1
|
Ni P, Li L, Du K, Nov P, Wang D, Wang C, Kou Q, Li Y, Zhang Y, Zheng C, Fu W, Li J. Unveiling the immunological terrain of pancreatic ductal adenocarcinoma: strategies to prompt immunotherapy from Mendelian randomization. Discov Oncol 2025; 16:613. [PMID: 40279021 PMCID: PMC12031697 DOI: 10.1007/s12672-025-02250-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is challenging to treat due to its immunosuppressive tumor microenvironment (TME) and resistance to immune checkpoint inhibitors. This study aims to discover new therapeutic targets and predictive biomarkers for PDAC. METHODS Using Mendelian randomization, we studied causal relationships between PDAC and an array of immune cell traits, bacterial traits, inflammatory factors, and blood metabolites. We employed large genome-wide association study datasets and the two-sample MR approach for the investigation. RESULTS Our results highlight suggestive evidence of associations between PDAC and distinct immune cell phenotypes, revealing nuanced alterations across monocytes, T-cells, B-cells, dendritic cells, and myeloid-derived suppressor cells. Our study provides a granular view of the PDAC-immune interface, identifying key immune cell traits and their associations with PDAC. For instance, our findings suggest a detrimental reduction in various monocyte traits, alongside a decrease in B-cell populations. Conversely, certain T-cell subsets showed increased associations, indicating potential targets for immunotherapeutic strategies. The bacterial trait associations, particularly with Collinsella and Ruminococcus torques, highlight the gut microbiome's influence on immune modulation and PDAC pathogenesis. Additionally, the traits concerning Interleukin-12 subunit beta levels and T-cell surface glycoprotein CD5 levels further indicate their function of this complex interaction. CONCLUSIONS This study enhances our understanding of PDAC's resistance to immunotherapies and highlights the potential of personalized immunotherapy and metabolic pathway modulation in PDAC treatment. Our findings provide supportive evidence for research and clinical translation.
Collapse
Affiliation(s)
- Peizan Ni
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Lilin Li
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - KunPeng Du
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Pengkhun Nov
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Duanyu Wang
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Changqian Wang
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Qianzi Kou
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Ying Li
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Yangfeng Zhang
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Chongyang Zheng
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Wen Fu
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China
| | - Jiqiang Li
- Department of Radiotherapy, Oncology Center, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
2
|
Tran VTA, Zhu X, Jamsranjav A, Lee LP, Cho H. Escherichia Coli K1-colibactin meningitis induces microglial NLRP3/IL-18 exacerbating H3K4me3-synucleinopathy in human inflammatory gut-brain axis. Commun Biol 2025; 8:382. [PMID: 40050667 PMCID: PMC11885818 DOI: 10.1038/s42003-025-07787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Escherichia coli K1 (E. coli K1) meningitis early occurs in the gastrointestinal and causes severe damage to the central nervous system, including lifelong neurological complications in survivors. However, the cellular mechanism by which E. coli K1 may cause neuropathies is not well understood due to the lack of relevant human multi-organ models for studying multifaceted systemic inflammation across the gut-brain axis. Here, we reconstruct a multicellular model of the human gut-brain axis to identify the neuropathogenic mechanism driven by E. coli K1-colibactin meningitis. We observed that E. coli K1-genotoxic colibactin induced intestinal and peripheral interleukin 6, causing the blood-brain barrier injury and endothelial inflammation via the p38/p65 pathways. Serpin-E1 from the damaged cerebral endothelia induces reactive astrocytes to release IFN-γ, which reduces microglial phagocytosis of E. coli K1 and exacerbates detrimental neuroinflammation via NLRP3/IL-18 axis. Microglial IL-18 elevates neuronal reactive oxidative stress that worsens DNA double-strand breaks in E. coli K1-infected neurons, leading to H3K4 trimethylation and phosphorylation of alpha-synuclein. Our findings suggest therapeutic strategies for post-bacterial meningitis treatment to potentially prevent the initiation of synucleinopathy.
Collapse
Affiliation(s)
- Van Thi Ai Tran
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Xiaohui Zhu
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Ariunzaya Jamsranjav
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea
| | - Luke P Lee
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Harvard Institute of Medicine, Harvard University, Boston, MA, USA.
| | - Hansang Cho
- Institute of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Healthcare Medicine, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
3
|
Lin ZH, Lo HC, Chang CC, Lu MK, Tseng AJ, Chao CH, Chao CH, Lin TY. Sulfated polysaccharide from Antrodia cinnamomea mycelium cultured with zinc sulfate stimulates M1 polarization of macrophages through AKT/mTOR pathways. Int J Biol Macromol 2024; 279:135548. [PMID: 39270905 DOI: 10.1016/j.ijbiomac.2024.135548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Antrodia cinnamomea-derived sulfated polysaccharides (Ac-SPSs) have health benefits, but their yield is low. This study explores a strategy to increase Ac-SPS yield and elucidates the biofunctions of Ac-SPS. For this, A. cinnamomea mycelia were treated with zinc sulfate (ZnSO4) administered at 1, 10, and 100 μM. Firstly, functional assay indicated that ZnSO4 increases the Ac-SPS yield by 20 %-30 % compared with the control treatment. ZnSO4 engenders a population of middle-molecular-weight (~200 kDa) Ac-SPSs. Ac-SPS (ASZ-10) from A. cinnamomea treated with 10 μM ZnSO4 exhibits the best anti-proliferation ability against lung cancer A549 cells. Co-treatment of ASZ-10 does not inhibit lipopolysaccharide-induced inflammation but does induce M1-related markers of macrophage RAW264.7 cells. Secondly, immunomodulatory properties showed that ASZ-10 increases the expression of CD80+ and CD86+ in M-CSF-stimulated bone-marrow-derived macrophages. ASZ-10 induces M1 polarization through up-regulation of the AKT/mTOR pathway as confirmed by AKT and mTOR inhibitors eliminating ASZ-10-induced M1-like markers of macrophages. Through systemic chemical and functional analysis, this study shows that trace amounts (10 μM) of ZnSO4 increase Ac-SPS yield and it reveals that ASZ-10 exhibits anti-cancer activity and acts as a stimulator for M1 macrophages by stimulation of AKT and mTOR.
Collapse
Affiliation(s)
- Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan
| | - Hung-Chih Lo
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Chia-Chuan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Kuang Lu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan
| | - Chi-Hsein Chao
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Bourrel AS, Picart A, Fernandez JC, Hays C, Mignon V, Saubaméa B, Poyart C, Fouet A, Tazi A, Guignot J. Specific interaction between Group B Streptococcus CC17 hypervirulent clone and phagocytes. Infect Immun 2024; 92:e0006224. [PMID: 38514466 PMCID: PMC11003227 DOI: 10.1128/iai.00062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Streptococcus agalactiae also named Group B Streptococcus (GBS) is the most significant pathogen causing invasive infections, such as bacteremia and meningitis, in neonates. Worldwide epidemiological studies have shown that a particular clonal complex (CC) of capsular serotype III, the CC17, is strongly associated with meningitis in neonates and is therefore, designated as the hypervirulent clone. Macrophages are a permissive niche for intracellular bacteria of all GBS clones. In this study, we deciphered the specific interaction of GBS CC17 strains with macrophages. Our study revealed that CC17 strains are phagocytosed at a higher rate than GBS non-CC17 strains by human monocytes and macrophages both in cellular models and in primary cells. CC17-enhanced phagocytosis is due to an initial enhanced-attachment step to macrophages mediated by the CC17-specific surface protein HvgA and the PI-2b pilus (Spb1). We showed that two different inhibitors of scavenger receptors (fucoidan and poly(I)) specifically inhibited CC17 adhesion and phagocytosis while not affecting those of non-CC17 strains. Once phagocytosed, both CC17 and non-CC17 strains remained in a LAMP-1 positive vacuole that ultimately fuses with lysosomes where they can survive at similar rates. Finally, both strains displayed a basal egress which occurs independently from actin and microtubule networks. Our findings provide new insights into the interplay between the hypervirulent GBS CC17 and major players of the host's innate immune response. This enhanced adhesion, leading to increased phagocytosis, could reflect a peculiar capacity of the CC17 lineage to subvert the host immune defenses, establish a niche for persistence or disseminate.
