1
|
Bruštíková K, Ryabchenko B, Žáčková S, Šroller V, Forstová J, Horníková L. Mouse polyomavirus infection induces lamin reorganisation. FEBS J 2024; 291:5133-5155. [PMID: 39288210 PMCID: PMC11616003 DOI: 10.1111/febs.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
The nuclear lamina is a dense network of intermediate filaments beneath the inner nuclear membrane. Composed of A-type lamins (lamin A/C) and B-type lamins (lamins B1 and B2), the nuclear lamina provides a scaffold for the nuclear envelope and chromatin, thereby maintaining the structural integrity of the nucleus. A-type lamins are also found inside the nucleus where they interact with chromatin and participate in gene regulation. Viruses replicating in the cell nucleus have to overcome the nuclear envelope during the initial phase of infection and during the nuclear egress of viral progeny. Here, we focused on the role of lamins in the replication cycle of a dsDNA virus, mouse polyomavirus. We detected accumulation of the major capsid protein VP1 at the nuclear periphery, defects in nuclear lamina staining and different lamin A/C phosphorylation patterns in the late phase of mouse polyomavirus infection, but the nuclear envelope remained intact. An absence of lamin A/C did not affect the formation of replication complexes but did slow virus propagation. Based on our findings, we propose that the nuclear lamina is a scaffold for replication complex formation and that lamin A/C has a crucial role in the early phases of infection with mouse polyomavirus.
Collapse
Affiliation(s)
- Kateřina Bruštíková
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Boris Ryabchenko
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Sandra Žáčková
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
- Present address:
Virology Department, Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
2
|
Erickson KD, Langsfeld ES, Holland A, Ebmeier CC, Garcea RL. Proteome profiling of polyomavirus nuclear replication centers using iPOND. J Virol 2024; 98:e0079024. [PMID: 39480110 PMCID: PMC11575236 DOI: 10.1128/jvi.00790-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
Polyomaviruses (PyVs) cause diverse diseases in a variety of mammalian hosts. During the life cycle, PyVs recruit nuclear host factors to viral genomes to facilitate replication and transcription. While host factors involved in DNA replication, DNA damage sensing and repair, and cell cycle regulation have been observed to bind PyV DNA, the complete set of viral and host proteins comprising the PyV replisome remains incompletely characterized. Here, the iPOND-MS technique (Isolation of Proteins on Nascent DNA coupled with Mass Spectrometry) was used to identify the proteome bound to murine PyV (MuPyV) DNA immediately following synthesis and 2 hours post-synthesis. Several novel MuPyV DNA interactors were identified on newly synthesized viral DNA (vDNA), including MCM complex members, DNA primase, DNA polymerase alpha, DNA ligase, and replication factor C. Though displaying partial overlap, the host and viral proteins bound to MuPyV DNA 2 hours post-synthesis lacked many of the replication proteins found on newly synthesized vDNA. These data help distinguish between the host factors critical for MuPyV DNA replication and those involved in downstream processing.IMPORTANCEPolyomaviruses are the causative agents of serious diseases in humans, including progressive multifocal leukoencephalopathy (PML), BK virus nephropathy, and Merkel cell carcinoma. The exact mechanisms by which the virus replicates, and which host cell proteins are required, are incompletely characterized. Identifying the host proteins necessary for efficient viral replication in the cell may reveal targets for downstream targets that may suppress viral replication in vivo.
Collapse
Affiliation(s)
- Kimberly D Erickson
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Erika S Langsfeld
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Alexandra Holland
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Robert L Garcea
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
López-Bueno A, Gil-Ranedo J, Almendral JM. Assembly of Structurally Simple Icosahedral Viruses. Subcell Biochem 2024; 105:403-430. [PMID: 39738953 DOI: 10.1007/978-3-031-65187-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Icosahedral viruses exhibit elegant pathways of capsid assembly and maturation regulated by symmetry principles. Assembly is a dynamic process driven by consecutive and genetically programmed morphogenetic interactions between protein subunits. The non-symmetric capsid subunits are gathered by non-covalent contacts and interactions in assembly intermediates, which serve as blocks to build a symmetric capsid. In some virus examples, the assembly of the protein shell further requires non-symmetric interactions among intermediates to fold into specific conformations. In this chapter, the morphogenesis of some small and structurally simple icosahedral viruses, including representative members of the parvoviruses, picornaviruses, and polyomaviruses as paradigms, is described in some detail. Despite their small size, the assembly of these icosahedral viruses may follow rather complex pathways, as they may occur in different subcellular compartments, involve a panoply of cellular and viral factors, and regulatory protein post-translational modifications that challenge its comprehensive understanding. Mechanisms of viral genome encapsidation may imply direct interactions between the genome and the assembly intermediates, or active packaging into a preformed empty capsid. Further, membranes and factors at specific subcellular compartments may also be critically required for virus maturation. The high stability of intermediates and the process of viral maturation contribute to the overall irreversible character of the assembly process. These and other small, structurally less complex icosahedral viruses were pioneer models to understand basic principles of virus assembly, continue to be leading subjects of morphogenetic analyses, and have inspired ongoing studies on the assembly of larger, structurally more complex viruses as well as cellular and synthetic macromolecular complexes.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jon Gil-Ranedo
- Faculty of Health: Medicine, Dentistry and Human Sciences, University of Plymouth, Plymouth, UK
| | - José M Almendral
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Rosemarie Q, Sugden B. Five families of diverse DNA viruses comprehensively restructure the nucleus. PLoS Biol 2023; 21:e3002347. [PMID: 37930945 PMCID: PMC10627436 DOI: 10.1371/journal.pbio.3002347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Many viruses have evolved ways to restructure their host cell's nucleus profoundly and unexpectedly upon infection. In particular, DNA viruses that need to commandeer their host's cellular synthetic functions to produce their progeny can induce the condensation and margination of host chromatin during productive infection, a phenomenon known as virus-induced reorganization of cellular chromatin (ROCC). These ROCC-inducing DNA viruses belong to 5 families (herpesviruses, baculoviruses, adenoviruses, parvoviruses, and geminiviruses) that infect a wide range of hosts and are important for human and ecosystem health, as well as for biotechnology. Although the study of virus-induced ROCC is in its infancy, investigations are already raising important questions, such as why only some DNA viruses that replicate their genomes in the nucleus elicit ROCC. Studying the shared and distinct properties of ROCC-inducing viruses will provide valuable insights into viral reorganization of host chromatin that could have implications for future therapies that target the viral life cycle.
Collapse
Affiliation(s)
- Quincy Rosemarie
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bill Sugden
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Saribas AS, Bellizzi A, Wollebo HS, Beer T, Tang HY, Safak M. Human neurotropic polyomavirus, JC virus, late coding region encodes a novel nuclear protein, ORF4, which targets the promyelocytic leukemia nuclear bodies (PML-NBs) and modulates their reorganization. Virology 2023; 587:109866. [PMID: 37741199 PMCID: PMC10602023 DOI: 10.1016/j.virol.2023.109866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/25/2023]
Abstract
We previously reported the discovery and characterization of two novel proteins (ORF1 and ORF2) generated by the alternative splicing of the JC virus (JCV) late coding region. Here, we report the discovery and partial characterization of three additional novel ORFs from the same coding region, ORF3, ORF4 and ORF5, which potentially encode 70, 173 and 265 amino acid long proteins respectively. While ORF3 protein exhibits a uniform distribution pattern throughout the cells, we were unable to detect ORF5 expression. Surprisingly, ORF4 protein was determined to be the only JCV protein specifically targeting the promyelocytic leukemia nuclear bodies (PML-NBs) and inducing their reorganization in nucleus. Although ORF4 protein has a modest effect on JCV replication, it is implicated to play major roles during the JCV life cycle, perhaps by regulating the antiviral response of PML-NBs against JCV infections and thus facilitating the progression of the JCV-induced disease in infected individuals.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Anna Bellizzi
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Hassen S Wollebo
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA
| | - Thomas Beer
- The Wistar Institute Proteomics and Metabolomics Facility Room 252, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Hsin-Yao Tang
- The Wistar Institute Proteomics and Metabolomics Facility Room 252, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Mahmut Safak
- Department of Microbiology, Immunology, and Inflammation, Laboratory of Molecular Neurovirology, MERB-757, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Pajenda S, Hevesi Z, Eder M, Gerges D, Aiad M, Koldyka O, Winnicki W, Wagner L, Eskandary F, Schmidt A. Lessons from Polyomavirus Immunofluorescence Staining of Urinary Decoy Cells. Life (Basel) 2023; 13:1526. [PMID: 37511901 PMCID: PMC10381542 DOI: 10.3390/life13071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Decoy cells that can be detected in the urine sediment of immunosuppressed patients are often caused by the uncontrolled replication of polyomaviruses, such as BK-Virus (BKV) and John Cunningham (JC)-Virus (JCV), within the upper urinary tract. Due to the wide availability of highly sensitive BKV and JCV PCR, the diagnostic utility of screening for decoy cells in urine as an indicator of polyomavirus-associated nephropathy (PyVAN) has been questioned by some institutions. We hypothesize that specific staining of different infection time-dependent BKV-specific antigens in urine sediment could allow cell-specific mapping of antigen expression during decoy cell development. Urine sediment cells from six kidney transplant recipients (five males, one female) were stained for the presence of the early BKV gene transcript lTag and the major viral capsid protein VP1 using monospecific antibodies, monoclonal antibodies and confocal microscopy. For this purpose, cyto-preparations were prepared and the BK polyoma genotype was determined by sequencing the PCR-amplified coding region of the VP1 protein. lTag staining began at specific sites in the nucleus and spread across the nucleus in a cobweb-like pattern as the size of the nucleus increased. It spread into the cytosol as soon as the nuclear membrane was fragmented or dissolved, as in apoptosis or in the metaphase of the cell cycle. In comparison, we observed that VP1 staining started in the nuclear region and accumulated at the nuclear edge in 6-32% of VP1+ cells. The staining traveled through the cytosol of the proximal tubule cell and reached high intensities at the cytosol before spreading to the surrounding area in the form of exosome-like particles. The spreading virus-containing particles adhered to surrounding cells, including erythrocytes. VP1-positive proximal tubule cells contain apoptotic bodies, with 68-94% of them losing parts of their DNA and exhibiting membrane damage, appearing as "ghost cells" but still VP1+. Specific polyoma staining of urine sediment cells can help determine and enumerate exfoliation of BKV-positive cells based on VP1 staining, which exceeds single-face decoy staining in terms of accuracy. Furthermore, our staining approaches might serve as an early readout in primary diagnostics and for the evaluation of treatment responses in the setting of reduced immunosuppression.
