1
|
Podadera A, Leuthold M, Martín-Alonso JM, Casais R, Álvarez AL, Lobo-Castañón MJ, Parra F, Dalton KP. Epitope mapping of a neutralizing antibody against rabbit hemorrhagic disease virus GI.2. Vet Res 2025; 56:74. [PMID: 40176146 PMCID: PMC11963670 DOI: 10.1186/s13567-025-01505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 04/04/2025] Open
Abstract
In 2010, rabbit hemorrhagic disease virus (RHDV) GI.2 emerged, and unlike RHDV GI.1, it caused mortality in young rabbits, while existing vaccines were not fully protective. The GI.2-specific monoclonal antibody (mAb) 2D9 has been used as a tool to discriminate between these viruses in diagnostic tests. In this study, we mapped the binding epitope for 2D9 on the GI.2 The VP60 capsid protein demonstrated the neutralizing capacity of this mAb, which was able to prevent GI.2 infections in an experimental challenge. Our results suggest that external loops (1, 4 and 5) in the P2 subdomain of VP60 contribute to the discontinuous neutralizing epitope recognized by mAb 2D9. Moreover, analysis of naturally occurring RHDV GI.2 isolates revealed key residues involved in mAb 2D9 binding that are under selective pressure. The findings described in this work provide valuable information regarding our understanding of virus neutralization and immune escape, which may help in the development of novel antiviral compounds.
Collapse
Affiliation(s)
- Ana Podadera
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
- Chemistry and Biochemistry Department, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Mila Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - José Manuel Martín-Alonso
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - Rosa Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Centro de Biotecnología Animal, 33394, Gijón, Asturias, Spain
| | - Angel Luis Álvarez
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - M J Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - Kevin Paul Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| |
Collapse
|
2
|
Hansman GS, Reese T, Pancera M, Rudd PA, Masic V, Haselhorst T, von Itzstein M. Structural analysis of a non-pathogenic hare calicivirus capsid bound to a histo-blood group antigen co-factor. J Virol 2024; 98:e0167524. [PMID: 39513720 PMCID: PMC11651000 DOI: 10.1128/jvi.01675-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Affiliation(s)
- Grant S. Hansman
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Todd Reese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Penny A. Rudd
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Veronika Masic
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Thomas Haselhorst
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Tokarz-Deptuła B, Kulus J, Baraniecki Ł, Stosik M, Deptuła W. Characterisation of Lagovirus europaeus GI-RHDVs (Rabbit Haemorrhagic Disease Viruses) in Terms of Their Pathogenicity and Immunogenicity. Int J Mol Sci 2024; 25:5342. [PMID: 38791380 PMCID: PMC11120834 DOI: 10.3390/ijms25105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.
Collapse
Affiliation(s)
| | - Jakub Kulus
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| |
Collapse
|
4
|
Krejmer-Rąbalska M, Peplińska M, Szewczyk B, Fitzner A. Serological characterisation of Lagovirus virus-like particles originating from native and mutated VP60 of rabbit haemorrhagic disease virus 2 and European brown hare syndrome virus. J Vet Res 2024; 68:9-17. [PMID: 38525228 PMCID: PMC10960260 DOI: 10.2478/jvetres-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Since lagoviruses cannot be cultivated in vitro, using expression systems is an alternative and promising way of producing diagnostic viral antigens. It opens up their use as active immunogens for vaccine production. Material and Methods Virus-like particles (VLPs) were produced in a baculovirus expression system in Spodoptera frugiperda 9 (Sf9) insect cells based on wild-type and mutated variants of the virus capsid VP60 protein from a Polish strain of European brown hare syndrome virus (EBHSV) and wild-type and mutated versions of this protein from a Polish strain of rabbit haemorrhagic disease virus 2 (RHDV2). The mutations were the substitution of an arginylglycylaspartic acid (Arg-Gly-Asp/RGD) motif in the P2 subdomain and, in the S or P2 domain, the substitution of three lysines. The VLPs were purified with sucrose gradient ultracentrifugation. Results Protein production was confirmed by Western blot analysis using rabbit or hare sera and ELISA tests with different types of monoclonal antibody. The haemagglutination properties of some VLPs were also evaluated. Electron microscopy of wild-type EBHSV, wild-type RHDV2 and the four VP60 variants produced in this experiment revealed the formation of characteristic VLP structures. Conclusion For the first time, mutated VLPs of RHDV2 with an RGD motif in the VP60 sequence were obtained, which could potentially be used to deliver cargo to eukaryotic cells. Virus-like particles based on the VP60 proteins of EBHSV and RHDV with a three-lysine substitution in the S or P2 domains were also obtained. Potential exists for VLPs of EBHSV and RHDV2 as vaccine candidates.
Collapse
Affiliation(s)
- Martyna Krejmer-Rąbalska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Marta Peplińska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Bogusław Szewczyk
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Andrzej Fitzner
- Department of Foot and Mouth Disease, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
5
|
O'Toole AD, Mohamed FM, Zhang J, Brown CC. Early pathogenesis in rabbit hemorrhagic disease virus 2. Microb Pathog 2022; 173:105814. [DOI: 10.1016/j.micpath.2022.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
6
|
Spada E, Bruno F, Castelli G, Vitale F, Reale S, Biondi V, Migliazzo A, Perego R, Baggiani L, Proverbio D. Do Blood Phenotypes of Feline AB Blood Group System Affect the SARS-CoV-2 Antibody Serostatus in Cats? Viruses 2022; 14:2691. [PMID: 36560695 PMCID: PMC9783645 DOI: 10.3390/v14122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cats are susceptible to coronavirus infections, including infection by human severe acute respiratory syndrome coronavirus (SARS-CoV). In human ABO system blood groups, alloantibodies can play a direct role in resistance to infectious diseases. Individuals with the AB blood type were over-represented in the SARS-CoV-2 infection group. Blood type AB individuals lack both anti-A and anti-B antibodies, and therefore lack the protective effect against SARS-CoV-2 infection given by these antibodies. Starting from this knowledge, this pilot preliminary study evaluated a possible association between feline blood phenotypes A, B, and AB and serostatus for SARS-CoV-2 antibodies in cats. We also investigated selected risk or protective factors associated with seropositivity for this coronavirus. A feline population of 215 cats was analysed for AB group system blood phenotypes and antibodies against the nucleocapsid (N-protein) SARS-CoV-2 antigen using a double antigen ELISA. SARS-CoV-2 seropositive samples were confirmed using a surrogate virus neutralization test (sVNT). Origin (stray colony/shelter/owned cat), breed (DSH/non DSH), gender (male/female), reproductive status (neutered/intact), age class (kitten/young adult/mature adult/senior), retroviruses status (seropositive/seronegative), and blood phenotype (A, B, and AB) were evaluated as protective or risk factors for SARS-CoV-2 seropositivity. Seropositivity for antibodies against the SARS-CoV-2 N-protein was recorded in eight cats, but only four of these tested positive with sVNT. Of these four SARS-CoV-2 seropositive cats, three were blood phenotype A and one was phenotype AB. Young adult age (1-6 years), FeLV seropositivity and blood type AB were significantly associated with SARS-CoV-2 seropositivity according to a univariate analysis, but only blood type AB (p = 0.0344, OR = 15.4, 95%CI: 1.22-194.39) and FeLV seropositivity (p = 0.0444, OR = 13.2, 95%CI: 1.06-163.63) were significant associated risk factors according to a logistic regression. Blood phenotype AB might be associated with seropositivity for SARS-CoV-2 antibodies. This could be due, as in people, to the protective effect of naturally occurring alloantibodies to blood type antigens which are lacking in type AB cats. The results of this pilot study should be considered very preliminary, and we suggest the need for further research to assess this potential relationship.
Collapse
Affiliation(s)
- Eva Spada
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Federica Bruno
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Germano Castelli
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Fabrizio Vitale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Stefano Reale
- Centro di Referenza Nazionale per le Leishmaniosi (C.Re.Na.L), Istituto Zooprofilattico Sperimentale (IZS) Della Sicilia A. Mirri, 90129 Palermo, Italy
| | - Vito Biondi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonella Migliazzo
- Dipartimento di Prevenzione, Area Sanità Pubblica Veterinaria, UOC Sanità Animale, Igiene Degli Allevamenti e Produzioni Zootecniche, Asl Latina, 04100 Latina, Italy
| | - Roberta Perego
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Luciana Baggiani
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| | - Daniela Proverbio
- Laboratorio di Ricerca di Medicina Emotrasfusionale Veterinaria (REVLab), Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
7
|
Structural Basis for Rabbit Hemorrhagic Disease Virus Antibody Specificity. J Virol 2022; 96:e0121722. [PMID: 36326275 PMCID: PMC9682983 DOI: 10.1128/jvi.01217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isolated RHDV antibodies have been used for decades to distinguish between antigenic variants, monitor temporal capsid evolution, and examine neutralizing capacities. In this study, we provided the structural basis for an RHDV GI.2 specific diagnostic antibody (2D9) binding and reveal that a small number of amino acid substitutions at the binding site could differentiate between RHDV GI.2 and GI.1b.
Collapse
|
8
|
Spada E, Galluzzo P, Torina A, Loria GR, Perego R, Grippi F, Blanda V, Baggiani L, D'Amico A, Pennisi MG, Helps CR, Malik R, Westman M, Gandolfi B, Spencer S, Proverbio D, Tasker S. Evaluating the association between blood genotype or phenotype and haemoplasma infection in UK and Italian cats. Vet Rec 2022:e2282. [PMID: 36222468 DOI: 10.1002/vetr.2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND In humans, blood groups are associated with varying prevalence of infections. The aim of this study was to determine if associations exist between the feline AB blood group system and haemoplasma infection. METHODS Data from two studies were combined. In the first study, DNA samples from 131 haemoplasma-infected and 132 haemoplasma-uninfected UK cats underwent pyrosequencing to determine their blood genotype as AA, Ab or bb. In the second study, blood samples from 160 Italian cats of known blood phenotype A, B or AB underwent PCR testing for feline haemoplasma species DNA. RESULTS Haemoplasma infection was demonstrated in cats of all phenotypes and genotypes. A significantly higher number of Ab genotype cats tested positive for overall haemoplasma infection status (p = 0.04) and for Mycoplasma haemofelis infection (p = 0.03). LIMITATIONS Haemoplasma-infected Italian cats were few, possibly increasing the chance of type II error, and the presence of purebred cats in the sample population may have had a confounding effect. CONCLUSIONS Feline haemoplasmas do not appear to preferentially use either blood type A or B antigens as attachment sites for erythrocyte colonisation. Further investigations in a larger number of haemoplasma-infected cats of known blood phenotype are warranted to explain the association between genotype Ab and haemoplasma infection.
Collapse
Affiliation(s)
- Eva Spada
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Paola Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia 'Adelmo Mirri', Palermo, Italy
| | - Alessandra Torina
- Istituto Zooprofilattico Sperimentale della Sicilia 'Adelmo Mirri', Palermo, Italy
| | - Guido R Loria
- Istituto Zooprofilattico Sperimentale della Sicilia 'Adelmo Mirri', Palermo, Italy
| | - Roberta Perego
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Francesca Grippi
- Istituto Zooprofilattico Sperimentale della Sicilia 'Adelmo Mirri', Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia 'Adelmo Mirri', Palermo, Italy
| | - Luciana Baggiani
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Alessia D'Amico
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Maria G Pennisi
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Chris R Helps
- Langford Vets, Bristol Veterinary School, University of Bristol, Langford, UK
| | - Richard Malik
- Centre for Veterinary Education, University of Sydney, Sydney, New South Wales, Australia.,School of Veterinary and Animal Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Mark Westman
- Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Barbara Gandolfi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Sarah Spencer
- Comparative Biological Sciences, Royal Veterinary College, London, UK.,Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Daniela Proverbio
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol, UK.,Linnaeus Veterinary, Shirley, UK
| |
Collapse
|
9
|
History, control, epidemiology, ecology, and economy of the invasion of European rabbits in Chile: a comparison with Australia. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Detection of a new emerging strain of rabbit haemorrhagic disease virus 2 (GI.2) in China. J Vet Res 2022; 66:289-295. [PMID: 36349130 PMCID: PMC9597937 DOI: 10.2478/jvetres-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/30/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction In May 2020, an outbreak of rabbit haemorrhagic disease 2 (RHD2) caused by the rabbit haemorrhagic disease virus 2 (RHDV2, GI.2) occurred in Sichuan, China. The acute onset and short disease course resulted in rabbit mortality as high as 42.86%. Currently, basic research on the aetiology and genetic characteristics of GI.2 is lacking in China. Material and Methods Pathological changes in various tissues from infected rabbits were investigated and the viral genome was characterised. This study used RT-PCR, histopathology and scanning electron microscopy to identify the pathogen in samples from infected rabbits that had died. Phylogenetic trees were constructed based on whole genome sequence analysis, and recombination events were analysed. Results RT-PCR identified the presence of GI.2. Histopathology revealed liver cell necrosis and haemorrhaging into lung alveoli. Electron microscopy demonstrated spherical GI.2 particles that were 40 nm in size. The gene sequence length of the isolate was 7,445 bp (GenBank accession number MW178244). A phylogenetic analysis based on the genome of the isolated strain and 60 reference strains showed that the isolate was grouped together with GI.2 strain MT586027.1 in a relatively independent sub-branch. The results of the recombination analysis showed that the strain was recombined from the MT586027.1 (major parent) and MN90145.1 (minor parent) strains, and recombination breakpoints were at locations in the 2858–5137 nt range. Conclusion The results of this study extend our understanding of the molecular epidemiology of GI.2.