Collapse
Affiliation(s)
- Anne-Sophie Bourrel
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Amandine Picart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | | | - Constantin Hays
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Virginie Mignon
- Plateforme PICMO, US25 INSERM, UAR3612 CNRS, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Bruno Saubaméa
- Plateforme PICMO, US25 INSERM, UAR3612 CNRS, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Claire Poyart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Asmaa Tazi
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
| | - Julie Guignot
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
5
|
Barbour AG, Duong JV, Long AD. Lyme Disease Agent Reservoirs Peromyscus leucopus and P. maniculatus Have Natively Inactivated Genes for the High-Affinity Immunoglobulin Gamma Fc Receptor I (CD64). Pathogens 2023; 12:1056. [PMID: 37624016 PMCID: PMC10458454 DOI: 10.3390/pathogens12081056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
The abundant and widely distributed deermice Peromyscus leucopus and P. maniculatus are important reservoirs for several different zoonotic agents in North America. For the pathogens they persistently harbor, these species are also examples of the phenomenon of infection tolerance. In the present study a prior observation of absent expression of the high-affinity Fc immunoglobulin gamma receptor I (FcγRI), or CD64, in P. leucopus was confirmed in an experimental infection with Borreliella burgdorferi, a Lyme disease agent. We demonstrate that the null phenotype is attributable to a long-standing inactivation of the Fcgr1 gene in both species by a deletion of the promoter and coding sequence for the signal peptide for FcγRI. The Fcgr1 pseudogene was also documented in the related species P. polionotus. Six other Peromyscus species, including P. californicus, have coding sequences for a full-length FcγRI, including a consensus signal peptide. An inference from reported phenotypes for null Fcgr1 mutations engineered in Mus musculus is that one consequence of pseudogenization of Fcgr1 is comparatively less inflammation during infection than in animals, including humans, with undisrupted, fully active genes.
Collapse
Affiliation(s)
- Alan G. Barbour
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Jonathan V. Duong
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Anthony D. Long
- Department of Ecology & Evolutionary Biology, School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
6
|
Janžič L, Repas J, Pavlin M, Zemljić-Jokhadar Š, Ihan A, Kopitar AN. Macrophage polarization during Streptococcus agalactiae infection is isolate specific. Front Microbiol 2023; 14:1186087. [PMID: 37213504 PMCID: PMC10192866 DOI: 10.3389/fmicb.2023.1186087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Streptococcus agalactiae (Group B Streptococcus, GBS), a Gram-positive commensal in healthy adults, remains a major cause of neonatal infections, usually manifesting as sepsis, meningitis, or pneumonia. Intrapartum antibiotic prophylaxis has greatly reduced the incidence of early-onset disease. However, given the lack of effective measures to prevent the risk of late-onset disease and invasive infections in immunocompromised individuals, more studies investigating the GBS-associated pathogenesis and the interplay between bacteria and host immune system are needed. Methods Here, we examined the impact of 12 previously genotyped GBS isolates belonging to different serotypes and sequence types on the immune response of THP-1 macrophages. Results Flow cytometry analysis showed isolate-specific differences in phagocytic uptake, ranging from 10% for isolates of serotype Ib, which possess the virulence factor protein β, to over 70% for isolates of serotype III. Different isolates also induced differential expression of co-stimulatory molecules and scavenger receptors with colonizing isolates inducing higher expression levels of CD80 and CD86 compared to invasive isolates. In addition, real-time measurements of metabolism revealed that macrophages enhanced both glycolysis and mitochondrial respiration after GBS infection, with isolates of serotype III being the most potent activators of glycolysis and glycolytic ATP production. Macrophages also showed differential resistance to GBS-mediated cell cytotoxicity as measured by LDH release and real-time microscopy. The differences were evident both between serotypes and between isolates obtained from different specimens (colonizing or invasive isolates) demonstrating the higher cytotoxicity of vaginal compared with blood isolates. Conclusions Thus, the data suggest that GBS isolates differ in their potential to become invasive or remain colonizing. In addition, colonizing isolates appear to be more cytotoxic, whereas invasive isolates appear to exploit macrophages to their advantage, avoiding the immune recognition and antibiotics.
Collapse
Affiliation(s)
- Larisa Janžič
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zemljić-Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alojz Ihan
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andreja Nataša Kopitar
- Department of Cell Immunology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andreja Nataša Kopitar,
| |
Collapse
|
7
|
Hcp Proteins of the Type VI Secretion System Promote Avian Pathogenic E. coli DE205B (O2:K1) to Induce Meningitis in Rats. Life (Basel) 2022; 12:life12091353. [PMID: 36143390 PMCID: PMC9503490 DOI: 10.3390/life12091353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important extra-intestinal pathogenic E. coli (ExPEC), which often causes systemic infection in poultry and causes great economic loss to the breeding industry. In addition, as a major source of human ExPEC infection, the potential zoonotic risk of APEC has been an ongoing concern. Previous studies have pointed out that APEC is a potential zoonotic pathogen, which has high homology with human pathogenic E. coli such as uro-pathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC), shares multiple virulence factors and can cause mammalian diseases. Previous studies have reported that O18 and O78 could cause different degrees of meningitis in neonatal rats, and different serotypes had different degrees of zoonotic risk. Here, we compared APEC DE205B (O2:K1) with NMEC RS218 (O18:K1:H7) by phylogenetic analysis and virulence gene identification to analyze the potential risk of DE205B in zoonotic diseases. We found that DE205B possessed a variety of virulence factors associated with meningitis and, through phylogenetic analysis, had high homology with RS218. DE205B could colonize the cerebrospinal fluid (CSF) of rats, and cause meningitis and nerve damage. Symptoms and pathological changes in the brain were similar to RS218. In addition, we found that DE205B had a complete T6SS, of which Hcp protein was its important structural protein. Hcp1 induced cytoskeleton rearrangement in human brain microvascular endothelial cells (HBMECs), and Hcp2 was mainly involved in the invasion of DE205B in vitro. In the meningitis model of rats, deletion of hcp2 gene reduced survival in the blood and the brain invasiveness of DE205B. Compared with WT group, Δhcp2 group induced lower inflammation and neutrophils infiltration in brain tissue, alleviating the process of meningitis. Together, these results suggested that APEC DE205B had close genetic similarities to NMEC RS218, and a similar mechanism in causing meningitis and being a risk for zoonosis. This APEC serotype provided a basis for zoonotic research.
