1
|
Wu Z, Wu X, Wang Z, Ye X, Pang L, Wang Y, Zhou Y, Chen T, Zhou S, Wang Z, Sheng Y, Zhang Q, Chen J, Tang P, Shen X, Huang J, Drezen JM, Strand MR, Chen X. A symbiotic gene stimulates aggressive behavior favoring the survival of parasitized caterpillars. Proc Natl Acad Sci U S A 2025; 122:e2422935122. [PMID: 40294273 PMCID: PMC12067249 DOI: 10.1073/pnas.2422935122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Animals often exhibit increased aggression in response to starvation, while parasites often manipulate host behavior. In contrast, underlying molecular mechanisms for these behavioral changes are mostly unknown. The diamondback moth, Plutella xylostella, is an agricultural pest that feeds on cruciferous plants as larvae, while Cotesia vestalis is a parasitoid wasp that parasitizes diamondback moth larvae. In this study, we determined that unparasitized diamondback moth larvae exhibit increased aggression and cannibalism when starved, while starved larvae parasitized by C. vestalis were more aggressive than unparasitized larvae. C. vestalis harbors a domesticated endogenized virus named Cotesia vestalis bracovirus (CvBV) that wasps inject into parasitized hosts. Starvation increased octopamine (OA) levels in the central nervous system (CNS) of diamondback moth larvae while a series of experiments identified a CvBV-encoded gene product named Assailant that further increased aggression in starved diamondback moth larvae. We determined that Assailant increases OA levels by activating tyramine beta-hydroxylase (PxTβh), which is a key enzyme in the OA biosynthesis pathway. Ectopic expression of assailant in Drosophila melanogaster likewise upregulated expression of DmTβh and OA, which increased aggressive behavior in male flies as measured by a well-established assay. While parasitized hosts are often thought to be at a competitive disadvantage to nonparasitized individuals, our results uncover how a parasitoid uses an endogenized virus to increase host aggression and enhance survival of offspring when competing against unparasitized hosts.
Collapse
Affiliation(s)
- Zhiwei Wu
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xiaotong Wu
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Zhizhi Wang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xiqian Ye
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Lan Pang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yanping Wang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yuenan Zhou
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Ting Chen
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Sicong Zhou
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Zehua Wang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yifeng Sheng
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Qichao Zhang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Jiani Chen
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Pu Tang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Xingxing Shen
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Jianhua Huang
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, Tours37200, France
| | | | - Xuexin Chen
- Zhejiang Engineering Research Center for Biological Control of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, State Key Lab of Rice Biology and Breeding, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS - Université de Tours, Tours37200, France
| |
Collapse
|
2
|
Lem M, Rh H, Dg B, Barkhouse A, Miller DW, Raun N, Sa A. The caterpillar Manduca sexta brain shows changes in gene expression and protein abundance correlating with parasitic manipulation of behaviour. Sci Rep 2024; 14:31773. [PMID: 39738473 PMCID: PMC11685936 DOI: 10.1038/s41598-024-82506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
The parasitic wasp, Cotesia congregata, manipulates the behaviour of its host, the caterpillar Manduca sexta. The female wasp injects her eggs and a symbiotic virus (i.e. bracovirus, CcBV) into the body of its host. The host's behaviour remains unchanged until the wasps exit the caterpillar, and then the caterpillar becomes a non-feeding "bodyguard" for the wasp cocoons. Using proteomic, transcriptomic and qPCR studies, we discovered an increase in antimicrobial peptide gene expression and protein abundance in the host central nervous system at the time of wasp emergence, correlating with the change in host behaviour. These results support the hypothesis that the wasps hyperactivate an immune-neural connection to help create the change in behaviour. At the time of wasp emergence, there was also an increase in bracoviral gene expression and proteins in the host brain, suggesting that the bracovirus may also be involved in altering host behaviour. Other changes in gene expression and protein abundance suggest that synaptic transmission may be altered after wasp emergence, and a reduction in descending neural activity from the host's brain provides indirect support for this hypothesis.
Collapse
Affiliation(s)
- McMillan Lem
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Herbison Rh
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Biron Dg
- Lab Microorganismes: Génome et Environment, Université Clermont Auvergne, UMR CNRS, Paris, 6023, France
| | - A Barkhouse
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - D W Miller
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - N Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, B3H 4R2, Canada
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, 6525 GA, the Netherlands
| | - Adamo Sa
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
3
|
Yang J, Xu Q, Shen W, Jiang Z, Gu X, Li F, Li B, Wei J. The Toll/IMD pathways mediate host protection against dipteran parasitoids. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104614. [PMID: 38272205 DOI: 10.1016/j.jinsphys.2024.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Parasitoids have utilized a variety of strategies to counteract host defense. They are in different taxonomic status and exhibit phenotypic and genetic diversity, and thus are thought to evolve distinct anti-defense mechanisms. In this study, we investigated the performance of two closely related parasitoids, Exorista japonica and Exorista sorbillans (Diptera: Tachinidae) that are biological control agents in agriculture and major insect pests in sericulture, on the host Bombyx mori. We show that the host is more susceptible to E. sorbillans infection while relatively resistant to E. japonica infection. Moreover, the expression levels of host antimicrobial peptides (AMPs) genes are repressed at early infection and induced at late infection of E. japonica, while AMPs are over-expressed at early infection and return to normal levels at late infection of E. sorbillans. In parallel, Toll and IMD pathway genes are generally induced at late infection of E. japonica, whereas these genes are up-regulated at early infection and down-regulated at late infection of E. sorbillans. Activating of host Toll/IMD pathways and AMPs expression by lipopolysaccharide (LPS) represses the larval growth of E. sorbillans. Conversely, inhibiting host Toll/IMD pathways by RNA interference significantly promotes E. japonica development. Therefore, the Toll/IMD pathways are required in the host for defense against infection of dipteran parasitoids. Overall, our study provides the new insight into the diversified host-parasitoid interactions, and offers a theoretical basis for further studies of the adaptive mechanism of dipteran parasitoids.