Collapse
Affiliation(s)
- Sahra Pajenda
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsofia Hevesi
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Gerges
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Monika Aiad
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Koldyka
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J 2023; 20:82. [PMID: 37127643 PMCID: PMC10152602 DOI: 10.1186/s12985-023-02049-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PM NBs), often referred to as membraneless organelles, are dynamic macromolecular protein complexes composed of a PML protein core and other transient or permanent components. PML NBs have been shown to play a role in a wide variety of cellular processes. This review describes in detail the diverse and complex interactions between small and medium size DNA viruses and PML NBs that have been described to date. The PML NB components that interact with small and medium size DNA viruses include PML protein isoforms, ATRX/Daxx, Sp100, Sp110, HP1, and p53, among others. Interaction between viruses and components of these NBs can result in different outcomes, such as influencing viral genome expression and/or replication or impacting IFN-mediated or apoptotic cell responses to viral infection. We discuss how PML NB components abrogate the ability of adenoviruses or Hepatitis B virus to transcribe and/or replicate their genomes and how papillomaviruses use PML NBs and their components to promote their propagation. Interactions between polyomaviruses and PML NBs that are poorly understood but nevertheless suggest that the NBs can serve as scaffolds for viral replication or assembly are also presented. Furthermore, complex interactions between the HBx protein of hepadnaviruses and several PML NBs-associated proteins are also described. Finally, current but scarce information regarding the interactions of VP3/apoptin of the avian anellovirus with PML NBs is provided. Despite the considerable number of studies that have investigated the functions of the PML NBs in the context of viral infection, gaps in our understanding of the fine interactions between viruses and the very dynamic PML NBs remain. The complexity of the bodies is undoubtedly a great challenge that needs to be further addressed.
Collapse
Affiliation(s)
- Boris Ryabchenko
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Alexey Lovtsov
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic
| | - Sandra Huérfano
- Department of Genetics and Microbiology, Faculty of Science, BIOCEV, Charles University, Vestec, 25250, Czech Republic.
| |
Collapse
|
8
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 PMCID: PMC10311714 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
9
|
Spriggs CC, Cha G, Li J, Tsai B. Components of the LINC and NPC complexes coordinately target and translocate a virus into the nucleus to promote infection. PLoS Pathog 2022; 18:e1010824. [PMID: 36067270 PMCID: PMC9481172 DOI: 10.1371/journal.ppat.1010824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Nuclear entry represents the final and decisive infection step for most DNA viruses, although how this is accomplished by some viruses is unclear. Polyomavirus SV40 transports from the cell surface through the endosome, the endoplasmic reticulum, and the cytosol from where it enters the nucleus to cause infection. Here we elucidate the nuclear entry mechanism of SV40. Our results show that cytosol-localized SV40 is targeted to the nuclear envelope by directly engaging Nesprin-2 of the linker of nucleoskeleton and cytoskeleton (LINC) nuclear membrane complex. Additionally, we identify the NUP188 subunit of the nuclear pore complex (NPC) as a new Nesprin-2-interacting partner. This physical proximity positions the NPC to capture SV40 upon release from Nesprin-2, enabling the channel to facilitate nuclear translocation of the virus. Strikingly, SV40 disassembles during nuclear entry, generating a viral genome-VP1-VP3 subcomplex that efficiently crosses the NPC to enter the nucleus. Our results reveal how two major nuclear membrane protein complexes are exploited to promote targeting and translocation of a virus into the nucleus.
Collapse
Affiliation(s)
- Chelsey C. Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School Ann Arbor, Michigan, United States of America
- * E-mail: (CCS); (BT)
| | - Grace Cha
- Department of Cell and Developmental Biology, University of Michigan Medical School Ann Arbor, Michigan, United States of America
| | - Jiaqian Li
- Department of Cell and Developmental Biology, University of Michigan Medical School Ann Arbor, Michigan, United States of America
- Department of Biological Chemistry, University of Michigan Medical School Ann Arbor, Michigan, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School Ann Arbor, Michigan, United States of America
- * E-mail: (CCS); (BT)
| |
Collapse
|
10
|
Lin S, Rajan S, Lemberg S, Altawil M, Anderson K, Bryant R, Cappeta S, Chin B, Hamdan I, Hamer A, Hyzny R, Karp A, Lee D, Lim A, Nayak M, Palaniappan V, Park S, Satishkumar S, Seth A, Sri Dasari U, Toppari E, Vyas A, Walker J, Weston E, Zafar A, Zielke C, Mahabeleshwar GH, Tartakoff AM. Production of nascent ribosome precursors within the nucleolar microenvironment of Saccharomyces cerevisiae. Genetics 2022; 221:iyac070. [PMID: 35657327 PMCID: PMC9252279 DOI: 10.1093/genetics/iyac070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
35S rRNA transcripts include a 5'-external transcribed spacer followed by rRNAs of the small and large ribosomal subunits. Their processing yields massive precursors that include dozens of assembly factor proteins. In Saccharomyces cerevisiae, nucleolar assembly factors form 2 coaxial layers/volumes around ribosomal DNA. Most of these factors are cyclically recruited from a latent state to an operative state, and are extensively conserved. The layers match, at least approximately, known subcompartments found in higher eukaryotic cells. ∼80% of assembly factors are essential. The number of copies of these assembly factors is comparable to the number of nascent transcripts. Moreover, they exhibit "isoelectric balance," with RNA-binding candidate "nucleator" assembly factors being notably basic. The physical properties of pre-small subunit and pre-large subunit assembly factors are similar, as are their 19 motif signatures detected by hierarchical clustering, unlike motif signatures of the 5'-external transcribed spacer rRNP. Additionally, many assembly factors lack shared motifs. Taken together with the progression of rRNP composition during subunit maturation, and the realization that the ribosomal DNA cable is initially bathed in a subunit-nonspecific assembly factor reservoir/microenvironment, we propose a "3-step subdomain assembly model": Step (1): predominantly basic assembly factors sequentially nucleate sites along nascent rRNA; Step (2): the resulting rRNPs recruit numerous less basic assembly factors along with notably basic ribosomal proteins; Step (3): rRNPs in nearby subdomains consolidate. Cleavages of rRNA then promote release of rRNPs to the nucleoplasm, likely facilitated by the persistence of assembly factors that were already associated with nucleolar precursors.