Collapse
|
8
|
Tian X, Guo M, Zhang X, Guo L, Lan N, Cheng Y, Han Y, Wang M, Peng Z, Zhou C, Fan H. Strongylocentrotus nudus Eggs Polysaccharide Enhances Macrophage Phagocytosis Against E.coli Infection by TLR4/STAT3 Axis. Front Pharmacol 2022; 13:807440. [PMID: 35370674 PMCID: PMC8968116 DOI: 10.3389/fphar.2022.807440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Antibiotics resistance is one of the most significant public health threats globally. Strategies that strengthen host defenses to control pathogen infection has become a hot research field. Macrophages are part of early host defense mechanisms, and are activated via host pattern recognition receptors (PRRs), such as Toll-like receptor 4 (TLR4), which then facilitates phagocytosis and elimination of invading pathogens. However, few activators of PRRs have been approved for clinical use because of their toxic effects. This study aimed to investigate whether Strongylocentrotus nudus eggs polysaccharide (SEP), a non-toxic extract from seafood, contributes to host defense against bacterial infection. Results showed that SEP promoted bacterial clearance by enhancing phagocytosis by macrophages during E. coli infection in vitro, but was inhibited by TLR4 specific inhibitor TAK-242, STAT3 inhibitor Stattic or blockade of CD64. In addition, SEP protected mice from E. coli induced mortality, reduced pulmonary inflammation and inhibited dissemination of bacteria to organs, while TAK-242 retarded the protection of SEP. Overall, SEP strengthened innate host defense and improved the outcome in bacterial infection, suggesting that SEP could be used as a potential immunomodulator in host-directed therapies.
Collapse
Affiliation(s)
- Xinlei Tian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Min Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoya Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingfeng Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Nan Lan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yaojun Cheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yannan Han
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingxin Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhonglu Peng
- School of Pharmacy, Xiangnan University, Chenzhou, China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongye Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Chambers CA, Dadelahi AS, Moley CR, Olson RM, Logue CM, Skyberg JA. Nucleotide receptors mediate protection against neonatal sepsis and meningitis caused by alpha-hemolysin expressing Escherichia coli K1. FASEB J 2022; 36:e22197. [PMID: 35147989 DOI: 10.1096/fj.202101485r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 01/15/2023]
Abstract
Neonatal meningitis-associated Escherichia coli (NMEC) is among the leading causes of bacterial meningitis and sepsis in newborn infants. Several virulence factors have been identified as common among NMEC, and have been shown to play an important role in the development of bacteremia and/or meningitis. However, there is significant variability in virulence factor expression between NMEC isolates, and relatively little research has been done to assess the impact of variable virulence factor expression on immune cell activation and the outcome of infection. Here, we investigated the role of NMEC strain-dependent P2X receptor (P2XR) signaling on the outcome of infection in neonatal mice. We found that alpha-hemolysin (HlyA)-expressing NMEC (HlyA+ ) induced robust P2XR-dependent macrophage cell death in vitro, while HlyA- NMEC did not. P2XR-dependent cell death was inflammasome independent, suggesting an uncoupling of P2XR and inflammasome activation in the context of NMEC infection. In vivo inhibition of P2XRs was associated with increased mortality in neonatal mice infected with HlyA+ NMEC, but had no effect on the survival of neonatal mice infected with HlyA- NMEC. Furthermore, we found that P2XR-dependent protection against HlyA+ NMEC in vivo required macrophages, but not neutrophils or NLRP3. Taken together, these data suggest that HlyA+ NMEC activates P2XRs which in turn confers macrophage-dependent protection against infection in neonates. In addition, our findings indicate that strain-dependent virulence factor expression should be taken into account when studying the immune response to NMEC.
Collapse
Affiliation(s)
- Catherine A Chambers
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Alexis S Dadelahi
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Charles R Moley
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Rachel M Olson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Catherine M Logue
- Department of Population Heath, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
10
|
Yu Z, Zhou T, Luo Y, Dong L, Li C, Liu J, Luo J, Yan R, Xu L, Song X, Li X. Modulation Effects of Toxoplasma gondii Histone H2A1 on Murine Macrophages and Encapsulation with Polymer as a Vaccine Candidate. Vaccines (Basel) 2020; 8:vaccines8040731. [PMID: 33287313 PMCID: PMC7761694 DOI: 10.3390/vaccines8040731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii (T. gondii) is the most common zoonotic protozoa and has infected about one-third of the population worldwide. Recombinant epitopes encapsulated in nanospheres have advantages over traditional T. gondii vaccines. For an efficient delivery system, poly (DL-lactide-co-glycolide) (PLGA) and chitosan are the most frequently used biodegradable polymeric nanospheres with strong safety profiles. In the present study, we first expressed and purified histone H2A1 of T. gondii using the prokaryotic expression system. The effects of recombinant TgH2A1 on the functions of murine macrophages were then studied. Purified recombinant TgH2A1 was then encapsulated in nanospheres with PLGA and chitosan. After subcutaneous vaccination in mice, the immune response was evaluated by double antibody sandwich ELISA kits. The results from this study showed that PLGA and chitosan loaded with rTgH2A1 could trigger a stronger Th1 oriented immune response and prolong the survival time of mice effectively. In conclusion, PLGA and chitosan nanospheres loaded with histone H2A1 are an effective method for the development of vaccines against T. gondii. Further studies should focus on evaluating the regulatory mechanism of TgH2A1, vaccine potency, and cellular response in chronic T. gondii infections.
Collapse
Affiliation(s)
- Zhengqing Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Tianyuan Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Yanxin Luo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Lu Dong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Chunjing Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Junlong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (J.L.); (J.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Z.Y.); (T.Z.); (Y.L.); (L.D.); (C.L.); (R.Y.); (L.X.); (X.S.)
- Correspondence:
| |
Collapse
|
11
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|
12
|
Carreras-González A, Barriales D, Palacios A, Montesinos-Robledo M, Navasa N, Azkargorta M, Peña-Cearra A, Tomás-Cortázar J, Escobes I, Pascual-Itoiz MA, Hradiská J, Kopecký J, Gil-Carton D, Prados-Rosales R, Abecia L, Atondo E, Martín I, Pellón A, Elortza F, Rodríguez H, Anguita J. Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions. PLoS Pathog 2019; 15:e1008163. [PMID: 31738806 PMCID: PMC6886865 DOI: 10.1371/journal.ppat.1008163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Macrophages mediate the elimination of pathogens by phagocytosis resulting in the activation of specific signaling pathways that lead to the production of cytokines, chemokines and other factors. Borrelia burgdorferi, the causative agent of Lyme disease, causes a wide variety of pro-inflammatory symptoms. The proinflammatory capacity of macrophages is intimately related to the internalization of the spirochete. However, most receptors mediating this process are largely unknown. We have applied a multiomic approach, including the proteomic analysis of B. burgdorferi-containing phagosome-enriched fractions, to identify surface receptors that are involved in the phagocytic capacity of macrophages as well as their inflammatory output. Sucrose gradient protein fractions of human monocyte-derived macrophages exposed to B. burgdorferi contained the phagocytic receptor, CR3/CD14 highlighting the major role played by these proteins in spirochetal phagocytosis. Other proteins identified in these fractions include C-type lectins, scavenger receptors or Siglecs, of which some are directly involved in the interaction with the spirochete. We also identified the Fc gamma receptor pathway, including the binding receptor, CD64, as involved both in the phagocytosis of, and TNF induction in response to B. burgdorferi in the absence of antibodies. The common gamma chain, FcγR, mediates the phagocytosis of the spirochete, likely through Fc receptors and C-type lectins, in a process that involves Syk activation. Overall, these findings highlight the complex array of receptors involved in the phagocytic response of macrophages to B. burgdorferi. Macrophages eliminate infecting microorganisms through the concerted action of surface receptors and signaling molecules. As a consequence, these cells produce a series of soluble factors that participate in the inflammatory response during infections. The composition of the full complement of receptors that participate in the recognition and internalization of the causative agent of Lyme disease, Borrelia burgdorferi, is largely unknown. We have analyzed the protein composition of phagosomes containing B. burgdorferi from human macrophages and identified a series of surface proteins that may be involved in the process. Through the use of gene silencing techniques, we have determined the participation of several of these receptors both in the internalization of the bacterium and the subsequent inflammatory response. Among these, we have identified the Fc gamma receptor pathway as involved in this process in the absence of antibodies. We have also identified receptors that are directly involved in the attachment of B. burgdorferi, while others seem to have an accessory role in the internalization and/or induction of proinflammatory cytokines in response to the spirochete. These data clarify the complex array of interactions between macrophages and B. burgdorferi and shed light on the overall response to this infectious agent.