Collapse
Affiliation(s)
- Jin Yang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qian Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenwen Shen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhe Jiang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinran Gu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, China; Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, School of Chemistry and Bioengineering, Hechi University, Yizhou, China.
| |
Collapse
|
4
|
Wang ZH, Ye XQ, Wu XT, Wang ZZ, Huang JH, Chen XX. A new gene family (BAPs) of Cotesia bracovirus induces apoptosis of host hemocytes. Virulence 2023; 14:2171691. [PMID: 36694288 PMCID: PMC9908294 DOI: 10.1080/21505594.2023.2171691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polydnaviruses (PDVs), obligatory symbionts with parasitoid wasps, function as host immune suppressors and growth and development regulator. PDVs can induce host haemocyte apoptosis, but the underlying mechanism remains largely unknown. Here, we provided evidence that, during the early stages of parasitism, the activated Cotesia vestalis bracovirus (CvBV) reduced the overall number of host haemocytes by inducing apoptosis. We found that one haemocyte-highly expressed CvBV gene, CvBV-26-4, could induce haemocyte apoptosis. Further analyses showed that CvBV-26-4 has four homologs from other Cotesia bracoviruses and BV from wasps in the genus Glyptapanteles, and all four of them possessed a similar structure containing 3 copies of a well-conserved motif (Gly-Tyr-Pro-Tyr, GYPY). Mass spectrometry analysis revealed that CvBV-26-4 was secreted into plasma by haemocytes and then degraded into peptides that induced the apoptosis of haemocytes. Moreover, ectopic expression of CvBV-26-4 caused fly haemocyte apoptosis and increased the susceptibility of flies to bacteria. Based on this research, a new family of bracovirus genes, Bracovirus apoptosis-inducing proteins (BAPs), was proposed. Furthermore, it was discovered that the development of wasp larvae was affected when the function of CvBV BAP was obstructed in the parasitized hosts. The results of our study indicate that the BAP gene family from the bracoviruses group is crucial for immunosuppression during the early stages of parasitism.
Collapse
Affiliation(s)
- Ze-Hua Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Regional Development and Governance Center, Hangzhou, China
| | - Xi-Qian Ye
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao-Tong Wu
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Zhi-Zhi Wang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian-Hua Huang
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xue-Xin Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Lab of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China,CONTACT Xue-Xin Chen
| |
Collapse
|
5
|
Zhou L, Wang R, Lin Z, Shi S, Chen C, Jiang H, Zou Z, Lu Z. Two venom serpins from the parasitoid wasp Microplitis mediator inhibit the host prophenoloxidase activation and antimicrobial peptide synthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103895. [PMID: 36538995 PMCID: PMC11587170 DOI: 10.1016/j.ibmb.2022.103895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Endoparasitoid wasps inject venom proteins into the hemocoel of host insects to ensure survival, growth, and development of their progenies by blocking host immunity. We previously identified ten serine protease inhibitors of the serpin superfamily in venom of the endoparasitoid wasp, Microplitis mediator, but it is unclear how these inhibitors may interact with host immune serine proteases. In this study, we investigated the functions of two serpins, MmvSPN-1 and MmvSPN-2, in the regulation of humoral immune responses in two hosts, the oriental armyworm Pseudaletia separate and the cotton bollworm Helicoverpa armigera, by dsRNA knockdown and biochemical assays using recombinant proteins. Knockdown of the two serpins resulted in increases in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) production in the hosts. After injection into the host hemocoel, the recombinant serpins inhibited PPO activation and AMP transcription. Mass spectrometry analysis of the pull-downs and in vitro reconstitution experiments revealed that HacSP29, a clip-domain serine protease in H. armigera, is the target of these two serpins. Therefore, these two inhibitors in the wasp venom may protect eggs from attacks by melanization and AMPs in the host insects.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruijuan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suke Shi
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Gao HS, Hu RM, Wang ZH, Ye XQ, Wu XT, Huang JH, Wang ZZ, Chen XX. A Polydnavirus Protein Tyrosine Phosphatase Negatively Regulates the Host Phenoloxidase Pathway. Viruses 2022; 15:56. [PMID: 36680096 PMCID: PMC9866809 DOI: 10.3390/v15010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Polydnavirus (PDV) is a parasitic factor of endoparasitic wasps and contributes greatly to overcoming the immune response of parasitized hosts. Protein tyrosine phosphatases (PTPs) regulate a wide variety of biological processes at the post-transcriptional level in mammals, but knowledge of PDV PTP action during a parasitoid−host interaction is limited. In this study, we characterized a PTP gene, CvBV_12-6, derived from Cotesia vestalis bracovirus (CvBV), and explored its possible regulatory role in the immune response of the host Plutella xylostella. Our results from qPCR show that CvBV_12-6 was highly expressed in hemocytes at an early stage of parasitization. To explore CvBV_12-6 function, we specifically expressed CvBV_12-6 in Drosophila melanogaster hemocytes. The results show that Hml-Gal4 > CvBV_12-6 suppressed the phenoloxidase activity of hemolymph in D. melanogaster, but exerted no effect on the total count or the viability of the hemocytes. In addition, the Hml-Gal4 > CvBV_12-6 flies exhibited decreased antibacterial abilities against Staphylococcus aureus. Similarly, we found that CvBV_12-6 significantly suppressed the melanization of the host P. xylostella 24 h post parasitization and reduced the viability, but not the number, of hemocytes. In conclusion, CvBV_12-6 negatively regulated both cellular and humoral immunity in P. xylostella, and the related molecular mechanism may be universal to insects.
Collapse
Affiliation(s)
- Hong-Shuai Gao
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Rong-Min Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ze-Hua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Tong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Cerqueira de Araujo A, Leobold M, Bézier A, Musset K, Uzbekov R, Volkoff AN, Drezen JM, Huguet E, Josse T. Conserved Viral Transcription Plays a Key Role in Virus-Like Particle Production of the Parasitoid Wasp Venturia canescens. J Virol 2022; 96:e0052422. [PMID: 35678601 PMCID: PMC9278141 DOI: 10.1128/jvi.00524-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.
Collapse
Affiliation(s)
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Rustem Uzbekov
- Université de Tours, Département des Microscopies, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Anne-Nathalie Volkoff
- Diversité, Génomes & Interactions Microorganismes - Insectes (DGIMI), UMR 1333, Université de Montpellier - INRAE, Montpellier, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| |
Collapse
|
8
|
Wu X, Wu Z, Ye X, Pang L, Sheng Y, Wang Z, Zhou Y, Zhu J, Hu R, Zhou S, Chen J, Wang Z, Shi M, Huang J, Chen X. The Dual Functions of a Bracovirus C-Type Lectin in Caterpillar Immune Response Manipulation. Front Immunol 2022; 13:877027. [PMID: 35663984 PMCID: PMC9157488 DOI: 10.3389/fimmu.2022.877027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Parasitoids are widespread in natural ecosystems and normally equipped with diverse viral factors to defeat host immune responses. On the other hand, parasitoids can enhance the antibacterial abilities and improve the hypoimmunity traits of parasitized hosts that may encounter pathogenic infections. These adaptive strategies guarantee the survival of parasitoid offspring, yet their underlying mechanisms are poorly understood. Here, we focused on Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and found that C. vestalis parasitization decreases the number of host hemocytes, leading to disruption of the encapsulation reaction. We further found that one bracovirus C-type lectin gene, CvBV_28-1, is highly expressed in the hemocytes of parasitized hosts and participates in suppressing the proliferation rate of host hemocytes, which in turn reduces their population and represses the process of encapsulation. Moreover, CvBV_28-1 presents a classical bacterial clearance ability via the agglutination response in a Ca2+-dependent manner in response to gram-positive bacteria. Our study provides insights into the innovative strategy of a parasitoid-derived viral gene that has dual functions to manipulate host immunity for a successful parasitism.