Collapse
|
11
|
Spada E, Carrera Nulla A, Perego R, Baggiani L, Proverbio D. Evaluation of Association between Blood Phenotypes A, B and AB and Feline Coronavirus Infection in Cats. Pathogens 2022; 11:pathogens11080917. [PMID: 36015038 PMCID: PMC9416549 DOI: 10.3390/pathogens11080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
Cats are susceptible to feline coronavirus (FCoV), a highly contagious virus with fecal–oral transmission. In people, susceptibility to coronavirus infection, such as SARS-CoV infection, has been associated with the ABO blood group, with individuals with blood group O having significantly lower risk of SARS-CoV infection. This study evaluated a possible association between feline blood group phenotypes A, B and AB and serostatus for antibodies against FCoV. We also investigated risk or protective factors associated with seropositivity for FCoV in the investigated population. Feline populations were surveyed for AB group system blood types and for presence of antibodies against FCoV. Blood phenotype, origin, breed, gender, reproductive status and age of cats were evaluated as protective or risk factors for coronavirus infection. No blood type was associated with FCoV seropositivity, for which being a colony stray cat (p = 0.0002, OR = 0.2, 95% CI: 0.14–0.54) or a domestic shorthair cat (p = 0.0075, OR = 0.2, 95% CI = 0.09–0.69) were protective factors. Based on results of this study, feline blood phenotypes A, B or AB do not seem to predispose cats to seropositivity for FCoV. Future studies on other feline blood types and other infections could clarify whether feline blood types could play a role in predisposing to, or protecting against, feline infections.
Collapse
|
12
|
Spada E, Jung H, Proverbio D, Perego R, Baggiani L, Ciuti S, Sharp CR, Nash KJ, Westman M, Lait PJP, Davidow EB. Lack of association between feline AB blood groups and retroviral status: a multicenter, multicountry study. J Feline Med Surg 2022; 24:e194-e202. [PMID: 35635064 PMCID: PMC10812261 DOI: 10.1177/1098612x221100082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 05/16/2024]
Abstract
OBJECTIVES The relationship between blood group antigens and disease has been studied in humans. Blood types have been associated with both decreased and increased rates of various infections. In addition, blood group expression has been shown to vary with some cancers and gastrointestinal diseases. The objective of this study was to explore whether there is a relationship between blood type and retroviral infections in cats. METHODS Case records from a veterinary research laboratory, veterinary teaching hospitals and veterinary blood banks were retrospectively searched for cats where both blood type and retroviral status (feline leukemia [FeLV], feline immunodeficiency virus [FIV] or both) were listed (part 1). In addition, a sample of 33 cats with confirmed FIV infection was genotyped to determine blood groups (part 2). RESULTS In part 1, 709 cats were identified, 119 of which were positive for retroviral infection. Among all cases, 621 were type A (87.6%), 68 were type B (9.6%) and 20 were type AB (2.8%). There was no relationship between overall retroviral status (positive/negative) and blood type (P = 0.43), between FeLV status and blood type (P = 0.86) or between FIV status and blood type (P = 0.94). There was no difference in the distribution of blood types between cats that were healthy and typed as possible blood donors vs sick cats that were typed prior to a possible transfusion (P = 0.13). In part 2, of the 33 FIV-infected cats, all blood group genotypes were identified, although this test did not discriminate type A from type AB. CONCLUSIONS AND RELEVANCE No relationship was identified between feline retroviral status and blood type in this study. The relationship between blood type and other disease states requires further study in veterinary patients.
Collapse
Affiliation(s)
- Eva Spada
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Hyein Jung
- Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA
| | - Daniela Proverbio
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Roberta Perego
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Luciana Baggiani
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Silvia Ciuti
- Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Claire R Sharp
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Katherine J Nash
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Mark Westman
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, Australia
| | - Philippa JP Lait
- Molecular Diagnostic Unit, Diagnostic Laboratories, Langford Vets, Langford, Bristol, UK
| | | |
Collapse
|
13
|
Patel KK, Strive T, Hall RN, Mutze G, Page B, Korcz M, Booth-Remmers M, Smith IL, Huang DN, Kovaliski J, Jayasinghe Ellakkala Appuhamilage RMJ, Taggart PL. Cross-protection, infection, and case fatality rates in wild European rabbits experimentally challenged with different rabbit haemorrhagic disease viruses. Transbound Emerg Dis 2022; 69:e1959-e1971. [PMID: 35315981 DOI: 10.1111/tbed.14530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
Rabbit haemorrhagic disease virus 2 (RHDV2) is now the dominant calicivirus circulating in wild rabbit populations in Australia. This study compared the infection and case fatality rates of RHDV2 and two RHDVs in wild rabbits, as well as their ability to overcome immunity to the respective other strains. Wild rabbits were allocated to groups either blindly or based on prescreening for RHDV/RHDV2 antibodies at capture. Rabbits were monitored regularly until their death or humane killing at 7 days post infection. Liver and eyeball samples were collected for lagovirus testing and aging rabbits, respectively. At capture, rabbits showed high seroprevalence to RHDV2 but not to RHDV. In RHDV/RHDV2 seronegative rabbits at capture, infection rates were highest in those inoculated with RHDV2 (81.8%, 18/22), followed by K5 (53.8%, 7/13) and CZECH (40.0%, 2/5), but these differences were not statistically significant. In rabbits with previous exposure to RHDV2 at capture, infection rates were highest when inoculated with K5 (59.6%, 31/52) followed by CZECH (46.0%, 23/50), with infection rates higher in younger rabbits for both viruses. In RHDV/RHDV2 seronegative rabbits at capture, case fatality rates were highest for those inoculated with K5 (71.4%), followed by RHDV2 (50.0%) and CZECH (50.0%). In rabbits with previous exposure to RHDV2 at capture, case fatality rates were highest in rabbits inoculated with K5 (12.9%) followed by CZECH (8.7%), with no case fatalities following RHDV2 inoculation. Case fatality rates did not differ significantly between inoculums in either serostatus group at capture. Based on multivariable modelling, time to death post RHDV inoculation increased in rabbits with recent RHDV2 exposure compared to seronegative rabbits and with age. The results suggest that RHDV2 may cause higher mortalities than other variants in seronegative rabbit populations but that K5 may be more effective in reducing rabbit populations in an RHDV2-dominant landscape. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kandarp K Patel
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - Tanja Strive
- Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia.,Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, 2601, Australia
| | - Robyn N Hall
- Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia.,Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, 2601, Australia
| | - Greg Mutze
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia
| | - Bradley Page
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - Matthew Korcz
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia
| | - Mahalia Booth-Remmers
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,Australian Wildlife Conservancy, Subiaco, Western Australia, 6008, Australia
| | - Ina L Smith
- Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - D Nina Huang
- Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia.,Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, 2601, Australia
| | - John Kovaliski
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - Ridma M J Jayasinghe Ellakkala Appuhamilage
- Biosecurity, Department of Primary Industries and Regions (PIRSA), Urrbrae, South Australia, 5064, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia
| | - Patrick L Taggart
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.,Centre for Invasive Species Solutions, Australian Capital Territory, Bruce, 2617, Australia.,Vertebrate Pest Research Unit, Department of Primary Industries NSW, Queanbeyan, New South Wales, 2620, Australia
| |
Collapse
|
14
|
Cao W, Zhao J, Qu P, Liu E. Current Progress and Prospects in Rabbit Cloning. Cell Reprogram 2022; 24:63-70. [PMID: 35167365 DOI: 10.1089/cell.2021.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) shows great value in the generation of transgenic animals, protection of endangered animals, and stem cell therapy. The combination of SCNT and gene editing has produced a variety of genetically modified animals for life science and medical research. Rabbits have unique advantages as transgenic bioreactors and human disease models; however, the low SCNT efficiency severely impedes the application of this technology. The difficulty in SCNT may be attributable to the abnormal reprogramming of somatic cells in rabbits. This review focuses on the abnormal reprogramming of cloned mammalian embryos and evaluates the progress and prospects of rabbit somatic cell cloning.
Collapse
Affiliation(s)
- Wenbin Cao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jinpeng Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
15
|
Abrantes J, Lopes AM. A Review on the Methods Used for the Detection and Diagnosis of Rabbit Hemorrhagic Disease Virus (RHDV). Microorganisms 2021; 9:972. [PMID: 33946292 PMCID: PMC8146303 DOI: 10.3390/microorganisms9050972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
Since the early 1980s, the European rabbit (Oryctolagus cuniculus) has been threatened by the rabbit hemorrhagic disease (RHD). The disease is caused by a lagovirus of the family Caliciviridae, the rabbit hemorrhagic disease virus (RHDV). The need for detection, identification and further characterization of RHDV led to the development of several diagnostic tests. Owing to the lack of an appropriate cell culture system for in vitro propagation of the virus, much of the methods involved in these tests contributed to our current knowledge on RHD and RHDV and to the development of vaccines to contain the disease. Here, we provide a comprehensive review of the RHDV diagnostic tests used since the first RHD outbreak and that include molecular, histological and serological techniques, ranging from simpler tests initially used, such as the hemagglutination test, to the more recent and sophisticated high-throughput sequencing, along with an overview of their potential and their limitations.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana M. Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Abstract
Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.
Collapse
|
17
|
Elfekih S, Metcalfe S, Walsh TK, Cox TE, Strive T. Genomic insights into a population of introduced European rabbits Oryctolagus cuniculus in Australia and the development of genetic resistance to rabbit hemorrhagic disease virus. Transbound Emerg Dis 2021; 69:895-902. [PMID: 33560563 DOI: 10.1111/tbed.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022]
Abstract
The European rabbit (Oryctolagus cuniculus) is one of the most devastating invasive species in Australia. Since the 1950s, myxoma virus (MYXV) and rabbit haemorrhagic disease virus (RHDV) have been used to manage overabundant rabbit populations. Resistance to MYXV was observed within a few years of the release. More recently, resistance to lethal RHDV infection has also been reported, undermining the efficiency of landscape-scale rabbit control. Previous studies suggest that genetic resistance to lethal RHDV infection may differ locally between populations, yet the mechanisms of genetic resistance remain poorly understood. Here, we used genotyping by sequencing (GBS) data representing a reduced representation of the genome, to investigate Australian rabbit populations. Our aims were to understand the relationship between populations and identify possible genomic signatures of selection for RHDV resistance. One population we investigated had previously been reported to show levels of resistance to lethal RHDV infection. This population was compared to three other populations with lower or no previously reported RHDV resistance. We identified a set of novel candidate genes that could be involved in host-pathogen interactions such as virus binding and infection processes. These genes did not overlap with previous studies on RHDV resistance carried out in different rabbit populations, suggesting that multiple mechanisms are feasible. These findings provide useful insights into the different potential mechanisms of genetic resistance to RHDV virus which will inform future functional studies in this area.
