1
|
Huo C, Liu Y, Yang W, Jin Q, Liu C, Jiang Y, Zhang J, Han Y, Wang X. Identification of a dual specificity protein phosphatase and its function in regulating innate immune signaling in Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2025; 162:110360. [PMID: 40268072 DOI: 10.1016/j.fsi.2025.110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/22/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
The Pacific oyster Crassostrea gigas is one of the most important cultured bivalves in the world with high economic value. However, the healthy cultivation of oysters has been restricted by disease problems for a long time. Explore the characteristics and functions of oyster innate immune regulators help to better understand the mechanism of oyster disease resistance. Dual-specificity protein phosphatases (DUSPs) play critical roles in regulating cellular signaling during several biological processes. In this study, we identified a novel phosphatase, CgDUSP4, and investigated its regulatory role in innate immune signaling in C. gigas. Sequence analysis revealed that CgDUSP4 belongs to the MAPK phosphatase (MKP) subfamily, with a conversed kinase interaction motif at the N-terminal and a phosphatase catalytic domain at the C-terminal of the protein. CgDUSP4 was highly expressed in hemocytes and significantly upregulated in response to different pathogen-associated molecular patterns (PAMPs) stimulation. Subcellular localization analysis revealed that the protein localized in both cytoplasm and nucleus. Knock-down of CgDUSP4 affected the expression of several pro-inflammatory cytokine. CgDUSP4 protein directly interacts with CgERK, CgJNK, and Cgp38 MAPK. Furthermore, CgDUSP4 inhibits LPS induced phosphorylation of ERK MAPK. Taken together, our study reports a novel oyster innate immune regulator that responds to PAMPs stimulation and affects the expression of downstream pro-inflammatory cytokines. Moreover, it may participate in oyster innate immune regulation by inhibiting ERK signaling pathway.
Collapse
Affiliation(s)
- Chuncao Huo
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai, 264025, China.
| | - Wenhao Yang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Qianqian Jin
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Chen Liu
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yulu Jiang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Jinhai Zhang
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai, 264025, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai, 264025, China.
| |
Collapse
|
2
|
Liu X, Ni Z, Zhang J, Lin X, Wu C, Wu Y, Dong L, Zhang Z, Chi ZL. The Protective Role of DUSP4 in Retinal Pigment Epithelium Senescence and Degeneration. Int J Mol Sci 2025; 26:3735. [PMID: 40332382 PMCID: PMC12027498 DOI: 10.3390/ijms26083735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
The retinal pigment epithelium (RPE) serves as a critical guardian of subretinal homeostasis, with its dysfunction implicated in major retinal pathologies, including age-related macular degeneration (AMD) and retinitis pigmentosa. While cellular senescence has emerged as a key driver of RPE degeneration, the molecular mechanisms underlying this process remain incompletely defined. Emerging evidence implicates dual-specificity phosphatase 4 (DUSP4) in cellular stress responses through its antioxidant and anti-inflammatory capacities, yet its role in RPE pathophysiology remains unexplored. Our study reveals a compensatory increase in DUSP4 expression during AMD-associated RPE senescence. To functionally characterize this observation, we knocked down DUSP4 in the RPE of mice via subretinal injection of AAV-shDUSP4. In a sodium iodate-induced dry AMD model, mice with DUSP4 knockdown presented more severe visual impairment than control mice did. To further investigate the molecular mechanism, stable DUSP4-knockout cell lines were constructed via CRISPR/Cas9 technology. The high expression of senescence markers in the DUSP4-knockout cell lines was reversed by DUSP4 overexpression. Furthermore, DUSP4 coordinates the modulation of cell cycle, stress response, and pro-inflammatory signaling by inhibiting the p53, p38, and NF-kB pathways. These findings establish DUSP4 as a multi-functional regulator of RPE senescence. Our work not only elucidates a novel DUSP4-dependent mechanism in AMD pathogenesis but also highlights its therapeutic potential for preserving RPE function in AMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zongduan Zhang
- State Key Laboratory of Eye Health, Eye Hospital of Wenzhou Medical University, Wenzhou 325035, China; (X.L.); (Z.N.); (J.Z.); (X.L.); (C.W.); (Y.W.); (L.D.)
| | - Zai-Long Chi
- State Key Laboratory of Eye Health, Eye Hospital of Wenzhou Medical University, Wenzhou 325035, China; (X.L.); (Z.N.); (J.Z.); (X.L.); (C.W.); (Y.W.); (L.D.)
| |
Collapse
|
3
|
Sun H, Liu Y, Huang Y, Xiong K, Zhang Z, Wang W, Dai Y, Li J, Li Q, Wang S, Shi C. Echinococcus granulosus sensu lato promotes osteoclast differentiation through DUSP4-MAPK signaling in osseous echinococcosis. Front Microbiol 2025; 16:1558603. [PMID: 40177487 PMCID: PMC11961949 DOI: 10.3389/fmicb.2025.1558603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Osseous echinococcosis, caused by Echinococcus granulosus infection, is characterized by progressive bone destruction driven by abnormal osteoclast activation. Dual-specificity phosphatase 4 (DUSP4), a key negative regulator of the MAPK pathway, inhibits osteoclast differentiation and bone resorption. This study aimed to elucidate the role of DUSP4 in E. granulosus-induced bone loss. Methods In vitro, a co-culture system of E. granulosus protoscoleces (PSCs) and bone marrow-derived macrophages (BMMs) was established. Osteoclast differentiation and bone resorption were assessed using TRAP staining and F-actin immunofluorescence. Transcriptome sequencing identified DUSP4 as a key regulator. DUSP4 overexpression was performed to evaluate its effects on osteoclast markers and MAPK signaling (ERK, JNK, p38). In vivo, a mouse model of osseous echinococcosis was developed, and DUSP4 overexpression was achieved via lentiviral transduction. Bone destruction was analyzed using X-ray, micro-CT, and histology. Results PSCs significantly enhanced osteoclast differentiation and bone resorption, upregulated osteoclast markers (CTSK, NFATc1), and activated MAPK signaling. DUSP4 overexpression reversed these effects, reducing osteoclast activity and MAPK phosphorylation. In vivo, PSC infection caused severe bone destruction, which was mitigated by DUSP4 overexpression. Disscussion This study reveals the molecular mechanism by which Echinococcus granulosus drives abnormal osteoclast activation through the DUSP4-MAPK signaling axis. Parasitic infection suppresses DUSP4 expression, relieving its negative regulation of the MAPK pathway and leading to excessive osteoclast differentiation. Restoring DUSP4 expression effectively reverses abnormal MAPK pathway activation, reducing osteoclast bone resorption activity to physiological levels. These findings not only provide new insights into the pathological mechanisms of bone destruction in osseous echinococcosis but also establish DUSP4 as a critical therapeutic target for pathological bone resorption, laying the groundwork for host-directed treatment strategies for parasitic bone diseases.
Collapse
Affiliation(s)
- Haohao Sun
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yaqing Liu
- The First Affiliated Hospital of Shihezi University, Shihezi, China
- The Medical College of Shihezi University, Shihezi, China
| | - Yiping Huang
- The Medical College of Shihezi University, Shihezi, China
| | - Kangjun Xiong
- The Medical College of Shihezi University, Shihezi, China
| | - Zhendong Zhang
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Weishan Wang
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Yi Dai
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Jing Li
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Qi Li
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Sibo Wang
- Xi’an Jiaotong University Affiliated Honghui Hospital, Xi’an, China
| | - Chenhui Shi
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Simsek MF, Saparov D, Keseroglu K, Zinani O, Chandel AS, Dulal B, Sharma BK, Zimik S, Özbudak EM. The vertebrate segmentation clock drives segmentation by stabilizing Dusp phosphatases in zebrafish. Dev Cell 2025; 60:669-678.e6. [PMID: 39610242 PMCID: PMC11903174 DOI: 10.1016/j.devcel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Pulsatile activity of the extracellular signal-regulated kinase (ERK) controls several cellular, developmental, and regenerative programs. Sequential segmentation of somites along the vertebrate body axis, a key developmental program, is also controlled by ERK activity oscillation. The oscillatory expression of Her/Hes family transcription factors constitutes the segmentation clock, setting the period of segmentation. Although oscillation of ERK activity depends on Her/Hes proteins, the underlying molecular mechanism remained mysterious. Here, we show that Her/Hes proteins physically interact with and stabilize dual-specificity phosphatases (Dusp) of ERK, resulting in oscillations of Dusp4 and Dusp6 proteins. Pharmaceutical and genetic inhibition of Dusp activity disrupt ERK activity oscillation and somite segmentation in zebrafish. Our results demonstrate that post-translational interactions of Her/Hes transcription factors with Dusp phosphatases establish the fundamental vertebrate body plan. We anticipate that future studies will identify currently unnoticed post-translational control of ERK pulses in other systems.
Collapse
Affiliation(s)
- M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Didar Saparov
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Oriana Zinani
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bibek Dulal
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Physics, University of Cincinnati College of Arts and Sciences, Cincinnati, OH 45221, USA
| | - Bal Krishan Sharma
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Soling Zimik
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Ghimire N, Welch M, Secunda C, Fink A, Lawan A. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Promotes Hyperglycemia and Susceptibility to Streptozotocin-Induced Diabetes in Female Mice In Vivo. Cells 2025; 14:261. [PMID: 39996734 PMCID: PMC11853640 DOI: 10.3390/cells14040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The development of type 2 diabetes (T2D) is largely dependent on the maintenance of pancreatic islet function and mass. Sexual dimorphism in T2D is evident in many areas, such as pathophysiology, treatment, and prevention. Mitogen-activated protein kinase phosphatase-2 (MKP-2) has a distinct role in the regulation of cell proliferation and the development of metabolic disorders. However, whether there is a causal relationship between MKP-2 and diabetes onset is unclear. The aim of this study was to determine the role of MKP-2 in the regulation of whole-body glucose homeostasis and the impact on pancreatic islet function using streptozotocin-induced pancreatic injury. Here, we show that female mice with whole-body deletion of MKP-2 exhibit hyperglycemia in mouse models treated with multiple low doses of streptozotocin (STZ). In comparison, both male MKP-2 wild-type and knockout mice were hyperglycemic. Consistent with the hyperglycemia, female MKP-2-deficient mice exhibited reduced islet size. Under T2D conditions, MKP-2-deficient mice display enhanced pancreatic JNK and ERK phosphorylation that is associated with the downregulation of genes important for pancreatic islet development and function, Pdx-1 and MafA. Furthermore, we found impaired metabolic flux in adipose tissue that is consistent with hyperglycemia and dysfunctional pancreas. MKP-2 deletion results in reduced Akt activation that is associated with increased adiposity and insulin resistance in female MKP-2 KO mice. These studies demonstrate the critical role of MKP-2 in the development of T2D diabetes in vivo. This suggests that MKP-2 may have a gender-specific role in diabetes development. This discovery raises the possibility that postmenopausal prevention of T2D may benefit from the activation of MKP-2 activity in islet cells.