Collapse
Affiliation(s)
- Xiaotong Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhiwei Wu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiqian Ye
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lan Pang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yifeng Sheng
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zehua Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yuenan Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiachen Zhu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rongmin Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Sicong Zhou
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiani Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhizhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Shi
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Jianhua Huang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xuexin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.,Guangdong Lab for Lingnan Modern Agriculture, Guangzhou, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China.,Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China.,State Key Lab of Rice Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
10
|
Jung MH, Nikapitiya C, Kim SJ, Han HJ, Kim MS, Choi HS, Jung SJ. Protective immunity induced by ankyrin repeat-containing protein-based DNA vaccine against rock bream iridovirus (RBIV) in rock bream (Oplegnathus fasciatus). Virus Res 2022; 318:198827. [DOI: 10.1016/j.virusres.2022.198827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022]
|
11
|
Gu Q, Wu Z, Zhou Y, Wang Z, Huang J, Shi M, Chen X. A serpin (CvT-serpin15) of teratocytes contributes to microbial-resistance in Plutella xylostella during Cotesia vestalis parasitism. PEST MANAGEMENT SCIENCE 2021; 77:4730-4740. [PMID: 34155805 PMCID: PMC9292400 DOI: 10.1002/ps.6515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/25/2021] [Accepted: 06/21/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Parasitic wasps are an important group of entomophagous insects for pest control. As parasitic wasps often lay eggs on or into their associated hosts, parasitoids evolve to utilize several factors including venom, polydnavirus (PDV) to alter host physiology for successful parasitism. Some taxa of endoparasitoids produce teratocytes, which are a type of cell that is released into host insects when wasp eggs hatch. Teratocytes display multifunction in parasitism such as host nutritional exploration, immune and developmental regulation, by secreting plenty of proteins into host hemocoel. RESULTS A serpin (CvT-serpin15) secreted by teratocytes was characterized. QPCR results showed the expressional level of CvT-serpin15 was upregulated following bacterial challenges. Enzyme activity experiment indicated the recombinant CvT-serpin15 protein could interfere with the growth of Gram-positive bacteria Staphylococcus aureus. The survival rate assay demonstrated CvT-serpin15 increased survival rate of Plutella xylostella infected by S. aureus. CONCLUSION CvT-serpin15 secreted by teratocytes would boost the host immune system when pathogens invade host hemocoel during parasitism, and ultimately protect the development of wasp larva from bacterial infection. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Qijuan Gu
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
- College of Agriculture and Food ScienceZhejiang Agriculture & Forestry UniversityHangzhouChina
| | - Zhiwei Wu
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Yuenan Zhou
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Zhizhi Wang
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Jianhua Huang
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceZhejiang UniversityHangzhouChina
| | - Min Shi
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect PestsZhejiang UniversityHangzhouChina
| | - Xuexin Chen
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
- State Key Lab of Rice BiologyZhejiang UniversityHangzhouChina
| |
Collapse
|
12
|
Cai QC, Chen CX, Liu HY, Zhang W, Han YF, Zhang Q, Zhou GF, Xu S, Liu T, Xiao W, Zhu QS, Luo KJ. Interactions of Vank proteins from Microplitis bicoloratus bracovirus with host Dip3 suppress eIF4E expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103994. [PMID: 33417999 DOI: 10.1016/j.dci.2021.103994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Microplitis bicoloratus bracovirus (MbBV) inhibits the immune response of the host Spodoptera litura by disrupting nuclear factor (NF)-κB signaling and downstream gene expression. However, the underlying molecular mechanisms are not well understood. Herein, we report that viral ankyrin (Vank) proteins interacted with host dorsal-interacting protein 3 (Dip3) to selectively inhibit the transcription of eukaryotic translation initiation factor 4 E (eIF4E). Dip3 and Vank proteins were co-expressed and colocalized in the nucleus. Furthermore, ectopic expression of Dip3 rescued the transcription of some NF-κB-dependent genes suppressed by Vank proteins, including eIF4E. Co-immunoprecipitation and pull-down assays confirmed that Vank proteins interacted with and bound to full-length Dip3, which including MADF, DNA-binding protein, BESS, and protein-protein interaction motifs as well as non-motif sequences. In vivo, RNAi-mediated dip3 silencing decreased eIF4E levels and was accompanied by an immunosuppressive phenotype in S. litura. Our results provided novel insights into the regulation of host transcription during immune suppression by viral proteins that modulate nuclear NF-κB signaling.
Collapse
Affiliation(s)
- Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Hong-Yu Liu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Wei Zhang
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Yun-Feng Han
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Qi Zhang
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Gui-Fang Zhou
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China
| | - Sha Xu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China
| | - Tian Liu
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Wei Xiao
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, 650500, PR China; Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, 650500, PR China; Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming, 650500, PR China.
| |
Collapse
|
13
|
Chen CX, He HJ, Cai QC, Zhang W, Kou TC, Zhang XW, You S, Chen YB, Liu T, Xiao W, Zhu QS, Luo KJ. Bracovirus-mediated innexin hemichannel closure in cell disassembly. iScience 2021; 24:102281. [PMID: 33817584 PMCID: PMC8008186 DOI: 10.1016/j.isci.2021.102281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023] Open
Abstract
Cell-cell communication is necessary for cellular immune response. Hemichannel closure disrupts communication between intracellular and extracellular environments during polydnavirus-induced immunosuppression in invertebrates. However, the effects of hemichannel closure on cellular immune response are unclear. Here, we examined apoptotic body formation triggered by hemichannel closure in hemocytes of Spodoptera litura infected with bracovirus from the parasitic wasp, Microplitis bicoloratus. We showed that Microplitis bicoloratus bracovirus (MbBV) induced apoptotic cell disassembly, accompanied by hemichannel closure. Hemocyte apoptotic body formation was caused by the dysregulation of the innexins (Inxs), Inx1, Inx2, Inx3, and Inx4, during the MbBV-mediated inhibition of pI3K/AKT signaling and activation of caspase-3, which cleaved gap junction Inx proteins. Our results showed that hemichannel opening or closure in response to various stimuli, which induces the modulation of Inx levels, could inhibit or activate apoptotic body formation, respectively. Therefore, the "hemichannel open and close" model may regulate the cellular immune response.