Collapse
Affiliation(s)
- Samantha Lin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Suchita Rajan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sofia Lemberg
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark Altawil
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Katherine Anderson
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ruth Bryant
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sebastian Cappeta
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Brandon Chin
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabella Hamdan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Annelise Hamer
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Hyzny
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Karp
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel Lee
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alexandria Lim
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Medha Nayak
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vishnu Palaniappan
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Soomin Park
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sarika Satishkumar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Anika Seth
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Uva Sri Dasari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emili Toppari
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ayush Vyas
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julianne Walker
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Evan Weston
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Atif Zafar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cecelia Zielke
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ganapati H Mahabeleshwar
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alan M Tartakoff
- Pathology Department and The Cell Biology Program, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Justice JL, Needham JM, Verhalen B, Jiang M, Thompson SR. BK Polyomavirus Requires the Mismatch Repair Pathway for DNA Damage Response Activation. J Virol 2022; 96:e0202821. [PMID: 35389233 PMCID: PMC9044952 DOI: 10.1128/jvi.02028-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
BK polyomavirus (PyV) infects the genitourinary tract of >90% of the adult population. Immunosuppression increases the risk of viral reactivation, making BKPyV a leading cause of graft failure in kidney transplant recipients. Polyomaviruses have a small double-stranded DNA (dsDNA) genome that requires host replication machinery to amplify the viral genome. Specifically, polyomaviruses promote S phase entry and delay S phase exit by activating the DNA damage response (DDR) pathway via an uncharacterized mechanism requiring viral replication. BKPyV infection elevates expression of MutSα, a mismatch repair (MMR) pathway protein complex that senses and repairs DNA mismatches and can activate the DDR. Thus, we investigated the role of the MMR pathway by silencing the MutSα component, Msh6, in BKPyV-infected primary cells. This resulted in severe DNA damage that correlated with weak DNA damage response activation and a failure to arrest the cell cycle to prevent mitotic entry during infection. Furthermore, silencing Msh6 expression resulted in significantly fewer infectious viral particles due to significantly lower levels of VP2, a minor capsid protein important for trafficking during subsequent infections. Since viral assembly occurs in the nucleus, our findings are consistent with a model in which entry into mitosis disrupts viral assembly due to nuclear envelope breakdown, which disperses VP2 throughout the cell, reducing its availability for encapsidation into viral particles. Thus, the MMR pathway may be required to activate the ATR (ATM-Rad3-related) pathway during infection to maintain a favorable environment for both viral replication and assembly. IMPORTANCE Since there are no therapeutics that target BKPyV reactivation in organ transplant patients, it is currently treated by decreasing immunosuppression to allow the natural immune system to fight the viral infection. Antivirals would significantly improve patient outcomes since reducing immunosuppression carries the risk of graft failure. PyVs activate the DDR, for which there are several promising inhibitors. However, a better understanding of how PyVs activate the DDR and what role the DDR plays during infection is needed. Here, we show that a component of the mismatch repair pathway is required for DDR activation during PyV infection. These findings show that the mismatch repair pathway is important for DDR activation during PyV infection and that inhibiting the DDR reduces viral titers by generating less infectious virions that lack the minor capsid protein VP2, which is important for viral trafficking.
Collapse
Affiliation(s)
- Joshua L. Justice
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jason M. Needham
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandy Verhalen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mengxi Jiang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
12
|
Garriga D, Chichón FJ, Calisto BM, Ferrero DS, Gastaminza P, Pereiro E, Pérez-Berna AJ. Imaging of Virus-Infected Cells with Soft X-ray Tomography. Viruses 2021; 13:2109. [PMID: 34834916 PMCID: PMC8618346 DOI: 10.3390/v13112109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses are obligate parasites that depend on a host cell for replication and survival. Consequently, to fully understand the viral processes involved in infection and replication, it is fundamental to study them in the cellular context. Often, viral infections induce significant changes in the subcellular organization of the host cell due to the formation of viral factories, alteration of cell cytoskeleton and/or budding of newly formed particles. Accurate 3D mapping of organelle reorganization in infected cells can thus provide valuable information for both basic virus research and antiviral drug development. Among the available techniques for 3D cell imaging, cryo-soft X-ray tomography stands out for its large depth of view (allowing for 10 µm thick biological samples to be imaged without further thinning), its resolution (about 50 nm for tomographies, sufficient to detect viral particles), the minimal requirements for sample manipulation (can be used on frozen, unfixed and unstained whole cells) and the potential to be combined with other techniques (i.e., correlative fluorescence microscopy). In this review we describe the fundamentals of cryo-soft X-ray tomography, its sample requirements, its advantages and its limitations. To highlight the potential of this technique, examples of virus research performed at BL09-MISTRAL beamline in ALBA synchrotron are also presented.
Collapse
Affiliation(s)
- Damià Garriga
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Francisco Javier Chichón
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Bárbara M. Calisto
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | - Diego S. Ferrero
- Institut de Biologia Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, 08028 Barcelona, Spain;
| | - Pablo Gastaminza
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; (F.J.C.); (P.G.)
| | - Eva Pereiro
- ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Spain; (D.G.); (B.M.C.); (E.P.)
| | | |
Collapse
|
13
|
Peng K, Lozach PY. Rift Valley fever virus: a new avenue of research on the biological functions of amyloids? Future Virol 2021. [DOI: 10.2217/fvl-2021-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rift Valley fever is a mosquito-borne viral zoonosis that was first discovered in the Great Rift Valley, Kenya, in 1930. Rift Valley fever virus (RVFV) primarily infects domestic animals and humans, with clinical outcomes ranging from self-limiting febrile illness to acute hepatitis and encephalitis. The virus left Africa a few decades ago, and there is a risk of introduction into southern Europe and Asia. From this perspective, we introduce RVFV and focus on the capacity of its virulence factor, the nonstructural protein NSs, to form amyloid-like fibrils. Here, we discuss the implications for the NSs biological function, the ability of RVFV to evade innate immunity, and RVFV virulence and neurotoxicity.
Collapse
Affiliation(s)
- Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Pierre-Yves Lozach
- Cell Networks, CIID (Cluster of Excellence & Center for Integrative Infectious Disease Research), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- University of Lyon, INRAE, EPHE, IVPC (Infections Virales et Pathologie Comparée), 69007, Lyon, France
| |
Collapse
|
14
|
Izi S, Youssefi M, Mohammadian Roshan N, Azimian A, Amel Jamehdar S, Zahedi Avval F. Higher detection of JC polyomavirus in colorectal cancerous tissue after pretreatment with topoisomerase I enzyme; colorectal tissue serves as a JCPyV persistence site. Exp Mol Pathol 2021; 123:104687. [PMID: 34592199 DOI: 10.1016/j.yexmp.2021.104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The JC polyomavirus has been blamed to contribute in colorectal cancer (CRC), however, the topic is still controversial. Varying detection rate of JCPyV genome has been reported mainly due to technical reasons. Here, we provide summative data on the topic, with emphasize on technical issues. METHODS Formalin-fixed paraffin-embedded tissue samples from 50 patients with CRC, consisting of tumoral and non-cancerous marginal tissue (totally 100 samples) were included in the study. After DNA extraction, specific JCPyV T-Ag sequences were targeted using Real-time PCR. To unwind the supercoiled JCPyV genome, pretreatment with topoisomerase I, was applied. Immunohistochemical (IHC) staining was performed using an anti-T-Ag monoclonal antibody. RESULTS In the first attempts, no samples were found to be positive in Real-time PCR assays. However, JCPyV sequences were found in 60% of CRC tissues and 38% of non-cancerous colorectal mucosa after application of pre-treatment step with topoisomerase I enzyme (P = 0.028). T-Ag protein was found in the nuclear compartment of the stained cells in IHC assays. CONCLUSIONS The presence of JCPyV in CRC tissues, as well as T-Ag localization in the nucleolus, where its oncogenic effect takes place, may provide supporting evidence for JCPyV involvement in CRC development. The study highlights the importance of using topoisomerase I to enhance JCPyV genome detection. Also, colorectal tissue is one of the permissive human tissue for JC resistance after preliminary infection.
Collapse
Affiliation(s)
- Samira Izi
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IRAN; Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Youssefi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nema Mohammadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Saeid Amel Jamehdar
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Zahedi Avval
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IRAN.
| |
Collapse
|
15
|
Labarde A, Jakutyte L, Billaudeau C, Fauler B, López-Sanz M, Ponien P, Jacquet E, Mielke T, Ayora S, Carballido-López R, Tavares P. Temporal compartmentalization of viral infection in bacterial cells. Proc Natl Acad Sci U S A 2021; 118:e2018297118. [PMID: 34244425 PMCID: PMC8285916 DOI: 10.1073/pnas.2018297118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus infection causes major rearrangements in the subcellular architecture of eukaryotes, but its impact in prokaryotic cells was much less characterized. Here, we show that infection of the bacterium Bacillus subtilis by bacteriophage SPP1 leads to a hijacking of host replication proteins to assemble hybrid viral-bacterial replisomes for SPP1 genome replication. Their biosynthetic activity doubles the cell total DNA content within 15 min. Replisomes operate at several independent locations within a single viral DNA focus positioned asymmetrically in the cell. This large nucleoprotein complex is a self-contained compartment whose boundaries are delimited neither by a membrane nor by a protein cage. Later during infection, SPP1 procapsids localize at the periphery of the viral DNA compartment for genome packaging. The resulting DNA-filled capsids do not remain associated to the DNA transactions compartment. They bind to phage tails to build infectious particles that are stored in warehouse compartments spatially independent from the viral DNA. Free SPP1 structural proteins are recruited to the dynamic phage-induced compartments following an order that recapitulates the viral particle assembly pathway. These findings show that bacteriophages restructure the crowded host cytoplasm to confine at different cellular locations the sequential processes that are essential for their multiplication.
