Medical Center, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, United States of America
- Duke University Medical Center, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, United States of America
| |
Collapse
|
35
|
Gao Y, Li H, Yang H, Su J, Huang L. The current novel therapeutic regimens for Clostridium difficile infection (CDI) and the potentials of Traditional Chinese Medicine in treatment of CDI. Crit Rev Microbiol 2019; 45:729-742. [PMID: 31838936 DOI: 10.1080/1040841x.2019.1700905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection (CDI) is featured as the dysbiosis of gut microbiota and consequent mild diarrhoea or severe pseudomembranous colitis. However, the frequent recurrence of CDI following treatment course challenged the antibiotic therapy. Currently, to address the relapse of CDI, several novel therapeutic approaches have emerged, including Bezlotoxumab, SYN-004 (Ribaxamase), RBX2660, and faecal microbial transplant. Traditional Chinese Medicine (TCM) is an old medical system accumulated for thousands of years. Orientated by syndrome-based treatment, TCM functions in a multicomponent and multitarget mode. This old medical system showed superiority over conventional medical treatment, particularly in the treatment of complex disorders, including CDI. In the present review, we will elaborate the TCM intervention in the management of CDI and others disorders via restoring the gut microbiota dysbiosis. We hope that this review will deepen our understanding of TCM as an alternative to CDI treatment. However, more rigorously designed basic researches and randomised controlled trials need to conduct to appraise the function mechanisms and effects of TCM. Finally, it is concluded that the combined therapeutic potentials of TCM and western medicine could be harness to resolve the recurrence and improve the outcome of CDI.
Collapse
Affiliation(s)
- Yan Gao
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Li
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jianrong Su
- Department of Clinical Laboratory Diagnostics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Emele MF, Joppe FM, Riedel T, Overmann J, Rupnik M, Cooper P, Kusumawati RL, Berger FK, Laukien F, Zimmermann O, Bohne W, Groß U, Bader O, Zautner AE. Proteotyping of Clostridioides difficile as Alternate Typing Method to Ribotyping Is Able to Distinguish the Ribotypes RT027 and RT176 From Other Ribotypes. Front Microbiol 2019; 10:2087. [PMID: 31552001 PMCID: PMC6747054 DOI: 10.3389/fmicb.2019.02087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile, a Gram-positive spore-forming bacterium, is the leading cause of nosocomial diarrhea worldwide and therefore a substantial burden to the healthcare system. During the past decade, hypervirulent PCR-ribotypes (RT) e.g., RT027 or RT176 emerged rapidly all over the world, associated with both, increased severity and mortality rates. It is thus of great importance to identify epidemic strains such as RT027 and RT176 as fast as possible. While commonly used diagnostic methods, e.g., multilocus sequence typing (MLST) or PCR-ribotyping, are time-consuming, proteotyping offers a fast, inexpensive, and reliable alternative solution. In this study, we established a MALDI-TOF-based typing scheme for C. difficile. A total of 109 ribotyped strains representative for five MLST clades were analyzed by MALDI-TOF. MLST, based on whole genome sequences, and PCR-ribotyping were used as reference methods. Isoforms of MS-detectable biomarkers, typically ribosomal proteins, were related with the deduced amino acid sequences and added to the C. difficile proteotyping scheme. In total, we were able to associate nine biomarkers with their encoding genes and include them in our proteotyping scheme. The discriminatory capacity of the C. difficile proteotyping scheme was mainly based on isoforms of L28-M (2 main isoforms), L35-M (4 main isoforms), and S20-M (2 main isoforms) giving rise to at least 16 proteotyping-derived types. In our test population, five of these 16 proteotyping-derived types were detected. These five proteotyping-derived types did not correspond exactly to the included five MLST-based C. difficile clades, nevertheless the subtyping depth of both methods was equivalent. Most importantly, proteotyping-derived clade B contained only isolates of the hypervirulent RT027 and RT176. Proteotyping is a stable and easy-to-perform intraspecies typing method and a promising alternative to currently used molecular techniques. It is possible to distinguish the group of RT027 and RT176 isolates from non-RT027/non-RT176 isolates using proteotyping, providing a valuable diagnostic tool.