Collapse
Affiliation(s)
- Samia Elfekih
- Australian Centre for Disease Preparedness-ACDP, CSIRO Health & Biosecurity, East Geelong, VIC, Australia.,Bio21 Institute and the School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Tom K Walsh
- Black Mountain Labs, CSIRO Land & Water, Canberra, ACT, Australia
| | - Tarnya E Cox
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, NSW, Australia
| | - Tanja Strive
- Black Mountain Labs, CSIRO Health & Biosecurity, Canberra, ACT, Australia.,Centre for Invasive Species Solutions, Canberra, ACT, Australia
| |
Collapse
|
18
|
Human Noroviruses Attach to Intestinal Tissues of a Broad Range of Animal Species. J Virol 2021; 95:JVI.01492-20. [PMID: 33115870 DOI: 10.1128/jvi.01492-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are the most common nonbacterial cause of gastroenteritis outbreaks, with new variants and genotypes frequently emerging. The origin of these new viruses is unknown; however, animals have been proposed as a potential source, as human noroviruses have been detected in animal species. Here, we investigated the potential of animals to serve as a reservoir of human noroviruses by testing norovirus attachment to formalin-fixed intestinal tissues of a range of potential reservoir animals. We set up a novel method to study norovirus binding using fluorescein isothiocyanate (FITC)-labeled virus-like particles (VLPs). In humans, noroviruses interact with histo-blood group antigens (HBGAs), carbohydrates that are expressed, among others, on the epithelial lining of the gastrointestinal tract. In animals, this interaction is not well understood. To test if virus binding depends on HBGAs, we characterized the HBGA phenotype in animal tissues by immunohistochemistry. With the exception of the black-headed gull and the straw-colored fruitbat, we observed the attachment of several human norovirus genotypes to the intestinal epithelium of all tested animal species. However, we did not find an association between the expression of a specific HBGA phenotype and virus-like particle (VLP) attachment. We show that selected human noroviruses can attach to small-intestinal tissues across species, supporting the hypothesis that human noroviruses can reside in an animal reservoir. However, whether this attachment can subsequently lead to infection needs to be further assessed.IMPORTANCE Noroviruses are a major cause of acute gastroenteritis in humans. New norovirus variants and recombinants (re)emerge regularly in the human population. From animal experiments and surveillance studies, it has become clear that at least seven animal models are susceptible to infection with human strains and that domesticated and wild animals shed human noroviruses in their feces. As virus attachment is an important first step for infection, we used a novel method utilizing FITC-labeled VLPs to test for norovirus attachment to intestinal tissues of potential animal hosts. We further characterized these tissues with regard to their HBGA expression, a well-studied norovirus susceptibility factor in humans. We found attachment of several human strains to a variety of animal species independent of their HBGA phenotype. This supports the hypothesis that human strains could reside in an animal reservoir.
Collapse
|
19
|
Schwensow N, Pederson S, Peacock D, Cooke B, Cassey P. Adaptive changes in the genomes of wild rabbits after 16 years of viral epidemics. Mol Ecol 2020; 29:3777-3794. [PMID: 32506669 DOI: 10.1111/mec.15498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023]
Abstract
Since its introduction to control overabundant invasive European rabbits (Oryctolagus cuniculus), the highly virulent rabbit haemorrhagic disease virus (RHDV) has caused regular annual disease outbreaks in Australian rabbit populations. Although initially reducing rabbit abundance by 60%, continent-wide, experimental evidence has since indicated increased genetic resistance in wild rabbits that have experienced RHDV-driven selection. To identify genetic adaptations, which explain the increased resistance to this biocontrol virus, we investigated genome-wide SNP (single nucleotide polymorphism) allele frequency changes in a South Australian rabbit population that was sampled in 1996 (pre-RHD genomes) and after 16 years of RHDV outbreaks. We identified several SNPs with changed allele frequencies within or close to genes potentially important for increased RHD resistance. The identified genes are known to be involved in virus infections and immune reactions or had previously been identified as being differentially expressed in healthy versus acutely RHDV-infected rabbits. Furthermore, we show in a simulation study that the allele/genotype frequency changes cannot be explained by drift alone and that several candidate genes had also been identified as being associated with surviving RHD in a different Australian rabbit population. Our unique data set allowed us to identify candidate genes for RHDV resistance that have evolved under natural conditions, and over a time span that would not have been feasible in an experimental setting. Moreover, it provides a rare example of host genetic adaptations to virus-driven selection in response to a suddenly emerging infectious disease.
Collapse
Affiliation(s)
- Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,Centre for Applied Conservation Science, and School of Biological Sciences, University of Adelaide, SA, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, SA, Australia
| | - David Peacock
- Biosecurity SA, Adelaide, SA, Australia.,School of Animal and Veterinary Science, University of Adelaide, Roseworthy, SA, Australia
| | - Brian Cooke
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Phillip Cassey
- Centre for Applied Conservation Science, and School of Biological Sciences, University of Adelaide, SA, Australia
| |
Collapse
|
20
|
Buehler M, Jesse ST, Kueck H, Lange B, Koenig P, Jo WK, Osterhaus A, Beineke A. Lagovirus europeus GI.2 (rabbit hemorrhagic disease virus 2) infection in captive mountain hares (Lepus timidus) in Germany. BMC Vet Res 2020; 16:166. [PMID: 32460756 PMCID: PMC7254734 DOI: 10.1186/s12917-020-02386-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/22/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Rabbit hemorrhagic disease virus (RHDV, Lagovirus europeus GI.1) induces a contagious and highly lethal hemorrhagic disease in rabbits. In 2010 a new genotype of lagovirus (GI.2), emerged in Europe, infecting wild and domestic population of rabbits and hares. CASE PRESENTATION We describe the infection with a GI.2 strain, "Bremerhaven-17", in captive mountain hares (Lepus timidus) in a zoo facility in Germany. Postmortem examination revealed RHD-like lesions including necrotizing hepatitis. RT-qPCR and AG-ELISA confirmed presence of GI.2. Recombination and phylogenetic analysis grouped the identified strain with other GI.2 strains, sharing nucleotide identity of 91-99%. CONCLUSION Our findings confirm that mountain hares are susceptible to GI.2 infection, due to a past recombination event facilitating virus spillover from sympatric rabbits.
Collapse
Affiliation(s)
- Melanie Buehler
- Institute of Pathology, University of Veterinary Medicine Hanover, Foundation, Buenteweg, 17 30559, Hannover, Germany
| | - Sonja T Jesse
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hanover, Foundation, Buenteweg, 17 30559, Hannover, Germany
| | - Heike Kueck
- Zoo am Meer Bremerhaven, H.-H.-Meier-Straße 7, 27568, Bremerhaven, Germany
| | - Bastian Lange
- Zoo am Meer Bremerhaven, H.-H.-Meier-Straße 7, 27568, Bremerhaven, Germany
| | - Patricia Koenig
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Wendy K Jo
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hanover, Foundation, Buenteweg, 17 30559, Hannover, Germany
| | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hanover, Foundation, Buenteweg, 17 30559, Hannover, Germany
| | - Andreas Beineke
- Institute of Pathology, University of Veterinary Medicine Hanover, Foundation, Buenteweg, 17 30559, Hannover, Germany.
| |
Collapse
|
21
|
Negrini R, Villanacci V, Poiesi C, Savio A. Anti-Glycan Autoantibodies Induced by Helicobacter pylori as a Potential Risk Factor for Myocardial Infarction. Front Immunol 2020; 11:597. [PMID: 32322255 PMCID: PMC7158853 DOI: 10.3389/fimmu.2020.00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
A number of epidemiological studies have evaluated the potential association between H. pylori and cardiovascular disease, but with contrasting results. We have previously shown that Helicobacter pylori infection is able to induce in mice and humans autoantibodies cross-reacting with histo–blood group Lewis antigens, expressed in different organs and in plasma glycoproteins and glycolipids. The aim of this study was to assess whether immunization of animals with H. pylori might induce myocardial histopathological changes. We have retrospectively examined, in detail, the histology of archived organs from mice and rabbits immunized with H. pylori in our previous studies. Human sera and cross-reacting monoclonal antibodies were also tested against bacterial preparations and tissue sections. Areas of myocardial necrosis, associated with coronary thrombotic occlusion, were found in 5 of 20 mice and 2 of 5 rabbits previously immunized with suspensions of H. pylori. No similar lesions were found in control animals, suggesting a causal link with H. pylori immunization. The animals bearing myocardial lesions had not been infected but only immunized months earlier with parenteral injections of dead H. pylori cells. This strongly suggests that immunization, by itself, might play a causative role. We propose that the cross-reactive autoimmune response induced by H. pylori could promote thrombotic occlusion through direct endothelial damage or by perturbing the coagulation process.
Collapse
Affiliation(s)
- Riccardo Negrini
- Department of Laboratory Medicine, Presidio di Gardone VT-ASST Spedali Civili, Brescia, Italy
| | | | - Claudio Poiesi
- Institute of Microbiology and Virology, ASST Spedali Civili, Brescia, Italy
| | - Antonella Savio
- Histopathology and Cytology Department, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
22
|
Identification of carbohydrate peripheral epitopes important for recognition by positive-ion MALDI multistage mass spectrometry. Carbohydr Polym 2020; 229:115528. [DOI: 10.1016/j.carbpol.2019.115528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
|
23
|
Strive T, Piper M, Huang N, Mourant R, Kovaliski J, Capucci L, Cox TE, Smith I. Retrospective serological analysis reveals presence of the emerging lagovirus RHDV2 in Australia in wild rabbits at least five months prior to its first detection. Transbound Emerg Dis 2019; 67:822-833. [PMID: 31665828 DOI: 10.1111/tbed.13403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
The lagovirus rabbit haemorrhagic disease virus (RHDV) has been circulating in Australia since the mid-1990s when it was released to control overabundant rabbit populations. In recent years, the viral diversity of different RHDVs in Australia has increased, and currently four different types of RHDV are known to be circulating. To allow for ongoing epidemiological studies and impact assessments of these viruses on Australian wild rabbit populations, it is essential that serological tools are updated. To this end, reference sera were produced against all four virulent RHDVs (RHDV, RHDV2 and two different strains of RHDVa) known to be present in Australia and tested in a series of available immunological assays originally developed for the prototype RHDV, to assess patterns of cross-reactivity and the usefulness of these assays to detect lagovirus antibodies, either in a generic or specific manner. Enzyme-linked immunosorbent assays (ELISAs) developed to detect antibody isotypes IgM, IgA and IgG were sufficiently cross-reactive to detect antibodies raised against all four virulent lagoviruses. For the more specific detection of antibodies to the antigenically more different RHDV2, a competition ELISA was adapted using RHDV2-specific monoclonal antibodies in combination with Australian viral antigen. Archival serum banks from a long-term rabbit monitoring site where rabbits were sampled quarterly over a period of 6 years were re-screened using this assay and revealed serological evidence for the arrival of RHDV2 in this population at least 5 months prior to its initial detection in Australia in a dead rabbit in May 2015. The serological methods and reference reagents described here will provide valuable tools to study presence, prevalence and impact of RHDV2 on Australian rabbit populations; however, the discrimination of different antigenic variants of RHDVs as well as mixed infections at the serological level remains challenging.