Collapse
Affiliation(s)
- Audrey Labarde
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lina Jakutyte
- Laboratoire de Virologie Moléculaire et Structurale, CNRS Unité Propre de Recherche 3296 and Institut Fédératif de Recherche 115, 91198 Gif-sur-Yvette, France
| | - Cyrille Billaudeau
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Beatrix Fauler
- Microscopy and Cryo-electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| | - Maria López-Sanz
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Prishila Ponien
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Thorsten Mielke
- Microscopy and Cryo-electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Rut Carballido-López
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Paulo Tavares
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France;
| |
Collapse
|
16
|
Léger P, Lozach PY. [Rift Valley fever virus and the amazing NSs protein]. Med Sci (Paris) 2021; 37:601-608. [PMID: 34180819 DOI: 10.1051/medsci/2021090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rift Valley Fever Virus (RVFV) is an emerging zoonotic pathogen transmitted to humans and livestock through mosquito bites, which was first isolated in Kenya in 1930. The virus is classified by the WHO among the pathogens for which there is an urgent need to develop research, diagnostics, and therapies. However, the efforts developed to control the virus remain limited, and the virus is not well characterized. In this article, we will introduce RVFV and then focus on its virulence factor, the nonstructural protein NSs. We will mainly discuss the ability of this viral protein to form amyloid-like fibrils and its implication in the neurotoxicity associated with RVFV infection.
Collapse
Affiliation(s)
- Psylvia Léger
- CellNetworks, CIID (Cluster of Excellence and Center for Integrative Infectious Disease Research), Virology, University hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Allemagne
| | - Pierre-Yves Lozach
- CellNetworks, CIID (Cluster of Excellence and Center for Integrative Infectious Disease Research), Virology, University hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Allemagne - Univ. Lyon, INRAe, EPHE, IVPC (Infections virales et pathologie comparée), 50 avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
17
|
Andriasyan V, Yakimovich A, Petkidis A, Georgi F, Witte R, Puntener D, Greber UF. Microscopy deep learning predicts virus infections and reveals mechanics of lytic-infected cells. iScience 2021; 24:102543. [PMID: 34151222 PMCID: PMC8192562 DOI: 10.1016/j.isci.2021.102543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/07/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Imaging across scales reveals disease mechanisms in organisms, tissues, and cells. Yet, particular infection phenotypes, such as virus-induced cell lysis, have remained difficult to study. Here, we developed imaging modalities and deep learning procedures to identify herpesvirus and adenovirus (AdV) infected cells without virus-specific stainings. Fluorescence microscopy of vital DNA-dyes and live-cell imaging revealed learnable virus-specific nuclear patterns transferable to related viruses of the same family. Deep learning predicted two major AdV infection outcomes, non-lytic (nonspreading) and lytic (spreading) infections, up to about 20 hr prior to cell lysis. Using these predictive algorithms, lytic and non-lytic nuclei had the same levels of green fluorescent protein (GFP)-tagged virion proteins but lytic nuclei enriched the virion proteins faster, and collapsed more extensively upon laser-rupture than non-lytic nuclei, revealing impaired mechanical properties of lytic nuclei. Our algorithms may be used to infer infection phenotypes of emerging viruses, enhance single cell biology, and facilitate differential diagnosis of non-lytic and lytic infections. Artificial intelligence identifies HSV- and AdV-infected cells without specific probes. Imaging lytic-infected cells reveals nuclear envelope rupture and AdV dissemination. Live cell imaging and neural networks presciently pinpoint lytic-infected cells. Lytic-infected cell nuclei have mechanical properties distinct from non-lytic nuclei.
Collapse
Affiliation(s)
- Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland.,University College London, London WC1E 6BT, UK.,Artificial Intelligence for Life Sciences CIC, London N8 7FJ, UK
| | - Anthony Petkidis
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Fanny Georgi
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Robert Witte
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| | - Daniel Puntener
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland.,Roche Diagnostics International Ltd, Rotkreuz 6343, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
18
|
Gerstweiler L, Bi J, Middelberg APJ. Virus-like particle preparation is improved by control over capsomere-DNA interactions during chromatographic purification. Biotechnol Bioeng 2021; 118:1707-1720. [PMID: 33484156 DOI: 10.1002/bit.27687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 11/09/2022]
Abstract
Expression of viral capsomeres in bacterial systems and subsequent in vitro assembly into virus-like particles is a possible pathway for affordable future vaccines. However, purification is challenging as viral capsomeres show poor binding to chromatography media. In this study, the behavior of capsomeres in unfractionated bacterial lysate was compared with that for purified capsomeres, with or without added microbial DNA, to better understand reasons for poor bioprocess behavior. We show that aggregates or complexes form through the interaction between viral capsomeres and DNA, especially in bacterial lysates rich in contaminating DNA. The formation of these complexes prevents the target protein capsomeres from accessing the pores of chromatography media. We find that protein-DNA interactions can be modulated by controlling the ionic strength of the buffer and that at elevated ionic strengths the protein-DNA complexes dissociate. Capsomeres thus released show enhanced bind-elute behavior on salt-tolerant chromatography media. DNA could therefore be efficiently removed. We believe this is the first report of the use of an optimized salt concentration that dissociates capsomere-DNA complexes yet enables binding to salt-tolerant media. Post purification, assembly experiments indicate that DNA-protein interactions can play a negative role during in vitro assembly, as DNA-protein complexes could not be assembled into virus-like particles, but formed worm-like structures. This study reveals that the control over DNA-protein interaction is a critical consideration during downstream process development for viral vaccines.
Collapse
Affiliation(s)
- Lukas Gerstweiler
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia, Australia
| | | |
Collapse
|
19
|
Abstract
Viral factories are intracellular compartments of the host cell that contain viral replication organelles and necessary elements for assembly and maturation of new infectious viral particles. In this article we revise the methods used to study viral factories and the current knowledge on the structure, functions and biogenesis of these structures. We also describe some of the most emblematic examples of viral factories characterized so far. Finally, we describe how the identification of mechanisms involved in the biogenesis and functional architecture of viral factories will provide new means for antiviral intervention.
Collapse
|
20
|
Peters DK, Erickson KD, Garcea RL. Live Cell Microscopy of Murine Polyomavirus Subnuclear Replication Centers. Viruses 2020; 12:v12101123. [PMID: 33023278 PMCID: PMC7650712 DOI: 10.3390/v12101123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/24/2023] Open
Abstract
During polyomavirus (PyV) infection, host proteins localize to subnuclear domains, termed viral replication centers (VRCs), to mediate viral genome replication. Although the protein composition and spatial organization of VRCs have been described using high-resolution immunofluorescence microscopy, little is known about the temporal dynamics of VRC formation over the course of infection. We used live cell fluorescence microscopy to analyze VRC formation during murine PyV (MuPyV) infection of a mouse fibroblast cell line that constitutively expresses a GFP-tagged replication protein A complex subunit (GFP-RPA32). The RPA complex forms a heterotrimer (RPA70/32/14) that regulates cellular DNA replication and repair and is a known VRC component. We validated previous observations that GFP-RPA32 relocalized to sites of cellular DNA damage in uninfected cells and to VRCs in MuPyV-infected cells. We then used GFP-RPA32 as a marker of VRC formation and expansion during live cell microscopy of infected cells. VRC formation occurred at variable times post-infection, but the rate of VRC expansion was similar between cells. Additionally, we found that the early viral protein, small TAg (ST), was required for VRC expansion but not VRC formation, consistent with the role of ST in promoting efficient vDNA replication. These results demonstrate the dynamic nature of VRCs over the course of infection and establish an approach for analyzing viral replication in live cells.
Collapse
Affiliation(s)
- Douglas K. Peters
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
| | - Kimberly D. Erickson
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
| | - Robert L. Garcea
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80309, USA; (D.K.P.); (K.D.E.)
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- Correspondence:
| |
Collapse
|
21
|
Structure of Merkel Cell Polyomavirus Capsid and Interaction with Its Glycosaminoglycan Attachment Receptor. J Virol 2020; 94:JVI.01664-19. [PMID: 32699083 PMCID: PMC7527053 DOI: 10.1128/jvi.01664-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 07/07/2020] [Indexed: 11/20/2022] Open
Abstract
The MCPyV genome was found to be clonally integrated in 80% of cases of Merkel cell carcinoma (MCC), a rare but aggressive form of human skin cancer, strongly suggesting that this virus is tumorigenic. In the metastasizing state, the course of the disease is often fatal, especially in immunocompromised individuals, as reflected by the high mortality rate of 33 to 46% and the low 5-year survival rate (<45%). The high seroprevalence of about 60% makes MCPyV a serious health care burden and illustrates the need for targeted treatments. In this study, we present the first high-resolution structural data for this human tumor virus and demonstrate that the full capsid is required for the essential interaction with its GAG receptor(s). Together, these data can be used as a basis for future strategies in drug development. Merkel cell polyomavirus (MCPyV) is a human double-stranded DNA tumor virus. MCPyV cell entry is unique among members of the polyomavirus family as it requires the engagement of two types of glycans, sialylated oligosaccharides and sulfated glycosaminoglycans (GAGs). Here, we present crystallographic and cryo-electron microscopic structures of the icosahedral MCPyV capsid and analysis of its glycan interactions via nuclear magnetic resonance (NMR) spectroscopy. While sialic acid binding is specific for α2-3-linked sialic acid and mediated by the exposed apical loops of the major capsid protein VP1, a broad range of GAG oligosaccharides bind to recessed regions between VP1 capsomers. Individual VP1 capsomers are tethered to one another by an extensive disulfide network that differs in architecture from previously described interactions for other PyVs. An unusual C-terminal extension in MCPyV VP1 projects from the recessed capsid regions. Mutagenesis experiments show that this extension is dispensable for receptor interactions. IMPORTANCE The MCPyV genome was found to be clonally integrated in 80% of cases of Merkel cell carcinoma (MCC), a rare but aggressive form of human skin cancer, strongly suggesting that this virus is tumorigenic. In the metastasizing state, the course of the disease is often fatal, especially in immunocompromised individuals, as reflected by the high mortality rate of 33 to 46% and the low 5-year survival rate (<45%). The high seroprevalence of about 60% makes MCPyV a serious health care burden and illustrates the need for targeted treatments. In this study, we present the first high-resolution structural data for this human tumor virus and demonstrate that the full capsid is required for the essential interaction with its GAG receptor(s). Together, these data can be used as a basis for future strategies in drug development.
