1
|
Gu M, Pang Z. Luteolin inhibits inflammation and M1 macrophage polarization in the treatment of Pseudomonas aeruginosa-induced acute pneumonia through suppressing EGFR/PI3K/AKT/NF-κB and EGFR/ERK/AP-1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156663. [PMID: 40133026 DOI: 10.1016/j.phymed.2025.156663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND The opportunistic pathogen Pseudomonas aeruginosa primarily causes infections in immunocompromised individuals. Luteolin, a natural flavonoid, is widely present in plants, which exerts various pharmacological activities, including anti-inflammatory and antimicrobial activities. PURPOSE This study aimed to explore the therapeutic efficacy of luteolin and the underlying molecular mechanisms in treating the P. aeruginosa-induced acute pneumonia. METHODS Network pharmacology was utilized to identify the core targets of luteolin for treating acute P. aeruginosa pneumonia. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to dissect the potential effects of luteolin and the involved signaling pathways. Surface plasmon resonance (SPR) assay and molecular docking were employed for studying the binding affinities of luteolin with the key targets. Furthermore, we applied a mouse model of bacterial pneumonia for assessing the therapeutic effects of luteolin in vivo, and an in vitro infection model for specifically investigating the effects of luteolin on macrophages as well as the underlying mechanisms upon P. aeruginosa infection. RESULTS Network pharmacology identified TNF, IL-6, EGFR and AKT1 as the key targets of luteolin for treating acute P. aeruginosa pneumonia. Moreover, as revealed by GO and KEGG enrichment analysis, EGFR, MAPK and PI3K/AKT pathways were the potential pathways regulated the P. aeruginosa-induced inflammatory response. According to the in vivo results, luteolin effectively mitigated the P. aeruginosa-induced acute lung injury through reducing the pulmonary permeability, neutrophil infiltration, proinflammatory cytokine production (IL-1β, IL-6, TNF and MIP-2) and bacterial burden in lung tissues, which led to increased survival rate of mice. Furthermore, the luteolin-treated mice had diminished EGFR, PI3K, AKT, IκBα, NF-κB p65, ERK, c-Jun and c-Fos phosphorylation, down-regulated M1 macrophage marker levels (iNOS, CD86 and IL-1β) but up-regulated M2 macrophage marker levels (Ym1, CD206 and Arg1) in lung tissues. Consistently, the luteolin-pretreated macrophages exhibited reduced phosphorylation of these regulatory proteins, diminished proinflammatory cytokine production, and down-regulated expression of M1 macrophage markers, but up-regulated expression of IL-10 and M2 macrophage markers. CONCLUSION luteolin effectively suppressed the inflammatory responses and M1 macrophage polarization through inhibiting EGFR/PI3K/AKT/NF-κB and EGFR/ERK/AP-1 signaling pathways in the treatment of acute P. aeruginosa pneumonia. This study suggests that luteolin could be a promising candidate for development as a therapeutic agent for acute bacterial pneumonia.
Collapse
Affiliation(s)
- Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Wintgens S, Müller J, Drees F, Spona D, Bonda L, Hartmann L, Hegemann JH, Schmidt S. Sulfated Glycosaminoglycans as Inhibitors for Chlamydia Infections: Molecular Weight and Sulfation Dependence. Macromol Biosci 2025; 25:e2400443. [PMID: 39838590 PMCID: PMC11995835 DOI: 10.1002/mabi.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Glycosaminoglycans (GAGs) play a pivotal role in pathogen attachment and entry into host cells, where the interaction with GAGs is critical for a diverse range of bacteria and viruses. This study focuses on elucidating the specific interactions between sulfated GAGs and the adhesin OmcB (Outer membrane complex protein B) of Chlamydia species, examining how structural characteristics of GAGs, such as sulfation degree and molecular weight, influence their binding affinity and thereby affect bacterial infectivity. A surface-based binding assay is established to determine the binding constants of OmcB with various GAGs. It is shown that increased sulfation and higher molecular weight enhance GAG binding to OmcB. These findings are further validated using cell assays, which shows that the addition of sulfated GAGs reduces OmcB-cell binding and inhibits the attachment of C. pneumoniae elementary bodies (EBs), underscoring the pivotal role of specific GAGs in chlamydial infections. Notably, heparin exhibites a stronger inhibitory effect on OmcB compare to GAGs with similar sulfation degrees and molecular weights, suggesting that particular molecular architectures may optimize binding interactions.
Collapse
Affiliation(s)
- Sebastian Wintgens
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Janita Müller
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
| | - Felicitas Drees
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| | - Dominik Spona
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Lorand Bonda
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
| | - Laura Hartmann
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| | - Johannes H. Hegemann
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute for Functional Microbial Genomics40204DüsseldorfGermany
| | - Stephan Schmidt
- Heinrich‐ Heine‐ University DüsseldorfFaculty of Mathematics and Natural SciencesInstitute of Organic Chemistry and Macromolecular Chemistry40204DüsseldorfGermany
- Institute for Macromolecular ChemistryFaculty of Chemistry and PharmacyAlbert‐Ludwigs‐Universität Freiburg79104FreiburgGermany
| |
Collapse
|
3
|
Dessenne C, Mariller C, Vidal O, Huvent I, Guerardel Y, Elass-Rochard E, Rossez Y. Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria. BBA ADVANCES 2025; 7:100156. [PMID: 40207210 PMCID: PMC11979486 DOI: 10.1016/j.bbadva.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Bacterial adhesins play a central role in host-pathogen interactions, with many specifically targeting glycans to mediate bacterial colonization, influence infection dynamics, and evade host immune responses. In this review, we focus on bacterial pathogens identified by the World Health Organization as critical threats to public health and in urgent need of new treatments. We summarize glycoconjugate targets identified in the literature across 19 bacterial genera and species. This comprehensive review provides a foundation for the development of innovative therapeutic strategies to effectively combat these pathogens.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Mariller
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Huvent
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Elisabeth Elass-Rochard
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
4
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Gong F, Xin S, Liu X, He C, Yu X, Pan L, Zhang S, Gao H, Xu J. Multiple biological characteristics and functions of intestinal biofilm extracellular polymers: friend or foe? Front Microbiol 2024; 15:1445630. [PMID: 39224216 PMCID: PMC11367570 DOI: 10.3389/fmicb.2024.1445630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The gut microbiota is vital to human health, and their biofilms significantly impact intestinal immunity and the maintenance of microbial balance. Certain pathogens, however, can employ biofilms to elude identification by the immune system and medical therapy, resulting in intestinal diseases. The biofilm is formed by extracellular polymorphic substances (EPS), which shield microbial pathogens from the host immune system and enhance its antimicrobial resistance. Therefore, investigating the impact of extracellular polysaccharides released by pathogens that form biofilms on virulence and defence mechanisms is crucial. In this review, we provide a comprehensive overview of current pathogenic biofilm research, deal with the role of extracellular polymers in the formation and maintenance of pathogenic biofilm, and elaborate different prevention and treatment strategies to provide an innovative approach to the treatment of intestinal pathogen-based diseases.
Collapse
Affiliation(s)
- Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Han Gao
- Department of Clinical Laboratory, Aerospace Center Hospital, Beijing, China
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Konyshev IV, Byvalov AA. The bacterial flagellum as an object for optical trapping. Biophys Rev 2024; 16:403-415. [PMID: 39309130 PMCID: PMC11415335 DOI: 10.1007/s12551-024-01212-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
This letter considers the possibility of using the optical trap to study the structure and function of the microbial flagellum. The structure of the flagellum of a typical gram-negative bacterium is described in brief. A standard mathematical model based on the principle of superposition is used to describe the movement of an ellipsoidal microbial cell in a liquid medium. The basic principles of optical trapping based on the combined action of the light pressure and the gradient force are briefly clarified. Several problems related to thermal damage of living microscopic objects when the latter gets to the focus of a laser beam are shortly discussed. It is shown that the probability of cell damage depends nonlinearly on the wavelength of laser radiation. Finally, the model systems that would make it possible to study flagella of the free bacteria and the ones anchored or tethered on the surface of a solid material are discussed in detail.
Collapse
Affiliation(s)
- Ilya V. Konyshev
- Institute of Physiology of the Federal Research Centre, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
- Vyatka State University, Kirov, 610000 Russia
| | - Andrey A. Byvalov
- Institute of Physiology of the Federal Research Centre, Komi Science Centre, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia
- Vyatka State University, Kirov, 610000 Russia
| |
Collapse
|
8
|
David A, Tahrioui A, Tareau AS, Forge A, Gonzalez M, Bouffartigues E, Lesouhaitier O, Chevalier S. Pseudomonas aeruginosa Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production. Antibiotics (Basel) 2024; 13:688. [PMID: 39199987 PMCID: PMC11350761 DOI: 10.3390/antibiotics13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000 Rouen, France
| |
Collapse
|
9
|
Resko ZJ, Suhi RF, Thota AV, Kroken AR. Evidence for intracellular Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0010924. [PMID: 38597609 PMCID: PMC11112991 DOI: 10.1128/jb.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Pseudomonas aeruginosa is a significant cause of global morbidity and mortality. Although it is often regarded as an extracellular pathogen toward human cells, numerous investigations report its ability to survive and replicate within host cells, and additional studies demonstrate specific mechanisms enabling it to adopt an intracellular lifestyle. This ability of P. aeruginosa remains less well-investigated than that of other intracellular bacteria, although it is currently gaining attention. If intracellular bacteria are not killed after entering host cells, they may instead receive protection from immune recognition and experience reduced exposure to antibiotic therapy, among additional potential advantages shared with other facultative intracellular pathogens. For this review, we compiled studies that observe intracellular P. aeruginosa across strains, cell types, and experimental systems in vitro, as well as contextualize these findings with the few studies that report similar observations in vivo. We also seek to address key findings that drove the perception that P. aeruginosa remains extracellular in order to reconcile what is currently understood about intracellular pathogenesis and highlight open questions regarding its contribution to disease.