Collapse
Affiliation(s)
- Matthias F Emele
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Felix M Joppe
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Thomas Riedel
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Braunschweig, Germany
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.,Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - R Lia Kusumawati
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Fabian K Berger
- National Reference Center for Clostridioides (Clostridium) difficile, Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Friederike Laukien
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Ortrud Zimmermann
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Oliver Bader
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Andreas E Zautner
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Chen P, Lam KH, Liu Z, Mindlin FA, Chen B, Gutierrez CB, Huang L, Zhang Y, Hamza T, Feng H, Matsui T, Bowen ME, Perry K, Jin R. Structure of the full-length Clostridium difficile toxin B. Nat Struct Mol Biol 2019; 26:712-719. [PMID: 31308519 PMCID: PMC6684407 DOI: 10.1038/s41594-019-0268-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023]
Abstract
Clostridium difficile is an opportunistic pathogen that establishes in the colon when the gut microbiota are disrupted by antibiotics or disease. C. difficile infection (CDI) is largely caused by two virulence factors, TcdA and TcdB. Here, we report a 3.87-Å-resolution crystal structure of TcdB holotoxin that captures a unique conformation of TcdB at endosomal pH. Complementary biophysical studies suggest that the C-terminal combined repetitive oligopeptides (CROPs) domain of TcdB is dynamic and can sample open and closed conformations that may facilitate modulation of TcdB activity in response to environmental and cellular cues during intoxication. Furthermore, we report three crystal structures of TcdB-antibody complexes that reveal how antibodies could specifically inhibit the activities of individual TcdB domains. Our studies provide novel insight into the structure and function of TcdB holotoxin and identify intrinsic vulnerabilities that could be exploited to develop new therapeutics and vaccines for the treatment of CDI.
Collapse
Affiliation(s)
- Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Frank A Mindlin
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Craig B Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yongrong Zhang
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Baltimore, Baltimore, MD, USA
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
38
|
López-Ureña D, Orozco-Aguilar J, Chaves-Madrigal Y, Ramírez-Mata A, Villalobos-Jimenez A, Ost S, Quesada-Gómez C, Rodríguez C, Papatheodorou P, Chaves-Olarte E. Toxin B Variants from Clostridium difficile Strains VPI 10463 and NAP1/027 Share Similar Substrate Profile and Cellular Intoxication Kinetics but Use Different Host Cell Entry Factors. Toxins (Basel) 2019; 11:toxins11060348. [PMID: 31212980 PMCID: PMC6628394 DOI: 10.3390/toxins11060348] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile induces antibiotic-associated diarrhea due to the release of toxin A (TcdA) and toxin B (TcdB), the latter being its main virulence factor. The epidemic strain NAP1/027 has an increased virulence attributed to different factors. We compared cellular intoxication by TcdBNAP1 with that by the reference strain VPI 10463 (TcdBVPI). In a mouse ligated intestinal loop model, TcdBNAP1 induced higher neutrophil recruitment, cytokine release, and epithelial damage than TcdBVPI. Both toxins modified the same panel of small GTPases and exhibited similar in vitro autoprocessing kinetics. On the basis of sequence variations in the frizzled-binding domain (FBD), we reasoned that TcdBVPI and TcdBNAP1 might have different receptor specificities. To test this possibility, we used a TcdB from a NAP1 variant strain (TcdBNAP1v) unable to glucosylate RhoA but with the same receptor-binding domains as TcdBNAP1. Cells were preincubated with TcdBNAP1v to block cellular receptors, prior to intoxication with either TcdBVPI or TcdBNAP1. Preincubation with TcdBNAP1v blocked RhoA glucosylation by TcdBNAP1 but not by TcdBVPI, indicating that the toxins use different host factors for cell entry. This crucial difference might explain the increased biological activity of TcdBNAP1 in the intestine, representing a contributing factor for the increased virulence of the NAP1/027 strain.