Collapse
Affiliation(s)
| | | | | | | | - Ahmed Lawan
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (N.G.); (M.W.); (C.S.); (A.F.)
| |
Collapse
|
6
|
Jiao H, James SJ, Png CW, Cui C, Li H, Li L, Chia WN, Min N, Li W, Claser C, Rénia L, Wang H, Chen MIC, Chu JJH, Tan KSW, Deng Y, Zhang Y. DUSP4 modulates RIG-I- and STING-mediated IRF3-type I IFN response. Cell Death Differ 2024; 31:280-291. [PMID: 38383887 PMCID: PMC10923883 DOI: 10.1038/s41418-024-01269-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.
Collapse
Affiliation(s)
- Huipeng Jiao
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Sharmy J James
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chin Wen Png
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Chaoyu Cui
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China
| | - Heng Li
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore
| | - Liang Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wan Ni Chia
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nyo Min
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Weiyun Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138668, Singapore
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Innovation Center for Cell Signaling Network, Shanghai, 200031, China
| | - Mark I-Cheng Chen
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117597, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Kevin Shyong Wei Tan
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518100, China.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, TRP Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
7
|
Patysheva MR, Prostakishina EA, Budnitskaya AA, Bragina OD, Kzhyshkowska JG. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity. Int J Mol Sci 2023; 24:17542. [PMID: 38139370 PMCID: PMC10743672 DOI: 10.3390/ijms242417542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.
Collapse
Affiliation(s)
- Marina R. Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Elizaveta A. Prostakishina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Arina A. Budnitskaya
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga D. Bragina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia G. Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim Institute of Innate Immunosciences (MI3), University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 69117 Mannheim, Germany
| |
Collapse
|
8
|
Long J, Mariossi A, Cao C, Mo Z, Thompson JW, Levine MS, Lemaire LA. Cereblon influences the timing of muscle differentiation in Ciona tadpoles. Proc Natl Acad Sci U S A 2023; 120:e2309989120. [PMID: 37856545 PMCID: PMC10614628 DOI: 10.1073/pnas.2309989120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Abstract
Thalidomide has a dark history as a teratogen, but in recent years, its derivates have been shown to function as potent chemotherapeutic agents. These drugs bind cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, and modify its degradation targets. Despite these insights, remarkably little is known about the normal function of cereblon in development. Here, we employ Ciona, a simple invertebrate chordate, to identify endogenous Crbn targets. In Ciona, Crbn is specifically expressed in developing muscles during tail elongation before they acquire contractile activity. Crbn expression is activated by Mrf, the ortholog of MYOD1, a transcription factor important for muscle differentiation. CRISPR/Cas9-mediated mutations of Crbn lead to precocious onset of muscle contractions. By contrast, overexpression of Crbn delays contractions and is associated with decreased expression of contractile protein genes such as troponin. This reduction is possibly due to reduced Mrf protein levels without altering Mrf mRNA levels. Our findings suggest that Mrf and Crbn form a negative feedback loop to control the precision of muscle differentiation during tail elongation.
Collapse
Affiliation(s)
- Juanjuan Long
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Chen Cao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | | | | | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Laurence A. Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Biology, Saint Louis University, St. Louis, MO63103
| |
Collapse
|
9
|
Chandel AS, Stocker M, Özbudak EM. The Role of Fibroblast Growth Factor Signaling in Somitogenesis. DNA Cell Biol 2023; 42:580-584. [PMID: 37462914 PMCID: PMC10611959 DOI: 10.1089/dna.2023.0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/23/2023] Open
Abstract
Fibroblast growth factor (FGF) signaling is conserved from cnidaria to mammals (Ornitz and Itoh, 2022) and it regulates several critical processes such as differentiation, proliferation, apoptosis, cell migration, and embryonic development. One pivotal process FGF signaling controls is the division of vertebrate paraxial mesoderm into repeated segmented units called somites (i.e., somitogenesis). Somite segmentation occurs periodically and sequentially in a head-to-tail manner, and lays down the plan for compartmentalized development of the vertebrate body axis (Gomez et al., 2008). These somites later give rise to vertebrae, tendons, and skeletal muscle. Somite segments form sequentially from the anterior end of the presomitic mesoderm (PSM). The periodicity of somite segmentation is conferred by the segmentation clock, comprising oscillatory expression of Hairy and enhancer-of-split (Her/Hes) genes in the PSM. The positional information for somite boundaries is instructed by the double phosphorylated extracellular signal-regulated kinase (ppERK) gradient, which is the relevant readout of FGF signaling during somitogenesis (Sawada et al., 2001; Delfini et al., 2005; Simsek and Ozbudak, 2018; Simsek et al., 2023). In this review, we summarize the crosstalk between the segmentation clock and FGF/ppERK gradient and discuss how that leads to periodic somite boundary formation. We also draw attention to outstanding questions regarding the interconnected roles of the segmentation clock and ppERK gradient, and close with suggested future directions of study.
Collapse
Affiliation(s)
- Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew Stocker
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Molecular and Developmental Biology Graduate Program, and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND, Schadt EE, Gandy S, Zhang B, Ehrlich ME, Salton SR. Dual-Specificity Protein Phosphatase 4 (DUSP4) Overexpression Improves Learning Behavior Selectively in Female 5xFAD Mice, and Reduces β-Amyloid Load in Males and Females. Cells 2022; 11:3880. [PMID: 36497141 PMCID: PMC9737364 DOI: 10.3390/cells11233880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Recent multiscale network analyses of banked brains from subjects who died of late-onset sporadic Alzheimer's disease converged on VGF (non-acronymic) as a key hub or driver. Within this computational VGF network, we identified the dual-specificity protein phosphatase 4 (DUSP4) [also known as mitogen-activated protein kinase (MAPK) phosphatase 2] as an important node. Importantly, DUSP4 gene expression, like that of VGF, is downregulated in postmortem Alzheimer's disease (AD) brains. We investigated the roles that this VGF/DUSP4 network plays in the development of learning behavior impairment and neuropathology in the 5xFAD amyloidopathy mouse model. We found reductions in DUSP4 expression in the hippocampi of male AD subjects, correlating with increased CDR scores, and in 4-month-old female and 12-18-month-old male 5xFAD hippocampi. Adeno-associated virus (AAV5)-mediated overexpression of DUSP4 in 5xFAD mouse dorsal hippocampi (dHc) rescued impaired Barnes maze performance in females but not in males, while amyloid loads were reduced in both females and males. Bulk RNA sequencing of the dHc from 5-month-old mice overexpressing DUSP4, and Ingenuity Pathway and Enrichr analyses of differentially expressed genes (DEGs), revealed that DUSP4 reduced gene expression in female 5xFAD mice in neuroinflammatory, interferon-gamma (IFNγ), programmed cell death protein-ligand 1/programmed cell death protein 1 (PD-L1/PD-1), and extracellular signal-regulated kinase (ERK)/MAPK pathways, via which DUSP4 may modulate AD phenotype with gender-specificity.
Collapse
Affiliation(s)
- Allen L. Pan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Mickael Audrain
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Emmy Sakakibara
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xiaodong Zhu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Eric E. Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry and Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
11
|
Zhao X, Chong Z, Chen Y, Zheng XL, Wang QF, Li Y. Protein arginine methyltransferase 1 in the generation of immune megakaryocytes: A perspective review. J Biol Chem 2022; 298:102517. [PMID: 36152748 PMCID: PMC9579037 DOI: 10.1016/j.jbc.2022.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/05/2022] Open
Abstract
Megakaryocytes (Mks) in bone marrow are heterogeneous in terms of polyploidy. They not only produce platelets but also support the self-renewal of hematopoietic stem cells and regulate immune responses. Yet, how the diverse functions are generated from the heterogeneous Mks is not clear at the molecular level. Advances in single-cell RNA seq analysis from several studies have revealed that bone marrow Mks are heterogeneous and can be clustered into 3 to 4 subpopulations: a subgroup that is adjacent to the hematopoietic stem cells, a subgroup expressing genes for platelet biogenesis, and a subgroup expressing immune-responsive genes, the so-called immune Mks that exist in both humans and mice. Immune Mks are predominantly in the low-polyploid (≤8 N nuclei) fraction and also exist in the lung. Protein arginine methyltransferase 1 (PRMT1) expression is positively correlated with the expression of genes involved in immune response pathways and is highly expressed in immune Mks. In addition, we reported that PRMT1 promotes the generation of low-polyploid Mks. From this perspective, we highlighted the data suggesting that PRMT1 is essential for the generation of immune Mks via its substrates RUNX1, RBM15, and DUSP4 that we reported previously. Thus, we suggest that protein arginine methylation may play a critical role in the generation of proinflammatory platelet progeny from immune Mks, which may affect many immune, thrombotic, and inflammatory disorders.
Collapse
Affiliation(s)
- Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Zechen Chong
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Qian-Fei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yueying Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| |
Collapse
|
12
|
Hanna A, Nixon MJ, Estrada MV, Sanchez V, Sheng Q, Opalenik SR, Toren AL, Bauer J, Owens P, Mason FM, Cook RS, Sanders ME, Arteaga CL, Balko JM. Combined Dusp4 and p53 loss with Dbf4 amplification drives tumorigenesis via cell cycle restriction and replication stress escape in breast cancer. Breast Cancer Res 2022; 24:51. [PMID: 35850776 PMCID: PMC9290202 DOI: 10.1186/s13058-022-01542-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
AIM Deregulated signaling pathways are a hallmark feature of oncogenesis and driver of tumor progression. Dual specificity protein phosphatase 4 (DUSP4) is a critical negative regulator of the mitogen-activated protein kinase (MAPK) pathway and is often deleted or epigenetically silenced in tumors. DUSP4 alterations lead to hyperactivation of MAPK signaling in many cancers, including breast cancer, which often harbor mutations in cell cycle checkpoint genes, particularly in TP53. METHODS Using a genetically engineered mouse model, we generated mammary-specific Dusp4-deleted primary epithelial cells to investigate the necessary conditions in which DUSP4 loss may drive breast cancer oncogenesis. RESULTS We found that Dusp4 loss alone is insufficient in mediating tumorigenesis, but alternatively converges with loss in Trp53 and MYC amplification to induce tumorigenesis primarily through chromosome 5 amplification, which specifically upregulates Dbf4, a cell cycle gene that promotes cellular replication by mediating cell cycle checkpoint escape. CONCLUSIONS This study identifies a novel mechanism for breast tumorigenesis implicating Dusp4 loss and p53 mutations in cellular acquisition of Dbf4 upregulation as a driver of cellular replication and cell cycle checkpoint escape.