Collapse
Affiliation(s)
- Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia
| | - Melissa Piper
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - Nina Huang
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia
| | - Roslyn Mourant
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | - John Kovaliski
- Department of Primary Industries and Regions, Biosecurity SA, Adelaide, Australia
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Tarnya E Cox
- Centre for Invasive Species Solutions, University of Canberra, Bruce, Australia.,Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, Australia
| | - Ina Smith
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| |
Collapse
|
24
|
Semerjyan AB, Sargsyan MA, Arzumanyan HH, Hakobyan LH, Abroyan LO, Semerjyan ZB, Avetisyan AS, Karalova EM, Manukyan DM, Matevosyan HS, Krasnikov NF, Karalyan ZA. Immune cell pathology in rabbit hemorrhagic disease. Vet World 2019; 12:1332-1340. [PMID: 31641316 PMCID: PMC6755391 DOI: 10.14202/vetworld.2019.1332-1340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Aim: The aim of this research was to study the effect of rabbit hemorrhagic disease virus (RHDV) on the host immune response by examining the cellular composition/pathology of lymphoid organs and serum levels of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). Materials and Methods: Nine adult rabbits were inoculated with 1 ml of 10% infected liver homogenate, and three rabbits served as controls. The rabbit hemorrhagic disease (RHD)-induced animals were studied on 3 consecutive days post-infection. Diagnosis of RHD was made through routine hemagglutination tests and the polymerase chain reaction. Blood smears and tissue samples from bone marrow (BM), spleen, lymph nodes, and liver were analyzed for cell composition and cytopathology. Serum levels of TNF-α and IFN-γ were measured by enzyme-linked immunosorbent assay. Results: RHD showed a decreased absolute cell count of blood as well as lymph nodes, spleen, and BM cell populations with marked left shift. This was seen as a progressive rise in immature and blast cells. Quantitative cellular changes were accompanied by an increase in specific inflammatory cytokines. Immunocytopathological alterations were evidenced by: Vacuolized, hyperactivated tissue macrophages, finding of Döhle bodies in neutrophils, and activated lymphocytes with increased nuclear-cytoplasmic ratio. Cytoplasmic eosinophilic viral inclusions found in tissue (liver, spleen, and BM) macrophages were shown for the 1st time in RHD. Megakaryocytic emperipolesis was a common feature of RHD. Conclusion: These studies suggest that RHDV induces pathology in leukocytes due to hyperactivation with left shift (toward immature stages of the different cell lineages). Macrophages are increased in number and show an expressed cytopathic effect often accompanied by viral eosinophilic cytoplasmic inclusions. They also developed a secretory activation (increased levels of pro-inflammatory cytokines).
Collapse
Affiliation(s)
| | - Mariam Armenak Sargsyan
- Department of Epidemiology and Parasitology, Armenian National Agrarian University, Yerevan, Armenia
| | | | - Lina Hayrapet Hakobyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Liana Onik Abroyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Zara Babken Semerjyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Aida Sergey Avetisyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Elena Michael Karalova
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | | | | | | | - Zaven Alexandr Karalyan
- Department of Medical Biology, Yerevan State Medical University, Yerevan, Armenia.,Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| |
Collapse
|
25
|
Dual Recognition of Sialic Acid and αGal Epitopes by the VP8* Domains of the Bovine Rotavirus G6P[5] WC3 and of Its Mono-reassortant G4P[5] RotaTeq Vaccine Strains. J Virol 2019; 93:JVI.00941-19. [PMID: 31243129 PMCID: PMC6714814 DOI: 10.1128/jvi.00941-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023] Open
Abstract
Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human. Group A rotaviruses, an important cause of severe diarrhea in children and young animals, initiate infection via interactions of the VP8* domain of the VP4 spike protein with cell surface sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is also used in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for the VP8* domain of WC3 and its reassortant strains have not yet been identified. In the present study, HBGA- and saliva-binding assays showed that both G6P[5] WC3 and mono-reassortant G4P[5] strains recognized the αGal HBGA. The infectivity of both P[5]-bearing strains was significantly reduced in αGal-free MA-104 cells by pretreatment with a broadly specific neuraminidase or by coincubation with the α2,6-linked SA-specific Sambucus nigra lectin, but not by the α2,3-linked specific sialidase or by Maackia amurensis lectin. Free NeuAc and the αGal trisaccharide also prevented the infectivity of both strains. This indicated that both P[5]-bearing strains utilize α2,6-linked SA as a ligand on MA104 cells. However, the two strains replicated in differentiated bovine small intestinal enteroids and in their human counterparts that lack α2,6-linked SA or αGal HBGA, suggesting that additional or alternative receptors such as integrins, hsp70, and tight-junction proteins bound directly to the VP5* domain can be used by the P[5]-bearing strains to initiate the infection of human cells. In addition, these data also suggested that P[5]-bearing strains have potential for cross-species transmission. IMPORTANCE Group A rotaviruses initiate infection through the binding of the VP8* domain of the VP4 protein to sialic acids (SAs) or histo-blood group antigens (HBGAs). Although the bovine G6P[5] WC3 strain is an important animal pathogen and is used as the backbone in the bovine-human reassortant RotaTeq vaccine, the receptor(s) for their P[5] VP8* domain has remained elusive. Using a variety of approaches, we demonstrated that the WC3 and bovine-human mono-reassortant G4P[5] vaccine strains recognize both α2,6-linked SA and αGal HBGA as ligands. Neither ligand is expressed on human small intestinal epithelial cells, explaining the absence of natural human infection by P[5]-bearing strains. However, we observed that the P[5]-bearing WC3 and G4P[5] RotaTeq vaccine strains could still infect human intestinal epithelial cells. Thus, the four P[5] RotaTeq vaccine strains potentially binding to additional alternative receptors may be efficient and effective in providing protection against severe rotavirus disease in human.
Collapse
|
26
|
Huang C, Yan J, Zhan L, Zhao M, Zhou J, Gao H, Xie W, Li Y, Chai W. Linkage and sequence analysis of neutral oligosaccharides by negative-ion MALDI tandem mass spectrometry with laser-induced dissociation. Anal Chim Acta 2019; 1071:25-35. [PMID: 31128752 DOI: 10.1016/j.aca.2019.04.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 11/25/2022]
Abstract
Mass spectrometry (MS) has become the primary method for high-sensitivity structural determination of oligosaccharides. Fragmentation in the negative-ion MS can provide a wealth of structural information and these can be used for sequence determination. However, although negative-ion MS of neutral oligosaccharide using the deprotonated molecule [M-H]- as the precursor has been very successful for electrospray ionization (ESI), it has only limited success for matrix-assisted laser desorption/ionization (MALDI). In the present study, the features of negative-ion MALDI primary spectra were investigated in detail and the product-ion spectra using [M-H]- and [M+Cl]- as the precursors were carefully compared. The formation of [M-H]- was the main difficulty for MALDI while [M+Cl]- was proved to be useful as alternative precursor anion for MALDI-MS/MS to produce similar fragmentation for sequencing of neutral oligosaccharides. N-(1-naphthyl)ethylenediamine dihydrochloride was then used as both the matrix and the Cl- dopant to evaluate the extent of structural information that can be obtained by negative-ion fragmentation from [M+Cl]- using laser-induced dissociation (LID)-MS/MS for linkage assignment of gluco-oligosaccharides and for typing of blood-group ABO(H) and Lewis antigens on either type 1 or type 2 backbone-chains.
Collapse
Affiliation(s)
- Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; GuangDong Bio-healtech Advanced, Foshan, 528315, China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China
| | - Lingpeng Zhan
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Zhao
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Jinyu Zhou
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Huanyu Gao
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Wenchun Xie
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; GuangDong Bio-healtech Advanced, Foshan, 528315, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, W12 0NN, UK
| |
Collapse
|
27
|
Zhu J, Miao Q, Tang J, Wang X, Dong D, Liu T, Qi R, Yang Z, Liu G. Nucleolin mediates the internalization of rabbit hemorrhagic disease virus through clathrin-dependent endocytosis. PLoS Pathog 2018; 14:e1007383. [PMID: 30339712 PMCID: PMC6209375 DOI: 10.1371/journal.ppat.1007383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) is an important member of the Caliciviridae family and a highly lethal pathogen in rabbits. Although the cell receptor of RHDV has been identified, the mechanism underlying RHDV internalization remains unknown. In this study, the entry and post-internalization of RHDV into host cells were investigated using several biochemical inhibitors and RNA interference. Our data demonstrate that rabbit nucleolin (NCL) plays a key role in RHDV internalization. Further study revealed that NCL specifically interacts with the RHDV capsid protein (VP60) through its N-terminal residues (aa 285-318), and the exact position of the VP60 protein for the interaction with NCL is located in a highly conserved region (472Asp-Val-Asn474; DVN motif). Following competitive blocking of the interaction between NCL and VP60 with an artificial DVN peptide (RRTGDVNAAAGSTNGTQ), the internalization efficiency of the virus was markedly reduced. Moreover, NCL also interacts with the C-terminal residues of clathrin light chain A, which is an important component in clathrin-dependent endocytosis. In addition, the results of animal experiments also demonstrated that artificial DVN peptides protected most rabbits from RHDV infection. These findings demonstrate that NCL is involved in RHDV internalization through clathrin-dependent endocytosis.
Collapse
Affiliation(s)
- Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Qiuhong Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingyu Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Xiaoxue Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Dandan Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Teng Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Ruibin Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| |
Collapse
|
28
|
Neave MJ, Hall RN, Huang N, McColl KA, Kerr P, Hoehn M, Taylor J, Strive T. Robust Innate Immunity of Young Rabbits Mediates Resistance to Rabbit Hemorrhagic Disease Caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses 2018; 10:E512. [PMID: 30235853 PMCID: PMC6163550 DOI: 10.3390/v10090512] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023] Open
Abstract
The rabbit caliciviruses Lagovirus europaeus GI.1 and GI.2 both cause acute necrotizing hepatitis in European rabbits (Oryctolagus cuniculus). Whilst GI.2 is highly virulent in both young and adult rabbits, rabbits younger than eight weeks of age are highly resistant to disease caused by GI.1, although they are still permissive to infection and viral replication. To investigate the underlying mechanism(s) of this age related resistance to GI.1, we compared liver transcriptomes of young rabbits infected with GI.1 to those of adult rabbits infected with GI.1 and young rabbits infected with GI.2. Our data suggest that kittens have constitutively heightened innate immune responses compared to adult rabbits, particularly associated with increased expression of major histocompatibility class II molecules and activity of natural killer cells, macrophages, and cholangiocytes. This enables them to respond more rapidly to GI.1 infection than adult rabbits and thus limit virus-induced pathology. In contrast, these responses were not fully developed during GI.2 infection. We speculate that the observed downregulation of multiple genes associated with innate immunity in kittens during GI.2 infection may be due to virally-mediated immunomodulation, permitting fatal disease to develop. Our study provides insight into the fundamental host⁻pathogen interactions responsible for the differences in age-related susceptibility, which likely plays a critical role in defining the success of GI.2 in outcompeting GI.1 in the field.
Collapse
Affiliation(s)
- Matthew J Neave
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | - Robyn N Hall
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Nina Huang
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Kenneth A McColl
- CSIRO Australian Animal Health Laboratory, Geelong, VIC 3220, Australia.
| | - Peter Kerr
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | - Marion Hoehn
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| | | | - Tanja Strive
- CSIRO Health and Biosecurity, Canberra, ACT 2601, Australia.
| |
Collapse
|
29
|
Restricted Host Specificity of Rabbit Hemorrhagic Disease Virus Is Supported by Challenge Experiments in Immune-compromised Mice ( Mus musculus). J Wildl Dis 2018; 55:218-222. [PMID: 30161016 DOI: 10.7589/2018-03-067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that causes peracute hemorrhagic fever and frequently kills rabbits before an effective adaptive immune response can be developed. In Australia and New Zealand, RHDV is employed to manage wild European rabbit ( Oryctolagus cuniculus) populations. Although there is no evidence that RHDV replicates in animals other than lagomorphs, the detection of RHDV-specific antibodies and RHDV RNA in mice and other species has raised concerns about the host specificity of the virus. To investigate the replication potential of RHDV in mice ( Mus musculus), standard laboratory mice and knockout animals that lack a functional interferon type I receptor were challenged with high doses of RHDV. None of the animals developed clinical signs of illness, and temporal quantification of the viral RNA by real-time PCR did not reveal signs of virus amplification. These data suggest that RHDV cannot replicate in mice-not even in animals with a severely compromised innate immune system.