Collapse
Affiliation(s)
- Ana Carreras-González
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Ainhoa Palacios
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | | | - Nicolás Navasa
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIBERehd, ProteoRed-ISCIII, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Ainize Peña-Cearra
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Julen Tomás-Cortázar
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Iraide Escobes
- Proteomics Platform, CIBERehd, ProteoRed-ISCIII, CIC bioGUNE, Derio, Bizkaia, Spain
| | | | - Jana Hradiská
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | - Jan Kopecký
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, Czech Republic
| | | | - Rafael Prados-Rosales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Estíbaliz Atondo
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Itziar Martín
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Aize Pellón
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Félix Elortza
- Proteomics Platform, CIBERehd, ProteoRed-ISCIII, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Héctor Rodríguez
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
- * E-mail:
| |
Collapse
|
13
|
Zhuge X, Sun Y, Jiang M, Wang J, Tang F, Xue F, Ren J, Zhu W, Dai J. Acetate metabolic requirement of avian pathogenic Escherichia coli promotes its intracellular proliferation within macrophage. Vet Res 2019; 50:31. [PMID: 31046828 PMCID: PMC6498577 DOI: 10.1186/s13567-019-0650-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a facultative intracellular pathogen, and intracellular persistence in macrophages is essential for APEC extraintestinal dissemination. Until now, there is still no systematic interpretation of APEC intracellular proliferation. Intracellular survival factors, especially involved in pathometabolism, need to be further revealed. Acetate plays critical roles in supporting energy homeostasis and acts as a metabolic signal in the inflammatory response of eukaryotes. In this study, we identified that APEC acs-yjcH-actP operon, encoding acetate assimilation system, presented the host-induced transcription during its proliferation in macrophages. Our result showed that this acetate assimilation system acted as a novel intracellular survival factor to promote APEC replication within macrophages. Furthermore, deletion of acs-yjcH-actP operon in APEC decreased its cytotoxic level to macrophages. qRT-PCR results showed that the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12β, and TNF-α) and iNOS in FY26∆acs-yjcH-actP infected macrophages were obviously down-regulated compared to that in wild-type FY26 infected cells. Deletion of actP/yjcH/acs genes attenuated APEC virulence and colonization capability in avian lungs in vivo for colibacillosis infection models. And acetate assimilation system acted as a virulence factor and conferred a fitness advantage during APEC early colonization. Taken together, our research unravelled the metabolic requirement of APEC intracellular survival/replication within macrophages, and acetate metabolic requirement acted as an important strategy of APEC pathometabolism. The intracellular acetate consumption during facultative intracellular bacteria replication within macrophages promoted immunomodulatory disorders, resulting in excessively pro-inflammatory responses of host macrophages.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.,China Pharmaceutical University, Nanjing, 211198, China.,Center for Post-doctoral Studies of Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Center for Post-doctoral Studies of Animal Husbandry, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juanfang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Center for Post-doctoral Studies of Animal Husbandry, College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China. .,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China. .,China Pharmaceutical University, Nanjing, 211198, China. .,Center for Post-doctoral Studies of Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Zhuge X, Sun Y, Xue F, Tang F, Ren J, Li D, Wang J, Jiang M, Dai J. A Novel PhoP/PhoQ Regulation Pathway Modulates the Survival of Extraintestinal Pathogenic Escherichia coli in Macrophages. Front Immunol 2018; 9:788. [PMID: 29719540 PMCID: PMC5913352 DOI: 10.3389/fimmu.2018.00788] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
The extraintestinal pathogenic Escherichia coli (ExPEC) is a typical facultative intracellular bacterial pathogen. Sensing the environmental stimuli and undertaking adaptive change are crucial for ExPEC to successfully colonize in specific extraintestinal niches. The previous studies show that pathogens exploit two-component systems (TCSs) in response to the host environments during its infection. The PhoP/PhoQ is a typical TCS which is ubiquitous in Gram-negative bacteria. However, there is an incompletely understanding about critical regulatory roles of PhoP/PhoQ in ExPEC pathogenesis. Conjugative ColV-related plasmids are responsible for ExPEC virulence, which is associated with ExPEC zoonotic risk. In this study, the molecular characteristics of HlyF, Mig-14 ortholog (Mig-14p), and OmpT variant (OmpTp) encoded by ColV plasmids were identified. Mig-14p and OmpTp played important roles in conferring ExPEC resistance to cationic antimicrobial peptides (CAMPs) during the infection. Moreover, HlyF and Mig-14p acted as intracellular survival factors to promote ExPEC resistance to macrophages killing. The hlyF and Mig-14p formed an operon in ExPEC ColV plasmid, and PhoP acted as a transcriptional activator of hlyF operon by directly binding to the P hlyF promoter. The acidic pH and CAMPs could additively stimulate ExPEC PhoQ/PhoP activities to upregulate the expression of HlyF and Mig-14p. Our studies revealed that the novel PhoP/PhoQ-HlyF signaling pathway directly upregulates the production of ExPEC outer membrane vesicles. Furthermore, our study first clarified that this PhoP/PhoQ-HlyF pathway was essential for ExPEC intracellular survival in macrophages. It was required to prevent the fusion of ExPEC-containing phagosomes with lysosomes. Moreover, PhoP/PhoQ-HlyF pathway facilitated the inhibition of the phagolysosomal acidification and disruption of the phagolysosomal membranes. In addition, this pathway might promote the formation of ExPEC-containing autophagosome during ExPEC replication in macrophages. Collectively, our studies suggested that PhoP/PhoQ system and CloV plasmids could facilitate ExPEC survival and replication within macrophages.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Center for Post-Doctoral Studies of Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dezhi Li
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Juanfang Wang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Zhou X, Li Z, Wang Z, Chen E, Wang J, Chen F, Jones O, Tan T, Chen S, Takeshima H, Bryant J, Ma J, Xu X. Syncytium calcium signaling and macrophage function in the heart. Cell Biosci 2018; 8:24. [PMID: 29599964 PMCID: PMC5870344 DOI: 10.1186/s13578-018-0222-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Macrophages are traditionally viewed as a key component of the immunity defense system. Recent studies have identified resident macrophages in multiple organs including the heart, in which the cells perform their crucial role on tissue repair after myocardial infarction (MI). The cardiac-specific macrophages interdigitate with cardiomyocytes particularly at the atrioventricular node region. The integrative communication between macrophage and cardiomyocytes can modulate the contractile function of the heart. Coordinated control of intracellular calcium signaling and intercellular electrical conduction via the syncytium network underlie the synchronized beating of the heart. In this review article, we introduce the concept the syncytium calcium signaling in the cardiomyocytes can modulate gene expression in the resident macrophages and their integration with the cardiomyocytes. The cardiac macrophages originate from bone marrow stem cells, migrate to local via vessel, and settle down as a naturalization process in heart. As the macrophages perform on regulating electrical conduction, and accomplish post MI non-scared completed regeneration or partial regeneration with fibrotic scar at different stage of postnatal development, we understand that multiple functions of cardiac macrophage should carry on with diverse linages. The naturalization process in heart of macrophages to the cardiomyocytes serves important roles to control of electrical signaling and calcium-dependent contractile function of the heart.