Collapse
Affiliation(s)
- Ann Hanna
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Mellissa J Nixon
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Early Discovery Oncology, Merck & Co., Boston, MA, USA
| | - M Valeria Estrada
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Violeta Sanchez
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan R Opalenik
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Abigail L Toren
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Joshua Bauer
- Vanderbilt Institute of Chemical Biology, Nashville, TN, USA
| | - Phillip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Frank M Mason
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Rebecca S Cook
- Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN, USA
| | - Melinda E Sanders
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA
| | - Carlos L Arteaga
- Simmons Comprehensive Cancer Center, University of Texas Southwester, Dallas, TX, USA
| | - Justin M Balko
- Departments of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology & Immunology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
- Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Metabolic Impact of MKP-2 Upregulation in Obesity Promotes Insulin Resistance and Fatty Liver Disease. Nutrients 2022; 14:nu14122475. [PMID: 35745205 PMCID: PMC9228271 DOI: 10.3390/nu14122475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The mechanisms connecting obesity with type 2 diabetes, insulin resistance, nonalcoholic fatty liver disease, and cardiovascular diseases remain incompletely understood. The function of MAPK phosphatase-2 (MKP-2), a type 1 dual-specific phosphatase (DUSP) in whole-body metabolism, and how this contributes to the development of diet-induced obesity, type 2 diabetes (T2D), and insulin resistance is largely unknown. We investigated the physiological contribution of MKP-2 in whole-body metabolism and whether MKP-2 is altered in obesity and human fatty liver disease using MKP-2 knockout mice models and human liver tissue derived from fatty liver disease patients. We demonstrate that, for the first time, MKP-2 expression was upregulated in liver tissue in humans with obesity and fatty liver disease and in insulin-responsive tissues in mice with obesity. MKP-2-deficient mice have enhanced p38 MAPK, JNK, and ERK activities in insulin-responsive tissues compared with wild-type mice. MKP-2 deficiency in mice protects against diet-induced obesity and hepatic steatosis and was accompanied by improved glucose homeostasis and insulin sensitivity. Mkp-2−/− mice are resistant to diet-induced obesity owing to reduced food intake and associated lower respiratory exchange ratio. This was associated with enhanced circulating insulin-like growth factor-1 (IGF-1) and stromal cell-derived factor 1 (SDF-1) levels in Mkp-2−/− mice. PTEN, a negative regulator of Akt, was downregulated in livers of Mkp-2−/− mice, resulting in enhanced Akt activity consistent with increased insulin sensitivity. These studies identify a novel role for MKP-2 in the regulation of systemic metabolism and pathophysiology of obesity-induced insulin resistance and fatty liver disease.
Collapse
|
14
|
Duan S, Li C, Gao Y, Meng P, Ji S, Xu Y, Mao Y, Wang H, Tian J. The tyrosine kinase inhibitor LPM4870108 impairs learning and memory and induces transcriptomic and gene‑specific DNA methylation changes in rats. Arch Toxicol 2022; 96:845-857. [PMID: 35098321 DOI: 10.1007/s00204-022-03226-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Tyrosine kinase inhibitors (TKIs), which have been developed and approved for cancer treatment in the last few years, are involved in synaptic plasticity of learning and memory. Epigenetic modifications also play crucial roles in the process of learning and memory, but its relationship with TKI-induced learning and memory impairment has not been investigated. We hypothesized that LPM4870108, an effective anti-cancer Trk inhibitor, might affect the learning and memory via epigenetic modifications. In this study, rats were orally administered with LPM4870108 (0, 1.25, 2.5, or 5.0 mg/kg) twice daily for 28 days, after which animals were subjected to a Morris water maze test. LPM4870108 exposure caused learning and memory impairments in this test in a dose-dependent manner and reduced the spine densities. Whole-genome transcriptomic analysis revealed significant differences in the patterns of hippocampal gene expression in LPM4870108-treated rats. These transcriptomic data were combined with next-generation bisulfite sequencing analysis, after which RT-PCR and pyrosequencing were conducted, revealing epigenetic alterations associated with genes (Snx8, Fgfr1, Dusp4, Vav2, and Satb2) known to regulate learning and memory. Increased mRNA and protein expression levels of hippocampal Dnmt1 and Dnmt3a were also observed in these rats. Overall, these data suggest that gene-specific alterations in patterns of DNA methylation can potentially contribute to the incidence of learning and memory deficits associated with exposure to LPM4870108.
Collapse
Affiliation(s)
- Sijin Duan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yonglin Gao
- State Key Laboratory of Long-Acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai, 264003, People's Republic of China
- School of Life Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Ping Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shengmin Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yangyang Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yutong Mao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
- State Key Laboratory of Long-Acting Targeting Drug Delivery Technologies (Luye Pharma Group Ltd.), Yantai, 264003, People's Republic of China.
| |
Collapse
|
15
|
Charitidis FT, Adabi E, Thalheimer FB, Clarke C, Buchholz CJ. Monitoring CAR T cell generation with a CD8-targeted lentiviral vector by single-cell transcriptomics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:359-369. [PMID: 34729382 PMCID: PMC8546366 DOI: 10.1016/j.omtm.2021.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/03/2022]
Abstract
Quantifying gene expression in individual cells can substantially improve our understanding about complex genetically engineered cell products such as chimeric antigen receptor (CAR) T cells. Here we designed a single-cell RNA sequencing (scRNA-seq) approach to monitor the delivery of a CD19-CAR gene via lentiviral vectors (LVs), i.e., the conventional vesicular stomatitis virus (VSV)-LV and the CD8-targeted CD8-LV. LV-exposed human donor peripheral blood mononuclear cells (PBMCs) were evaluated for a panel of 400 immune response-related genes including LV-specific probes. The resulting data revealed a trimodal expression for the CAR and CD8A, demanding a careful distribution-based identification of CAR T cells and CD8+ lymphocytes in scRNA-seq analysis. The fraction of T cells expressing high CAR levels was in concordance with flow cytometry results. More than 97% of the cells hit by CD8-LV expressed the CD8A gene. Remarkably, the majority of the potential off-target cells were in fact on-target cells, resulting in a target cell selectivity of more than 99%. Beyond that, differential gene expression analysis revealed the upregulation of restriction factors in CAR-negative cells, thus explaining their protection from CAR gene transfer. In summary, we provide a workflow and subsetting approach for scRNA-seq enabling reliable distinction between transduced and untransduced cells during CAR T cell generation.
Collapse
Affiliation(s)
- Filippos T Charitidis
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Elham Adabi
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Frederic B Thalheimer
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| | - Colin Clarke
- National Institute for Bioprocessing Research and Training, Fosters Avenue, Blackrock, A94 X099 Co. Dublin, Ireland.,School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany.,Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen (Hessen), Germany
| |
Collapse
|
16
|
Su H, Jiang M, Senevirathne C, Aluri S, Zhang T, Guo H, Xavier-Ferrucio J, Jin S, Tran NT, Liu SM, Sun CW, Zhu Y, Zhao Q, Chen Y, Cable L, Shen Y, Liu J, Qu CK, Han X, Klug CA, Bhatia R, Chen Y, Nimer SD, Zheng YG, Iancu-Rubin C, Jin J, Deng H, Krause DS, Xiang J, Verma A, Luo M, Zhao X. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Rep 2021; 36:109421. [PMID: 34320342 PMCID: PMC9110119 DOI: 10.1016/j.celrep.2021.109421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.
Collapse
Affiliation(s)
- Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ming Jiang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Chamara Senevirathne
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Tuo Zhang
- Genomics and Epigenomics Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Han Guo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shuiling Jin
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Szu-Mam Liu
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yongxia Zhu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Qing Zhao
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuling Chen
- Department of School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cheng-Kui Qu
- Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaosi Han
- Department of Neurology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher A Klug
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Veterans Affairs Birmingham Medical Center, Research Department, Birmingham, AL 35294, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146 USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Camelia Iancu-Rubin
- Department of Medicine, Hematology and Oncology Division, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haiteng Deng
- Department of School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Diane S Krause
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jenny Xiang
- Genomics and Epigenomics Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA.
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
17
|
Seumois G, Ramírez-Suástegui C, Schmiedel BJ, Liang S, Peters B, Sette A, Vijayanand P. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci Immunol 2021; 5:5/48/eaba6087. [PMID: 32532832 DOI: 10.1126/sciimmunol.aba6087] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
CD4+ T helper (TH) cells and regulatory T (Treg) cells that respond to common allergens play an important role in driving and dampening airway inflammation in patients with asthma. Until recently, direct, unbiased molecular analysis of allergen-reactive TH and Treg cells has not been possible. To better understand the diversity of these T cell subsets in allergy and asthma, we analyzed the single-cell transcriptome of ~50,000 house dust mite (HDM) allergen-reactive TH cells and Treg cells from asthmatics with HDM allergy and from three control groups: asthmatics without HDM allergy and nonasthmatics with and without HDM allergy. Our analyses show that HDM allergen-reactive TH and Treg cells are highly heterogeneous and certain subsets are quantitatively and qualitatively different in individuals with HDM-reactive asthma. The number of interleukin-9 (IL-9)-expressing HDM-reactive TH cells is greater in asthmatics with HDM allergy compared with nonasthmatics with HDM allergy, and this IL-9-expressing TH subset displays enhanced pathogenic properties. More HDM-reactive TH and Treg cells expressing the interferon response signature (THIFNR and TregIFNR) are present in asthmatics without HDM allergy compared with those with HDM allergy. In cells from these subsets (THIFNR and TregIFNR), expression of TNFSF10 was enriched; its product, tumor necrosis factor-related apoptosis-inducing ligand, dampens activation of TH cells. These findings suggest that the THIFNR and TregIFNR subsets may dampen allergic responses, which may help explain why only some people develop TH2 responses to nearly ubiquitous allergens.