Collapse
Affiliation(s)
- Zachary J. Resko
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Rachel F. Suhi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Adam V. Thota
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Abby R. Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
10
|
Chance DL, Wang W, Waters JK, Mawhinney TP. Insights on Pseudomonas aeruginosa Carbohydrate Binding from Profiles of Cystic Fibrosis Isolates Using Multivalent Fluorescent Glycopolymers Bearing Pendant Monosaccharides. Microorganisms 2024; 12:801. [PMID: 38674745 PMCID: PMC11051836 DOI: 10.3390/microorganisms12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pseudomonas aeruginosa contributes to frequent, persistent, and, often, polymicrobial respiratory tract infections for individuals with cystic fibrosis (CF). Chronic CF infections lead to bronchiectasis and a shortened lifespan. P. aeruginosa expresses numerous adhesins, including lectins known to bind the epithelial cell and mucin glycoconjugates. Blocking carbohydrate-mediated host-pathogen and intra-biofilm interactions critical to the initiation and perpetuation of colonization offer promise as anti-infective treatment strategies. To inform anti-adhesion therapies, we profiled the monosaccharide binding of P. aeruginosa from CF and non-CF sources, and assessed whether specific bacterial phenotypic characteristics affected carbohydrate-binding patterns. Focusing at the cellular level, microscopic and spectrofluorometric tools permitted the solution-phase analysis of P. aeruginosa binding to a panel of fluorescent glycopolymers possessing distinct pendant monosaccharides. All P. aeruginosa demonstrated significant binding to glycopolymers specific for α-D-galactose, β-D-N-acetylgalactosamine, and β-D-galactose-3-sulfate. In each culture, a small subpopulation accounted for the binding. The carbohydrate anomeric configuration and sulfate ester presence markedly influenced binding. While this opportunistic pathogen from CF hosts presented with various colony morphologies and physiological activities, no phenotypic, physiological, or structural feature predicted enhanced or diminished monosaccharide binding. Important to anti-adhesive therapeutic strategies, these findings suggest that, regardless of phenotype or clinical source, P. aeruginosa maintain a small subpopulation that may readily associate with specific configurations of specific monosaccharides. This report provides insights into whole-cell P. aeruginosa carbohydrate-binding profiles and into the context within which successful anti-adhesive and/or anti-virulence anti-infective agents for CF must contend.
Collapse
Affiliation(s)
- Deborah L. Chance
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Wei Wang
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
| | - James K. Waters
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| | - Thomas P. Mawhinney
- Department of Pediatrics, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Experiment Station Chemical Laboratories, University of Missouri, Columbia, MO 65211, USA;
| |
Collapse
|
11
|
Jadi PK, Dave A, Issa R, Tabbasum K, Okurowska K, Samarth A, Urwin L, Green LR, Partridge LJ, MacNeil S, Garg P, Monk PN, Roy S. Tetraspanin CD9-derived peptides inhibit Pseudomonas aeruginosa corneal infection and aid in wound healing of corneal epithelial cells. Ocul Surf 2024; 32:211-218. [PMID: 37406881 DOI: 10.1016/j.jtos.2023.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Pseudomonas aeruginosa is a leading cause of corneal infection both within India and globally, often causing a loss of vision. Increasing antimicrobial resistance among the bacteria is making its treatment more difficult. Preventing initial bacterial adherence to the host membrane has been explored here to reduce infection of the cornea. Synthetic peptides derived from human tetraspanin CD9 have been shown to reduce infection in corneal cells both in vitro, ex vivo and in vivo. We found constitutive expression of CD9 in immortalized human corneal epithelial cells by flow cytometry and immunocytochemistry. The synthetic peptides derived from CD9 significantly reduced bacterial adherence to cultured corneal epithelial cells and ex vivo human cadaveric corneas as determined by colony forming units. The peptides also significantly reduced bacterial burden in a murine model of Pseudomonas keratitis and lowered the cellular infiltration in the corneal stroma. Additionally, the peptides aided corneal wound healing in uninfected C57BL/6 mice compared to control mice. These potential therapeutics had no effect on cell viability or proliferation of corneal epithelial cells and have the potential to be developed as an alternative therapeutic intervention.
Collapse
MESH Headings
- Animals
- Pseudomonas Infections/drug therapy
- Pseudomonas Infections/microbiology
- Mice
- Pseudomonas aeruginosa/physiology
- Humans
- Epithelium, Corneal/drug effects
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/pathology
- Epithelium, Corneal/microbiology
- Mice, Inbred C57BL
- Wound Healing/drug effects
- Eye Infections, Bacterial/microbiology
- Eye Infections, Bacterial/drug therapy
- Eye Infections, Bacterial/metabolism
- Tetraspanin 29/metabolism
- Disease Models, Animal
- Flow Cytometry
- Peptides/pharmacology
- Cells, Cultured
- Immunohistochemistry
Collapse
Affiliation(s)
- Praveen Kumar Jadi
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, India
| | - Alpana Dave
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, India
| | - Rahaf Issa
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, S10 2RX, United Kingdom
| | - Khatija Tabbasum
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, India
| | - Katarzyna Okurowska
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom; Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB), Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom
| | - Apurwa Samarth
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, India
| | - Lucy Urwin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, S10 2RX, United Kingdom; School of Biosciences, University of Sheffield, S10 2TN, United Kingdom
| | - Luke R Green
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, S10 2RX, United Kingdom
| | - Lynda J Partridge
- School of Biosciences, University of Sheffield, S10 2TN, United Kingdom
| | - Sheila MacNeil
- Department of Materials Science Engineering, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, United Kingdom
| | - Prashant Garg
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, India; The Cornea Institute, LV Prasad Eye Institute, Hyderabad, 500034, India
| | - Peter N Monk
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, S10 2RX, United Kingdom.
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, 500034, India.
| |
Collapse
|
12
|
Jia X, Gu M, Dai J, Wang J, Zhang Y, Pang Z. Quercetin attenuates Pseudomonas aeruginosa-induced acute lung inflammation by inhibiting PI3K/AKT/NF-κB signaling pathway. Inflammopharmacology 2024; 32:1059-1076. [PMID: 38310155 DOI: 10.1007/s10787-023-01416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 02/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that commonly causes infections in immunocompromised individuals with significant morbidity and mortality. Quercetin is a natural flavonoid abundantly present in fruits and vegetables, exerting potent anti-inflammatory effects in treatment of various diseases. However, the molecular mechanisms of quercetin in treatment of P. aeruginosa-induced acute lung inflammation are unclear. In this study, we exploited network pharmacology- and molecular docking-based approach to explore the potential mechanisms of quercetin against P. aeruginosa pneumonia, which was further validated via in vivo and in vitro experiments. The in vivo experiments demonstrated that quercetin alleviated the P. aeruginosa-induced lung injury by diminishing neutrophil infiltration and production of proinflammatory cytokines (IL-1β, IL-6, and TNF), which was associated with decreased mortality. Moreover, the quercetin-treated mice displayed decreased phosphorylation levels of PI3K, AKT, IκBα, and NF-κB p65 in lung tissues compared to non-drug-treated mice. Similarly, the in vitro study showed that the phosphorylation of these regulatory proteins and production of the proinflammatory cytokines were impaired in the quercetin-pretreated macrophages upon P. aeruginosa infection. Altogether, this study suggested that quercetin reduced the P. aeruginosa-induced acute lung inflammation by suppressing PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China
| | - Yingying Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| |
Collapse
|
13
|
Bonacorsi A, Trespidi G, Scoffone VC, Irudal S, Barbieri G, Riabova O, Monakhova N, Makarov V, Buroni S. Characterization of the dispirotripiperazine derivative PDSTP as antibiotic adjuvant and antivirulence compound against Pseudomonas aeruginosa. Front Microbiol 2024; 15:1357708. [PMID: 38435690 PMCID: PMC10904629 DOI: 10.3389/fmicb.2024.1357708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Pseudomonas aeruginosa is a major human pathogen, able to establish difficult-to-treat infections in immunocompromised and people with cystic fibrosis (CF). The high rate of antibiotic treatment failure is due to its notorious drug resistance, often mediated by the formation of persistent biofilms. Alternative strategies, capable of overcoming P. aeruginosa resistance, include antivirulence compounds which impair bacterial pathogenesis without exerting a strong selective pressure, and the use of antimicrobial adjuvants that can resensitize drug-resistant bacteria to specific antibiotics. In this work, the dispirotripiperazine derivative PDSTP, already studied as antiviral, was characterized for its activity against P. aeruginosa adhesion to epithelial cells, its antibiotic adjuvant ability and its biofilm inhibitory potential. PDSTP was effective in impairing the adhesion of P. aeruginosa to various immortalized cell lines. Moreover, the combination of clinically relevant antibiotics with the compound led to a remarkable enhancement of the antibiotic efficacy towards multidrug-resistant CF clinical strains. PDSTP-ceftazidime combination maintained its efficacy in vivo in a Galleria mellonella infection model. Finally, the compound showed a promising biofilm inhibitory activity at low concentrations when tested both in vitro and using an ex vivo pig lung model. Altogether, these results validate PDSTP as a promising compound, combining the ability to decrease P. aeruginosa virulence by impairing its adhesion and biofilm formation, with the capability to increase antibiotic efficacy against antibiotic resistant strains.