Collapse
Affiliation(s)
- Diana López-Ureña
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Josué Orozco-Aguilar
- Facultad de Farmacia and Laboratorio de Ensayos Biológicos, Escuela de Medicina, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Yendry Chaves-Madrigal
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Andrea Ramírez-Mata
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Amanda Villalobos-Jimenez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - Stefan Ost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany.
| | - Carlos Quesada-Gómez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| | | | - Esteban Chaves-Olarte
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, 10101 San José, Costa Rica.
| |
Collapse
|
39
|
Mileto S, Das A, Lyras D. Enterotoxic Clostridia: Clostridioides difficile Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0015-2018. [PMID: 31124432 PMCID: PMC11026080 DOI: 10.1128/microbiolspec.gpp3-0015-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore forming pathogen of both humans and animals and is the most common identifiable infectious agent of nosocomial antibiotic-associated diarrhea. Infection can occur following the ingestion and germination of spores, often concurrently with a disruption to the gastrointestinal microbiota, with the resulting disease presenting as a spectrum, ranging from mild and self-limiting diarrhea to severe diarrhea that may progress to life-threating syndromes that include toxic megacolon and pseudomembranous colitis. Disease is induced through the activity of the C. difficile toxins TcdA and TcdB, both of which disrupt the Rho family of GTPases in host cells, causing cell rounding and death and leading to fluid loss and diarrhea. These toxins, despite their functional and structural similarity, do not contribute to disease equally. C. difficile infection (CDI) is made more complex by a high level of strain diversity and the emergence of epidemic strains, including ribotype 027-strains which induce more severe disease in patients. With the changing epidemiology of CDI, our understanding of C. difficile disease, diagnosis, and pathogenesis continues to evolve. This article provides an overview of the current diagnostic tests available for CDI, strain typing, the major toxins C. difficile produces and their mode of action, the host immune response to each toxin and during infection, animal models of disease, and the current treatment and prevention strategies for CDI.
Collapse
Affiliation(s)
- S Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - A Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| | - D Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia, 3800
| |
Collapse
|
40
|
Lectin Activity of the TcdA and TcdB Toxins of Clostridium difficile. Infect Immun 2019; 87:IAI.00676-18. [PMID: 30530621 PMCID: PMC6386544 DOI: 10.1128/iai.00676-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a major cause of hospital-acquired antibiotic-associated diarrhea. C. difficile produces two cytotoxins, TcdA and TcdB; both toxins are multidomain proteins that lead to cytotoxicity through the modification and inactivation of small GTPases of the Rho/Rac family. Previous studies have indicated that host glycans are targets for TcdA and TcdB, with interactions thought to be with both α- and β-linked galactose. In the current study, screening of glycan arrays with different domains of TcdA and TcdB revealed that the binding regions of both toxins interact with a wider range of host glycoconjugates than just terminal α- and β-linked galactose, including blood groups, Lewis antigens, N-acetylglucosamine, mannose, and glycosaminoglycans. The interactions of TcdA and TcdB with ABO blood group and Lewis antigens were assessed by surface plasmon resonance (SPR). The blood group A antigen was the highest-affinity ligand for both toxins. Free glycans alone or in combination were unable to abolish Vero cell cytotoxicity by TcdB. SPR competition assays indicate that there is more than one glycan binding site on TcdB. Host glycoconjugates are common targets of bacterial toxins, but typically this binding is to a specific structure or related structures. The binding of TcdA and TcdB is to a wide range of host glycans providing a wide range of target cells and tissues in vivo.