Collapse
Affiliation(s)
- Grégory Seumois
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | - Shu Liang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Pandurangan Vijayanand
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.,Clinical and Experimental Sciences, National Institute for Health Research Southampton Respiratory Biomedical Research Unit, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK
| |
Collapse
|
18
|
Lannoy V, Côté-Biron A, Asselin C, Rivard N. Phosphatases in toll-like receptors signaling: the unfairly-forgotten. Cell Commun Signal 2021; 19:10. [PMID: 33494775 PMCID: PMC7829650 DOI: 10.1186/s12964-020-00693-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past 2 decades, pattern recognition receptors (PRRs) have been shown to be on the front line of many illnesses such as autoimmune, inflammatory, and neurodegenerative diseases as well as allergies and cancer. Among PRRs, toll-like receptors (TLRs) are the most studied family. Dissecting TLRs signaling turned out to be advantageous to elaborate efficient treatments to cure autoimmune and chronic inflammatory disorders. However, a broad understanding of TLR effectors is required to propose a better range of cures. In addition to kinases and E3 ubiquitin ligases, phosphatases emerge as important regulators of TLRs signaling mediated by NF-κB, type I interferons (IFN I) and Mitogen-Activated Protein Kinases signaling pathways. Here, we review recent knowledge on TLRs signaling modulation by different classes and subclasses of phosphatases. Thus, it becomes more and more evident that phosphatases could represent novel therapeutic targets to control pathogenic TLRs signaling. Video Abstract.
Collapse
Affiliation(s)
- Valérie Lannoy
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Anthony Côté-Biron
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada
| | - Nathalie Rivard
- Department of Immunology and Cell Biology, Cancer Research Pavilion, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean Mignault, Sherbrooke, QC, J1E4K8, Canada.
| |
Collapse
|
19
|
Krayem I, Lipoldová M. Role of host genetics and cytokines in Leishmania infection. Cytokine 2020; 147:155244. [PMID: 33059974 DOI: 10.1016/j.cyto.2020.155244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022]
Abstract
Cytokines and chemokines are important regulators of innate and specific responses in leishmaniasis, a disease that currently affects 12 million people. We overviewed the current information about influences of genetically engineered mouse models of cytokine and chemokine on leishmaniasis. We found that genetic background of the host, parasite species and sub-strain, as well as experimental design often modify effects of genetically engineered cytokine genes. Next we analyzed genes and QTLs (quantitative trait loci) that control response to Leishmania species in mouse in order to establish relationship between genetic control of cytokine expression and organ pathology. These studies revealed a network-like complexity of the combined effects of the multiple functionally diverse QTLs and their individual specificity. Genetic control of organ pathology and systemic immune response overlap only partially. Some QTLs control both organ pathology and systemic immune response, but the effects of genes and loci with the strongest impact on disease are cytokine-independent, whereas several loci modify cytokines levels in serum without influencing organ pathology. Understanding this genetic control might be important in development of vaccines designed to stimulate certain cytokine spectrum.
Collapse
Affiliation(s)
- Imtissal Krayem
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná 3105, 272 01 Kladno, Czech Republic.
| |
Collapse
|
20
|
Carfagna IE, Penas FN, Bott E, Lammel EM, Goren NB, Belaunzarán ML, Gimenez G. Involvement of lipids from Leishmania braziliensis promastigotes and amastigotes in macrophage activation. Mol Immunol 2020; 125:104-114. [PMID: 32659595 DOI: 10.1016/j.molimm.2020.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Leishmania are obligate protozoan parasites responsible for substantial public health problems in tropical and subtropical regions around the world, with L. braziliensis being one of the causative agents of American Tegumentary Leishmaniasis. Macrophages, fundamental cells in the innate inflammatory response against Leishmania, constitute a heterogeneous group with multiple activation phenotypes and functions. The outcome of this infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. The importance of lipids, the major components of cell membranes, goes beyond their basic structural functions. Lipid bioactive molecules have been described in Leishmania spp., and in the recent years the knowledge about the biological relevance of lipids in particular and their relationship with the immune response is expanding. The present work analyzes the biological effects of L. braziliensis lipids from lysed promastigotes (PRO) to mimic rapid modulatory processes that could occur in the initial steps of infection or the effects of lipids from lysed and incubated promastigotes (PROinc), simulating the parasite lipid degradation processes triggered after parasite lysis that might occur in the mammalian host. To perform these studies, lipid profiles of PRO and PROinc were compared with lipids from amastigotes under similar conditions (AMA and AMAinc), and the effect of these lipid extracts were analyzed on the induction of an inflammatory response in murine peritoneal macrophages: LB induction, COX-2, iNOS and Arginase expression, TNF-α, IL-10 and NO production, Arginase activity and M1/M2 markers mRNA induction.
Collapse
Affiliation(s)
- Ivanna Emilce Carfagna
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Federico Nicolás Penas
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Emanuel Bott
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Estela María Lammel
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Nora Beatriz Goren
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - María Laura Belaunzarán
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Guadalupe Gimenez
- Facultad de Medicina, Universidad de Buenos Aires. Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Pytka K, Dawson N, Tossell K, Ungless MA, Plevin R, Brett RR, Bushell TJ. Mitogen-activated protein kinase phosphatase-2 deletion modifies ventral tegmental area function and connectivity and alters reward processing. Eur J Neurosci 2020; 52:2838-2852. [PMID: 31989721 DOI: 10.1111/ejn.14688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate normal brain functioning, and their dysfunction is implicated in a number of brain disorders. Thus, there is great interest in understanding the signalling systems that control MAPK functioning. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in foetal development, the immune system, cancer and synaptic plasticity and memory. In the present study, we performed an unbiased investigation using MKP-2-/- mice to assess whether MKP-2 plays a global role in modulating brain function. Local cerebral glucose utilization is significantly increased in the ventral tegmental area (VTA) of MKP-2-/- mice, with connectivity analysis revealing alterations in VTA functional connectivity, including a significant reduction in connectivity to the nucleus accumbens and hippocampus. In addition, spontaneous excitatory postsynaptic current frequency, but not amplitude, onto putative dopamine neurons in the VTA is increased in MKP-2-/- mice, which indicates that increased excitatory drive may account for the increased VTA glucose utilization. Consistent with modified VTA function and connectivity, in behavioural tests MKP-2-/- mice exhibited increased sucrose preference and impaired amphetamine-induced hyperlocomotion. Overall, these data reveal that MKP-2 plays a role in modulating VTA function and that its dysfunction may contribute to brain disorders in which altered reward processing is present.
Collapse
Affiliation(s)
- Karolina Pytka
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Neil Dawson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK.,Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Kyoko Tossell
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mark A Ungless
- MRC London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ros R Brett
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Trevor J Bushell
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
22
|
Subuddhi A, Kumar M, Majumder D, Sarkar A, Ghosh Z, Vasudevan M, Kundu M, Basu J. Unraveling the role of H3K4 trimethylation and lncRNA HOTAIR in SATB1 and DUSP4-dependent survival of virulent Mycobacterium tuberculosis in macrophages. Tuberculosis (Edinb) 2019; 120:101897. [PMID: 32090865 DOI: 10.1016/j.tube.2019.101897] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/15/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
The modification of chromatin influences host transcriptional programs during bacterial infection, at times skewing the balance in favor of pathogen survival. To test the role of chromatin modifications during Mycobacterium tuberculosis infection, we analysed genome-wide deposition of H3K4me3 marks in macrophages infected with either avirulent M. tuberculosis H37Ra or virulent H37Rv, by chromatin immunoprecipitation, followed by sequencing. We validated differences in association of H3K4me3 at the loci of special AT-rich sequence binding protein 1 (SATB1) and dual specificity MAP kinase phosphatase 4 (DUSP4) between H37Rv and H37Ra-infected macrophages, and demonstrated their role in regulating bacterial survival in macrophages as well as the expression of chemokines. SATB1 repressed gp91phox (an NADPH oxidase subunit) thereby regulating reactive oxygen species (ROS) generation during infection. Long non-coding RNA HOX transcript antisense RNA (HOTAIR) was upregulated in H37Ra-, but downregulated in H37Rv-infected macrophages. HOTAIR overexpression correlated with deposition of repressive H3K27me3 marks around the TSSs of DUSP4 and SATB1, suggesting that its downregulation favors the transcription of SATB1 and DUSP4. In summary, we have delineated histone modification- and lncRNA-dependent mechanisms regulating gene expression patterns facilitating survival of virulent M. tuberculosis. Our observations raise the possibility of harnessing histone-modifying enzymes to develop host-directed therapies for tuberculosis.
Collapse
Affiliation(s)
| | - Manish Kumar
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| | | | - Arijita Sarkar
- Division of Bioinformatics, Bose Institute, Kolkata, 700054, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, 700054, India
| | | | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, 700009, India.
| |
Collapse
|
23
|
Dual specificity phosphatase (DUSP)-4 is induced by platelet-derived growth factor -BB in an Erk1/2-, STAT3- and p53-dependent manner. Biochem Biophys Res Commun 2019; 519:469-474. [PMID: 31526568 DOI: 10.1016/j.bbrc.2019.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022]
Abstract
Dual specificity phosphatase (DUSP) 4 has been described as a negative regulator of MAP kinase signaling, in particular for the ERK1/2 and JNK pathways. We found that DUSP4 expression was upregulated in response to prolonged platelet-derived growth factor (PDGF)-BB stimulation. The PDGF-BB-induced DUSP4 expression was dependent on ERK1/2, STAT3 and p53. We found that inhibition of ERK1/2 effectively reduced DUSP4 mRNA levels, whereas STAT3 was necessary for maintaining p53 expression. p53 has binding sites in the DUSP4 promoter and was found to promote DUSP4 expression.
Collapse
|
24
|
Hargrave KE, Woods S, Millington O, Chalmers S, Westrop GD, Roberts CW. Multi-Omics Studies Demonstrate Toxoplasma gondii-Induced Metabolic Reprogramming of Murine Dendritic Cells. Front Cell Infect Microbiol 2019; 9:309. [PMID: 31572687 PMCID: PMC6749083 DOI: 10.3389/fcimb.2019.00309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/12/2019] [Indexed: 01/14/2023] Open
Abstract
Toxoplasma gondii is capable of actively invading almost any mammalian cell type including phagocytes. Early events in phagocytic cells such as dendritic cells are not only key to establishing parasite infection, but conversely play a pivotal role in initiating host immunity. It is now recognized that in addition to changes in canonical immune markers and mediators, alteration in metabolism occurs upon activation of phagocytic cells. These metabolic changes are important for supporting the developing immune response, but can affect the availability of nutrients for intracellular pathogens including T. gondii. However, the interaction of T. gondii with these cells and particularly how infection changes their metabolism has not been extensively investigated. Herein, we use a multi-omics approach comprising transcriptomics and metabolomics validated with functional assays to better understand early events in these cells following infection. Analysis of the transcriptome of T. gondii infected bone marrow derived dendritic cells (BMDCs) revealed significant alterations in transcripts associated with cellular metabolism, activation of T cells, inflammation mediated chemokine and cytokine signaling pathways. Multivariant analysis of metabolomic data sets acquired through non-targeted liquid chromatography mass spectroscopy (LCMS) identified metabolites associated with glycolysis, the TCA cycle, oxidative phosphorylation and arginine metabolism as major discriminants between control uninfected and T. gondii infected cells. Consistent with these observations, glucose uptake and lactate dehydrogenase activity were upregulated in T. gondii infected BMDC cultures compared with control BMDCs. Conversely, BMDC mitochondrial membrane potential was reduced in T. gondii-infected cells relative to mitochondria of control BMDCs. These changes to energy metabolism, similar to what has been described following LPS stimulation of BMDCs and macrophages are often termed the Warburg effect. This metabolic reprogramming of cells has been suggested to be an important adaption that provides energy and precursors to facilitate phagocytosis, antigen processing and cytokine production. Other changes to BMDC metabolism are evident following T. gondii infection and include upregulation of arginine degradation concomitant with increased arginase-1 activity and ornithine and proline production. As T. gondii is an arginine auxotroph the resultant reduced cellular arginine levels are likely to curtail parasite multiplication. These results highlight the complex interplay of BMDCs and parasite metabolism within the developing immune response and the consequences for adaptive immunity and pathogen clearance.