Collapse
Affiliation(s)
- Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Viola C. Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Samuele Irudal
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Olga Riabova
- Research Center of Biotechnology RAS, Moscow, Russia
| | | | - Vadim Makarov
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Yang L, Wang L, Wang M, Bajinka O, Wu G, Qin L, Tan Y. Oligoribonuclease mediates high adaptability of P. aeruginosa through metabolic conversion. BMC Microbiol 2024; 24:25. [PMID: 38238663 PMCID: PMC10797966 DOI: 10.1186/s12866-023-03175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Oligoribonuclease (orn) of P. aeruginosa is a highly conserved exonuclease, which can regulate the global gene expression levels of bacteria through regulation of both the nanoRNA and c-di-GMP. NanoRNA can regulate the expression of the bacterial global genome as a transcription initiator, and c-di-GMP is the most widely second messenger in bacterial cells. OBJECTIVE This study seeks to elucidate on the regulation by orn on pathogenicity of P. aeruginosa. METHODS P. aeruginosa with orn deletion was constructed by suicide plasmid homologous recombination method. The possible regulatory process of orn was analyzed by TMT quantitative labeling proteomics. Then experiments were conducted to verify the changes of Δorn on bacterial motility, virulence and biofilm formation. Bacterial pathogenicity was further detected in cell and animal skin trauma models. ELISA detection c-di-GMP concentration and colony aggregation and biofilm formation were observed by scanning electron microscope. RESULTS orn deletion changed the global metabolism of P. aeruginosa and reduced intracellular energy metabolism. It leads to the disorder of the quorum sensing system, the reduction of bacterial motility and virulence factors pyocyanin and rhamnolipids. But, orn deletion enhanced pathogenicity in vitro and in vivo, a high level of c-di-GMP and biofilm development of P. aeruginosa. CONCLUSION orn regulates the ability of P. aeruginosa to adapt to the external environment.
Collapse
Affiliation(s)
- Lulu Yang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lili Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Mengyu Wang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ousman Bajinka
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| | - Yurong Tan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
15
|
Gu M, Su W, Dai J, Wang J, Jia X, Yao J, Zhang G, Zhu Q, Pang Z. Jingfang granule alleviates Pseudomonas aeruginosa-induced acute lung inflammation through suppression of STAT3/IL-17/NF-κB pathway based on network pharmacology analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116899. [PMID: 37454750 DOI: 10.1016/j.jep.2023.116899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the second leading cause of hospital-acquired pneumonia. Jingfang granule (JFG) is an herbal formula of Traditional Chinese medicine (TCM) widely used in treatment of acute respiratory tract infections in China. However, the molecular mechanisms of JFG in treatment of P. aeruginosa-induced acute pneumonia are not clear. AIM OF STUDY This study aimed to investigate the mechanisms underlying the effects of JFG on P. aeruginosa-induced acute inflammation using a mouse model of bacterial acute pneumonia. MATERIALS AND METHODS The chemical components and targets of JFG were retrieved from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the P. aeruginosa pneumonia-related targets were obtained from the disease databases, including Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNet. The protein-protein interaction (PPI) network was constructed using STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Molecular docking was performed using AutoDockTools 1.5.6. Further in vivo experiments employed a mouse model of P. aeruginosa acute pneumonia to verify the target proteins and signaling pathways affected by JFG, which were predicted by the network pharmacology analysis. RESULTS A total of 218 active components and 257 targets of JFG were retrieved from TCMSP database. Moreover, 99 intersectant targets were obtained between the 257 JFG targets and 694 disease targets. Among the intersectant targets, STAT3, IL-6, AKT1, TNF, MAPK1, MAPK3 and EGFR were identified to be the key therapeutic targets through PPI network analysis, and STAT3 was in the center of the network, which is a key regulator of IL-17 expression. KEGG pathway enrichment analysis suggested that IL-17 signaling pathway was one of the crucial inflammatory pathways affected by JFG in treatment of P. aeruginosa pneumonia. Furthermore, the in vivo experiments demonstrated that the JFG-treated mice displayed reduced proinflammatory cytokine production (IL-17, IL-1β, IL-6 and TNF), diminished neutrophil infiltration and decreased mortality, compared with the non-drug-treated mice during P. aeruginosa lung infection. Moreover, the expression or phosphorylation levels of the key regulators in STAT3/IL-17/NF-κB axis including STAT3, ERK1/2 (MAPK3/1), AKT, NF-κB p65 and RORγt were significantly reduced in the lung tissues of the JFG-treated mice. CONCLUSION JFG was effective in treatment of P. aeruginosa acute lung infection, which reduced inflammatory responses through suppressing STAT3/IL-17/NF-κB pathway.
Collapse
Affiliation(s)
- Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
16
|
Wiesmann CL, Wang NR, Zhang Y, Liu Z, Haney CH. Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals. FEMS Microbiol Rev 2023; 47:fuac048. [PMID: 36521845 PMCID: PMC10719066 DOI: 10.1093/femsre/fuac048] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/17/2023] Open
Abstract
Regardless of the outcome of symbiosis, whether it is pathogenic, mutualistic or commensal, bacteria must first colonize their hosts. Intriguingly, closely related bacteria that colonize diverse hosts with diverse outcomes of symbiosis have conserved host-association and virulence factors. This review describes commonalities in the process of becoming host associated amongst bacteria with diverse lifestyles. Whether a pathogen, commensal or mutualist, bacteria must sense the presence of and migrate towards a host, compete for space and nutrients with other microbes, evade the host immune system, and change their physiology to enable long-term host association. We primarily focus on well-studied taxa, such as Pseudomonas, that associate with diverse model plant and animal hosts, with far-ranging symbiotic outcomes. Given the importance of opportunistic pathogens and chronic infections in both human health and agriculture, understanding the mechanisms that facilitate symbiotic relationships between bacteria and their hosts will help inform the development of disease treatments for both humans, and the plants we eat.
Collapse
Affiliation(s)
- Christina L Wiesmann
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nicole R Wang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yue Zhang
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zhexian Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
17
|
Sanchez H, O’Toole GA, Berwin B. Assessment of the Glycan-Binding Profile of Pseudomonas aeruginosa PAO1. Microbiol Spectr 2023; 11:e0166723. [PMID: 37470715 PMCID: PMC10434018 DOI: 10.1128/spectrum.01667-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can establish acute and chronic infections in individuals who lack fully functional innate immunity. In particular, phagocytosis by neutrophils and macrophages is a key mechanism that modulates host control and clearance of P. aeruginosa. Individuals with neutropenia or cystic fibrosis are highly susceptible to P. aeruginosa infection, thus underscoring the importance of the host innate immune response. Cell-to-cell contact between host innate immune cells and the pathogen, a first step in phagocytic uptake, is facilitated by simple and complex glycan structures present at the host cell surface. We have previously shown that endogenous polyanionic N-linked glycans localized to the cell surface of phagocytes mediate the binding and subsequent phagocytosis of P. aeruginosa cells. However, the suite of glycans that P. aeruginosa cells bind to on host phagocytic cells remains poorly characterized. Here, we demonstrate, with the use of exogenous N-linked glycans and a glycan array, that P. aeruginosa PAO1 cells preferentially attach to a subset of glycans, including a bias toward monosaccharide versus more complex glycan structures. Consistent with these findings, we were able to competitively inhibit bacterial adherence and uptake by the addition of exogenous N-linked mono- and disaccharide glycans. We discuss our findings in the context of previous reports of P. aeruginosa glycan binding. IMPORTANCE P. aeruginosa cells bind to a variety of glycans as part of their interaction with host cells, and a number of P. aeruginosa-encoded receptors and target ligands have been described that allow this microbe to bind to such glycans. Here, we extend this work by studying the glycans used by P. aeruginosa PAO1 cells to bind to phagocytic cells and by using a glycan array to characterize the suite of such molecules that can facilitate host cell binding by this microbe. This study provides an increased understanding of the glycans bound by P. aeruginosa and furthermore provides a useful data set for future studies of P. aeruginosa-glycan interactions.