Collapse
|
41
|
Krueger E, Brown AC. Inhibition of bacterial toxin recognition of membrane components as an anti-virulence strategy. J Biol Eng 2019; 13:4. [PMID: 30820243 PMCID: PMC6380060 DOI: 10.1186/s13036-018-0138-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
Over recent years, the development of new antibiotics has not kept pace with the rate at which bacteria develop resistance to these drugs. For this reason, many research groups have begun to design and study alternative therapeutics, including molecules to specifically inhibit the virulence of pathogenic bacteria. Because many of these pathogenic bacteria release protein toxins, which cause or exacerbate disease, inhibition of the activity of bacterial toxins is a promising anti-virulence strategy. In this review, we describe several approaches to inhibit the initial interactions of bacterial toxins with host cell membrane components. The mechanisms by which toxins interact with the host cell membrane components have been well-studied over the years, leading to the identification of therapeutic targets, which have been exploited in the work described here. We review efforts to inhibit binding to protein receptors and essential membrane lipid components, complex assembly, and pore formation. Although none of these molecules have yet been demonstrated in clinical trials, the in vitro and in vivo results presented here demonstrate their promise as novel alternatives and/or complements to traditional antibiotics.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
42
|
Shah HB, Smith K, Wren JD, Webb CF, Ballard JD, Bourn RL, James JA, Lang ML. Insights From Analysis of Human Antigen-Specific Memory B Cell Repertoires. Front Immunol 2019; 9:3064. [PMID: 30697210 PMCID: PMC6340933 DOI: 10.3389/fimmu.2018.03064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
Memory B cells that are generated during an infection or following vaccination act as sentinels to guard against future infections. Upon repeat antigen exposure memory B cells differentiate into new antibody-secreting plasma cells to provide rapid and sustained protection. Some pathogens evade or suppress the humoral immune system, or induce memory B cells with a diminished ability to differentiate into new plasma cells. This leaves the host vulnerable to chronic or recurrent infections. Single cell approaches coupled with next generation antibody gene sequencing facilitate a detailed analysis of the pathogen-specific memory B cell repertoire. Monoclonal antibodies that are generated from antibody gene sequences allow a functional analysis of the repertoire. This review discusses what has been learned thus far from analysis of diverse pathogen-specific memory B cell compartments and describes major differences in their repertoires. Such information may illuminate ways to advance the goal of improving vaccine and therapeutic antibody design.
Collapse
Affiliation(s)
- Hemangi B Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kenneth Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Biochemistry and Molecular Biology and Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carol F Webb
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Division of Rheumatology, Immunology and Allergy, Department of Cell Biology and Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
43
|
Tam J, Hamza T, Ma B, Chen K, Beilhartz GL, Ravel J, Feng H, Melnyk RA. Host-targeted niclosamide inhibits C. difficile virulence and prevents disease in mice without disrupting the gut microbiota. Nat Commun 2018; 9:5233. [PMID: 30531960 PMCID: PMC6286312 DOI: 10.1038/s41467-018-07705-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is the leading cause of nosocomial diarrhea and colitis in the industrialized world. Disruption of the protective gut microbiota by antibiotics enables colonization by multidrug-resistant C. difficile, which secrete up to three different protein toxins that are responsible for the gastrointestinal sequelae. Oral agents that inhibit the damage induced by toxins, without altering the gut microbiota, are urgently needed to prevent primary disease and break the cycle of antibiotic-induced disease recurrence. Here, we show that the anthelmintic drug, niclosamide, inhibits the pathogenesis of all three toxins by targeting a host process required for entry into colonocytes by each toxin. In mice infected with an epidemic strain of C. difficile, expressing all three toxins, niclosamide reduced both primary disease and recurrence, without disrupting the diversity or composition of the gut microbiota. Given its excellent safety profile, niclosamide may address an important unmet need in preventing C. difficile primary and recurrent diseases. Clostridium difficile causes diarrhea and colitis by producing up to three different protein toxins. Here, Tam et al. show that an anthelmintic drug, niclosamide, inhibits the pathogenesis of all three toxins by targeting a host process required for toxin entry into host cells, without disrupting the gut microbiota.