Collapse
|
30
|
Wells K, Fordham DA, Brook BW, Cassey P, Cox T, O'Hara RB, Schwensow NI. Disentangling synergistic disease dynamics: Implications for the viral biocontrol of rabbits. J Anim Ecol 2018; 87:1418-1428. [DOI: 10.1111/1365-2656.12871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Konstans Wells
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Environmental Futures Research Institute Griffith University Brisbane QLD Australia
| | - Damien A. Fordham
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Center for Macroecology, Evolution, and Climate National Museum of Denmark University of Copenhagen Copenhagen Denmark
| | - Barry W. Brook
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- School of Natural Sciences University of Tasmania Hobart TAS Australia
| | - Phillip Cassey
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - Tarnya Cox
- Vertebrate Pest Research Unit NSW Department Primary Industries Orange NSW Australia
| | - Robert B. O'Hara
- Department of Mathematical Sciences Norwegian University of Science and Technology Trondheim Norway
| | - Nina I. Schwensow
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
- Institute of Evolutionary Ecology and Conservation Genomics University of Ulm Ulm Germany
| |
Collapse
|
31
|
Esteves PJ, Abrantes J, Baldauf HM, BenMohamed L, Chen Y, Christensen N, González-Gallego J, Giacani L, Hu J, Kaplan G, Keppler OT, Knight KL, Kong XP, Lanning DK, Le Pendu J, de Matos AL, Liu J, Liu S, Lopes AM, Lu S, Lukehart S, Manabe YC, Neves F, McFadden G, Pan R, Peng X, de Sousa-Pereira P, Pinheiro A, Rahman M, Ruvoën-Clouet N, Subbian S, Tuñón MJ, van der Loo W, Vaine M, Via LE, Wang S, Mage R. The wide utility of rabbits as models of human diseases. Exp Mol Med 2018; 50:1-10. [PMID: 29789565 PMCID: PMC5964082 DOI: 10.1038/s12276-018-0094-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Studies using the European rabbit Oryctolagus cuniculus contributed to elucidating numerous fundamental aspects of antibody structure and diversification mechanisms and continue to be valuable for the development and testing of therapeutic humanized polyclonal and monoclonal antibodies. Additionally, during the last two decades, the use of the European rabbit as an animal model has been increasingly extended to many human diseases. This review documents the continuing wide utility of the rabbit as a reliable disease model for development of therapeutics and vaccines and studies of the cellular and molecular mechanisms underlying many human diseases. Examples include syphilis, tuberculosis, HIV-AIDS, acute hepatic failure and diseases caused by noroviruses, ocular herpes, and papillomaviruses. The use of rabbits for vaccine development studies, which began with Louis Pasteur’s rabies vaccine in 1881, continues today with targets that include the potentially blinding HSV-1 virus infection and HIV-AIDS. Additionally, two highly fatal viral diseases, rabbit hemorrhagic disease and myxomatosis, affect the European rabbit and provide unique models to understand co-evolution between a vertebrate host and viral pathogens. Rabbits offer a powerful complement to rodents as a model for studying human immunology, disease pathology, and responses to infectious disease. A review from Pedro Esteves at the University of Porto, Portugal, Rose Mage of the National Institute of Allergy and Infectious Disease, Bethesda, USA and colleagues highlights some of the areas of research where rabbits offer an edge over rats and mice. Rabbits have a particularly sophisticated adaptive immune system, which could provide useful insights into human biology and produce valuable research and clinical reagents. They are also excellent models for studying - infectious diseases such as syphilis and tuberculosis, which produce pathology that closely resembles that of human patients. Rabbit-specific infections such as myxomatosis are giving researchers insights into how pathogens and hosts can shape each other’s evolution.
Collapse
Affiliation(s)
- Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal.
| | - Joana Abrantes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, CA, 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA.,Institute for Immunology, University of California, Irvine School of Irvine, School of Medicine, Irvine, CA, 92697, USA
| | - Yuxing Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Neil Christensen
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Lorenzo Giacani
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Jiafen Hu
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Gilla Kaplan
- Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | - Ana Lemos de Matos
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, 72205, USA
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ana M Lopes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Sheila Lukehart
- Departments of Medicine and Global Health, University of Washington, Seattle, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabiana Neves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Grant McFadden
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY10016, USA
| | - Xuwen Peng
- Departments of Pathology, Microbiology and Immunology, and Comparative Medicine, Penn State University, Hershey, PA, USA
| | - Patricia de Sousa-Pereira
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377, Munich, Germany
| | - Ana Pinheiro
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Masmudur Rahman
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, 85287-5401, USA
| | | | - Selvakumar Subbian
- The Public Health Research Institute (PHRI) at New Jersey Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, Newark, NJ, USA
| | - Maria Jesús Tuñón
- Institute of Biomedicine (IBIOMED) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of León, 24071, León, Spain
| | - Wessel van der Loo
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Michael Vaine
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Laura E Via
- Tubercolosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Infectious Disease and Molecular Medicine, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Rose Mage
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Bat Caliciviruses and Human Noroviruses Are Antigenically Similar and Have Overlapping Histo-Blood Group Antigen Binding Profiles. mBio 2018; 9:mBio.00869-18. [PMID: 29789360 PMCID: PMC5964351 DOI: 10.1128/mbio.00869-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Emerging zoonotic viral diseases remain a challenge to global public health. Recent surveillance studies have implicated bats as potential reservoirs for a number of viral pathogens, including coronaviruses and Ebola viruses. Caliciviridae represent a major viral family contributing to emerging diseases in both human and animal populations and have been recently identified in bats. In this study, we blended metagenomics, phylogenetics, homology modeling, and in vitro assays to characterize two novel bat calicivirus (BtCalV) capsid sequences, corresponding to strain BtCalV/A10/USA/2009, identified in Perimyotis subflavus near Little Orleans, MD, and bat norovirus. We observed that bat norovirus formed virus-like particles and had epitopes and receptor-binding patterns similar to those of human noroviruses. To determine whether these observations stretch across multiple bat caliciviruses, we characterized a novel bat calicivirus, BtCalV/A10/USA/2009. Phylogenetic analysis revealed that BtCalV/A10/USA/2009 likely represents a novel Caliciviridae genus and is most closely related to "recoviruses." Homology modeling revealed that the capsid sequences of BtCalV/A10/USA/2009 and bat norovirus resembled human norovirus capsid sequences and retained host ligand binding within the receptor-binding domains similar to that seen with human noroviruses. Both caliciviruses bound histo-blood group antigens in patterns that overlapped those seen with human and animal noroviruses. Taken together, our results indicate the potential for bat caliciviruses to bind histo-blood group antigens and overcome a significant barrier to cross-species transmission. Additionally, we have shown that bat norovirus maintains antigenic epitopes similar to those seen with human noroviruses, providing further evidence of evolutionary descent. Our results reiterate the importance of surveillance of wild-animal populations, especially of bats, for novel viral pathogens.IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. The animal reservoirs for human caliciviruses are unknown; bats represent critical reservoir species for several emerging and zoonotic diseases. Recent reports have identified several bat caliciviruses but have not characterized biological functions associated with disease risk, including their potential emergence in other mammalian populations. In this report, we identified a novel bat calicivirus that is most closely related to nonhuman primate caliciviruses. Using this new bat calicivirus and a second norovirus-like bat calicivirus capsid gene sequence, we generated virus-like particles that have host carbohydrate ligand binding patterns similar to those of human and animal noroviruses and that share antigens with human noroviruses. The similarities to human noroviruses with respect to binding patterns and antigenic epitopes illustrate the potential for bat caliciviruses to emerge in other species and the importance of pathogen surveillance in wild-animal populations.
Collapse
|
33
|
Rabbit haemorrhagic disease: Cross-protection and comparative pathogenicity of GI.2/RHDV2/b and GI.1b/RHDV lagoviruses in a challenge trial. Vet Microbiol 2018; 219:87-95. [PMID: 29778210 DOI: 10.1016/j.vetmic.2018.04.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
Abstract
European rabbits (Oryctolagus cuniculus) are severely affected by rabbit haemorrhagic disease (RHD). Caused by a lagovirus, the disease leads to losses in the rabbit industry and has implications for wildlife conservation. Past RHD outbreaks have been caused by GI.1/RHDV genotype viruses. A new virus belonging to the GI.2/RHDV2/b genotype emerged in 2010, quickly spreading and replacing the former in several countries; however, limited data are available on its pathogenicity and epidemiological factors. The present work extends these issues and evaluates cross-protection between both genotypes. Ninety-four and 88 domestic rabbits were challenged with GI.2/RHDV2/b and GI.1b/RHDV variant isolates, respectively. Cross-protection was determined by a second challenge on survivors with the corresponding strain. Mortality by GI.2/RHDV2/b was highly variable due to unknown individual factors, whereas mortality by GI.1b/RHDV was associated with age. Mortality in rabbits < 4 weeks old was 84%, higher than previously reported. Cross-protection was not identical between the two viruses because the ratio of mortality rate ratios for the first and second challenges was 3.80 ± 2.68 times higher for GI.2/RHDV2/b than it was for GI.1b/RHDV. Rabbit susceptibility to GI.2/RHDV2/b varied greatly and appeared to be modulated by the innate functionality of the immune response and/or its prompt activation by other pathogens. GI.1b/RHDV pathogenicity appeared to be associated with undetermined age-related factors. These results suggest that GI.2/RHDV2/b may interact with other pathogens at the population level but does not satisfactorily explain the GI.1b/RHDV virus's quick replacement.
Collapse
|
34
|
Wu M, Zhu Y, Cong F, Rao D, Yuan W, Wang J, Huang B, Lian Y, Zhang Y, Huang R, Guo P. Rapid detection of three rabbit pathogens by use of the Luminex x-TAG assay. BMC Vet Res 2018; 14:127. [PMID: 29625588 PMCID: PMC5889542 DOI: 10.1186/s12917-018-1438-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/19/2018] [Indexed: 01/18/2023] Open
Abstract
Background Domestic rabbits especially New Zealand white rabbits play an important role in biological research. The disease surveillance and quality control are essential to guarantee the results of animal experiments performed on rabbits. Rabbit hemorrhagic disease virus, rabbit rotavirus and Sendai virus are the important pathogens that needed to be eliminated. Rapid and sensitive method focus on these three viruses should be established for routine monitoring. The Luminex x-TAG assay based on multiplex PCR and fluorescent microsphere is a fast developing technology applied in high throughput detection. Specific primers modified with oligonucleotide sequence/biotin were used to amplify target fragments. The conjugation between oligonucleotide sequence of the PCR products and the MagPlex-TAG microspheres was specific without any cross-reaction, and the hybridization products could be analyzed using the Luminex 200 analyzer instrument. Recombinant plasmids were constructed to estimate the detection limit of the viruses. Furthermore, 40 clinical samples were used to evaluate the efficiency of this multiplex PCR based Luminex x-TAG assay. Results According to the results, this new method showed high specificity and good stability. Assessed by the recombinant plasmids, the detection limit of three viruses was 100copies/μl. Among 40 clinical specimens, 18 specimens were found positive, which was completely concordant with the conventional PCR method. Conclusions The new developed Luminex x-TAG assay is an accurate, high throughput method for rapid detection of three important viruses of rabbits.
Collapse
Affiliation(s)
- Miaoli Wu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.,Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Yujun Zhu
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Feng Cong
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Dan Rao
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Wen Yuan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Bihong Huang
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Yuexiao Lian
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Yu Zhang
- Guangdong Laboratory Animal Monitoring Institute, Guangzhou, China
| | - Ren Huang
- Guangdong laboratory animals monitoring institute, Guangzhou, 510633, China.
| | - Pengju Guo
- Guangdong key laboratory of laboratory Animals, Guangzhou, China.
| |
Collapse
|
35
|
Host-Specific Glycans Are Correlated with Susceptibility to Infection by Lagoviruses, but Not with Their Virulence. J Virol 2018; 92:JVI.01759-17. [PMID: 29187537 DOI: 10.1128/jvi.01759-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 11/20/2022] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV) are two lagoviruses from the family Caliciviridae that cause fatal diseases in two leporid genera, Oryctolagus and Lepus, respectively. In the last few years, several examples of host jumps of lagoviruses among leporids were recorded. In addition, a new pathogenic genotype of RHDV emerged, and many nonpathogenic strains of lagoviruses have been described. The molecular mechanisms behind host shifts and the emergence of virulence are unknown. Since RHDV uses glycans of the histo-blood group antigen type as attachment factors to initiate infection, we studied if glycan specificities of the new pathogenic RHDV genotype, nonpathogenic lagoviruses, and EBHSV potentially play a role in determining the host range and virulence of lagoviruses. We observed binding to A, B, or H antigens of the histo-blood group family for all strains known to primarily infect European rabbits (Oryctolagus cuniculus), which have recently been classified as GI strains. However, we could not explain the emergence of virulence, since similar glycan specificities were found in several pathogenic and nonpathogenic strains. In contrast, EBHSV, recently classified as GII.1, bound to terminal β-linked N-acetylglucosamine residues of O-glycans. Expression of these attachment factors in the upper respiratory and digestive tracts in three lagomorph species (Oryctolagus cuniculus, Lepus europaeus, and Sylvilagus floridanus) showed species-specific patterns regarding susceptibility to infection by these viruses, indicating that species-specific glycan expression is likely a major contributor to lagovirus host specificity and range.IMPORTANCE Lagoviruses constitute a genus of the family Caliciviridae comprising highly pathogenic viruses, RHDV and EBHSV, that infect rabbits and hares, respectively. Recently, nonpathogenic strains were discovered and new pathogenic strains have emerged. In addition, host jumps between lagomorphs have been observed. The mechanisms responsible for the emergence of pathogenicity and host species range are unknown. Previous studies showed that RHDV strains attach to glycans expressed in the upper respiratory and digestive tracts of rabbits, the likely portals of virus entry. Here, we studied the glycan-binding properties of novel pathogenic and nonpathogenic strains looking for a link between glycan binding and virulence or between glycan specificity and host range. We found that glycan binding did not correlate with virulence. However, expression of glycan motifs in the upper respiratory and digestive tracts of lagomorphs revealed species-specific patterns associated with the host ranges of the virus strains, suggesting that glycan diversity contributes to lagovirus host ranges.