Collapse
Affiliation(s)
- Hector Sanchez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | | |
Collapse
|
18
|
Rossy T, Distler T, Meirelles LA, Pezoldt J, Kim J, Talà L, Bouklas N, Deplancke B, Persat A. Pseudomonas aeruginosa type IV pili actively induce mucus contraction to form biofilms in tissue-engineered human airways. PLoS Biol 2023; 21:e3002209. [PMID: 37527210 PMCID: PMC10393179 DOI: 10.1371/journal.pbio.3002209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/21/2023] [Indexed: 08/03/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes antibiotic-recalcitrant pneumonia by forming biofilms in the respiratory tract. Despite extensive in vitro experimentation, how P. aeruginosa forms biofilms at the airway mucosa is unresolved. To investigate the process of biofilm formation in realistic conditions, we developed AirGels: 3D, optically accessible tissue-engineered human lung models that emulate the airway mucosal environment. AirGels recapitulate important factors that mediate host-pathogen interactions including mucus secretion, flow and air-liquid interface (ALI), while accommodating high-resolution live microscopy. With AirGels, we investigated the contributions of mucus to P. aeruginosa biofilm biogenesis in in vivo-like conditions. We found that P. aeruginosa forms mucus-associated biofilms within hours by contracting luminal mucus early during colonization. Mucus contractions facilitate aggregation, thereby nucleating biofilms. We show that P. aeruginosa actively contracts mucus using retractile filaments called type IV pili. Our results therefore suggest that, while protecting epithelia, mucus constitutes a breeding ground for biofilms.
Collapse
Affiliation(s)
- Tamara Rossy
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tania Distler
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucas A Meirelles
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Joern Pezoldt
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jaemin Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lorenzo Talà
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nikolaos Bouklas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Persat
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
19
|
Shteindel N, Gutman D, Atzmon G, Gerchman Y. Quantification of bacterial adhesion to tissue in high-throughput kinetics. Biol Methods Protoc 2023; 8:bpad014. [PMID: 37576438 PMCID: PMC10423040 DOI: 10.1093/biomethods/bpad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Bacterial adhesion to tissue is the starting point for many pathogenic processes and beneficial interactions. The dynamics and speed of adhesion (minutes) make high-resolution temporal kinetic data important, but this capability is absent from the current toolset. We present a high-throughput method with a second-to-minute kinetic resolution, testing the adhesion of Pseudomonas aeruginosa PAO1 wild-type, flagella-, pili-, and quorum-sensing mutants to human embryonic kidney (HEK293) cells. Adhesion rates were in good correlation with HEK293 confluence, and the ways in which various bacterial mutations modified adhesion patterns are in agreement with the published literature. This simple assay can facilitate drug screening and treatment development as well as provide a better understanding of the interactions of pathogenic and probiotic bacteria with tissues, allowing the design of interventions and prevention treatments.
Collapse
Affiliation(s)
- Nimrod Shteindel
- Department of Evolutionary and Environmental Biology, Haifa University, Tivon, Israel
| | - Danielle Gutman
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | - Gil Atzmon
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | - Yoram Gerchman
- Department of Evolutionary and Environmental Biology, Haifa University, Tivon, Israel
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel
- Department of Biology, Oranim College, Kiryat Tivon 3600600, Israel
| |
Collapse
|
20
|
Yang G, Yang L, Zhou X. Inhibition of bacterial swimming by heparin binding of flagellin FliC from Escherichia coli strain Nissle 1917. Arch Microbiol 2023; 205:286. [PMID: 37452842 DOI: 10.1007/s00203-023-03622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Escherichia coli Nissle1917 (EcN) is a non-pathogenic probiotic strain widely used to maintain gut health, treat gastrointestinal disorders, and modulate the gut microbiome due to its anti-inflammatory and competitive exclusion effects against pathogenic bacteria. Heparin, abundant on intestinal mucosal surfaces, is a highly sulfated glycosaminoglycan primarily produced by mast cells. Currently, the interaction between EcN surface protein and heparin has remained elusive. In this study, the flagellin FliC responsible for EcN's movement was separated and characterized as a heparin binding protein by mass spectrometry (MS) analysis. The recombinant FliC protein, expressed by plasmid pET28a( +)-fliC, was further prepared to confirm the interaction between FliC and heparin. The results showed that heparin-Sepharose's ability to bind FliC was 48-fold higher than its ability to bind the negative control, bovine serum albumin (BSA). Neither the knockout of gene fliC nor the addition of heparin affects the growth of EcN, but both significantly inhibit the swimming of EcN. Adding 10 mg/ml heparin reduced the swimming diameter of the wild type and the complemented strain to 29-41% of the original, but that did not affect the swimming ability of the knockout strains. These results demonstrate that heparin interacts with EcN flagellin FliC and inhibits bacteria swimming. Exploring this interaction could improve our understanding of the relationship between hosts and microorganisms and provide a potential basis for disease treatment.
Collapse
Affiliation(s)
- Guixia Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lingkang Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Xianxuan Zhou
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
| |
Collapse
|
21
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
22
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Sanchez H, O’Toole GA, Berwin B. Assessment of the Glycan-Binding Profile of Pseudomonas aeruginosa PAO1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537720. [PMID: 37131708 PMCID: PMC10153242 DOI: 10.1101/2023.04.20.537720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can establish acute and chronic infections in individuals that lack fully functional innate immunity. In particular, phagocytosis by neutrophils and macrophages is a key mechanism that modulates host control and clearance of P. aeruginosa . Individuals with neutropenia or cystic fibrosis are highly susceptible to P. aeruginosa infection thus underscoring the importance of the host innate immune response. Cell-to-cell contact between host innate immune cells and the pathogen, a first step in phagocytic uptake, is facilitated by simple and complex glycan structures present at the host cell surface. We have previously shown that endogenous polyanionic N-linked glycans localized to the cell surface of phagocytes mediate binding and subsequent phagocytosis of P. aeruginosa . However, the suite of glycans that P. aeruginosa binds to on host phagocytic cells remains poorly characterized. Here we demonstrate, with the use of exogenous N-linked glycans and a glycan array, that P. aeruginosa PAO1 preferentially attaches to a subset of glycans, including a bias towards monosaccharide versus more complex glycan structures. Consistent with these findings, we were able to competitively inhibit bacterial adherence and uptake by the addition of exogenous N-linked mono- and di-saccharide glycans. We discuss of findings in the context of previous reports of P. aeruginosa glycan binding. IMPORTANCE P. aeruginosa binds to a variety of glycans as part of its interaction with host cells, and a number of P. aeruginosa- encoded receptors and target ligands have been described that allow this microbe to bind to such glycans. Here we extend this work by studying the glycans used by P. aeruginosa PAO1 to bind to phagocytic cells and by using a glycan array to characterize the suite of such molecules that could facilitate host cell-binding by this microbe. This study provides an increased understanding of the glycans bound by P. aeruginosa , and furthermore, provides a useful dataset for future studies of P. aeruginosa- glycan interactions.
Collapse
Affiliation(s)
- Hector Sanchez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756
| | | |
Collapse
|
24
|
Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN. Anti- Pseudomonas aeruginosa Vaccines and Therapies: An Assessment of Clinical Trials. Microorganisms 2023; 11:916. [PMID: 37110338 PMCID: PMC10144840 DOI: 10.3390/microorganisms11040916] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes high morbidity and mortality in cystic fibrosis (CF) and immunocompromised patients, including patients with ventilator-associated pneumonia (VAP), severely burned patients, and patients with surgical wounds. Due to the intrinsic and extrinsic antibiotic resistance mechanisms, the ability to produce several cell-associated and extracellular virulence factors, and the capacity to adapt to several environmental conditions, eradicating P. aeruginosa within infected patients is difficult. Pseudomonas aeruginosa is one of the six multi-drug-resistant pathogens (ESKAPE) considered by the World Health Organization (WHO) as an entire group for which the development of novel antibiotics is urgently needed. In the United States (US) and within the last several years, P. aeruginosa caused 27% of deaths and approximately USD 767 million annually in health-care costs. Several P. aeruginosa therapies, including new antimicrobial agents, derivatives of existing antibiotics, novel antimicrobial agents such as bacteriophages and their chelators, potential vaccines targeting specific virulence factors, and immunotherapies have been developed. Within the last 2-3 decades, the efficacy of these different treatments was tested in clinical and preclinical trials. Despite these trials, no P. aeruginosa treatment is currently approved or available. In this review, we examined several of these clinicals, specifically those designed to combat P. aeruginosa infections in CF patients, patients with P. aeruginosa VAP, and P. aeruginosa-infected burn patients.