Collapse
Affiliation(s)
- John Tam
- Molecular Medicine, Hospital for Sick Children, 686 Bay St., Toronto, ON, M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Therwa Hamza
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin Chen
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Greg L Beilhartz
- Molecular Medicine, Hospital for Sick Children, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Roman A Melnyk
- Molecular Medicine, Hospital for Sick Children, 686 Bay St., Toronto, ON, M5G 0A4, Canada. .,Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
44
|
Chung SY, Schöttelndreier D, Tatge H, Fühner V, Hust M, Beer LA, Gerhard R. The Conserved Cys-2232 in Clostridioides difficile Toxin B Modulates Receptor Binding. Front Microbiol 2018; 9:2314. [PMID: 30416488 PMCID: PMC6212469 DOI: 10.3389/fmicb.2018.02314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022] Open
Abstract
Clostridioides difficile toxins TcdA and TcdB are large clostridial glucosyltransferases which are the main pathogenicity factors in C. difficile-associated diseases. Four highly conserved cysteines are present in all large clostridial glucosyltransferases. In this study we focused on the conserved cysteine 2232 within the combined repetitive oligopeptide domain of TcdB from reference strain VPI10463 (clade I). Cysteine 2232 is not present in TcdB from hypervirulent strain R20291 (clade II), where a tyrosine is found instead. Replacement of cysteine 2232 by tyrosine in TcdBV PI10463 reduced binding to the soluble fragments of the two known TcdB receptors, frizzled-2 (FZD2) and poliovirus receptor-like protein-3/nectin-3 (PVRL3). In line with this, TcdBR20291 showed weak binding to PVRL3 in pull-down assays which was increased when tyrosine 2232 was exchanged for cysteine. Surprisingly, we did not observe binding of TcdBR20291 to FZD2, indicating that this receptor is less important for this toxinotype. Competition assay with the receptor binding fragments (aa 1101–1836) of TcdBV PI10463 and TcdBR20291, as well as antibodies newly developed by antibody phage display, revealed different characteristics of the yet poorly described delivery domain of TcdB harboring the second receptor binding region. In summary, we found that conserved Cys-2232 in TcdB indirectly contributes to toxin–receptor interaction.
Collapse
Affiliation(s)
- Soo-Young Chung
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | | | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| | - Viola Fühner
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Department of Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
45
|
Beer LA, Tatge H, Reich N, Tenspolde M, Olling A, Goy S, Rottner K, Alekov AK, Gerhard R. Early cell death induced by Clostridium difficile TcdB: Uptake and Rac1-glucosylation kinetics are decisive for cell fate. Cell Microbiol 2018; 20:e12865. [PMID: 29904993 DOI: 10.1111/cmi.12865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 12/29/2022]
Abstract
Toxin A and Toxin B (TcdA/TcdB) are large glucosyltransferases produced by Clostridium difficile. TcdB but not TcdA induces reactive oxygen species-mediated early cell death (ECD) when applied at high concentrations. We found that nonglucosylated Rac1 is essential for induction of ECD since inhibition of Rac1 impedes this effect. ECD only occurs when TcdB is rapidly endocytosed. This was shown by generation of chimeras using the trunk of TcdB from a hypervirulent strain. TcdB from hypervirulent strain has been described to translocate from endosomes at higher pH values and thus, meaning faster than reference type TcdB. Accordingly, intracellular delivery of the glucosyltransferase domain of reference TcdB by the trunk of TcdB from hypervirulent strain increased ECD. Furthermore, proton transporters such as sodium/proton exchanger (NHE) or the ClC-5 anion/proton exchanger, both of which contribute to endosomal acidification, also affected cytotoxic potency of TcdB: Specific inhibition of NHE reduced cytotoxicity, whereas transfection of cells with the endosomal anion/proton exchanger ClC-5 increased cytotoxicity of TcdB. Our data suggest that both the uptake rate of TcdB into the cytosol and the status of nonglucosylated Rac1 are key determinants that are decisive for whether ECD or delayed apoptosis is triggered.