Collapse
|
22
|
Fifty Years of JC Polyomavirus: A Brief Overview and Remaining Questions. Viruses 2020; 12:v12090969. [PMID: 32882975 PMCID: PMC7552028 DOI: 10.3390/v12090969] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
In the fifty years since the discovery of JC polyomavirus (JCPyV), the body of research representing our collective knowledge on this virus has grown substantially. As the causative agent of progressive multifocal leukoencephalopathy (PML), an often fatal central nervous system disease, JCPyV remains enigmatic in its ability to live a dual lifestyle. In most individuals, JCPyV reproduces benignly in renal tissues, but in a subset of immunocompromised individuals, JCPyV undergoes rearrangement and begins lytic infection of the central nervous system, subsequently becoming highly debilitating-and in many cases, deadly. Understanding the mechanisms allowing this process to occur is vital to the development of new and more effective diagnosis and treatment options for those at risk of developing PML. Here, we discuss the current state of affairs with regards to JCPyV and PML; first summarizing the history of PML as a disease and then discussing current treatment options and the viral biology of JCPyV as we understand it. We highlight the foundational research published in recent years on PML and JCPyV and attempt to outline which next steps are most necessary to reduce the disease burden of PML in populations at risk.
Collapse
|
23
|
Abstract
The dynamics of nuclear envelope has a critical role in multiple cellular processes. However, little is known regarding the structural changes occurring inside the nucleus or at the inner and outer nuclear membranes. For viruses assembling inside the nucleus, remodeling of the intranuclear membrane plays an important role in the process of virion assembly. Here, we monitored the changes associated with viral infection in the case of nudiviruses. Our data revealed dramatic membrane remodeling inside the nuclear compartment during infection with Oryctes rhinoceros nudivirus, an important biocontrol agent against coconut rhinoceros beetle, a devastating pest for coconut and oil palm trees. Based on these findings, we propose a model for nudivirus assembly in which nuclear packaging occurs in fully enveloped virions. Enveloped viruses hijack cellular membranes in order to provide the necessary material for virion assembly. In particular, viruses that replicate and assemble inside the nucleus have developed special approaches to modify the nuclear landscape for their advantage. We used electron microscopy to investigate cellular changes occurring during nudivirus infection and we characterized a unique mechanism for assembly, packaging, and transport of new virions across the nuclear membrane and through the cytoplasm. Our three-dimensional reconstructions describe the complex remodeling of the nuclear membrane necessary to release vesicle-associated viruses into the cytoplasm. This is the first report of nuclear morphological reconfigurations that occur during nudiviral infection.
Collapse
|
24
|
Léger P, Nachman E, Richter K, Tamietti C, Koch J, Burk R, Kummer S, Xin Q, Stanifer M, Bouloy M, Boulant S, Kräusslich HG, Montagutelli X, Flamand M, Nussbaum-Krammer C, Lozach PY. NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nat Commun 2020; 11:3281. [PMID: 32612175 PMCID: PMC7329897 DOI: 10.1038/s41467-020-17101-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
Amyloid fibrils result from the aggregation of host cell-encoded proteins, many giving rise to specific human illnesses such as Alzheimer's disease. Here we show that the major virulence factor of Rift Valley fever virus, the protein NSs, forms filamentous structures in the brain of mice and affects mortality. NSs assembles into nuclear and cytosolic disulfide bond-dependent fibrillary aggregates in infected cells. NSs structural arrangements exhibit characteristics typical for amyloids, such as an ultrastructure of 12 nm-width fibrils, a strong detergent resistance, and interactions with the amyloid-binding dye Thioflavin-S. The assembly dynamics of viral amyloid-like fibrils can be visualized in real-time. They form spontaneously and grow in an amyloid fashion within 5 hours. Together, our results demonstrate that viruses can encode amyloid-like fibril-forming proteins and have strong implications for future research on amyloid aggregation and toxicity in general.
Collapse
Affiliation(s)
- Psylvia Léger
- CellNetworks-Cluster of Excellence and Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Eliana Nachman
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | | | | | - Jana Koch
- CellNetworks-Cluster of Excellence and Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Robin Burk
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Susann Kummer
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Qilin Xin
- University Lyon, INRAE, EPHE, IVPC, 69007, Lyon, France
| | - Megan Stanifer
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- DKFZ, 69120, Heidelberg, Germany
| | - Michèle Bouloy
- Unité de Génétique Moléculaire des Bunyavirus, Institut Pasteur, 75015, Paris, France
| | - Steeve Boulant
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
- DKFZ, 69120, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | | | - Marie Flamand
- Structural Virology, Institut Pasteur, 75015, Paris, France
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
- Center for Integrative Infectious Diseases Research (CIID), Virology, University Hospital Heidelberg, 69120, Heidelberg, Germany.
- University Lyon, INRAE, EPHE, IVPC, 69007, Lyon, France.
| |
Collapse
|
25
|
Giannecchini S. Evidence of the Mechanism by Which Polyomaviruses Exploit the Extracellular Vesicle Delivery System during Infection. Viruses 2020; 12:v12060585. [PMID: 32471033 PMCID: PMC7354590 DOI: 10.3390/v12060585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that human viruses can hijack extracellular vesicles (EVs) to deliver proteins, mRNAs, microRNAs (miRNAs) and whole viral particles during viral persistence in the host. Human polyomavirus (PyV) miRNAs, which downregulate large T-antigen expression and target host factors, help the virus escape immune elimination and may have roles in the success of viral persistence/replication and the development of diseases. In this context, several investigations have detected PyV miRNAs in EVs obtained from cell culture supernatants after viral infection, demonstrating the ability of these vesicles to deliver miRNAs to uninfected cells, potentially counteracting new viral infection. Additionally, PyV miRNAs have been identified in EVs derived from the biological fluids of clinical samples obtained from patients with or at risk of severe PyV-associated diseases and from asymptomatic control healthy subjects. Interestingly, PyV miRNAs were found to be circulating in blood, urine, cerebrospinal fluid, and saliva samples from patients despite their PyV DNA status. Recently, the association between EVs and PyV viral particles was reported, demonstrating the ability of PyV viral particles to enter the cell without natural receptor-mediated entry and evade antibody-mediated neutralization or to be neutralized at a step different from that of the neutralization of naked whole viral particles. All these data point toward a potential role of the association between PyVs with EVs in viral persistence, suggesting that further work to define the implication of this interaction in viral reactivation is warranted.
Collapse
Affiliation(s)
- Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| |
Collapse
|
26
|
Peters DK, Garcea RL. Murine polyomavirus DNA transitions through spatially distinct nuclear replication subdomains during infection. PLoS Pathog 2020; 16:e1008403. [PMID: 32203554 PMCID: PMC7117779 DOI: 10.1371/journal.ppat.1008403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The replication of small DNA viruses requires both host DNA replication and repair factors that are often recruited to subnuclear domains termed viral replication centers (VRCs). Aside from serving as a spatial focus for viral replication, little is known about these dynamic areas in the nucleus. We investigated the organization and function of VRCs during murine polyomavirus (MuPyV) infection using 3D structured illumination microscopy (3D-SIM). We localized MuPyV replication center components, such as the viral large T-antigen (LT) and the cellular replication protein A (RPA), to spatially distinct subdomains within VRCs. We found that viral DNA (vDNA) trafficked sequentially through these subdomains post-synthesis, suggesting their distinct functional roles in vDNA processing. Additionally, we observed disruption of VRC organization and vDNA trafficking during mutant MuPyV infections or inhibition of DNA synthesis. These results reveal a dynamic organization of VRC components that coordinates virus replication.
Collapse
Affiliation(s)
- Douglas K. Peters
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Robert L. Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
27
|
The Major Capsid Protein, VP1, of the Mouse Polyomavirus Stimulates the Activity of Tubulin Acetyltransferase 1 by Microtubule Stabilization. Viruses 2020; 12:v12020227. [PMID: 32085463 PMCID: PMC7077302 DOI: 10.3390/v12020227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/17/2022] Open
Abstract
Viruses have evolved mechanisms to manipulate microtubules (MTs) for the efficient realization of their replication programs. Studying the mechanisms of replication of mouse polyomavirus (MPyV), we observed previously that in the late phase of infection, a considerable amount of the main structural protein, VP1, remains in the cytoplasm associated with hyperacetylated microtubules. VP1–microtubule interactions resulted in blocking the cell cycle in the G2/M phase. We are interested in the mechanism leading to microtubule hyperacetylation and stabilization and the roles of tubulin acetyltransferase 1 (αTAT1) and deacetylase histone deacetylase 6 (HDAC6) and VP1 in this mechanism. Therefore, HDAC6 inhibition assays, αTAT1 knock out cell infections, in situ cell fractionation, and confocal and TIRF microscopy were used. The experiments revealed that the direct interaction of isolated microtubules and VP1 results in MT stabilization and a restriction of their dynamics. VP1 leads to an increase in polymerized tubulin in cells, thus favoring αTAT1 activity. The acetylation status of MTs did not affect MPyV infection. However, the stabilization of MTs by VP1 in the late phase of infection may compensate for the previously described cytoskeleton destabilization by MPyV early gene products and is important for the observed inhibition of the G2→M transition of infected cells to prolong the S phase.