Collapse
Affiliation(s)
- Xin Zhou
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
- Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Zhongguang Li
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
| | - Zefan Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
| | - Eda Chen
- Virginia Commonwealth University College of Medicine, Richmond, VA 23284 USA
| | - Juan Wang
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
| | | | - Odell Jones
- University of Pennsylvania ULAR, Philadelphia, PA 19144 USA
| | - Tao Tan
- Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Shawn Chen
- Chen Wellness Clinics, Wichita, KS 67219 USA
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501 Japan
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21287 USA
| | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi’an, 710062 People’s Republic of China
| |
Collapse
|
16
|
Ma Y, Mouton AJ, Lindsey ML. Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res 2018; 191:15-28. [PMID: 29106912 PMCID: PMC5846093 DOI: 10.1016/j.trsl.2017.10.001] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Macrophages play critical roles in homeostatic maintenance of the myocardium under normal conditions and in tissue repair after injury. In the steady-state heart, resident cardiac macrophages remove senescent and dying cells and facilitate electrical conduction. In the aging heart, the shift in macrophage phenotype to a proinflammatory subtype leads to inflammaging. Following myocardial infarction (MI), macrophages recruited to the infarct produce both proinflammatory and anti-inflammatory mediators (cytokines, chemokines, matrix metalloproteinases, and growth factors), phagocytize dead cells, and promote angiogenesis and scar formation. These diverse properties are attributed to distinct macrophage subtypes and polarization status. Infarct macrophages exhibit a proinflammatory M1 phenotype early and become polarized toward an anti-inflammatory M2 phenotype later post-MI. Although this classification system is oversimplified and needs to be refined to accommodate the multiple different macrophage subtypes that have been recently identified, general concepts on macrophage roles are independent of subtype classification. This review summarizes current knowledge about cardiac macrophage origins, roles, and phenotypes in the steady state, with aging, and after MI, as well as highlights outstanding areas of investigation.
Collapse
Affiliation(s)
- Yonggang Ma
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss
| | - Alan J Mouton
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Miss.
| |
Collapse
|
17
|
Perelman SS, Abrams ME, Eitson JL, Chen D, Jimenez A, Mettlen M, Schoggins JW, Alto NM. Cell-Based Screen Identifies Human Interferon-Stimulated Regulators of Listeria monocytogenes Infection. PLoS Pathog 2016; 12:e1006102. [PMID: 28002492 PMCID: PMC5176324 DOI: 10.1371/journal.ppat.1006102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
The type I interferon (IFN) activated transcriptional response is a critical antiviral defense mechanism, yet its role in bacterial pathogenesis remains less well characterized. Using an intracellular pathogen Listeria monocytogenes (Lm) as a model bacterial pathogen, we sought to identify the roles of individual interferon-stimulated genes (ISGs) in context of bacterial infection. Previously, IFN has been implicated in both restricting and promoting Lm growth and immune stimulatory functions in vivo. Here we adapted a gain-of-function flow cytometry based approach to screen a library of more than 350 human ISGs for inhibitors and enhancers of Lm infection. We identify 6 genes, including UNC93B1, MYD88, AQP9, and TRIM14 that potently inhibit Lm infection. These inhibitors act through both transcription-mediated (MYD88) and non-transcriptional mechanisms (TRIM14). Further, we identify and characterize the human high affinity immunoglobulin receptor FcγRIa as an enhancer of Lm internalization. Our results reveal that FcγRIa promotes Lm uptake in the absence of known host Lm internalization receptors (E-cadherin and c-Met) as well as bacterial surface internalins (InlA and InlB). Additionally, FcγRIa-mediated uptake occurs independently of Lm opsonization or canonical FcγRIa signaling. Finally, we established the contribution of FcγRIa to Lm infection in phagocytic cells, thus potentially linking the IFN response to a novel bacterial uptake pathway. Together, these studies provide an experimental and conceptual basis for deciphering the role of IFN in bacterial defense and virulence at single-gene resolution. While the type I interferon response is known to be activated by both viruses and bacteria, it has mostly been characterized in terms of its antiviral properties. Listeria monocytogenes, an opportunistic Gram-positive bacterial pathogen with up to 50% mortality rate and a variety of clinical manifestations, is a potent activator of interferon secretion. In mouse models, interferon has been previously implicated in both restricting and promoting L. monocytogenes infection. Here, we utilized a high-throughput flow-cytometry based approach to screen a library of human interferon I stimulated genes (ISGs) and identified regulators of L. monocytogenes infection. These include inhibitors that act through both transcriptional (MYD88) and transcription-independent (TRIM14) mechanisms. Strikingly, expression of the human high affinity immunoglobulin receptor FcγRIa (CD64) was found to potently enhance L. monocytogenes infection. Both biochemical and cellular studies indicate that FcγRIa increases primary invasion of L. monocytogenes through a previously uncharacterized IgG-independent internalization mechanism. Together, these studies provide an important insight into the complex role of interferon response in bacterial virulence and host defense.
Collapse
Affiliation(s)
- Sofya S. Perelman
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael E. Abrams
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer L. Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Didi Chen
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alyssa Jimenez
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JWS); (NMA)
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (JWS); (NMA)
| |
Collapse
|
18
|
Gillis CM, Zenatti PP, Mancardi DA, Beutier H, Fiette L, Macdonald LE, Murphy AJ, Celli S, Bousso P, Jönsson F, Bruhns P. In vivo effector functions of high-affinity mouse IgG receptor FcγRI in disease and therapy models. J Autoimmun 2016; 80:95-102. [PMID: 27745779 DOI: 10.1016/j.jaut.2016.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022]
Abstract
Two activating mouse IgG receptors (FcγRs) have the ability to bind monomeric IgG, the high-affinity mouse FcγRI and FcγRIV. Despite high circulating levels of IgG, reports using FcγRI-/- or FcγRIV-/- mice or FcγRIV-blocking antibodies implicate these receptors in IgG-induced disease severity or therapeutic Ab efficacy. From these studies, however, one cannot conclude on the effector capabilities of a given receptor, because different activating FcγRs possess redundant properties in vivo, and cooperation between FcγRs may occur, or priming phenomena. To help resolve these uncertainties, we used mice expressing only FcγRI to determine its intrinsic properties in vivo. FcγRIonly mice were sensitive to IgG-induced autoimmune thrombocytopenia and anti-CD20 and anti-tumour immunotherapy, but resistant to IgG-induced autoimmune arthritis, anaphylaxis and airway inflammation. Our results show that the in vivo roles of FcγRI are more restricted than initially reported using FcγRI-/- mice, but confirm effector capabilities for this high-affinity IgG receptor in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/therapeutic use
- Antibody Affinity
- B-Lymphocytes/immunology
- Disease Models, Animal
- Hepatectomy
- Humans
- Immunotherapy/methods
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/therapy
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Splenectomy
Collapse
Affiliation(s)
- Caitlin M Gillis
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM U1222, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Priscila P Zenatti
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM U1222, Paris, France
| | - David A Mancardi
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM U1222, Paris, France
| | - Héloïse Beutier
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM U1222, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Laurence Fiette
- Département Infection et Epidémiologie, Unité d'Histopathologie Humaine et Modèles Animaux, Institut Pasteur, Paris, France
| | | | | | - Susanna Celli
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015 Paris, France; INSERM U1223, rue du Dr Roux, Paris, France
| | - Philippe Bousso
- Institut Pasteur, Dynamics of Immune Responses Unit, 75015 Paris, France; INSERM U1223, rue du Dr Roux, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM U1222, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France; INSERM U1222, Paris, France.