Collapse
Affiliation(s)
| | - Helma Tatge
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Nicole Reich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Michel Tenspolde
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Alexandra Olling
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Sebastian Goy
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
46
|
Larabee JL, Hauck GD, Ballard JD. Cell-penetrating peptides derived from Clostridium difficile TcdB2 and a related large clostridial toxin. J Biol Chem 2017; 293:1810-1819. [PMID: 29247010 DOI: 10.1074/jbc.m117.815373] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/12/2017] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile TcdB (2366 amino acid residues) is an intracellular bacterial toxin that binds to cells and enters the cytosol where it glucosylates small GTPases. In the current study, we examined a putative cell entry region of TcdB (amino acid residues 1753-1851) for short sequences that function as cell-penetrating peptides (CPPs). To screen for TcdB-derived CPPs, a panel of synthetic peptides was tested for the ability to enhance transferrin (Tf) association with cells. Four candidate CPPs were discovered, and further study on one peptide (PepB2) pinpointed an asparagine residue necessary for CPP activity. PepB2 mediated the cell entry of a wide variety of molecules including dextran, streptavidin, microspheres, and lentivirus particles. Of note, this uptake was dramatically reduced in the presence of the Na+/H+ exchange blocker and micropinocytosis inhibitor amiloride, suggesting that PepB2 invokes macropinocytosis. Moreover, we found that PepB2 had more efficient cell-penetrating activity than several other well-known CPPs (TAT, penetratin, Pep-1, and TP10). Finally, Tf assay-based screening of peptides derived from two other large clostridial toxins, TcdA and TcsL, uncovered two new TcdA-derived CPPs. In conclusion, we have identified six CPPs from large clostridial toxins and have demonstrated the ability of PepB2 to promote cell association and entry of several molecules through a putative fluid-phase macropinocytotic mechanism.
Collapse
Affiliation(s)
- Jason L Larabee
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Garrett D Hauck
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jimmy D Ballard
- From the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
47
|
Gupta P, Zhang Z, Sugiman-Marangos SN, Tam J, Raman S, Julien JP, Kroh HK, Lacy DB, Murgolo N, Bekkari K, Therien AG, Hernandez LD, Melnyk RA. Functional defects in Clostridium difficile TcdB toxin uptake identify CSPG4 receptor-binding determinants. J Biol Chem 2017; 292:17290-17301. [PMID: 28842504 DOI: 10.1074/jbc.m117.806687] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a major nosocomial pathogen that produces two exotoxins, TcdA and TcdB, with TcdB thought to be the primary determinant in human disease. TcdA and TcdB are large, multidomain proteins, each harboring a cytotoxic glucosyltransferase domain that is delivered into the cytosol from endosomes via a translocation domain after receptor-mediated endocytosis of toxins from the cell surface. Although there are currently no known host cell receptors for TcdA, three cell-surface receptors for TcdB have been identified: CSPG4, NECTIN3, and FZD1/2/7. The sites on TcdB that mediate binding to each receptor are not defined. Furthermore, it is not known whether the combined repetitive oligopeptide (CROP) domain is involved in or required for receptor binding. Here, in a screen designed to identify sites in TcdB that are essential for target cell intoxication, we identified a region at the junction of the translocation and the CROP domains that is implicated in CSPG4 binding. Using a series of C-terminal truncations, we show that the CSPG4-binding site on TcdB extends into the CROP domain, requiring three short repeats for binding and for full toxicity on CSPG4-expressing cells. Consistent with the location of the CSPG4-binding site on TcdB, we show that the anti-TcdB antibody bezlotoxumab, which binds partially within the first three short repeats, prevents CSPG4 binding to TcdB. In addition to establishing the binding region for CSPG4, this work ascribes for the first time a role in TcdB CROPs in receptor binding and further clarifies the relative roles of host receptors in TcdB pathogenesis.