Collapse
Affiliation(s)
- Kerrie E Hargrave
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stuart Woods
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Owain Millington
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Susan Chalmers
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gareth D Westrop
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Craig W Roberts
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
25
|
Neamatallah T, Jabbar S, Tate R, Schroeder J, Shweash M, Alexander J, Plevin R. Whole Genome Microarray Analysis of DUSP4-Deletion Reveals A Novel Role for MAP Kinase Phosphatase-2 (MKP-2) in Macrophage Gene Expression and Function. Int J Mol Sci 2019; 20:ijms20143434. [PMID: 31336892 PMCID: PMC6679025 DOI: 10.3390/ijms20143434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Mitogen-activated protein kinase phosphatase-2 (MKP-2) is a type 1 nuclear dual specific phosphatase (DUSP-4). It plays an important role in macrophage inflammatory responses through the negative regulation of Mitogen activated protein kinase (MAPK) signalling. However, information on the effect of MKP-2 on other aspect of macrophage function is limited. Methods: We investigated the impact of MKP-2 in the regulation of several genes that are involved in function while using comparative whole genome microarray analysis in macrophages from MKP-2 wild type (wt) and knock out (ko) mice. Results: Our data showed that the lack of MKP-2 caused a significant down-regulation of colony-stimulating factor-2 (Csf2) and monocyte to macrophage-associated differentiation (Mmd) genes, suggesting a role of MKP-2 in macrophage development. When treated with macrophage colony stimulating factor (M-CSF), Mmd and Csf2 mRNA levels increased but significantly reduced in ko cells in comparison to wt counterparts. This effect of MKP-2 deletion on macrophage function was also observed by cell counting and DNA measurements. On the signalling level, M-CSF stimulation induced extracellular signal-regulated kinases (ERK) phosphorylation, which was significantly enhanced in the absence of MKP-2. Pharmacological inhibition of ERK reduced both Csf2 and Mmd genes in both wild type and ko cultures, which suggested that enhanced ERK activation in ko cultures may not explain effects on gene expression. Interestingly other functional markers were also shown to be reduced in ko macrophages in comparison to wt mice; the expression of CD115, which is a receptor for M-CSF, and CD34, a stem/progenitor cell marker, suggesting global regulation of gene expression by MKP-2. Conclusions: Transcriptome profiling reveals that MKP-2 regulates macrophage development showing candidate targets from monocyte-to-macrophage differentiation and macrophage proliferation. However, it is unclear whether effects upon ERK signalling are able to explain the effects of DUSP-4 deletion on macrophage function.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia.
| | - Shilan Jabbar
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Rothwelle Tate
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Juliane Schroeder
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Muhannad Shweash
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - James Alexander
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Robin Plevin
- Strathclyde Institute for Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
26
|
Lang R, Raffi FAM. Dual-Specificity Phosphatases in Immunity and Infection: An Update. Int J Mol Sci 2019; 20:ijms20112710. [PMID: 31159473 PMCID: PMC6600418 DOI: 10.3390/ijms20112710] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. Finally, the pharmacological targeting of DUSPs is desirable to modulate immune and inflammatory responses.
Collapse
Affiliation(s)
- Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
27
|
Choi JC, Wu W, Phillips E, Plevin R, Sera F, Homma S, Worman HJ. Elevated dual specificity protein phosphatase 4 in cardiomyopathy caused by lamin A/C gene mutation is primarily ERK1/2-dependent and its depletion improves cardiac function and survival. Hum Mol Genet 2019; 27:2290-2305. [PMID: 29668927 DOI: 10.1093/hmg/ddy134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) encoding the nuclear intermediate filament proteins lamins A and C cause a group of tissue-selective diseases, the most common of which is dilated cardiomyopathy (herein referred to as LMNA cardiomyopathy) with variable skeletal muscle involvement. We previously showed that cardiomyocyte-specific overexpression of dual specificity protein phosphatase 4 (DUSP4) is involved in the pathogenesis of LMNA cardiomyopathy. However, how mutations in LMNA activate Dusp4 expression and whether it is necessary for the development of LMNA cardiomyopathy are currently unknown. We now show that female LmnaH222P/H222P mice, a model for LMNA cardiomyopathy, have increased Dusp4 expression and hyperactivation of extracellular signal-regulated kinase (ERK) 1/2 with delayed kinetics relative to male mice, consistent with the sex-dependent delay in the onset and progression of disease. Mechanistically, we show that the H222P amino acid substitution in lamin A enhances its binding to ERK1/2 and increases sequestration at the nuclear envelope. Finally, we show that genetic deletion of Dusp4 has beneficial effects on heart function and prolongs survival in LmnaH222P/H222P mice. These results further establish Dusp4 as a key contributor to the pathogenesis of LMNA cardiomyopathy and a potential target for drug therapy.
Collapse
Affiliation(s)
- Jason C Choi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Elizabeth Phillips
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Fusako Sera
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Shunichi Homma
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
28
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
29
|
Orb Q, Pulsipher A, Smith KA, Ashby S, Alt JA. Correlation between systemic inflammatory response and quality of life in patients with chronic rhinosinusitis. Int Forum Allergy Rhinol 2019; 9:458-465. [PMID: 30657646 PMCID: PMC6491244 DOI: 10.1002/alr.22289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Local sinonasal inflammation resulting from altered T-cell immune signaling is a contributor to the pathogenesis of chronic rhinosinusitis (CRS). CRS patients experience negative impacts on quality of life (QOL) and suffer from comorbidities linked to systemic inflammation. However, systemic inflammatory profiling to evaluate the association between systemic inflammation and QOL in CRS has not been performed. Our objectives were to compare local and systemic inflammatory gene expression in patients with CRS to determine if systemic markers of inflammation associate with disease severity and disease-specific QOL. METHODS A prospective observational study was conducted comparing 16 patients with CRS to 10 controls. Inflammatory gene expression in the anterior ethmoid tissues and peripheral blood of patients was measured using multiplex gene expression analysis and correlated to disease severity (computed tomography and nasal endoscopy) and disease-specific QOL (22-item Sino-Nasal Outcome Test [SNOT-22] and Rhinosinusitis Disability Index) using linear regression analyses. RESULTS Patients with CRS showed significant increases in the expression of ctla4 and jak1 in sinonasal tissue and blood (p < 0.05), whereas the gene expression of hla-dqa1, hla-dqb1, and dusp4 was significantly decreased in patients with CRS compared to controls (p < 0.05). Soluble and local ctla4 and jak1 showed a significant positive correlation with clinical markers of disease severity and disease-specific QOL (p < 0.05). CONCLUSION Local and systemic gene expression involved in T-cell immune signaling was found to be significantly altered in the blood and sinonasal tissues of patients with CRS compared to controls and significantly correlated to disease severity and QOL in patients with CRS.
Collapse
Affiliation(s)
- Quinn Orb
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT
| | - Abigail Pulsipher
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT
| | - Kristine A Smith
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Shaelene Ashby
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT
| | - Jeremiah A Alt
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Utah, Salt Lake City, UT
| |
Collapse
|
30
|
Schroeder J, Ross K, McIntosh K, Jabber S, Woods S, Crowe J, Patterson Kane J, Alexander J, Lawrence C, Plevin R. Novel protective role for MAP kinase phosphatase 2 in inflammatory arthritis. RMD Open 2019; 5:e000711. [PMID: 30713718 PMCID: PMC6340532 DOI: 10.1136/rmdopen-2018-000711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 12/14/2022] Open
Abstract
Objectives We have previously shown mitogen-activated protein kinase phosphatase 2 (MKP-2) to be a key regulator of proinflammatory cytokines in macrophages. In the study presented here, we investigated the role of MKP-2 in inflammatory arthritis with a particular focus on neutrophils. Methods To achieve this, we subjected MKP-2 deficient and wild type mice to collagen antibody induced arthritis, an innate model of arthritis, and determined disease pathology. To further our investigation, we depleted neutrophils in a prophylactic and therapeutic fashion. Last, we used chemotaxis assays to analyse the impact of MKP-2 deletion on neutrophil migration. Results MKP-2-/- mice showed a significant increase in disease pathology linked to elevated levels of proarthritic cytokines and chemokines TNF-α, IL-6 and MCP-1 in comparison to wild type controls. This phenotype is prevented or abolished after administration of neutrophil depleting antibody prior or after onset of disease, respectively. While MCP-1 levels were not affected, neutrophil depletion diminished TNF-α and reduced IL-6, thus linking these cytokines to neutrophils. In vivo imaging showed that MKP-2-/- mice had an increased influx of neutrophils into affected joints, which was higher and potentially prolonged than in wild type animals. Furthermore, using chemotaxis assays we revealed that MKP-2 deficient neutrophils migrate faster towards a Leukotriene B4 gradient. This process correlated with a reduced phosphorylation of ERK in MKP-2-/- neutrophils. Conclusions This is the first study to show a protective role for MKP-2 in inflammatory arthritis.