Collapse
Affiliation(s)
- Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jane A. Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Michael J. San Francisco
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Honors College, Texas Tech University, Lubbock, TX 79409, USA
| | - Abdul N. Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
25
|
O’Malley MR, Kpenu E, Peck SC, Anderson JC. Plant-exuded chemical signals induce surface attachment of the bacterial pathogen Pseudomonas syringae. PeerJ 2023; 11:e14862. [PMID: 37009160 PMCID: PMC10062345 DOI: 10.7717/peerj.14862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
Many plant pathogenic bacteria suppress host defenses by secreting small molecule toxins or immune-suppressing proteins into host cells, processes that likely require close physical contact between pathogen and host. Yet, in most cases, little is known about whether phytopathogenic bacteria physically attach to host surfaces during infection. Here we report that Pseudomonas syringae pv. tomato strain DC3000, a Gram-negative bacterial pathogen of tomato and Arabidopsis, attaches to polystyrene and glass surfaces in response to chemical signals exuded from Arabidopsis seedlings and tomato leaves. We characterized the molecular nature of these attachment-inducing signals and discovered that multiple hydrophilic metabolites found in plant exudates, including citric acid, glutamic acid, and aspartic acid, are potent inducers of surface attachment. These same compounds were previously identified as inducers of P. syringae genes encoding a type III secretion system (T3SS), indicating that both attachment and T3SS deployment are induced by the same plant signals. To test if surface attachment and T3SS are regulated by the same signaling pathways, we assessed the attachment phenotypes of several previously characterized DC3000 mutants, and found that the T3SS master regulator HrpL was partially required for maximal levels of surface attachment, whereas the response regulator GacA, a negative regulator of T3SS, negatively regulated DC3000 surface attachment. Together, our data indicate that T3SS deployment and surface attachment by P. syringae may be co-regulated by the same host signals during infection, possibly to ensure close contact necessary to facilitate delivery of T3SS effectors into host cells.
Collapse
Affiliation(s)
- Megan R. O’Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Eyram Kpenu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Scott C. Peck
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
26
|
Pseudomonas aeruginosa Promotes Persistence of Stenotrophomonas maltophilia via Increased Adherence to Depolarized Respiratory Epithelium. Microbiol Spectr 2023; 11:e0384622. [PMID: 36472421 PMCID: PMC9927254 DOI: 10.1128/spectrum.03846-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stenotrophomonas maltophilia is an emerging opportunistic respiratory pathogen in people with cystic fibrosis (CF). S. maltophilia is frequently observed in polymicrobial infections, and we have previously shown that Pseudomonas aeruginosa promotes colonization and persistence of S. maltophilia in mouse respiratory infections. In this study, we used host and bacterial RNA sequencing to further understand the molecular underpinnings of this interaction. To evaluate S. maltophilia transcript profiles, we used a recently described method for selective capture of bacterial mRNA transcripts with strain-specific RNA probes. We found that factors associated with the type IV pilus, including the histidine kinase subunit of a chemotactic two-component signaling system (chpA), had increased transcript levels during dual-species infection. Using immortalized CF respiratory epithelial cells, we found that infection with P. aeruginosa increases adherence of S. maltophilia, at least in part due to disruption of epithelial tight junctions. In contrast, an isogenic S. maltophilia chpA mutant strain lacked cooperative adherence to CF epithelia and decreased bacterial burden in vivo in dual-species infections with P. aeruginosa. Similarly, P. aeruginosa lacking elastase (lasB) failed to promote S. maltophilia adherence or bacterial colonization and persistence in vivo. Based on these results, we propose that disruption of lung tissue integrity by P. aeruginosa facilitates adherence of S. maltophilia to the lung epithelia, likely in a type IV pilus-dependent manner. These data lend insight into S. maltophilia colonization and persistence in people in later stages of CF disease and may have implications for interactions with other bacterial opportunists. IMPORTANCE Despite advances in treatment options for people with CF, complications of bacterial infections remain the greatest driver of morbidity and mortality in this patient population. These infections often involve more than one bacterial pathogen, and our understanding of how interspecies interactions impact disease progression is lacking. Previous work in our lab found that two CF pathogens, Stenotrophomonas maltophilia and Pseudomonas aeruginosa, can work together in the lung to cause more severe infection. In the present study, we found that infection with P. aeruginosa promotes persistence of S. maltophilia by interfering with epithelial barrier integrity. Depolarization of the epithelial cell layer by P. aeruginosa-secreted elastase increased S. maltophilia adherence, likely in a type IV pilus-dependent manner. Ultimately, this work sheds light on the molecular mechanisms governing an important multispecies interaction seen in pulmonary diseases such as CF.
Collapse
|
27
|
Hogwood J, Gray E, Mulloy B. Heparin, Heparan Sulphate and Sepsis: Potential New Options for Treatment. Pharmaceuticals (Basel) 2023; 16:271. [PMID: 37259415 PMCID: PMC9959362 DOI: 10.3390/ph16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 08/31/2023] Open
Abstract
Sepsis is a life-threatening hyperreaction to infection in which excessive inflammatory and immune responses cause damage to host tissues and organs. The glycosaminoglycan heparan sulphate (HS) is a major component of the cell surface glycocalyx. Cell surface HS modulates several of the mechanisms involved in sepsis such as pathogen interactions with the host cell and neutrophil recruitment and is a target for the pro-inflammatory enzyme heparanase. Heparin, a close structural relative of HS, is used in medicine as a powerful anticoagulant and antithrombotic. Many studies have shown that heparin can influence the course of sepsis-related processes as a result of its structural similarity to HS, including its strong negative charge. The anticoagulant activity of heparin, however, limits its potential in treatment of inflammatory conditions by introducing the risk of bleeding and other adverse side-effects. As the anticoagulant potency of heparin is largely determined by a single well-defined structural feature, it has been possible to develop heparin derivatives and mimetic compounds with reduced anticoagulant activity. Such heparin mimetics may have potential for use as therapeutic agents in the context of sepsis.
Collapse
Affiliation(s)
- John Hogwood
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms EN6 3QG, UK
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| |
Collapse
|
28
|
Baroli CM, Gorgojo JP, Blancá BM, Debandi M, Rodriguez ME. Bordetella pertussis targets the basolateral membrane of polarized respiratory epithelial cells, gets internalized, and survives in intracellular locations. Pathog Dis 2023; 81:ftad035. [PMID: 38040630 DOI: 10.1093/femspd/ftad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023] Open
Abstract
The airway epithelial barrier is a continuous highly organized cell layer that separates the exterior from the underlying mucosal tissue, preventing pathogen invasion. Several respiratory pathogens have evolved mechanisms to compromise this barrier, invade and even reside alive within the epithelium. Bordetella pertussis is a persistent pathogen that infects the human airway epithelium, causing whooping cough. Previous studies have shown that B. pertussis survives inside phagocytic and nonphagocytic cells, suggesting that there might be an intracellular stage involved in the bacterial infectious process and/or in the pathogen persistence inside the host. In this study we found evidence that B. pertussis is able to survive inside respiratory epithelial cells. According to our results, this pathogen preferentially attaches near or on top of the tight junctions in polarized human bronchial epithelial cells and disrupts these structures in an adenylate cyclase-dependent manner, exposing their basolateral membrane. We further found that the bacterial internalization is significantly higher in cells exposing this membrane compared with cells only exposing the apical membrane. Once internalized, B. pertussis mainly remains in nondegradative phagosomes with access to nutrients. Taken together, these results point at the respiratory epithelial cells as a potential niche of persistence.
Collapse
Affiliation(s)
- Carlos Manuel Baroli
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Bruno Martín Blancá
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Argentina
| |
Collapse
|
29
|
Hiramatsu Y, Nishida T, Nugraha DK, Osada-Oka M, Nakane D, Imada K, Horiguchi Y. Interference of flagellar rotation up-regulates the expression of small RNA contributing to Bordetella pertussis infection. SCIENCE ADVANCES 2022; 8:eade8971. [PMID: 36542710 PMCID: PMC9770993 DOI: 10.1126/sciadv.ade8971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Bacterial small RNAs (sRNAs) posttranscriptionally regulate gene expressions involved in various biological processes, including pathogenicity. Our previous study identified sRNAs, the expression of which was up-regulated in Bordetella pertussis, the causative agent of whooping cough, upon tracheal colonization of the bacteria; however, their roles in bacterial infection remain unknown. Here, we found that one sRNA, Bpr4, contributes to B. pertussis infection by posttranscriptionally up-regulating filamentous hemagglutinin (FHA), a major adhesin of the bacteria. Bpr4 bound to the 5' untranslated region of fhaB mRNA encoding FHA and inhibited its degradation mediated by RNaseE. Our results demonstrated that Bpr4 up-regulation was triggered by the interference of flagellar rotation, which caused the disengagement of MotA, a flagellar stator. Subsequently, MotA activated a diguanylate cyclase to generate cyclic di-GMP, which plays a role in Bpr4 up-regulation through the RisK/RisA two-component system. Our findings indicate that a flagellum-triggered sensory system contributes to B. pertussis infection.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Govindarajan DK, Kandaswamy K. Virulence factors of uropathogens and their role in host pathogen interactions. Cell Surf 2022; 8:100075. [PMID: 35198842 PMCID: PMC8841375 DOI: 10.1016/j.tcsw.2022.100075] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/26/2022] Open
Abstract
Gram-positive and Gram-negative bacterial pathogens are commonly found in Urinary Tract Infection (UTI), particularly infected in females like pregnant women, elder people, sexually active, or individuals prone to other risk factors for UTI. In this article, we review the expression of virulence surface proteins and their interaction with host cells for the most frequently isolated uropathogens: Escherichia coli, Enterococcus faecalis, Proteus mirabilis, Klebsiella pneumoniae, and Staphylococcus saprophyticus. In addition to the host cell interaction, surface protein regulation was also discussed in this article. The surface protein regulation serves as a key tool in differentiating the pathogen isotypes. Furthermore, it might provide insights on novel diagnostic methods to detect uropathogen that are otherwise easily overlooked due to limited culture-based assays. In essence, this review shall provide an in-depth understanding on secretion of virulence factors of various uropathogens and their role in host-pathogen interaction, this knowledge might be useful in the development of therapeutics against uropathogens.