Collapse
Affiliation(s)
- Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Hao-Juan He
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Wei Zhang
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Tian-Chao Kou
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Xue-Wen Zhang
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Shan You
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Ya-Bin Chen
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
| | - Tian Liu
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| | - Wei Xiao
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming 650500, P.R. China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming 650500, P.R. China
- Biocontrol Engineering Research Centre of Crop Disease & Pest in Yunnan Province, Kunming 650500, P. R. China
| |
Collapse
|
14
|
Arvin MJ, Lorenzi A, Burke GR, Strand MR. MdBVe46 is an envelope protein that is required for virion formation by Microplitis demolitor bracovirus. J Gen Virol 2021; 102:001565. [PMID: 33591247 PMCID: PMC8515855 DOI: 10.1099/jgv.0.001565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Bracoviruses (BVs) are endogenized nudiviruses that braconid parasitoid wasps have coopted for functions in parasitizing hosts. Microplitis demolitor is a braconid wasp that produces Microplitis demolitor bracovirus (MdBV) and parasitizes the larval stage of the moth Chrysodeixis includens. Some BV core genes are homologs of genes also present in baculoviruses while others are only known from nudiviruses or other BVs. In this study, we had two main goals. The first was to separate MdBV virions into envelope and nucleocapsid fractions before proteomic analysis to identify core gene products that were preferentially associated with one fraction or the other. Results indicated that nearly all MdBV baculovirus-like gene products that were detected by our proteomic analysis had similar distributions to homologs in the occlusion-derived form of baculoviruses. Several core gene products unknown from baculoviruses were also identified as envelope or nucleocapsid components. Our second goal was to functionally characterize a core gene unknown from baculoviruses that was originally named HzNVorf64-like. Immunoblotting assays supported our proteomic data that identified HzNVorf64-like as an envelope protein. We thus renamed HzNVorf64-like as MdBVe46, which we further hypothesized was important for infection of C. includens. Knockdown of MdBVe46 by RNA interference (RNAi) greatly reduced transcript and protein abundance. Knockdown of MdBVe46 also altered virion morphogenesis, near-fully inhibited infection of C. includens, and significantly reduced the proportion of hosts that were successfully parasitized by M. demolitor.
Collapse
Affiliation(s)
- Michael J. Arvin
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Ange Lorenzi
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Gaelen R. Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Tang CK, Tsai CH, Wu CP, Lin YH, Wei SC, Lu YH, Li CH, Wu YL. MicroRNAs from Snellenius manilae bracovirus regulate innate and cellular immune responses of its host Spodoptera litura. Commun Biol 2021; 4:52. [PMID: 33420334 PMCID: PMC7794284 DOI: 10.1038/s42003-020-01563-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/18/2020] [Indexed: 01/29/2023] Open
Abstract
To avoid inducing immune and physiological responses in insect hosts, parasitoid wasps have developed several mechanisms to inhibit them during parasitism, including the production of venom, specialized wasp cells, and symbioses with polydnaviruses (PDVs). These mechanisms alter the host physiology to give the wasp offspring a greater chance of survival. However, the molecular mechanisms for most of these alterations remain unclear. In the present study, we applied next-generation sequencing analysis and identified several miRNAs that were encoded in the genome of Snellenius manilae bracovirus (SmBV), and expressed in the host larvae, Spodoptera litura, during parasitism. Among these miRNAs, SmBV-miR-199b-5p and SmBV-miR-2989 were found to target domeless and toll-7 in the host, which are involved in the host innate immune responses. Microinjecting the inhibitors of these two miRNAs into parasitized S. litura larvae not only severely decreased the pupation rate of Snellenius manilae, but also restored the phagocytosis and encapsulation activity of the hemocytes. The results demonstrate that these two SmBV-encoded miRNAs play an important role in suppressing the immune responses of parasitized hosts. Overall, our study uncovers the functions of two SmBV-encoded miRNAs in regulating the host innate immune responses upon wasp parasitism.
Collapse
Affiliation(s)
- Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Hsuan Tsai
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Carol-P Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Sung-Chan Wei
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Hsun Li
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
16
|
Cavichiolli de Oliveira N, Cônsoli FL. Beyond host regulation: Changes in gut microbiome of permissive and non-permissive hosts following parasitization by the wasp Cotesia flavipes. FEMS Microbiol Ecol 2020; 96:5682488. [PMID: 31860060 DOI: 10.1093/femsec/fiz206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023] Open
Abstract
Koinobiont parasitoids regulate the physiology of their hosts, possibly interfering with the host gut microbiota and ultimately impacting parasitoid development. We used the parasitoid Cotesia flavipes to investigate if the regulation of the host would also affect the host gut microbiota. We also wondered if the effects of parasitization on the gut microbiota would depend on the host-parasitoid association by testing the permissive Diatraea saccharalis and the non-permissive Spodoptera frugiperda hosts. We determined the structure and potential functional contribution of the gut microbiota of the fore-midgut and hindgut of the hosts at different stages of development of the immature parasitoid. The abundance and diversity of operational taxonomic units of the anteromedial (fore-midgut) gut and posterior (hindgut) region from larvae of the analyzed hosts were affected by parasitization. Changes in the gut microbiota induced by parasitization altered the potential functional contribution of the gut microbiota associated with both hosts. Our data also indicated that the mechanism by which C. flavipes interferes with the gut microbiota of the host does not require a host-parasitoid coevolutionary history. Changes observed in the potential contribution of the gut microbiota of parasitized hosts impact the host's nutritional quality, and could favor host exploitation by C. flavipes.