Collapse
|
36
|
Fiege B, Leuthold M, Parra F, Dalton KP, Meloncelli PJ, Lowary TL, Peters T. Epitope mapping of histo blood group antigens bound to norovirus VLPs using STD NMR experiments reveals fine details of molecular recognition. Glycoconj J 2017; 34:679-689. [PMID: 28823097 DOI: 10.1007/s10719-017-9792-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023]
Abstract
Attachment of human noroviruses to histo blood group antigens (HBGAs) is thought to be critical for the infection process. Therefore, we have determined binding epitopes of synthetic type 1 to 6 blood group A- and B-tetrasaccharides binding to GII.4 human Norovirus virus like particles (VLPs) using STD NMR experiments. So far, little information is available from crystal structure analysis studies on the interactions of the reducing-end sugars with the protruding domain (P-domain) of the viral coat protein VP1. Here, we show that the reducing-end sugars make notable contacts with the protein surface. The type of glycosidic linkage, and the identity of the sugar at the reducing end modulate HBGA recognition. Most strikingly, type 2 structures yield only very poor saturation transfer indicating impeded binding. This observation is in accordance with previous mass spectrometry based affinity measurements, and can be understood based on recent crystal structure data of a complex of highly homologous GII.4 P-dimers with H-type 2 trisaccharide where the N-acetyl group of the reducing N-acetyl glucosamine residue points towards a loop comprising amino acids Q390 to H395. We suggest that in our case, binding of type 2 A- and B-tetrasaccharides leads to steric conflicts with this loop. In order to identify factors determining L-Fuc recognition, we also synthesized GII.4 VLPs with point mutations D391A and H395A. Prior studies had suggested that these residues, located in a second shell around the L-Fuc binding site, assist L-Fuc binding. STD NMR experiments with L-Fuc and B-trisaccharide in the presence of wild type and mutant VLPs yield virtually identical binding epitopes suggesting that these two mutations do not significantly alter HBGA recognition. Our study emphasizes that recognition of α-(1→2)-linked L-Fuc residues is a conserved feature of GII.4 noroviruses. However, structural variation of the HBGA core structures clearly modulates molecular recognition depending on the genotype.
Collapse
Affiliation(s)
- Brigitte Fiege
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Mila Leuthold
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany
- Molecular Virology, Heidelberg University Hospital, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Kevin P Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Peter J Meloncelli
- Alberta Glycomics Centre and Department of Chemistry, Gunning-Lemieux Chemistry Centre, The University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6G G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, Gunning-Lemieux Chemistry Centre, The University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, T6G G2, Canada
| | - Thomas Peters
- Center of Structural and Cell Biology in Medicine, Institute of Chemistry and Metabolomics, University of Luebeck, Ratzeburger Allee 160, 23562, Luebeck, Germany.
| |
Collapse
|
37
|
Song Y, Fan Z, Zuo Y, Wei H, Hu B, Chen M, Qiu R, Xue J, Wang F. Binding of rabbit hemorrhagic disease virus-like particles to host histo-blood group antigens is blocked by antisera from experimentally vaccinated rabbits. Arch Virol 2017; 162:3425-3430. [PMID: 28780630 DOI: 10.1007/s00705-017-3509-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/05/2017] [Indexed: 01/28/2023]
Abstract
During infection host histo-blood group antigens (HBGAs) act as attachment factors that interact with rabbit hemorrhagic disease virus (RHDV) and participate in the infectious process. In the present study, baculovirus expressing recombinant RHDV capsid protein (VP60r) as a vaccine immunogen was used to test its antigenicity and immunogenicity via immunization experiments. Each group of rabbits immunized with VP60r was found to be fully protected against RHDV challenge. The duration of immunity of the vaccine following the inoculation of a single dose was determined to be at least 240 days. RHDV-specific humoral responses in antisera from inoculated rabbits were analyzed using VP60r virus-like particle (VLP)-based ELISA. Anti-VP60-specific antibody was produced by 7 days post-primary immunization. Following this stage, the levels of this antibody increased steadily, peaking at 90 days and maintaining a high level until 240 days. We developed a synthetic carbohydrate assay to detect blockage in attachment of RHDV VLPs to HBGAs by the rabbit antisera. On day 7 post-immunization, serum samples were demonstrated to block the binding of H type 2 to RHDV VLPs, with a blocking rate of almost 60%, a value that then increased steadily over time. From day 60 to day 240 post-immunization, serum samples completely blocked the binding of H type 2 to RHDV VLPs, with a blocking rate of almost 100%. This indicated that VP60-induced antibodies neutralize the interaction of RHDV with HBGAs.
Collapse
Affiliation(s)
- Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Yuanyuan Zuo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Mengmeng Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Jiabin Xue
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
| |
Collapse
|
38
|
Schwensow NI, Detering H, Pederson S, Mazzoni C, Sinclair R, Peacock D, Kovaliski J, Cooke B, Fickel J, Sommer S. Resistance to RHD virus in wild Australian rabbits: Comparison of susceptible and resistant individuals using a genomewide approach. Mol Ecol 2017; 26:4551-4561. [PMID: 28667769 DOI: 10.1111/mec.14228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/02/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Abstract
Deciphering the genes involved in disease resistance is essential if we are to understand host-pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next-generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia.
Collapse
Affiliation(s)
- Nina I Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.,School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Harald Detering
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Department of Biochemistry, Genetics and Immunology and Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Camila Mazzoni
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.,Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Ron Sinclair
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | | | | - Brian Cooke
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany.,Molecular Ecology & Evolution, Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
39
|
Adaptive diversification between the classic rabbit hemorrhagic disease virus (RHDV) and the RHDVa isolates: A genome-wide perspective. Microb Pathog 2017; 110:527-532. [PMID: 28743597 DOI: 10.1016/j.micpath.2017.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/23/2023]
Abstract
Rabbit haemorrhagic disease virus (RHDV) is a highly infectious pathogen that causes high mortality in wild and domestic rabbits. RHDV could be divided into two subtypes, classic RHDV and RHDVa, which present clear genetic, antigenic, and epidemiological differences. To further understand the nature of the diversity, we performed a genome-wide evolutionary study on the classic RHDV and RHDVa isolates. The results show that RHDV had experienced adaptive diversification with the dividing process of these subtypes. Furthermore, amino acid changes relevant to the adaptive diversification mainly cluster in viral capsid protein VP60. These results might be beneficial for a further understanding the function of VP60 and provide helpful hints for the genetic basis of RHDV emergence and re-emergence.
Collapse
|
40
|
Le Pendu J, Abrantes J, Bertagnoli S, Guitton JS, Le Gall-Reculé G, Lopes AM, Marchandeau S, Alda F, Almeida T, Célio AP, Bárcena J, Burmakina G, Blanco E, Calvete C, Cavadini P, Cooke B, Dalton K, Delibes Mateos M, Deptula W, Eden JS, Wang F, Ferreira CC, Ferreira P, Foronda P, Gonçalves D, Gavier-Widén D, Hall R, Hukowska-Szematowicz B, Kerr P, Kovaliski J, Lavazza A, Mahar J, Malogolovkin A, Marques RM, Marques S, Martin-Alonso A, Monterroso P, Moreno S, Mutze G, Neimanis A, Niedzwiedzka-Rystwej P, Peacock D, Parra F, Rocchi M, Rouco C, Ruvoën-Clouet N, Silva E, Silvério D, Strive T, Thompson G, Tokarz-Deptula B, Esteves P. Proposal for a unified classification system and nomenclature of lagoviruses. J Gen Virol 2017; 98:1658-1666. [PMID: 28714849 DOI: 10.1099/jgv.0.000840] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature, a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.