Collapse
Affiliation(s)
| | - Kumaravel Kandaswamy
- Corresponding author at: Department of Biotechnology, Kumaraguru College of Technology (KCT), Chinnavedampatti, Coimbatore 641049, Tamil Nadu, India.
| |
Collapse
|
31
|
Phage Resistance Evolution Induces the Sensitivity of Specific Antibiotics in Pseudomonas aeruginosa PAO1. Microbiol Spectr 2022; 10:e0135622. [PMID: 35972274 PMCID: PMC9603957 DOI: 10.1128/spectrum.01356-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacteria frequently encounter selection by both phages and antibiotics. However, our knowledge on the evolutionary interactions between phages and antibiotics are still limited. Here, we characterized a phage-resistant Pseudomonas aeruginosa variant PAO1-R1 that shows increased sensitivity to gentamicin and polymyxin B. Using whole genome sequencing, significant genome differences were observed between the reference P. aeruginosa PAO1 and PAO1-R1. Compared to PAO1, 64 gene-encoding proteins with nonsynonymous single nucleotide polymorphisms (SNPs) and 31 genes with insertion/deletion (indel) mutations were found in PAO1-R1. We observed a significant reduction in phage adsorption rate for both phage vB_Pae_QDWS and vB_Pae_W3 against PAO1-R1 and proposed that disruption of phage adsorption is likely the main cause for evolving resistance. Because the majority of spontaneous mutations are closely related to membrane components, alterations in the cell envelope may explain the antibiotic-sensitive phenotype of PAO1-R1. Collectively, we demonstrate that the evolution of phage resistance comes with fitness defects resulting in antibiotic sensitization. Our finding provides new insights into the evolutionary interactions between resistance to the phage and sensitivity to antibiotics, which may have implications for the future clinical use of steering in phage therapies. IMPORTANCE Bacteria frequently encounter the selection pressure from both antibiotics and lytic phages. Little is known about the evolutionary interactions between antibiotics and phages. Our study provides new insights into the trade-off mechanism between resistance to the phage and sensitivity to antibiotics. This evolutionary trade-off is not dependent on the outer membrane proteins (OMPs) of the multidrug efflux pumps. The disruption of phage adsorption that induced phage resistance and the changes in structure or composition of membranes are presumably one of the major causes for antibiotic sensitivity. Our finding may fill some gaps in the field of phage-host interplay and have implications for the future clinical use of steering in phage therapies.
Collapse
|
32
|
Naka S, Matsuoka D, Goto K, Misaki T, Nagasawa Y, Ito S, Nomura R, Nakano K, Matsumoto-Nakano M. Cnm of Streptococcus mutans is important for cell surface structure and membrane permeability. Front Cell Infect Microbiol 2022; 12:994014. [PMID: 36176579 PMCID: PMC9513430 DOI: 10.3389/fcimb.2022.994014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is a major pathogen of dental caries. The protein Cnm of S. mutans is involved in collagen binding, but its other biological functions are unknown. In this study, a Cnm-deficient isogenic mutant and a complementation strain were generated from a Cnm-positive S. mutans strain to help determine the properties of Cnm. Initially, comparison of the cell surface structure was performed by electron microscopy, which demonstrated that Cnm appears to be localized on the cell surface and associated with a protruding cell surface structure. Deep RNA sequencing of the strains revealed that the defect in Cnm caused upregulated expression of many genes related to ABC transporters and cell-surface proteins, while a few genes were downregulated. The amount of biofilm formed by the Cnm-defective strain increased compared with the parental and complemented strains, but the biofilm structure was thinner because of elevated expression of genes encoding glucan synthesis enzymes, leading to increased production of extracellular polysaccharides. Particular antibiotics, including bacitracin and chloramphenicol, had a lower minimum inhibitory concentration for the Cnm-defective strain than particular antibiotics, including bacitracin and chloramphenicol, compared with the parental and complemented strains. Our results suggest that S. mutans Cnm is located on the cell surface, gives rise to the observed protruding cell surface, and is associated with several biological properties related to membrane permeability.
Collapse
Affiliation(s)
- Shuhei Naka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daiki Matsuoka
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kana Goto
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Taro Misaki
- Division of Nephrology, Seirei Hamamatsu General Hospital, Hamamatsu, Japan
- Department of Nursing, Faculty of Nursing, Seirei Christopher University, Hamamatsu, Japan
| | - Yasuyuki Nagasawa
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Seigo Ito
- Department of Internal Medicine, Japan Self-Defense Iruma Hospital, Iruma, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Division of Oral infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Division of Oral infection and Disease Control, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Michiyo Matsumoto-Nakano,
| |
Collapse
|
33
|
A Model of Intracellular Persistence of Pseudomonas aeruginosa in Airway Epithelial Cells. Cell Microbiol 2022. [DOI: 10.1155/2022/5431666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa (P.a.) is a major human pathogen capable of causing chronic infections in hosts with weakened barrier functions and host defenses, most notably airway infections commonly observed in individuals with the genetic disorder cystic fibrosis (CF). While mainly described as an extracellular pathogen, previous in vitro studies have described the molecular events leading to P.a. internalization in diverse epithelial cell types. However, the long-term fate of intracellular P.a. remains largely unknown. Here, we developed a model allowing for a better understanding of long-term (up to 120 h) intracellular bacterial survival in the airway epithelial cell line BEAS-2B. Using a tobramycin protection assay, we characterized the internalization, long-term intracellular survival, and cytotoxicity of the lab strain PAO1, as well as clinical CF isolates, and conducted analyses at the single-cell level using confocal microscopy and flow cytometry techniques. We observed that infection at low multiplicity of infection allows for intracellular survival up to 120 h post-infection without causing significant host cytotoxicity. Finally, infection with clinical isolates revealed significant strain-to-strain heterogeneity in intracellular survival, including a high persistence phenotype associated with bacterial replication within host cells. Future studies using this model will further elucidate the host and bacterial mechanisms that promote P. aeruginosa intracellular persistence in airway epithelial cells, a potentially unrecognized bacterial reservoir during chronic infections.
Collapse
|
34
|
Weidmann MD, Berry GJ, Green DA, Wu F. Prevalence and clinical disease severity of respiratory co-infections during the COVID-19 pandemic. ADVANCES IN MOLECULAR PATHOLOGY 2022. [PMCID: PMC9364747 DOI: 10.1016/j.yamp.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Scheffler RJ, Bratton BP, Gitai Z. Pseudomonas aeruginosa clinical blood isolates display significant phenotypic variability. PLoS One 2022; 17:e0270576. [PMID: 35793311 PMCID: PMC9258867 DOI: 10.1371/journal.pone.0270576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a significant threat in healthcare settings where it deploys a wide host of virulence factors to cause disease. Many virulence-related phenotypes such as pyocyanin production, biofilm formation, and twitching motility have been implicated in causing disease in a number of hosts. In this study, we investigate these three virulence factors in a collection of 22 clinical strains isolated from blood stream infections. Despite the fact that all 22 strains caused disease and came from the same body site of different patients, they show significant variability in assays for each of the three specific phenotypes examined. There was no significant correlation between the strength of the three phenotypes across our collection, suggesting that they can be independently modulated. Furthermore, strains deficient in each of the virulence-associated phenotypes examined could be identified. To understand the genetic basis of this variability we sequenced the genomes of the 22 strains. We found that the majority of genes responsible for pyocyanin production, biofilm formation, and twitching motility were highly conserved among the strains despite their phenotypic variability, suggesting that the phenotypic variability is likely due to regulatory changes. Our findings thus demonstrate that no one lab-assayed phenotype of pyocyanin production, biofilm production, and twitching motility is necessary for a P. aeruginosa strain to cause blood stream infection and that additional factors may be needed to fully predict what strains will lead to specific human diseases.
Collapse
Affiliation(s)
- Robert J. Scheffler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Benjamin P. Bratton
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, United States of America
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
36
|
Patil PD, Jin Y, Luk YY. Chemical control over Asialo-GM1: A dual ligand for pili and Lectin A that activates swarming motility and facilitates adherence of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2022; 215:112478. [PMID: 35390596 DOI: 10.1016/j.colsurfb.2022.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
Glycolipid, ganglio-N-tetraosylceramide (asialo-GM1), on the mammalian cells are known to be recognized by type IV pili of Pseudomonas aeruginosa. In this work, we show that asialo-GM1 can also be recognized by Lectin A (LecA), another adhesin protein of the P. aeruginosa, by a fluorescent polarization assay, a label-free bacterial motility enabled binding assay, and bacterial mutant studies. On hydrated semi-solid gel surfaces, asialo-GM1 enables swarming and twitching motilities, while on solid surfaces facilitates the bacterial adherence of P. aeruginosa. These results indicate that asialo-GM1 can modulate bioactivities, adherence, and motilities, that are controlled by opposite signaling pathways. We demonstrate that when a solution of pilin monomers or LecA proteins are spread on hydrated gel surfaces, the asialo-GM1 mediated swarming motility is inhibited. Treatment of artificial liposomes containing asialo-GM1 as a component of lipid bilayer with pilin monomers or LecA proteins caused transient leakage of encapsulated dye from liposomes. These results suggest that pili and LecA proteins not only bind to asialo-GM1 but can also cause asialo-GM1 mediated leakage. We also show that both pili and LecA mutants of P. aeruginosa adhere to asialo-GM1 coated solid surfaces, and that a class of synthetic ligands for pili and LecA inhibits both pili and LecA-mediated adherence of P. aeruginosa on asialo-GM1-coated surfaces.