Collapse
Affiliation(s)
- Nathalia Cavichiolli de Oliveira
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, São Paulo, Brazil
| | - Fernando Luís Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Av. Pádua Dias 11, 13418-900 Piracicaba, São Paulo, Brazil
| |
Collapse
|
17
|
Chang Y, Tang CK, Lin YH, Tsai CH, Lu YH, Wu YL. Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in Spodoptera litura. Sci Rep 2020; 10:2096. [PMID: 32034183 PMCID: PMC7005799 DOI: 10.1038/s41598-020-58375-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/11/2020] [Indexed: 01/28/2023] Open
Abstract
Sufficient energy supply to the host immune system is important for resisting pathogens. Therefore, during pathogen infection, the host metabolism is reassigned from storage, growth, and development to the immune system. Previous studies in Drosophila melanogaster have demonstrated that systemic metabolic switching upon an immune challenge is activated by extracellular adenosine signaling, modulating carbohydrate mobilization and redistributing energy to the hemocytes. In the present study, we discovered that symbiotic virus (SmBV) of the parasitoid wasp Snellenius manilae is able to down-regulate the extracellular adenosine of its host, Spodoptera litura, to inhibit metabolism switching. The decreased carbohydrate mobilization, glycogenolysis, and ATP synthesis upon infection results in the host being unable to supply energy to its immune system, thus benefitting the development of wasp larvae. When we added adenosine to the infected S. litura larvae, we observed enhanced host immune responses that decreased the pupation rate of S. manilae. Previous studies showed that after pathogen infection, the host activates its adenosine pathway to trigger immune responses. However, our results suggest a different model: we found that in S. manilae, SmBV modulates the host adenosine pathway such that wasp eggs and larvae can evade the host immune response.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Hsuan Tsai
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
18
|
Yang L, Wan B, Wang BB, Liu MM, Fang Q, Song QS, Ye GY. The Pupal Ectoparasitoid Pachycrepoideus vindemmiae Regulates Cellular and Humoral Immunity of Host Drosophila melanogaster. Front Physiol 2019; 10:1282. [PMID: 31680999 PMCID: PMC6798170 DOI: 10.3389/fphys.2019.01282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022] Open
Abstract
The immunological interaction between Drosophila melanogaster and its larval parasitoids has been thoroughly investigated, however, little is known about the interaction between the host and its pupal parasitoids. Pachycrepoideus vindemmiae, a pupal ectoparasitoid of D. melanogaster, injects venom into its host while laying eggs on the puparium, which regulates host immunity and interrupts host development. To resist the invasion of parasitic wasps, various immune defense strategies have been developed in their hosts as a consequence of co-evolution. In this study, we mainly focused on the host immunomodulation by P. vindemmiae and thoroughly investigated cellular and humoral immune response, including cell adherence, cell viability, hemolymph melanization and the Toll, Imd, and JAK/STAT immune pathways. Our results indicated that venom had a significant inhibitory effect on lamellocyte adherence and induced plasmatocyte cell death. Venom injection and in vitro incubation strongly inhibited hemolymph melanization. More in-depth investigation revealed that the Toll and Imd immune pathways were immediately activated upon parasitization, followed by the JAK/STAT pathway, which was activated within the first 24 h post-parasitism. These regulatory effects were further validated by qPCR. Our present study manifested that P. vindemmiae regulated the cellular and humoral immune system of host D. melanogaster in many aspects. These findings lay the groundwork for studying the immunological interaction between D. melanogaster and its pupal parasitoid.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bin Wan
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Bei-Bei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Ming Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology and Ministry of Agriculture, Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Merlin BL, Cônsoli FL. Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 2019; 10:1106. [PMID: 31555143 PMCID: PMC6742964 DOI: 10.3389/fphys.2019.01106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Koinobiont endoparasitoid wasps regulate the host's physiology to their own benefit during their growth and development, using maternal, immature and/or derived-tissue weaponry. The tools used to subdue the wasps' hosts interfere directly with host transcription activity. The broad range of host tissues and pathways affected impedes our overall understanding of the host-regulation process during parasitoid development. Next-generation sequencing and de novo transcriptomes are helpful approaches to broad questions, including in non-model organisms. In the present study, we used Illumina sequencing to assemble a de novo reference transcriptome of the sugarcane borer Diatraea saccharalis, to investigate the regulation of host gene expression by the larval endoparasitoid Cotesia flavipes. We obtained 174,809,358 reads and assembled 144,116 transcripts, of which 44,325 were putatively identified as lepidopteran genes and represented a substantial number of pathways that are well described in other lepidopteran species. Comparative transcriptome analyses of unparasitized versus parasitized larvae identified 1,432 transcripts of D. saccharalis that were up-regulated under parasitization by C. flavipes, while 1,027 transcripts were down-regulated. Comparison of the transcriptomes of unparasitized and pseudoparasitized D. saccharalis larvae led to the identification of 1,253 up-regulated transcripts and 972 down-regulated transcripts in the pseudoparasitized larvae. Analysis of the differentially expressed transcripts showed that C. flavipes regulated several pathways, including the Ca+2 transduction signaling pathway, glycolysis/gluconeogenesis, chitin metabolism, and hormone biosynthesis and degradation, as well as the immune system, allowing us to identify key target genes involved in the metabolism and development of D. saccharalis.
Collapse
|
20
|
Jagdale SS, Joshi RS. Facilitator roles of viruses in enhanced insect resistance to biotic stress. CURRENT OPINION IN INSECT SCIENCE 2019; 33:111-116. [PMID: 31358189 DOI: 10.1016/j.cois.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 06/10/2023]
Abstract
Virus-insect interactions are primarily parasitic, yet diverse mutualistic interactions, some of which are symbiogenic, also occur. These viruses can modify insect physiology and behavior so that hosts can gain resistance against various biotic challenges like pathogen and parasites. In the recent past, many insect mutualistic viruses have been reported. Viruses can show symbiogenic interactions with some insects, which have been explored at the molecular level. However, understanding about molecular mechanisms for many of the mutualistic viruses is still enigmatic. Exploration of these interactions and its mechanism can shed light on phenomenon of virus mediated biotic stress resistance in insects.
Collapse
Affiliation(s)
- Shounak S Jagdale
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Rakesh S Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; Biochemical Sciences Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
21
|
Darboux I, Cusson M, Volkoff AN. The dual life of ichnoviruses. CURRENT OPINION IN INSECT SCIENCE 2019; 32:47-53. [PMID: 31113631 DOI: 10.1016/j.cois.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Ichnoviruses (IVs) are mutualistic, double-stranded DNA viruses playing a key role in the successful parasitism of thousands of endoparasitoid wasp species. IV particles are produced exclusively in the female wasp reproductive tract. They are co-injected along with the parasitoid egg into caterpillar hosts upon parasitization. The expression of viral genes by infected host cells leads to an immunosuppressive state and delayed development of the host, two pathologies that are critical to the successful development of the wasp egg and larva. Ichnovirus is one of the two recognized genera within the family Polydnaviridae (polydnaviruses or PDVs), the other genus being Bracovirus (BV), associated with braconid wasps. IVs are associated with ichneumonid wasps belonging to the subfamilies Campopleginae and Banchinae; attempts to identify IV particles in other ichneumonid subfamilies have so far been unsuccessful. Functional studies targeting IV genes expressed in parasitized hosts, along with investigations of the molecular mechanisms responsible for viral morphogenesis in the female wasp, have resulted in a better understanding of the biology of these atypical viruses.
Collapse
Affiliation(s)
- Isabelle Darboux
- UMR DGIMI 1333 INRA Université de Montpellier, Montpellier, France.