Collapse
Affiliation(s)
- Juliane Schroeder
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland
| | - Kirsty Ross
- Pure and Applied Chemistry, Technology Innovation Centre, University of Strathclyde, Glasgow, Scotland
| | - Kathryn McIntosh
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Shilan Jabber
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Stuart Woods
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland
| | | | - James Alexander
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Catherine Lawrence
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| | - Robin Plevin
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
31
|
DUSP10 Negatively Regulates the Inflammatory Response to Rhinovirus through Interleukin-1β Signaling. J Virol 2019; 93:JVI.01659-18. [PMID: 30333178 PMCID: PMC6321923 DOI: 10.1128/jvi.01659-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Rhinoviruses are one of the causes of the common cold. In patients with asthma or chronic obstructive pulmonary disease, viral infections, including those with rhinovirus, are the commonest cause of exacerbations. Novel therapeutics to limit viral inflammation are clearly required. The work presented here identifies DUSP10 as an important protein involved in limiting the inflammatory response in the airway without affecting immune control of the virus. Rhinoviral infection is a common trigger of the excessive inflammation observed during exacerbations of asthma and chronic obstructive pulmonary disease. Rhinovirus (RV) recognition by pattern recognition receptors activates the mitogen-activated protein kinase (MAPK) pathways, which are common inducers of inflammatory gene production. A family of dual-specificity phosphatases (DUSPs) can regulate MAPK function, but their roles in rhinoviral infection are not known. We hypothesized that DUSPs would negatively regulate the inflammatory response to RV infection. Our results revealed that the p38 and c-Jun N-terminal kinase (JNK) MAPKs play key roles in the inflammatory response of epithelial cells to RV infection. Three DUSPs previously shown to have roles in innate immunity (DUSPs 1, 4, and 10) were expressed in primary bronchial epithelial cells, and one of them, DUSP10, was downregulated by RV infection. Small interfering RNA-mediated knockdown of DUSP10 identified a role for the protein in negatively regulating inflammatory cytokine production in response to interleukin-1β (IL-1β), alone and in combination with RV, without any effect on RV replication. This study identifies DUSP10 as an important regulator of airway inflammation in respiratory viral infection. IMPORTANCE Rhinoviruses are one of the causes of the common cold. In patients with asthma or chronic obstructive pulmonary disease, viral infections, including those with rhinovirus, are the commonest cause of exacerbations. Novel therapeutics to limit viral inflammation are clearly required. The work presented here identifies DUSP10 as an important protein involved in limiting the inflammatory response in the airway without affecting immune control of the virus.
Collapse
|
32
|
Chen M, Zhang J, Berger AH, Diolombi MS, Ng C, Fung J, Bronson RT, Castillo-Martin M, Thin TH, Cordon-Cardo C, Plevin R, Pandolfi PP. Compound haploinsufficiency of Dok2 and Dusp4 promotes lung tumorigenesis. J Clin Invest 2018; 129:215-222. [PMID: 30475228 DOI: 10.1172/jci99699] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023] Open
Abstract
Recurrent broad-scale heterozygous deletions are frequently observed in human cancer. Here we tested the hypothesis that compound haploinsufficiency of neighboring genes at chromosome 8p promotes tumorigenesis. By targeting the mouse orthologs of human DOK2 and DUSP4 genes, which were co-deleted in approximately half of human lung adenocarcinomas, we found that compound-heterozygous deletion of Dok2 and Dusp4 in mice resulted in lung tumorigenesis with short latency and high incidence, and that their co-deletion synergistically activated MAPK signaling and promoted cell proliferation. Conversely, restoration of DOK2 and DUSP4 in lung cancer cells suppressed MAPK activation and cell proliferation. Importantly, in contrast to downregulation of DOK2 or DUSP4 alone, concomitant downregulation of DOK2 and DUSP4 was associated with poor survival in human lung adenocarcinoma. Therefore, our findings lend in vivo experimental support to the notion that compound haploinsufficiency, due to broad-scale chromosome deletions, constitutes a driving force in tumorigenesis.
Collapse
Affiliation(s)
- Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alice H Berger
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Moussa S Diolombi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher Ng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline Fung
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| | - Roderick T Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mireia Castillo-Martin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Pathology, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Tin Htwe Thin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Li Z, Liu X, Tian F, Li J, Wang Q, Gu C. MKP2 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells through a JNK-dependent pathway. Clin Sci (Lond) 2018; 132:2339-2355. [PMID: 30322849 DOI: 10.1042/cs20180602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a phenotypic conversion that plays a crucial role in renal fibrosis leading to chronic renal failure. Mitogen-activated protein kinase phosphatase 2 (MKP2) is a member of the dual-specificity MKPs that regulate the MAP kinase pathway involved in transforming growth factor-β1 (TGF-β1)-induced EMT. However, the function of MKP2 in the regulation of EMT and the underlying mechanisms are still largely unknown. In the present study, we detected the expression of MKP2 in an animal model of renal fibrosis and evaluated the potential role of MKP2 in tubular EMT induced by TGF-β1. We found that the expression of MKP2 was up-regulated in the tubular epithelial of unilateral ureter obstruction rats. Meanwhile, we also demonstrated that TGF-β1 up-regulated MKP2 expression in NRK-52E cells during their EMT phenotype acquisition. Importantly, overexpression of MKP2 inhibited c-Jun amino terminal kinase (JNK) signaling and partially reversed EMT induced by TGF-β1. Moreover, reducing MKP2 expression enhanced JNK phosphorylation, promoted the E-cadherin suppression and induced α-SMA expression and fibronectin secretion in response to TGF-β1, which could be rescued by a JNK inhibitor. These results provide the first evidence that MKP2 is a negative feedback molecule induced by TGF-β1, and MKP2 overexpression inhibits TGF-β1-induced EMT through the JNK signaling pathway. MKP2 could be a promising target to be used in gene therapy for renal fibrosis.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Nephrology, Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianghua Liu
- Pathological Experiment Center, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Fengyan Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji Li
- Pediatric Urology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingwei Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaohui Gu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Seternes OM, Kidger AM, Keyse SM. Dual-specificity MAP kinase phosphatases in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:124-143. [PMID: 30401534 PMCID: PMC6227380 DOI: 10.1016/j.bbamcr.2018.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions. A comprehensive review of the dual-specificity MAP kinase Phosphatases (MKPs) Focus is on MKPs in the regulation of MAPK signalling in health and disease. Covers roles of MKPs in inflammation, obesity/diabetes, cancer and neurodegeneration
Collapse
Affiliation(s)
- Ole-Morten Seternes
- Department of Pharmacy, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK.
| | - Stephen M Keyse
- Stress Response Laboratory, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK.
| |
Collapse
|
35
|
Immunomodulation of dual specificity phosphatase 4 during visceral leishmaniasis. Microbes Infect 2018; 20:111-121. [DOI: 10.1016/j.micinf.2017.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
|
36
|
Nadella V, Mohanty A, Sharma L, Yellaboina S, Mollenkopf HJ, Mazumdar VB, Palaparthi R, Mylavarapu MB, Maurya R, Kurukuti S, Rudel T, Prakash H. Inhibitors of Apoptosis Protein Antagonists (Smac Mimetic Compounds) Control Polarization of Macrophages during Microbial Challenge and Sterile Inflammatory Responses. Front Immunol 2018; 8:1792. [PMID: 29375545 PMCID: PMC5767188 DOI: 10.3389/fimmu.2017.01792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is a physiological cell death process essential for development, tissue homeostasis, and for immune defense of multicellular animals. Inhibitors of apoptosis proteins (IAPs) regulate apoptosis in response to various cellular assaults. Using both genetic and pharmacological approaches we demonstrate here that the IAPs not only support opportunistic survival of intracellular human pathogens like Chlamydia pneumoniae but also control plasticity of iNOS+ M1 macrophage during the course of infection and render them refractory for immune stimulation. Treatment of Th1 primed macrophages with birinapant (IAP-specific antagonist) inhibited NO generation and relevant proteins involved in innate immune signaling. Accordingly, birinapant promoted hypoxia, angiogenesis, and tumor-induced M2 polarization of iNOS+ M1 macrophages. Interestingly, birinapant-driven changes in immune signaling were accompanied with changes in the expression of various proteins involved in the metabolism, and thus revealing the new role of IAPs in immune metabolic reprogramming in committed macrophages. Taken together, our study reveals the significance of IAP targeting approaches (Smac mimetic compounds) for the management of infectious and inflammatory diseases relying on macrophage plasticity.
Collapse
Affiliation(s)
- Vinod Nadella
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | - Aparna Mohanty
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | - Lalita Sharma
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | - Sailu Yellaboina
- YU-IOB Centre for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | - Hans-Joachim Mollenkopf
- Core Facility Genomics and Microarray, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Varadendra Balaji Mazumdar
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| | | | | | - Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Thomas Rudel
- Biocentre, Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Sciences, University of Hyderabad, Telangana, India
| |
Collapse
|
37
|
Soulat D, Bogdan C. Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Front Immunol 2017; 8:1838. [PMID: 29312331 PMCID: PMC5743797 DOI: 10.3389/fimmu.2017.01838] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
The kinetoplastid protozoan parasites belonging to the genus Leishmania are the causative agents of different clinical forms of leishmaniasis, a vector-borne infectious disease with worldwide prevalence. The protective host immune response against Leishmania parasites relies on myeloid cells such as dendritic cells and macrophages in which upon stimulation by cytokines (e.g., interferon-γ) a complex network of signaling pathways is switched on leading to strong antimicrobial activities directed against the intracellular parasite stage. The regulation of these pathways classically depends on post-translational modifications of proteins, with phosphorylation events playing a cardinal role. Leishmania parasites deactivate their phagocytic host cells by inducing specific mammalian phosphatases that are capable to impede signaling. On the other hand, there is now also evidence that Leishmania spp. themselves express phosphatases that might target host cell molecules and thereby facilitate the intracellular survival of the parasite. This review will present an overview on the modulation of host phosphatases by Leishmania parasites as well as on the known families of Leishmania phosphatases and their possible function as virulence factors. A more detailed understanding of the role of phosphatases in Leishmania–host cell interactions might open new avenues for the treatment of non-healing, progressive forms of leishmaniasis.
Collapse
Affiliation(s)
- Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| |
Collapse
|
38
|
GFAPδ/GFAPα ratio directs astrocytoma gene expression towards a more malignant profile. Oncotarget 2017; 8:88104-88121. [PMID: 29152145 PMCID: PMC5675697 DOI: 10.18632/oncotarget.21540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Astrocytomas are the most common malignant brain tumours and are to date incurable. It is unclear how astrocytomas progress into higher malignant grades. The intermediate filament cytoskeleton is emerging as an important regulator of malignancy in several tumours. The majority of the astrocytomas express the intermediate filament protein Glial Fibrillary Acidic Protein (GFAP). Several GFAP splice variants have been identified and the main variants expressed in human astrocytoma are the GFAPα and GFAPδ isoforms. Here we show a significant downregulation of GFAPα in grade IV astrocytoma compared to grade II and III, resulting in an increased GFAPδ/α ratio. Mimicking this increase in GFAPδ/α ratio in astrocytoma cell lines and comparing the subsequent transcriptomic changes with the changes in the patient tumours, we have identified a set of GFAPδ/α ratio-regulated high-malignant and low-malignant genes. These genes are involved in cell proliferation and protein phosphorylation, and their expression correlated with patient survival. We additionally show that changing the ratio of GFAPδ/α, by targeting GFAP expression, affected expression of high-malignant genes. Our data imply that regulating GFAP expression and splicing are novel therapeutic targets that need to be considered as a treatment for astrocytoma.