Collapse
Affiliation(s)
- Pankaj D Patil
- Department of Chemistry, Syracuse University 1-014 Center of Science and Technology, Syracuse, NY 13244, USA
| | - Yuchen Jin
- Department of Chemistry, Syracuse University 1-014 Center of Science and Technology, Syracuse, NY 13244, USA
| | - Yan-Yeung Luk
- Department of Chemistry, Syracuse University 1-014 Center of Science and Technology, Syracuse, NY 13244, USA.
| |
Collapse
|
37
|
The Lectin LecB Induces Patches with Basolateral Characteristics at the Apical Membrane to Promote Pseudomonas aeruginosa Host Cell Invasion. mBio 2022; 13:e0081922. [PMID: 35491830 PMCID: PMC9239240 DOI: 10.1128/mbio.00819-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic bacterium Pseudomonas aeruginosa can infect mucosal tissues of the human body. To persist at the mucosal barrier, this highly adaptable pathogen has evolved many strategies, including invasion of host cells. Here, we show that the P. aeruginosa lectin LecB binds and cross-links fucosylated receptors at the apical plasma membrane of epithelial cells. This triggers a signaling cascade via Src kinases and phosphoinositide 3-kinase (PI3K), leading to the formation of patches enriched with the basolateral marker phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the apical plasma membrane. This identifies LecB as a causative bacterial factor for activating this well-known host cell response that is elicited upon apical binding of P. aeruginosa. Downstream from PI3K, Rac1 is activated to cause actin rearrangement and the outgrowth of protrusions at the apical plasma membrane. LecB-triggered PI3K activation also results in aberrant recruitment of caveolin-1 to the apical domain. In addition, we reveal a positive feedback loop between PI3K activation and apical caveolin-1 recruitment, which provides a mechanistic explanation for the previously observed implication of caveolin-1 in P. aeruginosa host cell invasion. Interestingly, LecB treatment also reversibly removes primary cilia. To directly prove the role of LecB for bacterial uptake, we coated bacterium-sized beads with LecB, which drastically enhanced their endocytosis. Furthermore, LecB deletion and LecB inhibition with l-fucose diminished the invasion efficiency of P. aeruginosa bacteria. Taken together, the results of our study identify LecB as a missing link that can explain how PI3K signaling and caveolin-1 recruitment are triggered to facilitate invasion of epithelial cells from the apical side by P. aeruginosa.
Collapse
|
38
|
Esmaeilzadeh F, Mahmoodi S. A Novel Design of Multi-epitope Peptide Vaccine Against Pseudomonas
aeruginosa. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211013110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
As an opportunistic pathogen, Pseudomonas aeruginosa causes many different
hazardous infections. The high mortality rate resulting from infection with this antibiotic-resistant pathogen
has made it a major challenge in clinical treatment; it has been listed as the most harmful bacterium to
humans by the WHO. So far, no vaccine has been approved for P. aeruginosa.
Objective:
Infections performed by bacterial attachment and colonization with type IV pili (T4P), known
as the most essential adhesive vital for adhesion, while pilQ is necessary for the biogenesis of T4P, also
outer membrane proteins of a pathogen is also effective in stimulating the immune system; in this regard,
pilQ, OprF, and OprI, are excellent candidate antigens for production of an effective vaccine against P.
aeruginosa.
Methods:
In this research, various bioinformatics methods were employed in order to design a new multiepitope
peptide vaccine versus P. aeruginosa. Since T CD4+ cell immunity is important in eradicating P.
aeruginosa, OprF, OprI, and pilQ antigens were analyzed to determine Helper T cell Lymphocyte (HTL)
epitopes by many different immunoinformatics servers. One of the receptor agonists 2 (TLR2), a segment
of the Por B protein from Neisseria meningitides was used as an adjuvant in order to stimulate an effective
cellular immune response, and suitable linkers were used to connect all the above mentioned parts. In
the vaccine construct, linear B cell epitopes were also identified.
Results:
Conforming the bioinformatics forecasts, the designed vaccine possesses high antigenicity and is
not allergen.
Conclusion:
In this regard, the designed vaccine candidate is strongly believed to possess the potential of
inducing cellular and humoral immunity against P. aeruginosa.
Collapse
Affiliation(s)
| | - Shirin Mahmoodi
- Department of Medical Biotechnology,
School of Medicine, Fasa University of Medical Sciences, Fasa, Fars, Iran
| |
Collapse
|
39
|
Molecular Mechanisms Involved in Pseudomonas aeruginosa Bacteremia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:325-345. [DOI: 10.1007/978-3-031-08491-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
40
|
Matilla MA, Velando F, Monteagudo-Cascales E, Krell T. Flagella, Chemotaxis and Surface Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:185-221. [DOI: 10.1007/978-3-031-08491-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Liu D, Zeng YY, Shi MM, Qu JM. Glucocorticoids Elevate Pseudomonas aeruginosa Binding to Airway Epithelium by Upregulating Syndecan-1 Expression. Front Microbiol 2021; 12:725483. [PMID: 34790176 PMCID: PMC8591732 DOI: 10.3389/fmicb.2021.725483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids are commonly used for the treatment of asthma and chronic obstructive pulmonary disease (COPD). Inhaled corticosteroids are associated with a significantly increased risk of pneumonia. Syndecan-1 (SDC1) located in the cell membrane of airway epithelial cell is the crucial molecule mediating infections by P. aeruginosa (PA). In the present study, we found that SDC1 expression was upregulated and the adhesion of PA to human bronchial epithelial (HBE) cells increased to 125 and 138%, respectively, after stimulation by dexamethasone or budesonide. The HBE cells knocking down SDC1 showed lower affinity to PA compared with control. CCAAT-enhancer-binding protein β (C/EBP β) and its phosphorylated form participated in the regulation of glucocorticoid to SDC1 for interfering C/EBP β or inhibiting phosphorylation of C/EBP β by LiCl and BIO, which are inhibitors of glycogen synthase kinase 3β (GSK-3β), and could prevent glucocorticoids from upregulating SDC1 expression. One should be cautious in administering glucocorticoids in chronic lung disease because of their property of increasing the expression of SDC1 and PA binding to the airway epithelium.
Collapse
Affiliation(s)
- Dong Liu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Respiratory and Critical Care Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying-Ying Zeng
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng-Meng Shi
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Ming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Ellison CK, Whitfield GB, Brun YV. Type IV Pili: Dynamic Bacterial Nanomachines. FEMS Microbiol Rev 2021; 46:6425739. [PMID: 34788436 DOI: 10.1093/femsre/fuab053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteria and archaea rely on appendages called type IV pili (T4P) to participate in diverse behaviors including surface sensing, biofilm formation, virulence, protein secretion, and motility across surfaces. T4P are broadly distributed fibers that dynamically extend and retract, and this dynamic activity is essential for their function in broad processes. Despite the essentiality of dynamics in T4P function, little is known about the role of these dynamics and molecular mechanisms controlling them. Recent advances in microscopy have yielded insight into the role of T4P dynamics in their diverse functions and recent structural work has expanded what is known about the inner workings of the T4P motor. This review discusses recent progress in understanding the function, regulation, and mechanisms of T4P dynamics.
Collapse
Affiliation(s)
- Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Gregory B Whitfield
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Yves V Brun
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
43
|
The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs 2021; 81:2117-2131. [PMID: 34743315 PMCID: PMC8572145 DOI: 10.1007/s40265-021-01635-6] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterial pathogen that is a common cause of nosocomial infections, particularly pneumonia, infection in immunocompromised hosts, and in those with structural lung disease such as cystic fibrosis. Epidemiological studies have
identified increasing trends of antimicrobial resistance, including multi-drug resistant (MDR) isolates in recent years. P. aeruginosa has several virulence mechanisms that increase its ability to cause severe infections, such as secreted toxins, quorum sensing and biofilm formation. Management of P. aeruginosa infections focuses on prevention when possible, obtaining cultures, and prompt initiation of antimicrobial therapy, occasionally with combination therapy depending on the clinical scenario to ensure activity against P. aeruginosa. Newer anti-pseudomonal antibiotics are available and are increasingly being used in the management of MDR P. aeruginosa.