| | - Michel Cusson
- Centre de foresterie des Laurentides, Ressources naturelles Canada, Québec, Canada
| | | |
Collapse
|
22
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
23
|
Induction and Suppression of NF-κB Signalling by a DNA Virus of Drosophila. J Virol 2019; 93:JVI.01443-18. [PMID: 30404807 DOI: 10.1128/jvi.01443-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Interactions between the insect immune system and RNA viruses have been extensively studied in Drosophila, in which RNA interference, NF-κB, and JAK-STAT pathways underlie antiviral immunity. In response to RNA interference, insect viruses have convergently evolved suppressors of this pathway that act by diverse mechanisms to permit viral replication. However, interactions between the insect immune system and DNA viruses have received less attention, primarily because few Drosophila-infecting DNA virus isolates are available. In this study, we used a recently isolated DNA virus of Drosophila melanogaster, Kallithea virus (KV; family Nudiviridae), to probe known antiviral immune responses and virus evasion tactics in the context of DNA virus infection. We found that fly mutants for RNA interference and immune deficiency (Imd), but not Toll, pathways are more susceptible to Kallithea virus infection. We identified the Kallithea virus-encoded protein gp83 as a potent inhibitor of Toll signalling, suggesting that Toll mediates antiviral defense against Kallithea virus infection but that it is suppressed by the virus. We found that Kallithea virus gp83 inhibits Toll signalling through the regulation of NF-κB transcription factors. Furthermore, we found that gp83 of the closely related Drosophila innubila nudivirus (DiNV) suppresses D. melanogaster Toll signalling, suggesting an evolutionarily conserved function of Toll in defense against DNA viruses. Together, these results provide a broad description of known antiviral pathways in the context of DNA virus infection and identify the first Toll pathway inhibitor in a Drosophila virus, extending the known diversity of insect virus-encoded immune inhibitors.IMPORTANCE Coevolution of multicellular organisms and their natural viruses may lead to an intricate relationship in which host survival requires effective immunity and virus survival depends on evasion of such responses. Insect antiviral immunity and reciprocal virus immunosuppression tactics have been well studied in Drosophila melanogaster, primarily during RNA, but not DNA, virus infection. Therefore, we describe interactions between a recently isolated Drosophila DNA virus (Kallithea virus [KV]) and immune processes known to control RNA viruses, such as RNA interference (RNAi) and Imd pathways. We found that KV suppresses the Toll pathway and identified gp83 as a KV-encoded protein that underlies this suppression. This immunosuppressive ability is conserved in another nudivirus, suggesting that the Toll pathway has conserved antiviral activity against DNA nudiviruses, which have evolved suppressors in response. Together, these results indicate that DNA viruses induce and suppress NF-κB responses, and they advance the application of KV as a model to study insect immunity.
Collapse
|
24
|
Nucleic Acid Sensing in Invertebrate Antiviral Immunity. NUCLEIC ACID SENSING AND IMMUNITY - PART B 2019; 345:287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Salvia R, Nardiello M, Scieuzo C, Scala A, Bufo SA, Rao A, Vogel H, Falabella P. Novel Factors of Viral Origin Inhibit TOR Pathway Gene Expression. Front Physiol 2018; 9:1678. [PMID: 30534083 PMCID: PMC6275226 DOI: 10.3389/fphys.2018.01678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 11/08/2018] [Indexed: 01/06/2023] Open
Abstract
Polydnaviruses (PDVs) are obligate symbionts of endoparasitoid wasps, which exclusively attack the larval stages of their lepidopteran hosts. The Polydnavirus is injected by the parasitoid female during oviposition to selectively infect host tissues by the expression of viral genes without undergoing replication. Toxoneuron nigriceps bracovirus (TnBV) is associated with Toxoneuron nigriceps (Hymenoptera: Braconidae) wasp, an endoparasitoid of the tobacco budworm larval stages, Heliothis virescens (Lepidoptera: Noctuidae). Previous studies showed that TnBV is responsible for alterations in host physiology. The arrest of ecdysteroidogenesis is the main alteration which occurs in last (fifth) instar larvae and, as a consequence, prevents pupation. TnBV induces the functional inactivation of H. virescens prothoracic glands (PGs), resulting in decreased protein synthesis and phosphorylation. Previous work showed the involvement of the PI3K/Akt/TOR pathway in H. virescens PG ecdysteroidogenesis. Here, we demonstrate that this cellular signaling is one of the targets of TnBV infection. Western blot analysis and enzyme immunoassay (EIA) showed that parasitism inhibits ecdysteroidogenesis and the phosphorylation of the two targets of TOR (4E-BP and S6K), despite the stimulation of PTTH contained in the brain extract. Using a transcriptomic approach, we identified viral genes selectively expressed in last instar H. virescens PGs, 48 h after parasitization, and evaluated expression levels of PI3K/Akt/TOR pathway genes in these tissues. The relative expression of selected genes belonging to the TOR pathway (tor, 4e-bp, and s6k) in PGs of parasitized larvae was further confirmed by qRT-PCR. The down-regulation of these genes in PGs of parasitized larvae supports the hypothesis of TnBV involvement in blocking ecdysteroidogenesis, through alterations of the PI3K/Akt/TOR pathway at the transcriptional level.
Collapse
Affiliation(s)
- Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Asha Rao
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Patrizia Falabella
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
26
|
Lin Z, Cheng Y, Wang RJ, Du J, Volovych O, Li JC, Hu Y, Lu ZY, Lu Z, Zou Z. A Metalloprotease Homolog Venom Protein From a Parasitoid Wasp Suppresses the Toll Pathway in Host Hemocytes. Front Immunol 2018; 9:2301. [PMID: 30405599 PMCID: PMC6206080 DOI: 10.3389/fimmu.2018.02301] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
Parasitoid wasps depend on a variety of maternal virulence factors to ensure successful parasitism. Encapsulation response carried out by host hemocytes is one of the major host immune responses toward limiting endoparasitoid wasp offspring production. We found that VRF1, a metalloprotease homolog venom protein identified from the endoparasitoid wasp, Microplitis mediator, could modulate egg encapsulation in its host, the cotton bollworm, Helicoverpa armigera. Here, we show that the VRF1 proenzyme is cleaved after parasitism, and that the C-terminal fragment containing the catalytic domain enters host hemocytes 6 h post-parasitism. Furthermore, using yeast two-hybrid and pull-down assays, VRF1 is shown to interact with the H. armigera NF-κB factor, Dorsal. We also show that overexpressed of VRF1 in an H. armigera cell line cleaved Dorsal in vivo. Taken together, our results have revealed a novel mechanism by which a component of endoparasitoid wasp venom interferes with the Toll signaling pathway in the host hemocytes.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Cheng Li
- Institute of Plant Protection of Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Yang Hu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Yun Lu
- Institute of Plant Protection of Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Chevignon G, Periquet G, Gyapay G, Vega-Czarny N, Musset K, Drezen JM, Huguet E. Cotesia congregata Bracovirus Circles Encoding PTP and Ankyrin Genes Integrate into the DNA of Parasitized Manduca sexta Hemocytes. J Virol 2018; 92:e00438-18. [PMID: 29769342 PMCID: PMC6052314 DOI: 10.1128/jvi.00438-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta, by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified.IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature.
Collapse
Affiliation(s)
- Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Gabor Gyapay
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Nathalie Vega-Czarny
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| |
Collapse
|
28
|
Ye XQ, Shi M, Huang JH, Chen XX. Parasitoid polydnaviruses and immune interaction with secondary hosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:124-129. [PMID: 29352983 DOI: 10.1016/j.dci.2018.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 05/26/2023]
Abstract
Polydnaviruses (PDVs) are obligatory symbionts with parasitoid wasps. The PDV virions are produced solely in wasp (the primary host) calyx cells. They are injected into caterpillar hosts (the secondary host) during parasitoid oviposition, where they express irreplaceable actions to ensure survival and development of wasp larvae. Some of PDV gene products suppress host immune responses while others alter host growth, metabolism or endocrine system. Here, we treat new findings on PDV gene products and their action on immunity within secondary hosts.