Collapse
|
39
|
Kim HS, Asmis R. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype. Free Radic Biol Med 2017; 109:75-83. [PMID: 28330703 PMCID: PMC5462841 DOI: 10.1016/j.freeradbiomed.2017.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea; Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Reto Asmis
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
40
|
Kobayashi Y, Ito K, Kanda A, Tomoda K, Mercado N, Barnes PJ. Impaired Dual-Specificity Protein Phosphatase DUSP4 Reduces Corticosteroid Sensitivity. Mol Pharmacol 2017; 91:475-481. [PMID: 28283554 DOI: 10.1124/mol.116.107656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/06/2017] [Indexed: 12/23/2022] Open
Abstract
We have reported that phosphorylation of the glucocorticoid receptor (GR) at Ser226 reduces GR nuclear translocation, resulting in corticosteroid insensitivity in patients with severe asthmas. A serine/threonine protein phosphatase 2A, which regulates c-Jun N-terminal kinase (JNK) 1 and GR-Ser226 signaling, is involved in this mechanism. Here, we further explored protein kinase dual-specificity phosphatases (DUSPs) with the ability to dephosphorylate JNK, and identified DUSP4 as a phosphatase involved in the regulation of corticosteroid sensitivity. The effects of knocking down DUSPs (DUSP1, 4, 8, 16, and 22) by small interfering RNA (siRNA) were evaluated in a monocytic cell line (U937). Corticosteroid sensitivity was determined by dexamethasone enhancement of FK506-binding protein 51 or inhibition of tumor necrosis factor α (TNFα)-induced interferon γ and interleukin 8 expression and GR translocation from cell cytoplasm to nucleus. The nuclear/cytoplasmic GR, phosphorylation levels of GR-Ser226 and JNK1, coimmunoprecipitated GR-JNK1-DUSP4, and DUSP4 expression were analyzed by western blotting and/or imaging flow cytometry. Phosphatase activity of immunoprecipitated (IP)-DUSP4 was measured by fluorescence-based assay. Knockdown of DUSP4 enhanced phosphorylation of GR-Ser226 and JNK1 and reduced GR nuclear translocation and corticosteroid sensitivity. Coimmunoprecipitation experiments showed that DUSP4 is associated with GR and JNK1. In peripheral blood mononuclear cells from severe asthmatics, DUSP4 expression was reduced versus healthy subjects and negatively correlated with phosphorylation levels of GR-Ser226 and JNK1. Formoterol enhanced DUSP4 activity and restored corticosteroid sensitivity reduced by DUSP4 siRNA. In conclusion, DUSP4 regulates corticosteroid sensitivity via dephosphorylation of JNK1 and GR-Ser226 DUSP4 activation by formoterol restores impaired corticosteroid sensitivity, indicating that DUSP4 is crucial in regulating corticosteroid sensitivity, and therefore might be a novel therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Yoshiki Kobayashi
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Kazuhiro Ito
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Akira Kanda
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Koich Tomoda
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Nicolas Mercado
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom (Y.K., K.I., N.M., P.J.B.); and Airway Disease Section, Department of Otolaryngology, Kansai Medical University, Moriguchi, Osaka, Japan (Y.K., A.K., K.T.)
| |
Collapse
|
41
|
Han L, Xie YH, Wu R, Chen C, Zhang Y, Wang XP. Traditional Chinese medicine for modern treatment of Parkinson’s disease. Chin J Integr Med 2017; 23:635-640. [DOI: 10.1007/s11655-016-2537-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Indexed: 01/30/2023]
|
42
|
Ryu HW, Lee SU, Lee S, Song HH, Son TH, Kim YU, Yuk HJ, Ro H, Lee CK, Hong ST, Oh SR. 3-Methoxy-catalposide inhibits inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Cytokine 2016; 91:57-64. [PMID: 28011397 DOI: 10.1016/j.cyto.2016.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 01/18/2023]
Abstract
Pseudolysimachion rotundum var. subintegrum is utilized as a traditional herbal remedy to treat cough, bronchitis, and asthma in Korea, Russia, China, and Europe. Here, we show that 3-methoxy-catalposide, a novel iridoide glycoside isolated from P. rotundum var. subintegrum has the anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated macrophages. The chemical structure of 3-methoxy-catalposide was determined by NMR, optical rotation and HRESIMS. In in vitro experiment, RAW264.7 cells were treated with 3-methoxy-catalposide for 2h before exposure to LPS for different times. Inflammatory gene and protein expressions were assayed using RT-PCR and ELISA. Activities of signal proteins were examined using western analysis. Our results demonstrated that 3-methoxy-catalposide significantly inhibits the expression of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated by LPS, thereby suppressing the release of prostaglandin E2 (PGE2) and nitric oxide (NO). Moreover, 3-methoxy-catalposide markedly reduced the LPS-induced expression of pro-inflammatory genes, such as interleukin (IL)-6, IL-1β, and TNF-α. Further, 3-methoxy-catalposide inhibited both LPS-induced activation of three MAP kinases (ERK 1/2, JNK, and p38) and the nuclear translocation of NF-κB and AP-1. These results support that 3-methoxy-catalposide may be a promising candidate for inflammation treatment.
Collapse
Affiliation(s)
- Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Seoghyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk-Hwan Song
- R&D Team, Agency for Korea National Food Cluster (AnFC), 460 Iksan-daero, Iksan, Jeonbuk 507-749, Republic of Korea
| | - Tae Hyun Son
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yeah-Un Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hyunju Ro
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sung-Tae Hong
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong, Daejeon 34141, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea.
| |
Collapse
|
43
|
MAP kinase phosphatase 2 deficient mice develop attenuated experimental autoimmune encephalomyelitis through regulating dendritic cells and T cells. Sci Rep 2016; 6:38999. [PMID: 27958388 PMCID: PMC5154199 DOI: 10.1038/srep38999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinase phosphatases (MKPs) play key roles in inflammation and immune mediated diseases. Here we investigated the mechanisms by which MKP-2 modulates central nervous system (CNS) inflammation in experimental autoimmune encephalomyelitis (EAE). Our results show that MKP-2 mRNA levels in the spinal cord and lymphoid organs of EAE mice were increased compared with naive controls, indicating an important role for MKP-2 in EAE development. Indeed, MKP-2−/− mice developed reduced EAE severity, associated with diminished CNS immune cell infiltration, decreased proinflammatory cytokine production and reduced frequency of CD4+ and CD8+ T cells in spleens and lymph nodes. In addition, MKP-2−/− CD11c+ dendritic cells (DCs) had reduced expression of MHC-II and CD40 compared with MKP-2+/+ mice. Subsequent experiments revealed that CD4+ T cells from naïve MKP-2−/− mice had decreased cell proliferation and IL-2 and IL-17 production relative to wild type controls. Furthermore, co-culture experiments showed that bone marrow derived DCs of MKP-2−/− mice had impaired capability in antigen presentation and T cell activation. While MKP-2 also modulates macrophage activation, our study suggests that MKP-2 is essential to the pathogenic response of EAE, and it acts mainly via regulating the important antigen presenting DC function and T cell activation.
Collapse
|
44
|
Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci 2016; 36:2348-54. [PMID: 26911683 DOI: 10.1523/jneurosci.3825-15.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2(-/-) mice), we show that long-term potentiation is impaired in MKP-2(-/-) mice compared with MKP-2(+/+) controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2(-/-) mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2(-/-) mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling.
Collapse
|
45
|
Sun HN, Han YH, Feng L, Jin CH, Han B, Liu L, Lee DS, Kwon TH, Li LG, Ge WZ, Cui YD. 16α, 17α-epoxypregnenolone-20-oxime inhibits NO and IL-6 production in LPS-treated RAW264.7 cells. Mol Med Rep 2016; 13:4927-33. [PMID: 27082161 DOI: 10.3892/mmr.2016.5125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 03/29/2016] [Indexed: 11/06/2022] Open
Abstract
It has previously been reported that 16α, 17α-epoxypregnenolone-20-oxime (EPREGO) exerts an inhibitory effect on nitric oxide (NO) production and inducible NO synthase (iNOS) expression in microglia. The present study aimed to investigate the effects of EPREGO on the lipopolysaccharide (LPS)‑induced inflammatory response in RAW264.7 macrophage cells, and to determine the underlying molecular mechanisms using western blot analysis, enzyme‑linked immunosorbent assays and fluorescence‑activated cell sorting. The present study demonstrated that LPS‑induced production of NO and interleukin (IL)-6, and the protein expression levels of iNOS, were reduced by EPREGO in a dose‑ and time‑dependent manner, whereas, EPREGO did not affect tumor necrosis factor‑α production. In addition, EPREGO suppressed LPS‑induced cellular reactive oxygen species production and phagocytosis. Furthermore, EPREGO significantly inhibited the LPS‑induced activation of mitogen‑activated protein kinases and inhibitor of κB α degradation in LPS‑stimulated RAW264.7 cells, thus resulting in modulation of the production of NO and IL‑6. Taken together, these results suggest that EPREGO exhibits anti-inflammatory activity in macrophages, thus validating the hypothesis that EPREGO may be useful as a therapeutic agent for the treatment of macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Hu-Nan Sun
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hao Han
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Li Feng
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Bing Han
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Lei Liu
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Dong-Soek Lee
- Laboratory of Neurobiology School of Life Sciences, KNU Creative Bioresearch Group (BK21 plus project), Kyungpook National University, Daegu 702‑701, Republic of Korea
| | - Tea-Ho Kwon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143‑701, Republic of Korea
| | - Le-Gong Li
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Wen-Zhong Ge
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu-Dong Cui
- Laboratory of Disease Animal Model Research Center (DMARC), College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
46
|
Prakash H, Klug F, Nadella V, Mazumdar V, Schmitz-Winnenthal H, Umansky L. Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: lesson from insulinoma. Carcinogenesis 2016; 37:301-313. [PMID: 26785731 DOI: 10.1093/carcin/bgw007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor infiltrating iNOS+ macrophages under the influence of immunosuppressive tumor microenvironment gets polarized to tumor-promoting and immunosuppressive macrophages, known as tumor-associated macrophages (TAM). Their recruitment and increased density in the plethora of tumors has been associated with poor prognosis in cancer patients. Therefore, retuning of TAM to M1 phenotype would be a key for effective immunotherapy. Radiotherapy has been a potential non-invasive strategy to improve cancer immunotherapy and tumor immune rejection. Irradiation of late-stage tumor-bearing Rip1-Tag5 mice twice with 2 Gy dose resulted in profound changes in the inflammatory tumor micromilieu, characterized by induction of M1-associated effecter cytokines as well as reduction in protumorigenic and M2-associated effecter cytokines. Similarly, in vitro irradiation of macrophages with 2 Gy dose-induced expression of iNOS, NO, NFκBpp65, pSTAT3 and proinflammatory cytokines secretion while downregulating p38MAPK which are involved in iNOS translation and acquisition of an M1-like phenotype. Enhancement of various M2 effecter cytokines and angiogenic reprogramming in iNOs+ macrophage depleted tumors and their subsequent reduction by 2 Gy dose in Rip1-Tag5 transgenic mice furthermore demonstrated a critical role of peritumoral macrophages in the course of gamma irradiation mediated M1 retuning of insulinoma.