Collapse
|
28
|
Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020; 12:v12020151. [PMID: 32013091 PMCID: PMC7077188 DOI: 10.3390/v12020151] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/08/2023] Open
Abstract
DNA viruses that replicate in the nucleus encompass a range of ubiquitous and clinically important viruses, from acute pathogens to persistent tumor viruses. These viruses must co-opt nuclear processes for the benefit of the virus, whilst evading host processes that would otherwise attenuate viral replication. Accordingly, DNA viruses induce the formation of membraneless assemblies termed viral replication compartments (VRCs). These compartments facilitate the spatial organization of viral processes and regulate virus–host interactions. Here, we review advances in our understanding of VRCs. We cover their initiation and formation, their function as the sites of viral processes, and aspects of their composition and organization. In doing so, we highlight ongoing and emerging areas of research highly pertinent to our understanding of nuclear-replicating DNA viruses.
Collapse
|
29
|
Fernández de Castro I. OBSOLETE: Virus Factories. REFERENCE MODULE IN LIFE SCIENCES 2020. [PMCID: PMC7268204 DOI: 10.1016/b978-0-12-809633-8.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Viral infections alter antennal epithelium ultrastructure in honey bees. J Invertebr Pathol 2019; 168:107252. [PMID: 31585118 DOI: 10.1016/j.jip.2019.107252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 09/29/2019] [Indexed: 11/22/2022]
Abstract
Varroa destructor and its associated viruses, in particular deformed wing virus (DWV), have been identified as probable causes of honey bee (Apis mellif era L.) colony losses. Evidence suggests that elevated DWV titres in bees could compromise sensory and communication abilities resulting in negative consequences for hygienic behaviour. As antennae play a central role in this behaviour, we compared antennal ultrastructure in DWV-symptomatic and asymptomatic bees. The results show that virus capsids accumulate in the basal regions of the antennal epithelium, close to the haemolymph. No virus particles were detected at the level of sensory sensilla, such as pore plates, nor within the sensory cell dendrites associated with these sensilla. However, membranous structures appeared to be more prevalent in supporting cells surrounding the dendrites of DWV-symptomatic bees. Para-crystalline arrays containing large numbers of virus particles were detected in the antennae of DWV-symptomatic bees but not in asymptomatic bees.
Collapse
|
31
|
Sachse M, Fernández de Castro I, Tenorio R, Risco C. The viral replication organelles within cells studied by electron microscopy. Adv Virus Res 2019; 105:1-33. [PMID: 31522702 PMCID: PMC7112055 DOI: 10.1016/bs.aivir.2019.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transmission electron microscopy (TEM) has been crucial to study viral infections. As a result of recent advances in light and electron microscopy, we are starting to be aware of the variety of structures that viruses assemble inside cells. Viruses often remodel cellular compartments to build their replication factories. Remarkably, viruses are also able to induce new membranes and new organelles. Here we revise the most relevant imaging technologies to study the biogenesis of viral replication organelles. Live cell microscopy, correlative light and electron microscopy, cryo-TEM, and three-dimensional imaging methods are unveiling how viruses manipulate cell organization. In particular, methods for molecular mapping in situ in two and three dimensions are revealing how macromolecular complexes build functional replication complexes inside infected cells. The combination of all these imaging approaches is uncovering the viral life cycle events with a detail never seen before.
Collapse
Affiliation(s)
- Martin Sachse
- Unité Technologie et service BioImagerie Ultrastructurale, Institut Pasteur, Paris, France.
| | | | - Raquel Tenorio
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain
| | - Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology, CSIC, Madrid, Spain.
| |
Collapse
|
32
|
Erickson KD, Garcea RL. Viral replication centers and the DNA damage response in JC virus-infected cells. Virology 2019; 528:198-206. [PMID: 30811999 DOI: 10.1016/j.virol.2018.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023]
Abstract
JCV is a human polyomavirus (PyV) that establishes a persistent infection in its host. Current immunomodulatory therapies, such as Natalizumab for multiple sclerosis, can result in JCV reactivation, leading to the debilitating brain disease progressive multifocal leukoencephalopathy (PML). JCV is among the viruses that recruit and modulate the host DNA damage response (DDR) to replicate its genome. We have identified host proteins recruited to the nuclear sites of JC viral DNA (vDNA) replication using three cell types susceptible to infection in vitro. Using confocal microscopy, we found that JCV recruited a similar repertoire of host DDR proteins to these replication sites previously observed for other PyVs. Electron tomography of JCV "virus factories" showed structural features like those described for murine PyV. These results confirm and extend previous observations for PyVs to JCV emphasizing a similar replication strategy among members of this virus family.
Collapse
Affiliation(s)
- Kimberly D Erickson
- The BioFrontiers Institute, University of Colorado, Boulder, CO 80309, United States
| | - Robert L Garcea
- The Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, United States; The BioFrontiers Institute, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
33
|
Jansen van Vuren P, Allam M, Wiley MR, Ismail A, Storm N, Birkhead M, Markotter W, Palacios G, Paweska JT. A novel adenovirus isolated from the Egyptian fruit bat in South Africa is closely related to recent isolates from China. Sci Rep 2018; 8:9584. [PMID: 29942032 PMCID: PMC6018157 DOI: 10.1038/s41598-018-27836-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/18/2018] [Indexed: 01/20/2023] Open
Abstract
Recently a number of novel adenoviruses have been isolated from diverse bat species and from diverse geographical locations. We describe the isolation of a novel adenovirus (Family Adenoviridae, genus Mastadenovirus) from a pool of liver and spleen tissue of an apparently healthy wild-caught Egyptian fruit bat (Rousettus aegyptiacus) in South Africa. Genetically the virus is most closely related to four mastadenoviruses recently isolated in China, from Miniopterus schreibersi and Rousettus leschenaultii bats, which are highly divergent from previously identified bat adenoviruses. The length of the Rousettus aegyptiacus adenovirus-3085 (RaegAdV-3085) genome, at 29,342 bp is similar to its closest relatives, and contains 27 open reading frames. The RaegAdV-3085 genome has a low G + C content (36.4%) relative to other viruses in the genus (between 43.6 and 63.9%) but similar to its closest relatives. The inverted terminal repeat (ITR) of RaegAdV-3085 is only 40 bp compared to between 61 and 178 bp of its closest relatives. The discovery of RaegAdV-3085 expands the diversity of known adenoviruses in bats and might represent a member of a new mastadenovirus species in bats.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Mushal Allam
- Core Sequencing Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Michael R Wiley
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, USA
| | - Arshad Ismail
- Core Sequencing Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Nadia Storm
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Monica Birkhead
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Gustavo Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, USA
| | - Janusz T Paweska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa.
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
34
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Bhattacharjee S, Chattaraj S. Entry, infection, replication, and egress of human polyomaviruses: an update. Can J Microbiol 2017; 63:193-211. [DOI: 10.1139/cjm-2016-0519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyomaviruses (PyVs), belonging to the family Polyomaviridae, are a group of small, nonenveloped, double-stranded, circular DNA viruses widely distributed in the vertebrates. PyVs cause no apparent disease in adult laboratory mice but cause a wide variety of tumors when artificially inoculated into neonates or semipermissive animals. A few human PyVs, such as BK, JC, and Merkel cell PyVs, have been unequivocally linked to pathogenesis under conditions of immunosuppression. Infection is thought to occur early in life and persists for the lifespan of the host. Over evolutionary time scales, it appears that PyVs have slowly co-evolved with specific host animal lineages. Host cell surface glycoproteins and glycolipids seem to play a decisive role in the entry stage of viral infection and in channeling the virions to specific intracellular membrane-bound compartments and ultimately to the nucleus, where the genomes are replicated and packaged for release. Therefore the transport of the infecting virion or viral genome to this site of multiplication is an essential process in productive viral infection as well as in latent infection and transformation. This review summarizes the major findings related to the characterization of the nature of the interactions between PyV and host protein and their impact in host cell invasion.
Collapse
Affiliation(s)
- Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
| | - Sutanuka Chattaraj
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Siliguri, District Darjeeling, West Bengal, PIN 734013, India
| |
Collapse
|
36
|
Neumann F, Czech-Sioli M, Dobner T, Grundhoff A, Schreiner S, Fischer N. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies. J Gen Virol 2016; 97:2926-2938. [PMID: 27580912 DOI: 10.1099/jgv.0.000593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.