Collapse
Affiliation(s)
- Xi-Qian Ye
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Shi
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jian-Hua Huang
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xue-Xin Chen
- State Key Lab of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
29
|
Swevers L, Liu J, Smagghe G. Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi. Viruses 2018; 10:E230. [PMID: 29723993 PMCID: PMC5977223 DOI: 10.3390/v10050230] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, NCSR "Demokritos", 15341 Athens, Greece.
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China.
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
30
|
Ignesti M, Ferrara R, Romani P, Valzania L, Serafini G, Pennacchio F, Cavaliere V, Gargiulo G. A polydnavirus-encoded ANK protein has a negative impact on steroidogenesis and development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 95:26-32. [PMID: 29559251 DOI: 10.1016/j.ibmb.2018.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Polydnaviruses (PDV) are viral symbionts associated with ichneumonid and braconid wasps parasitizing moth larvae, which are able to disrupt the host immune response and development, as well as a number of other physiological pathways. The immunosuppressive role of PDV has been more intensely investigated, while very little is known about the PDV-encoded factors disrupting host development. Here we address this research issue by further expanding the functional analysis of ankyrin genes encoded by the bracovirus associated with Toxoneuron nigriceps (Hymenoptera, Braconidae). In a previous study, using Drosophila melanogaster as experimental model system, we demonstrated the negative impact of TnBVank1 impairing the ecdysone biosynthesis by altering endocytic traffic in prothoracic gland cells. With a similar approach here we demonstrate that another member of the viral ank gene family, TnBVank3, does also contribute to the disruption of ecdysone biosynthesis, but with a completely different mechanism. We show that its expression in Drosophila prothoracic gland (PG) blocks the larval-pupal transition by impairing the expression of steroidogenic genes. Furthermore, we found that TnBVank3 affects the expression of genes involved in the insulin/TOR signaling and the constitutive activation of the insulin pathway in the PG rescues the pupariation impairment. Collectively, our data demonstrate that TnBVANK3 acts as a virulence factor by exerting a synergistic and non-overlapping function with TnBVANK1 to disrupt the ecdysone biosynthesis.
Collapse
Affiliation(s)
- Marilena Ignesti
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3 Bologna, Italy
| | - Rosalba Ferrara
- Dipartimento di Agraria - Laboratorio di Entomologia "E. Tremblay", Università di Napoli 'Federico II', Portici (NA), Italy
| | - Patrizia Romani
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3 Bologna, Italy; Dipartimento di Medicina Molecolare, Università di Padova, Padova, Italy
| | - Luca Valzania
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3 Bologna, Italy; Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Giulia Serafini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3 Bologna, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria - Laboratorio di Entomologia "E. Tremblay", Università di Napoli 'Federico II', Portici (NA), Italy.
| | - Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3 Bologna, Italy.
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, Via Selmi 3 Bologna, Italy.
| |
Collapse
|
31
|
The multifunctional polydnavirus TnBVANK1 protein: impact on host apoptotic pathway. Sci Rep 2017; 7:11775. [PMID: 28924205 PMCID: PMC5603617 DOI: 10.1038/s41598-017-11939-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
Toxoneuron nigriceps (Hymenoptera, Braconidae) is an endophagous parasitoid of the larval stages of the tobacco budworm, Heliothis virescens (Lepidoptera, Noctuidae). The bracovirus associated with this wasp (TnBV) is currently being studied. Several genes expressed in parasitised host larvae have been isolated and their possible roles partly elucidated. TnBVank1 encodes an ankyrin motif protein similar to insect and mammalian IκB, an inhibitor of the transcription nuclear factor κB (NF-κB). Here we show that, when TnBVank1 was stably expressed in polyclonal Drosophila S2 cells, apoptosis is induced. Furthermore, we observed the same effects in haemocytes of H. virescens larvae, after TnBVank1 in vivo transient transfection, and in haemocytes of parasitised larvae. Coimmunoprecipitation experiments showed that TnBVANK1 binds to ALG-2 interacting protein X (Alix/AIP1), an interactor of apoptosis-linked gene protein 2 (ALG-2). Using double-immunofluorescence labeling, we observed the potential colocalization of TnBVANK1 and Alix proteins in the cytoplasm of polyclonal S2 cells. When Alix was silenced by RNA interference, TnBVANK1 was no longer able to cause apoptosis in both S2 cells and H. virescens haemocytes. Collectively, these results indicate that TnBVANK1 induces apoptosis by interacting with Alix, suggesting a role of TnBVANK1 in the suppression of host immune response observed after parasitisation by T. nigriceps.
Collapse
|
32
|
Steele KH, Stone BJ, Franklin KM, Fath-Goodin A, Zhang X, Jiang H, Webb BA, Geisler C. Improving the baculovirus expression vector system with vankyrin-enhanced technology. Biotechnol Prog 2017. [PMID: 28649776 PMCID: PMC5786172 DOI: 10.1002/btpr.2516] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017
Collapse
Affiliation(s)
| | | | | | | | - Xiufeng Zhang
- Dept. of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma
| | - Haobo Jiang
- Dept. of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma
| | - Bruce A Webb
- ParaTechs Corporation, Lexington Kentucky, Department of Entomology, University of Kentucky, Lexington, KT
| | | |
Collapse
|
33
|
Mussabekova A, Daeffler L, Imler JL. Innate and intrinsic antiviral immunity in Drosophila. Cell Mol Life Sci 2017; 74:2039-2054. [PMID: 28102430 PMCID: PMC5419870 DOI: 10.1007/s00018-017-2453-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/11/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
The fruit fly Drosophila melanogaster has been a valuable model to investigate the genetic mechanisms of innate immunity. Initially focused on the resistance to bacteria and fungi, these studies have been extended to include antiviral immunity over the last decade. Like all living organisms, insects are continually exposed to viruses and have developed efficient defense mechanisms. We review here our current understanding on antiviral host defense in fruit flies. A major antiviral defense in Drosophila is RNA interference, in particular the small interfering (si) RNA pathway. In addition, complex inducible responses and restriction factors contribute to the control of infections. Some of the genes involved in these pathways have been conserved through evolution, highlighting loci that may account for susceptibility to viral infections in humans. Other genes are not conserved and represent species-specific innovations.