Collapse
Affiliation(s)
- Hridayesh Prakash
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| | - Felix Klug
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| | - Vinod Nadella
- School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | - Varadendra Mazumdar
- School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | | | - Liudmila Umansky
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| |
Collapse
|
47
|
Dual-Specificity Phosphatase 4 Regulates STAT5 Protein Stability and Helper T Cell Polarization. PLoS One 2015; 10:e0145880. [PMID: 26710253 PMCID: PMC4692422 DOI: 10.1371/journal.pone.0145880] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 12/09/2015] [Indexed: 11/23/2022] Open
Abstract
Immune responses are critically regulated by the functions of CD4 helper T cells. Based on their secreted cytokines, helper T cells are further categorized into different subsets like Treg or Th17 cells, which suppress or promote inflammatory responses, respectively. Signals from IL-2 activate the transcription factor STAT5 to promote Treg but suppress Th17 cell differentiation. Our previous results found that the deficiency of a dual-specificity phosphatase, DUSP4, induced STAT5 hyper-activation, enhanced IL-2 signaling, and increased T cell proliferation. In this report, we examined the effects of DUSP4 deficiency on helper T cell differentiation and STAT5 regulation. Our in vivo data showed that DUSP4 mice were more resistant to the induction of autoimmune encephalitis, while in vitro differentiations revealed enhanced iTreg and reduced Th17 polarization in DUSP4-deficient T cells. To study the cause of this altered helper T cell polarization, we performed luciferase reporter assays and confirmed that, as predicted by our previous report, DUSP4 over-expression suppressed the transcription factor activity of STAT5. Surprisingly, we also found that DUSP4-deficient T but not B cells exhibited elevated STAT5 protein levels, and over-expressed DUSP4 destabilized STAT5 in vitro; moreover, this destabilization required the phosphatase activity of DUSP4, and was insensitive to MG132 treatment. Finally, domain-mapping results showed that both the substrate-interacting and the phosphatase domains of DUSP4 were required for its optimal interaction with STAT5, while the coiled-coil domain of STAT5 appeared to hinder this interaction. Our data thus provide the first genetic evidence that DUSP4 is important for helper T cell development. In addition, they also help uncover the novel, DUSP4-mediated regulation of STAT5 protein stability.
Collapse
|
48
|
Niedzielska M, Raffi FAM, Tel J, Muench S, Jozefowski K, Alati N, Lahl K, Mages J, Billmeier U, Schiemann M, Appelt UK, Wirtz S, Sparwasser T, Hochrein H, Figdor CG, Keyse SM, Lang R. Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production. THE JOURNAL OF IMMUNOLOGY 2015; 195:1753-62. [PMID: 26170386 DOI: 10.4049/jimmunol.1400658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/12/2015] [Indexed: 01/01/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) efficiently produce large amounts of type I IFN in response to TLR7 and TLR9 ligands, whereas conventional DCs (cDCs) predominantly secrete high levels of the cytokines IL-10 and IL-12. The molecular basis underlying this distinct phenotype is not well understood. In this study, we identified the MAPK phosphatase Dusp9/MKP-4 by transcriptome analysis as selectively expressed in pDCs, but not cDCs. We confirmed the constitutive expression of Dusp9 at the protein level in pDCs generated in vitro by culture with Flt3 ligand and ex vivo in sorted splenic pDCs. Dusp9 expression was low in B220(-) bone marrow precursors and was upregulated during pDC differentiation, concomitant with established pDC markers. Higher expression of Dusp9 in pDCs correlated with impaired phosphorylation of the MAPK ERK1/2 upon TLR9 stimulation. Notably, Dusp9 was not expressed at detectable levels in human pDCs, although these displayed similarly impaired activation of ERK1/2 MAPK compared with cDCs. Enforced retroviral expression of Dusp9 in mouse GM-CSF-induced cDCs increased the expression of TLR9-induced IL-12p40 and IFN-β, but not of IL-10. Conditional deletion of Dusp9 in pDCs was effectively achieved in Dusp9(flox/flox); CD11c-Cre mice at the mRNA and protein levels. However, the lack of Dusp9 in pDC did not restore ERK1/2 activation after TLR9 stimulation and only weakly affected IFN-β and IL-12p40 production. Taken together, our results suggest that expression of Dusp9 is sufficient to impair ERK1/2 activation and enhance IFN-β expression. However, despite selective expression in pDCs, Dusp9 is not essential for high-level IFN-β production by these cells.
Collapse
Affiliation(s)
- Magdalena Niedzielska
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Faizal A M Raffi
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Jurjen Tel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Sandra Muench
- Cancer Research UK Stress Response Laboratory, Division of Cancer Research, Medical Research Institute, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Katrin Jozefowski
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Nour Alati
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Katharina Lahl
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; Section of Virology, National Veterinary Institute, Technical University of Denmark, 1870 Frederiksberg, Denmark; Immunology Section, Lund University, 221 00 Lund, Sweden
| | - Jörg Mages
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany
| | - Ulrike Billmeier
- Medical Clinic 1, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Matthias Schiemann
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany
| | - Uwe K Appelt
- Cell Sorting Unit, Nikolaus-Fiebiger-Center for Molecular Medicine, 91054 Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Tim Sparwasser
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany; TWINCORE-Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany; and
| | - Hubertus Hochrein
- Department of Research, Bavarian Nordic GmbH, 82152 Martinsried, Germany
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands
| | - Stephen M Keyse
- Cancer Research UK Stress Response Laboratory, Division of Cancer Research, Medical Research Institute, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, 91054 Erlangen, Germany; Institute of Medical Microbiology, Immunology and Hygiene, Technical University Munich, 81675 Munich, Germany;
| |
Collapse
|
49
|
Jiao H, Tang P, Zhang Y. MAP kinase phosphatase 2 regulates macrophage-adipocyte interaction. PLoS One 2015; 10:e0120755. [PMID: 25816341 PMCID: PMC4376689 DOI: 10.1371/journal.pone.0120755] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/26/2015] [Indexed: 01/04/2023] Open
Abstract
Objective Inflammation is critical for the development of obesity-associated metabolic disorders. This study aims to investigate the role of mitogen-activated protein kinase phosphatase 2 (MKP-2) in inflammation during macrophage-adipocyte interaction. Methods White adipose tissues (WAT) from mice either on a high-fat diet (HFD) or normal chow (NC) were isolated to examine the expression of MKP-2. Murine macrophage cell line RAW264.7 stably expressing MKP-2 was used to study the regulation of MKP-2 in macrophages in response to saturated free fatty acid (FFA) and its role in macrophage M1/M2 activation. Macrophage-adipocyte co-culture system was employed to investigate the role of MKP-2 in regulating inflammation during adipocyte-macrophage interaction. c-Jun N-terminal kinase (JNK)- and p38-specific inhibitors were used to examine the mechanisms by which MKP-2 regulates macrophage activation and macrophage-adipocytes interaction. Results HFD changed the expression of MKP-2 in WAT, and MKP-2 was highly expressed in the stromal vascular cells (SVCs). MKP-2 inhibited the production of proinflammatory cytokines in response to FFA stimulation in macrophages. MKP-2 inhibited macrophage M1 activation through JNK and p38. In addition, overexpression of MKP-2 in macrophages suppressed inflammation during macrophage-adipocyte interaction. Conclusion MKP-2 is a negative regulator of macrophage M1 activation through JNK and p38 and inhibits inflammation during macrophage-adipocyte interaction.
Collapse
Affiliation(s)
- Huipeng Jiao
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Peng Tang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Yongliang Zhang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, the Life Science Institute, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
50
|
James SJ, Jiao H, Teh HY, Takahashi H, Png CW, Phoon MC, Suzuki Y, Sawasaki T, Xiao H, Chow VTK, Yamamoto N, Reynolds JM, Flavell RA, Dong C, Zhang Y. MAPK Phosphatase 5 Expression Induced by Influenza and Other RNA Virus Infection Negatively Regulates IRF3 Activation and Type I Interferon Response. Cell Rep 2015; 10:1722-1734. [PMID: 25772359 DOI: 10.1016/j.celrep.2015.02.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/20/2015] [Accepted: 02/08/2015] [Indexed: 11/17/2022] Open
Abstract
The type I interferon system is essential for antiviral immune response and is a primary target of viral immune evasion strategies. Here, we show that virus infection induces the expression of MAPK phosphatase 5 (MKP5), a dual-specificity phosphatase (DUSP), in host cells. Mice deficient in MKP5 were resistant to H1N1 influenza infection, which is associated with increased IRF3 activation and type I interferon expression in comparison with WT mice. Increased type I interferon responses were also observed in MKP5-deficient cells and animals upon other RNA virus infection, including vesicular stomatitis virus and sendai virus. These observations were attributed to the ability of MKP5 to interact with and dephosphorylate IRF3. Our study reveals a critical function of a DUSP in negative regulation of IRF3 activity and demonstrates a mechanism by which influenza and other RNA viruses inhibit type I interferon response in the host through MKP5.
Collapse
Affiliation(s)
- Sharmy J James
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Huipeng Jiao
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Hong-Ying Teh
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Hirotaka Takahashi
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Chin Wen Png
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore
| | - Meng Chee Phoon
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Youichi Suzuki
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Tatsuy Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hui Xiao
- Unit of Immune Regulation and Signaling, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Vincent T K Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Naoki Yamamoto
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore
| | - Joseph M Reynolds
- Department of Microbiology & Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Richard A Flavell
- Department of Immunology, Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Chen Dong
- Tsinghua University, Beijing 100084, China
| | - Yongliang Zhang
- Department of Microbiology, Yong Loo Lin School of Medicine, Singapore 117597, Singapore; Immunology Progamme, Life Sciences Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|