Collapse
Affiliation(s)
- Pulkit Gupta
- From Merck & Co., Inc., Kenilworth, New Jersey 07033
| | - Zhifen Zhang
- Molecular Medicine, The Hospital for Sick Children, Ontario M5G 0A4, Canada.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | | | - John Tam
- Molecular Medicine, The Hospital for Sick Children, Ontario M5G 0A4, Canada
| | - Swetha Raman
- Molecular Medicine, The Hospital for Sick Children, Ontario M5G 0A4, Canada
| | - Jean-Phillipe Julien
- Molecular Medicine, The Hospital for Sick Children, Ontario M5G 0A4, Canada.,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Heather K Kroh
- the Departments of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212
| | - D Borden Lacy
- the Departments of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37212
| | | | | | | | | | - Roman A Melnyk
- Molecular Medicine, The Hospital for Sick Children, Ontario M5G 0A4, Canada, .,the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| |
Collapse
|
48
|
Amino Acid Differences in the 1753-to-1851 Region of TcdB Influence Variations in TcdB1 and TcdB2 Cell Entry. mSphere 2017; 2:mSphere00268-17. [PMID: 28776043 PMCID: PMC5541160 DOI: 10.1128/msphere.00268-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 01/24/2023] Open
Abstract
Clostridium difficile TcdB2 enters cells with a higher efficiency than TcdB1 and exhibits an overall higher level of toxicity. However, the TcdB2-specific sequences that account for more efficient cell entry have not been reported. In this study, we examined the contribution of carboxy-terminal sequence differences to TcdB activity by comparing the binding, uptake, and endosomal localization of TcdB1 and TcdB2 or selected recombinant fragments of these proteins. Our findings suggest that sequence differences in the amino acid 1753 to 1851 region proximal to the combined repetitive oligopeptide domain (CROP) support enhanced uptake of TcdB2 and localization of toxin in acidified endosomes. In the absence of this region, the CROP domains of both forms of the toxin exhibited similar levels of cell interaction, while the addition of amino acids 1753 to 1851 greatly increased toxin binding by only TcdB2. Moreover, the amino acid 1753 to 2366 fragment of TcdB2, but not TcdB1, accumulated to detectable levels in acidified endosomes. Unexpectedly, we discovered an unusual relationship between endocytosis and the efficiency of cell binding for TcdB1 and TcdB2 wherein inhibition of endocytosis by a chemical inhibitor or incubation at a low temperature resulted in a dramatic reduction in cell binding. These findings provide information on sequence variations that may contribute to differences in TcdB1 and TcdB2 toxicity and reveal a heretofore unknown connection between endocytosis and cell binding for this toxin. IMPORTANCE TcdB is a major virulence factor produced by Clostridium difficile, a leading cause of antibiotic-associated diarrhea. Hypervirulent strains of C. difficile encode a variant of TcdB (TcdB2) that is more toxic than toxin derived from historical strains (TcdB1). Though TcdB1 and TcdB2 exhibit 92% overall identity, a 99-amino-acid region previously associated with cell entry and spanning amino acids 1753 to 1851 has only 77% sequence identity. Results from the present study indicate that the substantial sequence variation in this region could contribute to the differences in cell entry between TcdB1 and TcdB2 and possibly explain TcdB2's heightened toxicity. Finally, during the course of these studies, an unusual aspect of TcdB cell entry was discovered wherein cell binding appeared to depend on endocytosis. These findings provide insight into TcdB's variant forms and their mechanisms of cell entry.
Collapse
|
49
|
Tian JH, Glenn G, Flyer D, Zhou B, Liu Y, Sullivan E, Wu H, Cummings JF, Elllingsworth L, Smith G. Clostridium difficile chimeric toxin receptor binding domain vaccine induced protection against different strains in active and passive challenge models. Vaccine 2017; 35:4079-4087. [DOI: 10.1016/j.vaccine.2017.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/17/2022]
|
50
|
Elliott B, Androga GO, Knight DR, Riley TV. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 49:1-11. [PMID: 28012982 DOI: 10.1016/j.meegid.2016.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era.
Collapse
Affiliation(s)
- Briony Elliott
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Grace O Androga
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Daniel R Knight
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia; Department of Microbiology, PathWest Laboratory Medicine, Perth, Australia.
| |
Collapse
|