| |
Collapse
|
19
|
Boyer L. Escherichia coli K1 meningitis: Analysis of the effects of CNF1 toxin in newborn mice questions its virulence function. Virulence 2016; 7:754-5. [PMID: 27432618 DOI: 10.1080/21505594.2016.1213478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Laurent Boyer
- a Université Côte d'Azur, INSERM, C3M , Nice , France.,b INSERM, U1065, Center Méditerranéen de médecine Moléculaire , Nice , France
| |
Collapse
|
20
|
Abstract
Mouse and human FcRs have been a major focus of attention not only of the scientific community, through the cloning and characterization of novel receptors, and of the medical community, through the identification of polymorphisms and linkage to disease but also of the pharmaceutical community, through the identification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The availability of knockout mouse lines for every single mouse FcR, of multiple or cell-specific--'à la carte'--FcR knockouts and the increasing generation of hFcR transgenics enable powerful in vivo approaches for the study of mouse and human FcR biology. This review will present the landscape of the current FcR family, their effector functions and the in vivo models at hand to study them. These in vivo models were recently instrumental in re-defining the properties and effector functions of FcRs that had been overlooked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity IgG receptors in vivo and on results from antibody engineering to enhance or abrogate antibody effector functions mediated by FcRs.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| | - Friederike Jönsson
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U760, Paris, France
| |
Collapse
|
21
|
Chang AC, Krishnan S, Prasadarao NV. The effects of cytotoxic necrotizing factor 1 expression in the uptake of Escherichia coli K1 by macrophages and the onset of meningitis in newborn mice. Virulence 2016; 7:806-18. [PMID: 27221788 DOI: 10.1080/21505594.2016.1192730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Macrophages are a permissive niche for E. coli K1 multiplication for which the interaction of the bacterial outer membrane protein A and its cognate receptor CD64 are critical. Using in vitro immunofluorescence and live microscopy with ex vivo macrophage cultures from RFP-Lifeact mice, we show that cytotoxic necrotizing factor 1 (CNF1) secreted by E. coli K1 sequesters cellular actin toward microspike formation, thereby limiting actin availability for OmpA-mediated bacterial invasion. Surprisingly, the observed effects of CNF1 occur despite the absence of 67-kDa laminin receptor in macrophages. Concomitantly, the CNF1 deletion mutant of E. coli K1 (Δcnf1) invades macrophages and the brains of newborn mice in greater numbers compared to wild-type. However, the Δcnf1 strain induces less severe pathology in the brain. These results suggest a novel role for CNF1 in limiting E. coli K1 entry into macrophages while exacerbating disease severity in the brains of newborn mice.
Collapse
Affiliation(s)
- Alexander C Chang
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA
| | - Subramanian Krishnan
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA
| | - Nemani V Prasadarao
- a Division of Infectious Diseases and Department of Pediatrics , Children's Hospital Los Angeles , Los Angeles , CA , USA.,b Department of Surgery , Children's Hospital Los Angeles , Los Angeles , CA , USA.,c Keck School of Medicine , University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
22
|
Azevedo M, Sousa A, Moura de Sousa J, Thompson JA, Proença JT, Gordo I. Trade-Offs of Escherichia coli Adaptation to an Intracellular Lifestyle in Macrophages. PLoS One 2016; 11:e0146123. [PMID: 26752723 PMCID: PMC4709186 DOI: 10.1371/journal.pone.0146123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 11/24/2022] Open
Abstract
The bacterium Escherichia coli exhibits remarkable genomic and phenotypic variation, with some pathogenic strains having evolved to survive and even replicate in the harsh intra-macrophage environment. The rate and effects of mutations that can cause pathoadaptation are key determinants of the pace at which E. coli can colonize such niches and become pathogenic. We used experimental evolution to determine the speed and evolutionary paths undertaken by a commensal strain of E. coli when adapting to intracellular life. We estimated the acquisition of pathoadaptive mutations at a rate of 10−6 per genome per generation, resulting in the fixation of more virulent strains in less than a hundred generations. Whole genome sequencing of independently evolved clones showed that the main targets of intracellular adaptation involved loss of function mutations in genes implicated in the assembly of the lipopolysaccharide core, iron metabolism and di- and tri-peptide transport, namely rfaI, fhuA and tppB, respectively. We found a substantial amount of antagonistic pleiotropy in evolved populations, as well as metabolic trade-offs, commonly found in intracellular bacteria with reduced genome sizes. Overall, the low levels of clonal interference detected indicate that the first steps of the transition of a commensal E. coli into intracellular pathogens are dominated by a few pathoadaptive mutations with very strong effects.
Collapse
Affiliation(s)
- M. Azevedo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, Oeiras, Portugal
| | - A. Sousa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, Oeiras, Portugal
| | - J. Moura de Sousa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, Oeiras, Portugal
| | - J. A. Thompson
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, Oeiras, Portugal
| | - J. T. Proença
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, Oeiras, Portugal
| | - I. Gordo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
23
|
Hargreaves CE, Rose-Zerilli MJJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fcγ receptors: genetic variation, function, and disease. Immunol Rev 2015; 268:6-24. [DOI: 10.1111/imr.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | | | - Lee R. Machado
- Department of Genetics; University of Leicester; Leicester UK
- School of Health; University of Northampton; Northampton UK
| | - Chisako Iriyama
- Department of Hematology and Oncology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | | | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - Jonathan C. Strefford
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
24
|
Chenoweth AM, Trist HM, Tan PS, Wines BD, Hogarth PM. The high-affinity receptor for IgG, FcγRI, of humans and non-human primates. Immunol Rev 2015; 268:175-91. [DOI: 10.1111/imr.12366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alicia M. Chenoweth
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
| | - Halina M. Trist
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
| | - Peck-Szee Tan
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
| | - Bruce D. Wines
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
- Department of Pathology; University of Melbourne; Melbourne Vic. Australia
| | - P. Mark Hogarth
- Centre for Biomedicine; Burnet Institute; Melbourne Vic. Australia
- Department of Immunology; Monash University; Melbourne Vic. Australia
- Department of Pathology; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
25
|
Krishnan S, Chang AC, Hodges J, Couraud PO, Romero IA, Weksler B, Nicholson BA, Nolan LK, Prasadarao NV. Serotype O18 avian pathogenic and neonatal meningitis Escherichia coli strains employ similar pathogenic strategies for the onset of meningitis. Virulence 2015; 6:777-86. [PMID: 26407066 DOI: 10.1080/21505594.2015.1091914] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Neonatal meningitis Escherichia coli K1 (NMEC) are thought to be transmitted from mothers to newborns during delivery or by nosocomial infections. However, the source of E. coli K1 causing these infections is not clear. Avian pathogenic E. coli (APEC) have the potential to cause infection in humans while human E. coli have potential to cause colibacillosis in poultry, suggesting that these strains may lack host specificity. APEC strains are capable of causing meningitis in newborn rats; however, it is unclear whether these bacteria use similar mechanisms to that of NMEC to establish disease. Using four representative APEC and NMEC strains that belong to serotype O18, we demonstrate that these strains survive in human serum similar to that of the prototypic NMEC strain E44, a derivative of RS218. These bacteria also bind and enter both macrophages and human cerebral microvascular endothelial cells (HCMEC/D3) with similar frequency as that of E44. The amino acid sequences of the outer membrane protein A (OmpA), an important virulence factor in the pathogenesis of meningitis, are identical within these representative APEC and NMEC strains. Further, these strains also require FcγRI-α chain (CD64) and Ecgp96 as receptors for OmpA in macrophages and HCMEC/D3, respectively, to bind and enter these cells. APEC and NMEC strains induce meningitis in newborn mice with varying degree of pathology in the brains as assessed by neutrophil recruitment and neuronal apoptosis. Together, these results suggest that serotype O18 APEC strains utilize similar pathogenic mechanisms as those of NMEC strains in causing meningitis.