Collapse
MESH Headings
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Autoantigens/genetics
- Autoantigens/metabolism
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/virology
- DNA Replication
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Humans
- Inclusion Bodies, Viral/genetics
- Inclusion Bodies, Viral/metabolism
- Inclusion Bodies, Viral/virology
- Merkel cell polyomavirus/genetics
- Merkel cell polyomavirus/physiology
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/metabolism
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Replication
Collapse
Affiliation(s)
- Friederike Neumann
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Dobner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
The Role of Nuclear Antiviral Factors against Invading DNA Viruses: The Immediate Fate of Incoming Viral Genomes. Viruses 2016; 8:v8100290. [PMID: 27782081 PMCID: PMC5086622 DOI: 10.3390/v8100290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
In recent years, it has been suggested that host cells exert intrinsic mechanisms to control nuclear replicating DNA viruses. This cellular response involves nuclear antiviral factors targeting incoming viral genomes. Herpes simplex virus-1 (HSV-1) is the best-studied model in this context, and it was shown that upon nuclear entry HSV-1 genomes are immediately targeted by components of promyelocytic leukemia nuclear bodies (PML-NBs) and the nuclear DNA sensor IFI16 (interferon gamma inducible protein 16). Based on HSV-1 studies, together with limited examples in other viral systems, these phenomena are widely believed to be a common cellular response to incoming viral genomes, although formal evidence for each virus is lacking. Indeed, recent studies suggest that the case may be different for adenovirus infection. Here we summarize the existing experimental evidence for the roles of nuclear antiviral factors against incoming viral genomes to better understand cellular responses on a virus-by-virus basis. We emphasize that cells seem to respond differently to different incoming viral genomes and discuss possible arguments for and against a unifying cellular mechanism targeting the incoming genomes of different virus families.
Collapse
|
38
|
Heiser K, Nicholas C, Garcea RL. Activation of DNA damage repair pathways by murine polyomavirus. Virology 2016; 497:346-356. [PMID: 27529739 DOI: 10.1016/j.virol.2016.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/08/2016] [Accepted: 07/26/2016] [Indexed: 11/27/2022]
Abstract
Nuclear replication of DNA viruses activates DNA damage repair (DDR) pathways, which are thought to detect and inhibit viral replication. However, many DNA viruses also depend on these pathways in order to optimally replicate their genomes. We investigated the relationship between murine polyomavirus (MuPyV) and components of DDR signaling pathways including CHK1, CHK2, H2AX, ATR, and DNAPK. We found that recruitment and retention of DDR proteins at viral replication centers was independent of H2AX, as well as the viral small and middle T-antigens. Additionally, infectious virus production required ATR kinase activity, but was independent of CHK1, CHK2, or DNAPK signaling. ATR inhibition did not reduce the total amount of viral DNA accumulated, but affected the amount of virus produced, indicating a defect in virus assembly. These results suggest that MuPyV may utilize a subset of DDR proteins or non-canonical DDR signaling pathways in order to efficiently replicate and assemble.
Collapse
Affiliation(s)
- Katie Heiser
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado at Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Catherine Nicholas
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado at Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Robert L Garcea
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado at Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Avenue, Boulder, CO 80303, USA.
| |
Collapse
|
39
|
Evans GL, Caller LG, Foster V, Crump CM. Anion homeostasis is important for non-lytic release of BK polyomavirus from infected cells. Open Biol 2016; 5:rsob.150041. [PMID: 26246492 PMCID: PMC4554916 DOI: 10.1098/rsob.150041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BK polyomavirus (BKPyV) is a member of a family of potentially oncogenic viruses, whose reactivation can cause severe pathological conditions in transplant patients, leading to graft rejection. As with many non-enveloped viruses, it is assumed that virus release occurs through lysis of the host cell. We now show the first evidence for a non-lytic release pathway for BKPyV and that this pathway can be blocked by the anion channel inhibitor DIDS. Our data show a dose-dependent effect of DIDS on the release of BKPyV virions. We also observed an accumulation of viral capsids in large LAMP-1-positive acidic organelles within the cytoplasm of cells upon DIDS treatment, suggesting potential late endosome or lysosome-related compartments are involved in non-lytic BKPyV release. These data highlight a novel mechanism by which polyomaviruses can be released from infected cells in an active and non-lytic manner, and that anion homeostasis regulation is important in this pathway.
Collapse
Affiliation(s)
- Gareth L Evans
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Laura G Caller
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Victoria Foster
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
40
|
Komatsu T, Nagata K, Wodrich H. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies. J Virol 2016; 90:1657-67. [PMID: 26608315 PMCID: PMC4719639 DOI: 10.1128/jvi.02545-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. IMPORTANCE The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and/or subsequent viral DNA replication. Here we performed a detailed analyses of the spatiotemporal distribution of incoming adenoviral genome complexes and found, in contrast to the expectation, that an adenoviral DNA replication factor, but not incoming genomes, targets PML-NBs. Thus, our findings may explain why adenoviral genomes could be observed at PML-NBs in earlier reports but argue against a generalized role for PML-NBs in targeting invading viral genomes.
Collapse
Affiliation(s)
- Tetsuro Komatsu
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, Bordeaux, France Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
41
|
Synergistic Activity of Combined NS5A Inhibitors. Antimicrob Agents Chemother 2015; 60:1573-83. [PMID: 26711745 DOI: 10.1128/aac.02639-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022] Open
Abstract
Daclatasvir (DCV) is a first-in-class hepatitis C virus (HCV) nonstructural 5A replication complex inhibitor (NS5A RCI) that is clinically effective in interferon-free combinations with direct-acting antivirals (DAAs) targeting alternate HCV proteins. Recently, we reported NS5A RCI combinations that enhance HCV inhibitory potential in vitro, defining a new class of HCV inhibitors termed NS5A synergists (J. Sun, D. R. O'Boyle II, R. A. Fridell, D. R. Langley, C. Wang, S. Roberts, P. Nower, B. M. Johnson F. Moulin, M. J. Nophsker, Y. Wang, M. Liu, K. Rigat, Y. Tu, P. Hewawasam, J. Kadow, N. A. Meanwell, M. Cockett, J. A. Lemm, M. Kramer, M. Belema, and M. Gao, Nature 527:245-248, 2015, doi:10.1038/nature15711). To extend the characterization of NS5A synergists, we tested new combinations of DCV and NS5A synergists against genotype (gt) 1 to 6 replicons and gt 1a, 2a, and 3a viruses. The kinetics of inhibition in HCV-infected cells treated with DCV, an NS5A synergist (NS5A-Syn), or a combination of DCV and NS5A-Syn were distinctive. Similar to activity observed clinically, DCV caused a multilog drop in HCV, followed by rebound due to the emergence of resistance. DCV-NS5A-Syn combinations were highly efficient at clearing cells of viruses, in line with the trend seen in replicon studies. The retreatment of resistant viruses that emerged using DCV monotherapy with DCV-NS5A-Syn resulted in a multilog drop and rebound in HCV similar to the initial decline and rebound observed with DCV alone on wild-type (WT) virus. A triple combination of DCV, NS5A-Syn, and a DAA targeting the NS3 or NS5B protein cleared the cells of viruses that are highly resistant to DCV. Our data support the observation that the cooperative interaction of DCV and NS5A-Syn potentiates both the genotype coverage and resistance barrier of DCV, offering an additional DAA option for combination therapy and tools for explorations of NS5A function.
Collapse
|
42
|
Emerging Roles of Viroporins Encoded by DNA Viruses: Novel Targets for Antivirals? Viruses 2015; 7:5375-87. [PMID: 26501313 PMCID: PMC4632388 DOI: 10.3390/v7102880] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Studies have highlighted the essential nature of a group of small, highly hydrophobic, membrane embedded, channel-forming proteins in the life cycles of a growing number of RNA viruses. These viroporins mediate the flow of ions and a range of solutes across cellular membranes and are necessary for manipulating a myriad of host processes. As such they contribute to all stages of the virus life cycle. Recent discoveries have identified proteins encoded by the small DNA tumor viruses that display a number of viroporin like properties. This review article summarizes the recent developments in our understanding of these novel viroporins; describes their roles in the virus life cycles and in pathogenesis and speculates on their potential as targets for anti-viral therapeutic intervention.