Collapse
|
44
|
Wagener BM, Hu R, Wu S, Pittet JF, Ding Q, Che P. The Role of Pseudomonas aeruginosa Virulence Factors in Cytoskeletal Dysregulation and Lung Barrier Dysfunction. Toxins (Basel) 2021; 13:776. [PMID: 34822560 PMCID: PMC8625199 DOI: 10.3390/toxins13110776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas (P.) aeruginosa is an opportunistic pathogen that causes serious infections and hospital-acquired pneumonia in immunocompromised patients. P. aeruginosa accounts for up to 20% of all cases of hospital-acquired pneumonia, with an attributable mortality rate of ~30-40%. The poor clinical outcome of P. aeruginosa-induced pneumonia is ascribed to its ability to disrupt lung barrier integrity, leading to the development of lung edema and bacteremia. Airway epithelial and endothelial cells are important architecture blocks that protect the lung from invading pathogens. P. aeruginosa produces a number of virulence factors that can modulate barrier function, directly or indirectly, through exploiting cytoskeleton networks and intercellular junctional complexes in eukaryotic cells. This review summarizes the current knowledge on P. aeruginosa virulence factors, their effects on the regulation of the cytoskeletal network and associated components, and molecular mechanisms regulating barrier function in airway epithelial and endothelial cells. A better understanding of these processes will help to lay the foundation for new therapeutic approaches against P. aeruginosa-induced pneumonia.
Collapse
Affiliation(s)
- Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruihan Hu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Internal Medicine, Guiqian International General Hospital, Guiyang 550024, China
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pulin Che
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (B.M.W.); (R.H.); (S.W.); (J.-F.P.); (Q.D.)
- Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Hyun SW, Imamura A, Ishida H, Piepenbrink KH, Goldblum SE, Lillehoj EP. The sialidase NEU1 directly interacts with the juxtamembranous segment of the cytoplasmic domain of mucin-1 to inhibit downstream PI3K-Akt signaling. J Biol Chem 2021; 297:101337. [PMID: 34688655 PMCID: PMC8591358 DOI: 10.1016/j.jbc.2021.101337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/04/2022] Open
Abstract
The extracellular domain (ED) of the membrane-spanning sialoglycoprotein, mucin-1 (MUC1), is an in vivo substrate for the lysosomal sialidase, neuraminidase-1 (NEU1). Engagement of the MUC1-ED by its cognate ligand, Pseudomonas aeruginosa-expressed flagellin, increases NEU1-MUC1 association and NEU1-mediated MUC1-ED desialylation to unmask cryptic binding sites for its ligand. However, the mechanism(s) through which intracellular NEU1 might physically interact with its surface-expressed MUC1-ED substrate are unclear. Using reciprocal coimmunoprecipitation and in vitro binding assays in a human airway epithelial cell system, we show here that NEU1 associates with the MUC1-cytoplasmic domain (CD) but not with the MUC1-ED. Prior pharmacologic inhibition of the NEU1 catalytic activity using the NEU1-selective sialidase inhibitor, C9-butyl amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid, did not diminish NEU1-MUC1-CD association. In addition, glutathione-S-transferase (GST) pull-down assays using the deletion mutants of the MUC1-CD mapped the NEU1-binding site to the membrane-proximal 36 aa of the MUC1-CD. In a cell-free system, we found that the purified NEU1 interacted with the immobilized GST-MUC1-CD and the purified MUC1-CD associated with the immobilized 6XHis-NEU1, indicating that the NEU1-MUC1-CD interaction was direct and independent of its chaperone protein, protective protein/cathepsin A. However, the NEU1-MUC1-CD interaction was not required for the NEU1-mediated MUC1-ED desialylation. Finally, we demonstrated that overexpression of either WT NEU1 or a catalytically dead NEU1 G68V mutant diminished the association of the established MUC1-CD binding partner, PI3K, to MUC1-CD and reduced downstream Akt kinase phosphorylation. These results indicate that NEU1 associates with the juxtamembranous region of the MUC1-CD to inhibit PI3K-Akt signaling independent of NEU1 catalytic activity.
Collapse
Affiliation(s)
- Sang W Hyun
- US Department of Veterans Affairs, Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Akihiro Imamura
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bio-organic Chemistry, Gifu University, Gifu, Japan
| | - Kurt H Piepenbrink
- Food Science and Technology Department, University of Nebraska, Lincoln, Nebraska, USA
| | - Simeon E Goldblum
- US Department of Veterans Affairs, Veterans Affairs Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
46
|
Banerjee P, Sahoo PK, Sheenu, Adhikary A, Ruhal R, Jain D. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Aspects Med 2021; 81:101001. [PMID: 34311995 DOI: 10.1016/j.mam.2021.101001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and is the primary cause of nosocomial infections. Biofilm formation by this organism results in chronic and hard to eradicate infections. The intracellular signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a secondary messenger in bacterial cells crucial for motile to sessile transition. The signalling pathway components encompass two classes of enzymes with antagonistic activities, the diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) that regulate the cellular levels of c-di-GMP at distinct stages of biofilm initiation, maturation and dispersion. This review summarizes the structural analysis and functional studies of the DGCs and PDEs involved in biofilm regulation in P. aeruginosa. In addition, we also describe the effector proteins that sense the perturbations in c-di-GMP levels to elicit a functional output. Finally, we discuss possible mechanisms that allow the dynamic levels of c-di-GMP to regulate cognate cellular response. Uncovering the details of the regulation of the c-di-GMP signalling pathway is vital for understanding the behaviour of the pathogen and characterization of novel targets for anti-biofilm interventions.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Pankaj Kumar Sahoo
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Sheenu
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Anirban Adhikary
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Rohit Ruhal
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
47
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
48
|
Burzyńska P, Sobala ŁF, Mikołajczyk K, Jodłowska M, Jaśkiewicz E. Sialic Acids as Receptors for Pathogens. Biomolecules 2021; 11:831. [PMID: 34199560 PMCID: PMC8227644 DOI: 10.3390/biom11060831] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Jaśkiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (P.B.); (Ł.F.S.); (K.M.); (M.J.)
| |
Collapse
|
49
|
Penaranda C, Chumbler NM, Hung DT. Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog 2021; 17:e1009534. [PMID: 33901267 PMCID: PMC8102004 DOI: 10.1371/journal.ppat.1009534] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/06/2021] [Accepted: 04/06/2021] [Indexed: 11/21/2022] Open
Abstract
Long-term survival of bacterial pathogens during persistent bacterial infections can be associated with antibiotic treatment failure and poses a serious public health problem. Infections caused by the Gram-negative pathogen Pseudomonas aeruginosa, which can cause both acute and chronic infections, are particularly challenging due to its high intrinsic resistance to antibiotics. The ineffectiveness of antibiotics is exacerbated when bacteria reside intracellularly within host cells where they can adopt a drug tolerant state. While the early steps of adherence and entry of P. aeruginosa into mammalian cells have been described, the subsequent fate of internalized bacteria, as well as host and bacterial molecular pathways facilitating bacterial long-term survival, are not well defined. In particular, long-term survival within bladder epithelial cells has not been demonstrated and this may have important implications for the understanding and treatment of UTIs caused by P. aeruginosa. Here, we demonstrate and characterize the intracellular survival of wild type (WT) P. aeruginosa inside bladder epithelial cells and a mutant with a disruption in the bacterial two-component regulator AlgR that is unable to survive intracellularly. Using simultaneous dual RNA-seq transcriptional profiling, we define the transcriptional response of intracellular bacteria and their corresponding invaded host cells. The bacterial transcriptional response demonstrates that WT bacteria rapidly adapt to the stress encountered in the intracellular environment in contrast to ΔalgR bacteria. Analysis of the host transcriptional response to invasion suggests that the NF-κB signaling pathway, previously shown to be required for extracellular bacterial clearance, is paradoxically also required for intracellular bacterial survival. Lastly, we demonstrate that intracellular survival is important for pathogenesis of P. aeruginosa in vivo using a model of murine urinary tract infection. We propose that the unappreciated ability of P. aeruginosa to survive intracellularly may play an important role in contributing to the chronicity and recurrence of P. aeruginosa in urinary tract infections. Chronic persistent bacterial infections are a serious and growing public health problem worsened by the rise in antibiotic resistance, yet new approaches for treating these infections are lacking. These long-term infections can occur when bacteria invade and survive inside host cells where they can hide from the immune system and become less susceptible to killing by antibiotics. Pseudomonas aeruginosa, a bacterium conventionally considered an extracellular pathogen, can cause chronic infections of many organ systems, including the urinary tract. Here, we show that P. aeruginosa can in fact survive inside bladder epithelial cells and becomes tolerant to antibiotic treatment. Using gene expression analysis, we show that bacteria quickly adapt to the intracellular environment while the corresponding host cells upregulate the NF-κB signaling pathway. We demonstrate that this response, which had previously been shown to be required for clearance of extracellular bacteria, is paradoxically also required for survival of intracellular bacteria. We propose that the ability of P. aeruginosa to survive intracellularly plays an important role in contributing to the chronicity and recurrence of P. aeruginosa infections and that targeting host pathways, such as NF-κB signaling, could transform our ability to manage chronic and/or recurrent infections.
Collapse
Affiliation(s)
- Cristina Penaranda
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicole M. Chumbler
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deborah T. Hung
- Infectious Disease and Microbiome Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|