Collapse
Affiliation(s)
- Subramanian Krishnan
- a Division of Infectious Diseases and Department of Pediatrics; Children's Hospital Los Angeles , CA USA
| | - Alexander C Chang
- a Division of Infectious Diseases and Department of Pediatrics; Children's Hospital Los Angeles , CA USA
| | - Jacqueline Hodges
- a Division of Infectious Diseases and Department of Pediatrics; Children's Hospital Los Angeles , CA USA
| | - Pierre-Olivier Couraud
- b Inserm; Institut Cochin, Paris, France; Université Paris Descartes; Sorbonne Paris Cité , Paris , France
| | - Ignacio A Romero
- c Department of Life ; Health and Chemical Sciences; Open University ; Milton Keynes , UK
| | - Babette Weksler
- d Division of Hematology and Medical Oncology; Weill Cornell Medical College ; New York , NY USA
| | - Bryon A Nicholson
- e Department of Veterinary Microbiology and Preventive Medicine ; College of Veterinary Medicine; Iowa State University ; Ames , IA USA
| | - Lisa K Nolan
- e Department of Veterinary Microbiology and Preventive Medicine ; College of Veterinary Medicine; Iowa State University ; Ames , IA USA
| | - Nemani V Prasadarao
- a Division of Infectious Diseases and Department of Pediatrics; Children's Hospital Los Angeles , CA USA.,f Department of Surgery ; Children's Hospital Los Angeles; University of Southern California ; Los Angeles , CA USA
| |
Collapse
|
26
|
Human gene copy number variation and infectious disease. Hum Genet 2014; 133:1217-33. [PMID: 25110110 DOI: 10.1007/s00439-014-1457-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023]
Abstract
Variability in the susceptibility to infectious disease and its clinical manifestation can be determined by variation in the environment and by genetic variation in the pathogen and the host. Despite several successes based on candidate gene studies, defining the host variation affecting infectious disease has not been as successful as for other multifactorial diseases. Both single nucleotide variation and copy number variation (CNV) of the host contribute to the host's susceptibility to infectious disease. In this review we focus on CNV, particularly on complex multiallelic CNV that is often not well characterised either directly by hybridisation methods or indirectly by analysis of genotypes and flanking single nucleotide variants. We summarise the well-known examples, such as α-globin deletion and susceptibility to severe malaria, as well as more recent controversies, such as the extensive CNV of the chemokine gene CCL3L1 and HIV infection. We discuss the potential biological mechanisms that could underly any genetic association and reflect on the extensive complexity and functional variation generated by a combination of CNV and sequence variation, as illustrated by the Fc gamma receptor genes FCGR3A, FCGR3B and FCGR2C. We also highlight some understudied areas that might prove fruitful areas for further research.
Collapse
|
27
|
Shanmuganathan MV, Krishnan S, Fu X, Prasadarao NV. Escherichia coli K1 induces pterin production for enhanced expression of Fcγ receptor I to invade RAW 264.7 macrophages. Microbes Infect 2014; 16:134-41. [PMID: 24161960 PMCID: PMC3946618 DOI: 10.1016/j.micinf.2013.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/04/2013] [Accepted: 10/15/2013] [Indexed: 11/16/2022]
Abstract
Macrophages serve as permissive niches for Escherichia coli (E. coli) K1 to attain high grade bacteremia in the pathogenesis of meningitis in neonates. Although pterin levels are a diagnostic marker for immune activation, the role of macrophages in pterin production and in the establishment of meningitis is unknown. Here, we demonstrate that macrophages infected with E. coli K1 produce both neopterin and biopterin through increased expression of GTP-cyclohydrolase 1 (GCH1). Of note, increased production of biopterin enhances the expression of Fc-gamma receptor I (CD64), which in turn, aided the entry of E. coli K1 in macrophages while increased neopterin suppresses reactive oxygen species (ROS), thereby aiding bacterial survival. Inhibition of GCH1 by 2, 4-Diamino-6-hydroxypyrimidine (DAHP) prevented the E. coli K1 induced expression of CD64 in macrophages in vitro and the development of bacteremia in a newborn mouse model of meningitis. These studies suggest that targeting GCH1 could be therapeutic strategy for preventing neonatal meningitis by E. coli K1.
Collapse
Affiliation(s)
- Muthusamy V Shanmuganathan
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Xiaowei Fu
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Nemani V Prasadarao
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA; Department of Surgery, Children's Hospital Los Angeles, University of Southern California, 4650 Sunset Blvd., Los Angeles, CA 90027, USA.
| |
Collapse
|
28
|
Abstract
Antibodies are major molecular effectors of adaptive immune responses. Most, if not all, biological activities of antibodies, however, depend on the functional properties of cells that express receptors for the Fc portion of antibodies (FcR). Most FcR are activating receptors; some are inhibitory. When engaged by antibodies and antigen, the various FcR expressed by a given cell trigger a mixture of positive and negative signals whose integration determines cellular responses. Responses of cell populations can be either protective or pathogenic. As a consequence, FcR are potential target/tools in a variety of diseases including infection, allergy, autoimmune diseases, and cancer.
Collapse
|
29
|
Abstract
Most biological activities of antibodies depend on their ability to engage Receptors for the Fc portion of immunoglobulins (FcRs) on a variety of cell types. As FcRs can trigger positive and negative signals, as these signals control several biological activities in individual cells, as FcRs are expressed by many cells of hematopoietic origin, mostly of the myeloid lineage, as these cells express various combinations of FcRs, and as FcR-expressing cells have different functional repertoires, antibodies can exert a wide spectrum of biological activities. Like B and T Cell Receptors (BCRs and TCRs), FcRs are bona fide immunoreceptors. Unlike BCRs and TCRs, however, FcRs are immunoreceptors with an adaptive specificity for antigen, with an adaptive affinity for antibodies, with an adaptive structure and with an adaptive signaling. They induce adaptive biological responses that depend on their tissue distribution and on FcR-expressing cells that are selected locally by antibodies. They critically determine health and disease. They are thus exquisitely adaptive therapeutic tools.
Collapse
Affiliation(s)
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
30
|
Yi X, Zeng C, Liu H, Chen X, Zhang P, Yun BS, Jin G, Zhou A. Lack of RNase L attenuates macrophage functions. PLoS One 2013; 8:e81269. [PMID: 24324683 PMCID: PMC3852499 DOI: 10.1371/journal.pone.0081269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/10/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cyclooxygenase-2 (Cox-2) by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN) inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown. METHODOLOGY Bone marrow-derived macrophages (BMMs) were generated from RNase L(+/+)and (-/-) mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC)-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays. CONCLUSIONS/FINDINGS Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2). Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF)-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.
Collapse
Affiliation(s)
- Xin Yi
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Chun Zeng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Hongli Liu
- Central Laboratory, the Eighth Hospital of Xi'an, Xi'an, China
| | - Xiaoli Chen
- Department of Pathology, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Ping Zhang
- Department of Pathology, Wanjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boo Seok Yun
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
31
|
De Calisto J, Villablanca EJ, Mora JR. FcγRI (CD64): an identity card for intestinal macrophages. Eur J Immunol 2013; 42:3136-40. [PMID: 23255010 DOI: 10.1002/eji.201243061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/11/2012] [Accepted: 10/22/2012] [Indexed: 12/17/2022]
Abstract
Macrophages are becoming increasingly recognized as key cellular players in intestinal immune homeostasis. However, differentiating between macrophages and dendritic cells (DCs) is often difficult, and finding a specific phenotypic signature for intestinal macrophage identification has remained elusive. In this issue of the European Journal of Immunology, Tamoutounour et al. [Eur. J. Immunol. 2012. 42: 3150-3166] identify CD64 as a specific macrophage marker that can be used to discriminate DCs from macrophages in the murine small and large intestine, under both steady-state and inflammatory conditions. The authors also propose a sequential 'monocyte-waterfall' model for intestinal macrophage differentiation, with implications for immune tolerance and inflammation at the gut mucosal interface. This Commentary will discuss the advantages and potential limitations of CD64 as a marker for intestinal macrophages.