Collapse
|
43
|
Abstract
The Epstein-Barr virus (EBV) capsid contains a major capsid protein, VCA; two minor capsid proteins, BDLF1 and BORF1; and a small capsid protein, BFRF3. During the lytic cycle, these capsid proteins are synthesized and imported into the host nucleus for capsid assembly. This study finds that EBV capsid proteins colocalize with promyelocytic leukemia (PML) nuclear bodies (NBs) in P3HR1 cells during the viral lytic cycle, appearing as nuclear speckles under a confocal laser scanning microscope. In a glutathione S-transferase pulldown study, we show that BORF1 interacts with PML-NBs in vitro. BORF1 also colocalizes with PML-NBs in EBV-negative Akata cells after transfection and is responsible for bringing VCA and the VCA-BFRF3 complex from the cytoplasm to PML-NBs in the nucleus. Furthermore, BDLF1 is dispersed throughout the cell when expressed alone but colocalizes with PML-NBs when BORF1 is also present in the cell. In addition, this study finds that knockdown of PML expression by short hairpin RNA does not influence the intracellular levels of capsid proteins but reduces the number of viral particles produced by P3HR1 cells. Together, these results demonstrate that BORF1 plays a critical role in bringing capsid proteins to PML-NBs, which may likely be the assembly sites of EBV capsids. The mechanisms elucidated in this study are critical to understanding the process of EBV capsid assembly. IMPORTANCE Capsid assembly is an important event during the Epstein-Barr virus (EBV) lytic cycle, as this process is required for the production of virions. In this study, confocal microscopy revealed that the EBV capsid protein BORF1 interacts with promyelocytic leukemia (PML) nuclear bodies (NBs) in the host nucleus and is responsible for transporting the other EBV capsid proteins, including VCA, BDLF1, and BFRF3, to these subnuclear locations prior to initiation of capsid assembly. This study also found that knockdown of PML expression by short hairpin RNA significantly reduces EBV capsid assembly capabilities. This enhanced understanding of capsid assembly offers potential for the development of novel antiviral strategies and therapies that can prevent the propagation and spread of EBV.
Collapse
|
44
|
Zhang J, Ye C, Ruan X, Zan J, Xu Y, Liao M, Zhou J. The chaperonin CCTα is required for efficient transcription and replication of rabies virus. Microbiol Immunol 2015; 58:590-9. [PMID: 25082455 DOI: 10.1111/1348-0421.12186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/08/2014] [Accepted: 07/24/2014] [Indexed: 12/25/2022]
Abstract
Negri bodies (NBs) are formed in the cytoplasm of rabies virus (RABV)-infected cells and are accompanied by a number of host factors to NBs, in which replication and transcription occur. Here, it was found that chaperonin containing TCP-1 subunit alpha (CCTα) relocalizes to NBs in RABV-infected cells, and that cotransfection of nucleo- and phospho-proteins of RABV is sufficient to recruit CCTα to the NBs' structure. Inhibition of CCTα expression by specific short hairpin RNA knockdown inhibited the replication and transcription of RABV. Therefore, this study showed that the host factor CCTα is associated with RABV infection and is very likely required for efficient virus transcription and replication.
Collapse
Affiliation(s)
- Jinyang Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058; State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003; Research Center of Molecular Medicine of Yunnan Province, Kunming University of Science and Technology, Kunming, 650500, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Polyomavirus interaction with the DNA damage response. Virol Sin 2015; 30:122-9. [PMID: 25910481 DOI: 10.1007/s12250-015-3583-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Viruses are obligate intracellular parasites that subvert cellular metabolism and pathways to mediate their own replication-normally at the expense of the host cell. Polyomaviruses are a group of small DNA viruses, which have long been studied as a model for eukaryotic DNA replication. Polyomaviruses manipulate host replication proteins, as well as proteins involved in DNA maintenance and repair, to serve as essential cofactors for productive infection. Moreover, evidence suggests that polyomavirus infection poses a unique genotoxic threat to the host cell. In response to any source of DNA damage, cells must initiate an effective DNA damage response (DDR) to maintain genomic integrity, wherein two protein kinases, ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), are major regulators of DNA damage recognition and repair. Recent investigation suggests that these essential DDR proteins are required for productive polyomavirus infection. This review will focus on polyomaviruses and their interaction with ATM- and ATR-mediated DNA damage responses and the effect of this interaction on host genomic stability.
Collapse
|
46
|
Sowd GA, Mody D, Eggold J, Cortez D, Friedman KL, Fanning E. SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products. PLoS Pathog 2014; 10:e1004536. [PMID: 25474690 PMCID: PMC4256475 DOI: 10.1371/journal.ppat.1004536] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/23/2014] [Indexed: 11/18/2022] Open
Abstract
Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. Viruses from both Polyomaviridae and Papillomaviridae families share several characteristics. These include common modes of DNA replication and an accumulation of DNA damage signaling and repair proteins at replicating viral DNA. Several DNA repair proteins, with unknown functions during viral DNA replication, associate with the viral replication centers of the polyomavirus simian virus 40 (SV40). In this study we examined the mechanisms that regulate and recruit DNA repair machinery to replicating viral DNA during permissive SV40 infection. We found that the virus deploys DNA repair to broken viral DNA using cellular DNA damage signaling pathways. Our results shed light on why both Polyomaviridae and Papillomaviridae DNA replication elicits DNA damage signaling and repair. As no effective treatments currently exist for the Polyomaviridae family, our data identify pathways that might be therapeutically targeted to inhibit productive viral replication. Additionally, we categorize distinct functions for DNA repair and damage signaling pathways during viral replication. The results provide insights into how viruses exploit cellular processes to overwhelm the cell and propagate.
Collapse
Affiliation(s)
- Gregory A. Sowd
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (GAS); (KLF)
| | - Dviti Mody
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Joshua Eggold
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Katherine L. Friedman
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (GAS); (KLF)
| | - Ellen Fanning
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
47
|
Fernández-de-Castro I, Risco C. Imaging RNA virus replication assemblies: bunyaviruses and reoviruses. Future Virol 2014. [DOI: 10.2217/fvl.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT RNA viruses replicate in the cytoplasm in close association with host cell membranes. Both viral and cellular factors generate organelle-like structures termed viral factories, viral inclusions or viroplasms. Biochemical, light and electron microscopy analyses, including 3D models, have improved our understanding of the architecture and function of RNA virus replication factories. In these structures, the virus compartmentalizes genome replication and transcription, thus enhancing replication efficiency and protection from host defenses. Recent studies with diverse RNA viruses have elucidated the ultrastructure of replication organelles and shown how these structures act in close coordination with virion assembly. This review focuses on a general description of RNA virus factories and summarizes recent progress in the characterization of those assembled by bunyaviruses and reoviruses. We describe how these viruses modify intracellular membranes; we highlight similarities with the structures induced by viruses of other families, and discuss how these structures might be formed.
Collapse
Affiliation(s)
| | - Cristina Risco
- Cell Structure Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
48
|
Infection cycles of large DNA viruses: Emerging themes and underlying questions. Virology 2014; 466-467:3-14. [DOI: 10.1016/j.virol.2014.05.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 11/20/2022]
|
49
|
Risco C, de Castro IF, Sanz-Sánchez L, Narayan K, Grandinetti G, Subramaniam S. Three-Dimensional Imaging of Viral Infections. Annu Rev Virol 2014; 1:453-73. [PMID: 26958730 DOI: 10.1146/annurev-virology-031413-085351] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) imaging technologies are beginning to have significant impact in the field of virology, as they are helping us understand how viruses take control of cells. In this article we review several methodologies for 3D imaging of cells and show how these technologies are contributing to the study of viral infections and the characterization of specialized structures formed in virus-infected cells. We include 3D reconstruction by transmission electron microscopy (TEM) using serial sections, electron tomography, and focused ion beam scanning electron microscopy (FIB-SEM). We summarize from these methods selected contributions to our understanding of viral entry, replication, morphogenesis, egress and propagation, and changes in the spatial architecture of virus-infected cells. In combination with live-cell imaging, correlative microscopy, and new techniques for molecular mapping in situ, the availability of these methods for 3D imaging is expected to provide deeper insights into understanding the structural and dynamic aspects of viral infection.
Collapse
Affiliation(s)
- Cristina Risco
- Cell Structure Laboratory, National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain;
| | | | - Laura Sanz-Sánchez
- Cell Structure Laboratory, National Center for Biotechnology (CNB-CSIC), Madrid 28049, Spain;
| | - Kedar Narayan
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| | - Giovanna Grandinetti
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| | - Sriram Subramaniam
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892;
| |
Collapse
|
50
|
JC virus inclusions in progressive multifocal leukoencephalopathy: scaffolding promyelocytic leukemia nuclear bodies grow with cell cycle transition through an S-to-G2-like state in enlarging oligodendrocyte nuclei. J Neuropathol Exp Neurol 2014; 73:442-53. [PMID: 24709678 PMCID: PMC3995394 DOI: 10.1097/nen.0000000000000066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In progressive multifocal leukoencephalopathy, JC virus–infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed “promyelocytic leukemia nuclear bodies” (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production. We analyzed the formation process of intranuclear viral inclusions by morphometry and assessed PML-NB alterations in the brains of 2 patients with progressive multifocal leukoencephalopathy. By immunohistochemistry, proliferating cell nuclear antigen was most frequently detected in smaller nuclei; cyclin A was detected in larger nuclei. This suggests an S-to-G2 cell cycle transition in infected cells associated with nuclear enlargement. Sizes of PML-NBs were variable, but they were usually either small speckles 200 to 400 nm in diameter or distinct spherical shells with a diameter of 1 μm or more. By confocal microscopy, JC virus capsid proteins were associated with both small and large PML-NBs, but disruption of large PML-NBs was observed by ground-state depletion fluorescence nanoscopy. Clusters of progeny virions were also detected by electron microscopy. Our data suggest that, in progressive multifocal leukoencephalopathy, JC virus produces progeny virions in enlarging oligodendrocyte nuclei in association with growing PML-NBs and with cell cycle transition through an S-to-G2-like state.
Collapse
|