Collapse
Affiliation(s)
- Jacques Le Pendu
- CRCINA, Inserm, Université d'Angers, Université de Nantes, Nantes, France
| | - Joana Abrantes
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | | | - Jean-Sébastien Guitton
- Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Ghislaine Le Gall-Reculé
- French Agency for Food, Environmental and Occupational Health & Safety (Anses), Ploufragan- Plouzané Laboratory, Avian and Rabbit Virology Immunology Parasitology Unit, Ploufragan, France
| | - Ana Margarida Lopes
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Stéphane Marchandeau
- Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Fernando Alda
- Louisiana State University, Museum of Natural Science, 119 Foster Hall, Baton Rouge, USA
| | - Tereza Almeida
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Department of Studies and Research, National Hunting and Wildlife Agency (ONCFS), Nantes, France
| | - Alves Paulo Célio
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Wildlife Biology Program, University of Montana, 32 Campus Drive, Missoula, USA
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (INIA-CISA), Valdeolmos, 28130 Madrid, Spain
| | - Galina Burmakina
- National Research Institute of Veterinary Virology and Microbiology (VNIIVViM), Pokrov, Russia
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (INIA-CISA), Valdeolmos, 28130 Madrid, Spain
| | - Carlos Calvete
- Animal Production and Health Department, Agrifood Research and Technology Centre of Aragon (CITA). Agrifood Institute of Aragon-IA2 (CITA-Zaragoza University), 50059 Zaragoza, Spain
| | - Patrizia Cavadini
- Proteomic and Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Brian Cooke
- Invasive Animals Cooperative Research Centre and Institute of Applied Ecology, University of Canberra, Canberra, Australia
| | - Kevin Dalton
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Asturias, Spain
| | - Miguel Delibes Mateos
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain
| | - Wieslaw Deptula
- Department of Microbiology, University of Szczecin, Faculty of Biology, Felczaka 3c,50 71-412 Szczecin, Poland
| | - John Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, Australia
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, PR China
| | - Catarina C Ferreira
- Department of Biology, Trent University, Peterborough, Ontario, Canada.,Department of Conservation Biology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Paula Ferreira
- Department of Anatomy, ICBAS (Abel Salazar Institute for Biomedical Science) and UMIB (Unit for Multidisciplinary Biomedical Research), University of Porto, Portugal
| | - Pilar Foronda
- Department Obstetrics & Gynecology, Pediatrics, Preventive Medicine & Public Health, Toxicology, Forensic Medicine and Parasitology, University Institute of Tropical Diseases and Public Health of the Canary Islands. Universidad de La Laguna, Canary Islands, Spain
| | - David Gonçalves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Dolores Gavier-Widén
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of BiomedicalSciences and Veterinary Public Health, Swedish University of AgriculturalSciences, Uppsala, Sweden
| | - Robin Hall
- CSIRO Health & Biosecurity, Canberra, Australia
| | - Beata Hukowska-Szematowicz
- Department of Immunology, University of Szczecin, Faculty of Biology, Z. Felczaka 3c, 71- 412 Szczecin, Poland
| | - Peter Kerr
- Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australia
| | - John Kovaliski
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Antonio Lavazza
- Proteomic and Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Via Antonio Bianchi 7/9, 25124 Brescia, Italy
| | - Jackie Mahar
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, the University of Sydney, Sydney, Australia.,Invasive Animals Cooperative Research Centre, University of Canberra, Bruce, Australia
| | - Alexander Malogolovkin
- National Research Institute of Veterinary Virology and Microbiology (VNIIVViM), Pokrov, Russia
| | - Raquel M Marques
- Department of Anatomy, ICBAS (Abel Salazar Institute for Biomedical Science) and UMIB (Unit for Multidisciplinary Biomedical Research), University of Porto, Portugal
| | - Sara Marques
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Aaron Martin-Alonso
- Department Obstetrics & Gynecology, Pediatrics, Preventive Medicine & Public Health, Toxicology, Forensic Medicine and Parasitology, University Institute of Tropical Diseases and Public Health of the Canary Islands. Universidad de La Laguna, Canary Islands, Spain
| | - Pedro Monterroso
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Sacramento Moreno
- Ethology and Biodiversity Conservation Department, Doñana, Biological Station-CSIC, Américo Vespucio S/N, 41092 Seville, Spain
| | - Greg Mutze
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of BiomedicalSciences and Veterinary Public Health, Swedish University of AgriculturalSciences, Uppsala, Sweden
| | | | - David Peacock
- Primary Industries and Regions SA, Adelaide, SA, Australia
| | - Francisco Parra
- Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Asturias, Spain
| | - Mara Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Carlos Rouco
- Departamento de Zoología, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | | | - Eliane Silva
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Diogo Silvério
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | | | - Gertrudes Thompson
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento Clínicas Veterinárias - ICBAS, Instituto de Ciências Biomédicas de Abe Salazar, Universidade do Porto, Porto, Portugal
| | - Beata Tokarz-Deptula
- Department of Microbiology, University of Szczecin, Faculty of Biology, Felczaka 3c,50 71-412 Szczecin, Poland
| | - Pedro Esteves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| |
Collapse
|
41
|
Zhu J, Miao Q, Tan Y, Guo H, Liu T, Wang B, Chen Z, Li C, Liu G. Inclusion of an Arg-Gly-Asp receptor-recognition motif into the capsid protein of rabbit hemorrhagic disease virus enables culture of the virus in vitro. J Biol Chem 2017; 292:8605-8615. [PMID: 28381555 DOI: 10.1074/jbc.m117.780924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
The fact that rabbit hemorrhagic disease virus (RHDV), an important member of the Caliciviridae family, cannot be propagated in vitro has greatly impeded the progress of investigations into the mechanisms of pathogenesis, translation, and replication of this and related viruses. In this study, we have successfully bypassed this obstacle by constructing a mutant RHDV (mRHDV) by using a reverse genetics technique. By changing two amino acids (S305R,N307D), we produced a specific receptor-recognition motif (Arg-Gly-Asp; called RGD) on the surface of the RHDV capsid protein. mRHDV was recognized by the intrinsic membrane receptor (integrin) of the RK-13 cells, which then gained entry and proliferated as well as imparted apparent cytopathic effects. After 20 passages, the titers of RHDV reached 1 × 104.3 50% tissue culture infectious dose (TCID50)/ml at 72 h. Furthermore, mRHDV-infected rabbits showed typical rabbit plague symptoms and died within 48-72 h. After immunization with inactivated mRHDV, the rabbits survived wild-type RHDV infection, indicating that mRHDV could be a candidate virus strain for producing a vaccine against RHDV infection. In summary, this study offers a novel strategy for overcoming the challenges of proliferating RHDV in vitro Because virus uptake via specific membrane receptors, several of which specifically bind to the RGD peptide motif, is a common feature of host cells, we believe that this the strategy could also be applied to other RNA viruses that currently lack suitable cell lines for propagation such as hepatitis E virus and norovirus.
Collapse
Affiliation(s)
- Jie Zhu
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qiuhong Miao
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yonggui Tan
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Huimin Guo
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Teng Liu
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Binbin Wang
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zongyan Chen
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chuanfeng Li
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangqing Liu
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
42
|
Lopes AM, Magalhães MJ, Alves PC, Esteves PJ, Abrantes J. An update on the rabbit hemorrhagic disease virus (RHDV) strains circulating in Portugal in the 1990s: earliest detection of G3-G5 and G6. Arch Virol 2017; 162:2061-2065. [PMID: 28299483 DOI: 10.1007/s00705-017-3318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/22/2017] [Indexed: 01/23/2023]
Abstract
Rabbit hemorrhagic disease virus (RHDV) causes devastating effects on European rabbit (Oryctolagus cuniculus) populations in the Iberian Peninsula. According to the information available, only genogroup 1 strains were circulating in Iberian wild rabbits until 2011; the antigenic variant G6 has been sporadically detected in rabbitries since 2007. Here, we show for the first time that G3-G5 strains were already present in mainland Portugal in 1998 and that G6 has been circulating since at least 1999. Moreover, we report a G3-G5 strain from the Azores collected in 1998, which is the likely ancestor of Azorean G3-G5like strains. These observations improve the current knowledge on RHDV epidemiology in the Iberian Peninsula and the Azores.
Collapse
Affiliation(s)
- Ana M Lopes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.
| | - Maria J Magalhães
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Paulo C Alves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Pedro J Esteves
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Joana Abrantes
- CIBIO, InBIO, Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| |
Collapse
|
43
|
DIFFERENT SEROLOGICAL PROFILES TO CO-OCCURRING PATHOGENIC AND NONPATHOGENIC CALICIVIRUSES IN WILD EUROPEAN RABBITS (ORYCTOLAGUS CUNICULUS) ACROSS AUSTRALIA. J Wildl Dis 2017; 53:472-481. [PMID: 28231031 DOI: 10.7589/2016-06-148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rabbit hemorrhagic disease virus (RHDV) was released in Australia as a biocontrol agent for wild European rabbits ( Oryctolagus cuniculus ) in 1995-96; however, its effects were variable across Australia with the greatest population reductions seen in lower annual rainfall areas (<400 mm). There is speculation that the reduced effectiveness observed at higher annual rainfall sites is at least partially due to the presence of a nonpathogenic calicivirus (RCV-A1). The RCV-A1 is related to RHDV and confers partial and transient protection against lethal RHDV infection in laboratory tests. What is not well understood is where, how, and to what degree RCV-A1 impedes the effect of RHDV-mediated rabbit control under field conditions. We investigated seven wild rabbit populations across six states and territories representing different seasonal rainfall zones across Australia, four times during 2011-12, to investigate if the presence and prevalence of RCV-A1 coincided with a change in RHDV immunity status within these populations. Besides serology, tissue samples from both trapped and shot rabbits were collected for virus detection by reverse transcription PCR. Overall, 52% (n=258) of the total samples (n=496) tested positive for RHDV antibodies and 42% (n=208) positive for RCV-A1 antibodies; 30% (n=150) of the sera contained antibodies to both viruses. The proportion of rabbits with RHDV antibodies increased significantly at sites where RCV-A1 antibodies were present (χ21, α=0.1, P<0.001). Evidence that preinfection of RCV-A1 may lead to a higher proportion of sampled rabbits with antibodies to both viruses was found at only one site.
Collapse
|
44
|
Conley M, Emmott E, Orton R, Taylor D, Carneiro DG, Murata K, Goodfellow IG, Hansman GS, Bhella D. Vesivirus 2117 capsids more closely resemble sapovirus and lagovirus particles than other known vesivirus structures. J Gen Virol 2017; 98:68-76. [PMID: 27902397 PMCID: PMC5370393 DOI: 10.1099/jgv.0.000658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023] Open
Abstract
Vesivirus 2117 is an adventitious agent that, in 2009, was identified as a contaminant of Chinese hamster ovary cells propagated in bioreactors at a pharmaceutical manufacturing plant belonging to Genzyme. The consequent interruption in supply of Fabrazyme and Cerezyme (drugs used to treat Fabry and Gaucher diseases, respectively) caused significant economic losses. Vesivirus 2117 is a member of the Caliciviridae, a family of small icosahedral viruses encoding a positive-sense RNA genome. We have used cryo-electron microscopy and three-dimensional image reconstruction to calculate a structure of vesivirus 2117 virus-like particles as well as feline calicivirus and a chimeric sapovirus. We present a structural comparison of several members of the Caliciviridae, showing that the distal P domain of vesivirus 2117 is morphologically distinct from that seen in other known vesivirus structures. Furthermore, at intermediate resolutions, we found a high level of structural similarity between vesivirus 2117 and Caliciviridae from other genera: sapovirus and rabbit hemorrhagic disease virus. Phylogenetic analysis confirms vesivirus 2117 as a vesivirus closely related to canine vesiviruses. We postulate that morphological differences in virion structure seen between vesivirus clades may reflect differences in receptor usage.
Collapse
Affiliation(s)
- Michaela Conley
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Edward Emmott
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Richard Orton
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - David Taylor
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Howard Hughes Medical Institute, 742 Stanley Hall, MS 3220 University of California, Berkeley, CA 94720-3220, USA
| | - Daniel G Carneiro
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
- Present address: School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ian G Goodfellow
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Grant S Hansman
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Centre for Infectious Diseases, Department of Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - David Bhella
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
45
|
Velarde R, Cavadini P, Neimanis A, Cabezón O, Chiari M, Gaffuri A, Lavín S, Grilli G, Gavier-Widén D, Lavazza A, Capucci L. Spillover Events of Infection of Brown Hares (Lepus europaeus) with Rabbit Haemorrhagic Disease Type 2 Virus (RHDV2) Caused Sporadic Cases of an European Brown Hare Syndrome-Like Disease in Italy and Spain. Transbound Emerg Dis 2016; 64:1750-1761. [PMID: 27615998 PMCID: PMC5697611 DOI: 10.1111/tbed.12562] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Indexed: 12/17/2022]
Abstract
Rabbit haemorrhagic disease virus (RHDV) is a lagovirus that can cause fatal hepatitis (rabbit haemorrhagic disease, RHD) with mortality of 80–90% in farmed and wild rabbits. Since 1986, RHDV has caused outbreaks in rabbits (Oryctolagus cuniculus) in Europe, but never in European brown hares (Lepus europaeus, EBH). In 2010, a new RHDV‐related virus, called RHDV2, emerged in Europe, causing extended epidemics because it largely overcame the immunity to RHDV present in most rabbit populations. RHDV2 also was identified in Cape hare (Lepus capensis subsp. mediterraneus) and in Italian hare (Lepus corsicanus). Here, we describe two distinct incidents of RHDV2 infection in EBH that occurred in Italy (2012) and Spain (2014). The two RHDV2 strains caused macroscopic and microscopic lesions similar to European brown hare syndrome (EBHS) in hares, and they were genetically related to other RHDV2 strains in Europe. EBHs are common in Europe, often sharing habitat with rabbits. They likely have been exposed to high levels of RHDV2 during outbreaks in rabbits in recent years, yet only two incidents of RHDV2 in EBHs have been found in Italy and Spain, suggesting that EBHs are not a primary host. Instead, they may act as spillover hosts in situations when infection pressure is high and barriers between rabbits and hares are limited, resulting in occasional infections causing EBHS‐like lesions. The serological survey of stocked hare sera taken from Italian and Spanish hare populations provided an understanding of naturally occurring RHDV2 infection in the field confirming its sporadic occurrence in EBH. Our findings increase the knowledge on distribution, host range and epidemiology of RHDV2.