Collapse
Affiliation(s)
- Jaime De Calisto
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
32
|
Chen W, Liu J, Meng J, Lu C, Li X, Wang E, Shan F. Macrophage polarization induced by neuropeptide methionine enkephalin (MENK) promotes tumoricidal responses. Cancer Immunol Immunother 2012; 61:1755-68. [PMID: 22419372 PMCID: PMC11028532 DOI: 10.1007/s00262-012-1240-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/27/2012] [Indexed: 01/20/2023]
Abstract
The aim of this study is to investigate macrophages polarization induced by methionine enkephalin (MENK) that promotes tumoricidal responses in vivo and in vitro. Both phenotypic and functional activities of macrophages were assessed by the quantitative analysis of key surface molecules on macrophages with flow cytometry, immunofluorescent staining, and the production of cytokines with enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction. Our results showed that MENK could down-regulate the expression of CD206 and the production of arginase-1 (the markers of alternatively activated (M2) macrophage) in tumor-associated macrophages in vivo, meanwhile it could significantly up-regulate the expression of CD64, MHC-II, and the production of induced nitric oxide synthase (the markers of classically activated (M1) macrophages). Furthermore, the studies on bone marrow-derived macrophages treated with MENK (10(-12) M) in vitro had demonstrated that MENK could markedly increase tumoricidal activity. MENK could also enhance the release of reactive oxidant species and the production of interleukin-12p40, tumor necrosis factor-α, while decrease the production of interleukin-10. In conclusion, MENK could effectively induce M2 macrophages polarizing to M1 macrophages, sequentially to modulate the Th1 responses of the host immune system. Our results suggest that MENK might have great potential as a new therapeutic agent for cancer.
Collapse
Affiliation(s)
- Wenna Chen
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
- Center of Teaching and Research, Liaoning University of Traditional Chinese Medicine, No. 79, Chongshan Eastern Road, Huanggu District, Shenyang, 110847 People’s Republic of China
| | - Jinling Liu
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| | - Jingjuan Meng
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| | - Changlong Lu
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| | - Ximing Li
- Center of Teaching and Research, Liaoning University of Traditional Chinese Medicine, No. 79, Chongshan Eastern Road, Huanggu District, Shenyang, 110847 People’s Republic of China
| | - Enhua Wang
- Institute of Pathology and Pathophysiology, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Heping District, Shenyang, 110001 People’s Republic of China
| |
Collapse
|
33
|
van Sorge NM, Doran KS. Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 2012; 7:383-94. [PMID: 22393891 DOI: 10.2217/fmb.12.1] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacterial meningitis is among the top ten causes of infectious disease-related deaths worldwide, with up to half of the survivors left with permanent neurological sequelae. The blood-brain barrier (BBB), composed mainly of specialized brain microvascular endothelial cells, maintains biochemical homeostasis in the CNS by regulating the passage of nutrients, molecules and cells from the blood to the brain. Despite its highly restrictive nature, certain bacterial pathogens are able to gain entry into the CNS resulting in serious disease. In recent years, important advances have been made in understanding the molecular and cellular events that are involved in the development of bacterial meningitis. In this review, we summarize the progress made in elucidating the molecular mechanisms of bacterial BBB-crossing, highlighting common themes of host-pathogen interaction, and the potential role of the BBB in innate defense during infection.
Collapse
Affiliation(s)
- Nina M van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, G04.614, 3584 GX Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Krishnan S, Prasadarao NV. Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections. FEBS J 2012; 279:919-31. [PMID: 22240162 DOI: 10.1111/j.1742-4658.2012.08482.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Outer membrane protein A (OmpA) is an abundant protein of Escherichia coli and other enterobacteria and has a multitude of functions. Although the structural features and porin function of OmpA have been well studied, its role in the pathogenesis of various bacterial infections has emerged only during the last decade. The four extracellular loops of OmpA interact with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms when inside the cell. This review describes how various regions present in the extracellular loops of OmpA contribute to the pathogenesis of neonatal meningitis induced by E. coli K1 and to many other functions. In addition, the function of OmpA-like proteins, such as OprF of Pseudomonas aeruginosa, is discussed.
Collapse
Affiliation(s)
- Subramanian Krishnan
- Division of Infectious Diseases, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, CA, USA
| | | |
Collapse
|
35
|
Bateman SL, Seed PC. Epigenetic regulation of the nitrosative stress response and intracellular macrophage survival by extraintestinal pathogenic Escherichia coli. Mol Microbiol 2012; 83:908-25. [PMID: 22221182 DOI: 10.1111/j.1365-2958.2012.07977.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor (IHF). In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNIs), primarily through de-repression of hmpA, encoding a nitric oxide-detoxifying flavohaemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX.
Collapse
Affiliation(s)
- Stacey L Bateman
- Department of Molecular Genetics and Microbiology Center for Microbial Pathogenesis Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
36
|
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis. Nat Commun 2011; 2:552. [PMID: 22109526 PMCID: PMC3537828 DOI: 10.1038/ncomms1554] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/19/2011] [Indexed: 01/01/2023] Open
Abstract
Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.
Collapse
|
37
|
Emami CN, Mittal R, Wang L, Ford HR, Prasadarao NV. Role of neutrophils and macrophages in the pathogenesis of necrotizing enterocolitis caused by Cronobacter sakazakii. J Surg Res 2011; 172:18-28. [PMID: 21601887 DOI: 10.1016/j.jss.2011.04.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/17/2011] [Accepted: 04/07/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cronobacter sakazakii (CS) is a highly virulent gram-negative opportunistic pathogen that has been implicated in clinical outbreaks of necrotizing enterocolitis (NEC). The role of mucosal immune cells in CS infection is not well understood. In this study, we sought to elucidate the role of neutrophils (polymorphonuclear leukocytes; PMNs) and macrophages in the pathogenesis of NEC induced by CS using a novel newborn mouse model. MATERIALS AND METHODS PMNs and macrophages were depleted in newborn mice using Gr-1 antibody and carrageenan, respectively, and then infected with 10(3) CFU of CS. The development of NEC in these mice was assessed by a pathologist based on the morphologic changes in the intestine. Cytokine production was determined in the serum and intestinal homogenates of infected mice by enzyme-linked immunosorbent assay (ELISA). Inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production was determined by flow cytometry and Greiss method, respectively. RESULTS Depletion of PMNs and macrophages in newborn mice led to increased recruitment of dendritic cells (DCs) in the intestine compared with wild-type mice upon infection with CS. PMN- and macrophage-depleted mice showed increased bacterial load, production of pro-inflammatory cytokines, iNOS expression, and NO production in the intestines in comparison to wild-type mice fed with CS. In addition, depletion of PMNs and macrophages prior to infection in mice resulted in severe inflammation, villus destruction, and enhanced enterocyte apoptosis in the intestines compared with CS-infected wild-type mice. CONCLUSIONS Our data suggest that depletion of PMNs and macrophages from the lamina propria (LP) exacerbates experimental NEC, indicating that both of these immunocytes play an important role in the clearance of CS during the initial stages of infection. The increased mucosal cytokine response and NO production in the absence of these immunocytes may be responsible for the observed increase in mucosal injury. Understanding how CS manipulates these cells, employing novel mouse model of NEC reported in this study, will provide significant insights for the development of novel therapeutic and preventive strategies to combat NEC.
Collapse
Affiliation(s)
- Claudia N Emami
- Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|