Collapse
Affiliation(s)
- R Velarde
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - P Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - A Neimanis
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, University of Agricultural Sciences, Uppsala, Sweden
| | - O Cabezón
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.,IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Chiari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - A Gaffuri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - S Lavín
- Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - G Grilli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - D Gavier-Widén
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, University of Agricultural Sciences, Uppsala, Sweden
| | - A Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - L Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| |
Collapse
|
46
|
Afolayan OT, Webb CC, Cannon JL. Evaluation of a Porcine Gastric Mucin and RNase A Assay for the Discrimination of Infectious and Non-infectious GI.1 and GII.4 Norovirus Following Thermal, Ethanol, or Levulinic Acid Plus Sodium Dodecyl Sulfate Treatments. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:70-78. [PMID: 26514820 DOI: 10.1007/s12560-015-9219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
Human noroviruses (NoVs) are a major source of foodborne illnesses worldwide. Since human NoVs cannot be cultured in vitro, methods that discriminate infectious from non-infectious NoVs are needed. The purpose of this study was to evaluate binding of NoV genotypes GI.1 and GII.4 to histo-blood group antigens expressed in porcine gastric mucin (PGM) as a surrogate for detecting infectious virus following thermal (99 °C/5 min), 70% ethanol or 0.5% levulinic acid (LV) plus 0.01 or 0.1% sodium dodecyl sulfate (SDS) sanitizer treatments and to determine the limit of detection of GI.1 and GII.4 binding to PGM. Treated and control virus samples were applied to 96-well plates coated with 1 µg/ml PGM followed by RNase A (5 ng/µl) treatment for degradation of exposed RNA. Average log genome copies per ml (gc/ml) reductions and relative differences (RD) in quantification cycle (Cq) values after thermal treatment were 1.77/5.62 and 1.71/7.25 (RNase A) and 1.73/5.50 and 1.56/6.58 (no RNase A) for GI.1 and GII.4, respectively. Treatment of NoVs with 70% EtOH resulted in 0.05/0.16 (GI.1) and 3.54/10.19 (GII.4) log reductions in gc/ml and average RD in Cq value, respectively. LV (0.5%) combined with 0.1 % SDS provided a greater decrease of GI.1 and GII.4 NoVs with 8.97 and 8.13 average RD in Cq values obtained, respectively than 0.5% LV/0.01 % SDS. Virus recovery after PGM binding was variable with GII.4 > GI.1. PGM binding is a promising surrogate for identifying infectious and non-infectious NoVs after capsid destruction, however, results vary depending on virus strain and inactivation method.
Collapse
Affiliation(s)
- Olamide T Afolayan
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Cathy C Webb
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| | - Jennifer L Cannon
- Department of Food Science and Technology, Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, GA, 30223, USA.
| |
Collapse
|
47
|
Fontanesi L, Di Palma F, Flicek P, Smith AT, Thulin CG, Alves PC. LaGomiCs-Lagomorph Genomics Consortium: An International Collaborative Effort for Sequencing the Genomes of an Entire Mammalian Order. J Hered 2016; 107:295-308. [PMID: 26921276 DOI: 10.1093/jhered/esw010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/02/2016] [Indexed: 01/07/2023] Open
Abstract
The order Lagomorpha comprises about 90 living species, divided in 2 families: the pikas (Family Ochotonidae), and the rabbits, hares, and jackrabbits (Family Leporidae). Lagomorphs are important economically and scientifically as major human food resources, valued game species, pests of agricultural significance, model laboratory animals, and key elements in food webs. A quarter of the lagomorph species are listed as threatened. They are native to all continents except Antarctica, and occur up to 5000 m above sea level, from the equator to the Arctic, spanning a wide range of environmental conditions. The order has notable taxonomic problems presenting significant difficulties for defining a species due to broad phenotypic variation, overlap of morphological characteristics, and relatively recent speciation events. At present, only the genomes of 2 species, the European rabbit (Oryctolagus cuniculus) and American pika (Ochotona princeps) have been sequenced and assembled. Starting from a paucity of genome information, the main scientific aim of the Lagomorph Genomics Consortium (LaGomiCs), born from a cooperative initiative of the European COST Action "A Collaborative European Network on Rabbit Genome Biology-RGB-Net" and the World Lagomorph Society (WLS), is to provide an international framework for the sequencing of the genome of all extant and selected extinct lagomorphs. Sequencing the genomes of an entire order will provide a large amount of information to address biological problems not only related to lagomorphs but also to all mammals. We present current and planned sequencing programs and outline the final objective of LaGomiCs possible through broad international collaboration.
Collapse
Affiliation(s)
- Luca Fontanesi
- From the Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy (Fontanesi); Vertebrate and Health Genomics, The Genome Analysis Centre (TGAC), Norwich, UK (Di Palma); Broad Institute of MIT and Harvard, Cambridge, MA (Di Palma); European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (Flicek); School of Life Sciences, Arizona State University, Tempe, AZ (Smith); Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden (Thulin); CIBIO, Centro de Investigação em Biodiversidade e Recursos Geneticos, Universidade do Porto, Campus Agrario de Vairao, Vairao, Portugal (Alves); and Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal (Alves).
| | - Federica Di Palma
- From the Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy (Fontanesi); Vertebrate and Health Genomics, The Genome Analysis Centre (TGAC), Norwich, UK (Di Palma); Broad Institute of MIT and Harvard, Cambridge, MA (Di Palma); European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (Flicek); School of Life Sciences, Arizona State University, Tempe, AZ (Smith); Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden (Thulin); CIBIO, Centro de Investigação em Biodiversidade e Recursos Geneticos, Universidade do Porto, Campus Agrario de Vairao, Vairao, Portugal (Alves); and Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal (Alves)
| | - Paul Flicek
- From the Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy (Fontanesi); Vertebrate and Health Genomics, The Genome Analysis Centre (TGAC), Norwich, UK (Di Palma); Broad Institute of MIT and Harvard, Cambridge, MA (Di Palma); European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (Flicek); School of Life Sciences, Arizona State University, Tempe, AZ (Smith); Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden (Thulin); CIBIO, Centro de Investigação em Biodiversidade e Recursos Geneticos, Universidade do Porto, Campus Agrario de Vairao, Vairao, Portugal (Alves); and Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal (Alves)
| | - Andrew T Smith
- From the Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy (Fontanesi); Vertebrate and Health Genomics, The Genome Analysis Centre (TGAC), Norwich, UK (Di Palma); Broad Institute of MIT and Harvard, Cambridge, MA (Di Palma); European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (Flicek); School of Life Sciences, Arizona State University, Tempe, AZ (Smith); Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden (Thulin); CIBIO, Centro de Investigação em Biodiversidade e Recursos Geneticos, Universidade do Porto, Campus Agrario de Vairao, Vairao, Portugal (Alves); and Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal (Alves)
| | - Carl-Gustaf Thulin
- From the Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy (Fontanesi); Vertebrate and Health Genomics, The Genome Analysis Centre (TGAC), Norwich, UK (Di Palma); Broad Institute of MIT and Harvard, Cambridge, MA (Di Palma); European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (Flicek); School of Life Sciences, Arizona State University, Tempe, AZ (Smith); Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden (Thulin); CIBIO, Centro de Investigação em Biodiversidade e Recursos Geneticos, Universidade do Porto, Campus Agrario de Vairao, Vairao, Portugal (Alves); and Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal (Alves)
| | - Paulo C Alves
- From the Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy (Fontanesi); Vertebrate and Health Genomics, The Genome Analysis Centre (TGAC), Norwich, UK (Di Palma); Broad Institute of MIT and Harvard, Cambridge, MA (Di Palma); European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (Flicek); School of Life Sciences, Arizona State University, Tempe, AZ (Smith); Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden (Thulin); CIBIO, Centro de Investigação em Biodiversidade e Recursos Geneticos, Universidade do Porto, Campus Agrario de Vairao, Vairao, Portugal (Alves); and Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal (Alves).
| | | |
Collapse
|
48
|
Pinheiro A, Neves F, Lemos de Matos A, Abrantes J, van der Loo W, Mage R, Esteves PJ. An overview of the lagomorph immune system and its genetic diversity. Immunogenetics 2016; 68:83-107. [PMID: 26399242 DOI: 10.1007/s00251-015-0868-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 01/11/2023]
Abstract
Our knowledge of the lagomorph immune system remains largely based upon studies of the European rabbit (Oryctolagus cuniculus), a major model for studies of immunology. Two important and devastating viral diseases, rabbit hemorrhagic disease and myxomatosis, are affecting European rabbit populations. In this context, we discuss the genetic diversity of the European rabbit immune system and extend to available information about other lagomorphs. Regarding innate immunity, we review the most recent advances in identifying interleukins, chemokines and chemokine receptors, Toll-like receptors, antiviral proteins (RIG-I and Trim5), and the genes encoding fucosyltransferases that are utilized by rabbit hemorrhagic disease virus as a portal for invading host respiratory and gut epithelial cells. Evolutionary studies showed that several genes of innate immunity are evolving by strong natural selection. Studies of the leporid CCR5 gene revealed a very dramatic change unique in mammals at the second extracellular loop of CCR5 resulting from a gene conversion event with the paralogous CCR2. For the adaptive immune system, we review genetic diversity at the loci encoding antibody variable and constant regions, the major histocompatibility complex (RLA) and T cells. Studies of IGHV and IGKC genes expressed in leporids are two of the few examples of trans-species polymorphism observed outside of the major histocompatibility complex. In addition, we review some endogenous viruses of lagomorph genomes, the importance of the European rabbit as a model for human disease studies, and the anticipated role of next-generation sequencing in extending knowledge of lagomorph immune systems and their evolution.
Collapse
Affiliation(s)
- Ana Pinheiro
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
- SaBio-IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13071, Ciudad Real, Spain
| | - Fabiana Neves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
- UMIB/UP-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Lemos de Matos
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Joana Abrantes
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal
| | - Rose Mage
- NIAID, NIH, Bethesda, MD, 20892, USA
| | - Pedro José Esteves
- InBIO-Research Network in Biodiversity and Evolutionary Biology, CIBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, nr. 7, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
49
|
Song Y, Wang F, Fan Z, Hu B, Liu X, Wei H, Xue J, Xu W, Qiu R. Identification of novel rabbit hemorrhagic disease virus B-cell epitopes and their interaction with host histo-blood group antigens. J Gen Virol 2015; 97:356-365. [PMID: 26612210 DOI: 10.1099/jgv.0.000355] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rabbit haemorrhagic disease, caused by rabbit hemorrhagic disease virus (RHDV), results in the death of millions of adult rabbits worldwide, with a mortality rate that exceeds 90%. The sole capsid protein, VP60, is divided into shell (S) and protruding (P) domains, and the more exposed P domain likely contains determinants for cell attachment and antigenic diversity. Nine mAbs against VP60 were screened and identified. To map antigenic epitopes, a set of partially overlapping and consecutive truncated proteins spanning VP60 were expressed. The minimal determinants of the linear B-cell epitopes of VP60 in the P domain, N(326)PISQV(331), D(338)MSFV(342) and K(562)STLVFNL(569), were recognized by one (5H3), four (1B8, 3D11, 4C2 and 4G2) and four mAbs (1D4, 3F7, 5G2 and 6B2), respectively. Sequence alignment showed epitope D(338)MSFV(342) was conserved among all RHDV isolates. Epitopes N(326)PISQV(331) and K(562)STLVFNL(569) were highly conserved among RHDV G1-G6 and variable in RHDV2 strains. Previous studies demonstrated that native viral particles and virus-like particles (VLPs) of RHDV specifically bound to synthetic blood group H type 2 oligosaccharides. We established an oligosaccharide-based assay to analyse the binding of VP60 and epitopes to histo-blood group antigens (HBGAs). Results showed VP60 and its epitopes (aa 326-331 and 338-342) in the P2 subdomain could significantly bind to blood group H type 2. Furthermore, mAbs 1B8 and 5H3 could block RHDV VLP binding to synthetic H type 2. Collectively, these two epitopes might play a key role in the antigenic structure of VP60 and interaction of RHDV and HBGA.
Collapse
Affiliation(s)
- Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Xing Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Jiabin Xue
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Weizhong Xu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| |
Collapse
|
50
|
Wells K, Brook BW, Lacy RC, Mutze GJ, Peacock DE, Sinclair RG, Schwensow N, Cassey P, O'Hara RB, Fordham DA. Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics. J R Soc Interface 2015; 12:rsif.2014.1184. [PMID: 25566883 DOI: 10.1098/rsif.2014.1184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species.
Collapse
Affiliation(s)
- Konstans Wells
- The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Barry W Brook
- The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Robert C Lacy
- Chicago Zoological Society, Brookfield, IL 60513, USA
| | - Greg J Mutze
- Department of Primary Industries and Regions, Biosecurity SA, Adelaide, South Australia 5001, Australia
| | - David E Peacock
- Department of Primary Industries and Regions, Biosecurity SA, Adelaide, South Australia 5001, Australia
| | - Ron G Sinclair
- Department of Primary Industries and Regions, Biosecurity SA, Adelaide, South Australia 5001, Australia
| | - Nina Schwensow
- The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Phillip Cassey
- The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Robert B O'Hara
- Biodiversity and Climate Research Centre (BIK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Damien A Fordham
- The Environment Institute and School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|