Collapse
Affiliation(s)
- Assel Mussabekova
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France.
| | - Laurent Daeffler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
| | - Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, CNRS UPR9022, Université de Strasbourg, 15 rue René Descartes, 67000, Strasbourg, France
- Faculté des Sciences de la Vie, Université de Strasbourg, 28 rue Goethe, 67000, Strasbourg, France
| |
Collapse
|
34
|
Two White Spot Syndrome Virus MicroRNAs Target the Dorsal Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp. J Virol 2017; 91:JVI.02261-16. [PMID: 28179524 DOI: 10.1128/jvi.02261-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/27/2017] [Indexed: 01/10/2023] Open
Abstract
In eukaryotes, microRNAs (miRNAs) serve as regulators of many biological processes, including virus infection. An miRNA can generally target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs has not yet been extensively explored during virus infection. This study found that the Spaztle (Spz)-Toll-Dorsal-antilipopolysaccharide factor (ALF) signaling pathway plays a very important role in antiviral immunity against invasion of white spot syndrome virus (WSSV) in shrimp (Marsupenaeus japonicus). Dorsal, the central gene in the Toll pathway, was targeted by two viral miRNAs (WSSV-miR-N13 and WSSV-miR-N23) during WSSV infection. The regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study contributes novel insights into the viral miRNA-mediated Toll signaling pathway during the virus-host interaction.IMPORTANCE An miRNA can target diverse genes during virus-host interactions. However, the regulation of gene expression by multiple miRNAs during virus infection has not yet been extensively explored. The results of this study indicated that the shrimp Dorsal gene, the central gene in the Toll pathway, was targeted by two viral miRNAs during infection with white spot syndrome virus. Regulation of Dorsal expression by viral miRNAs suppressed the Spz-Toll-Dorsal-ALF signaling pathway in shrimp in vivo, leading to virus infection. Our study provides new insight into the viral miRNA-mediated Toll signaling pathway in virus-host interactions.
Collapse
|
35
|
An endoparasitoid wasp influences host DNA methylation. Sci Rep 2017; 7:43287. [PMID: 28230192 PMCID: PMC5322367 DOI: 10.1038/srep43287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/30/2016] [Indexed: 12/24/2022] Open
Abstract
Parasitism by endoparasitoid wasps changes the expression of various host genes, and alters host immune and developmental processes. However, it is not clearly understood how parasitism changes host gene expression in a whole genome scale. This study focused on an epigenetic control of Cotesia plutellae, an endoparasitoid wasp, against its host, Plutella xylostella. Two DNA methyltransferases (DNMT-1 and DNMT-2) are encoded in the genome of P. xylostella. In addition, methyl-binding domain proteins (MBDs) and DNA demethylation factor, ten-eleven translation protein (TET) are encoded. DNA methylation of P. xylostella genomic DNA was confirmed by restriction digestion with Gla I specific to 5-methylcytosine. DNA methylation intensity in parasitized (P) larvae was decreased compared to that in nonparasitized (NP) larvae, especially at late parasitic stage, at which expression levels of both DNMT-1 and DNMT-2 were also decreased. DNA demethylation of P. xylostella was confirmed in both NP and P larvae by restriction digestion with PvuRts1I recognizing 5-hydroxymethyl cytosine. Parasitism also suppressed expression levels of TET and MBDs. Treatment of 5-aza-2′-deoxycytidine (AZA) reduced DNA methylation intensity of NP larvae, causing suppression of hemocyte-spreading behavior and delay of immature development. RNA interference of DNMT-1 or DNMT-2 mimicked the adverse effects of AZA.
Collapse
|
36
|
Ankyrin Repeat Proteins of Orf Virus Influence the Cellular Hypoxia Response Pathway. J Virol 2016; 91:JVI.01430-16. [PMID: 27795413 DOI: 10.1128/jvi.01430-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
Hypoxia-inducible factor (HIF) is a transcriptional activator with a central role in regulating cellular responses to hypoxia. It is also emerging as a major target for viral manipulation of the cellular environment. Under normoxic conditions, HIF is tightly suppressed by the activity of oxygen-dependent prolyl and asparaginyl hydroxylases. The asparaginyl hydroxylase active against HIF, factor inhibiting HIF (FIH), has also been shown to hydroxylate some ankyrin repeat (ANK) proteins. Using bioinformatic analysis, we identified the five ANK proteins of the parapoxvirus orf virus (ORFV) as potential substrates of FIH. Consistent with this prediction, coimmunoprecipitation of FIH was detected with each of the ORFV ANK proteins, and for one representative ORFV ANK protein, the interaction was shown to be dependent on the ANK domain. Immunofluorescence studies revealed colocalization of FIH and the viral ANK proteins. In addition, mass spectrometry confirmed that three of the five ORFV ANK proteins are efficiently hydroxylated by FIH in vitro While FIH levels were unaffected by ORFV infection, transient expression of each of the ORFV ANK proteins resulted in derepression of HIF-1α activity in reporter gene assays. Furthermore, ORFV-infected cells showed upregulated HIF target gene expression. Our data suggest that sequestration of FIH by ORFV ANK proteins leads to derepression of HIF activity. These findings reveal a previously unknown mechanism of viral activation of HIF that may extend to other members of the poxvirus family. IMPORTANCE The protein-protein binding motif formed from multiple repeats of the ankyrin motif is common among chordopoxviruses. However, information on the roles of these poxviral ankyrin repeat (ANK) proteins remains limited. Our data indicate that the parapoxvirus orf virus (ORFV) is able to upregulate hypoxia-inducible factor (HIF) target gene expression. This response is mediated by the viral ANK proteins, which sequester the HIF regulator FIH (factor inhibiting HIF). This is the first demonstration of any viral protein interacting directly with FIH. Our data reveal a new mechanism by which viruses reprogram HIF, a master regulator of cellular metabolism, and also show a new role for the ANK family of poxvirus proteins.
Collapse
|
37
|
Bravo Cruz AG, Shisler JL. Vaccinia virus K1 ankyrin repeat protein inhibits NF-κB activation by preventing RelA acetylation. J Gen Virol 2016; 97:2691-2702. [DOI: 10.1099/jgv.0.000576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ariana G. Bravo Cruz
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Joanna L. Shisler
- Department of Microbiology, University of Illinois, 601 S. Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
38
|
A polydnaviral genome of Microplitis bicoloratus bracovirus and molecular interactions between the host and virus involved in NF-κB signaling. Arch Virol 2016; 161:3095-124. [DOI: 10.1007/s00705-016-2988-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
39
|
GPCRs in invertebrate innate immunity. Biochem Pharmacol 2016; 114:82-7. [DOI: 10.1016/j.bcp.2016.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
|
40
|
Furihata S, Matsumura T, Hirata M, Mizutani T, Nagata N, Kataoka M, Katayama Y, Omatsu T, Matsumoto H, Hayakawa Y. Characterization of Venom and Oviduct Components of Parasitoid Wasp Asobara japonica. PLoS One 2016; 11:e0160210. [PMID: 27467595 PMCID: PMC4965004 DOI: 10.1371/journal.pone.0160210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/16/2016] [Indexed: 11/18/2022] Open
Abstract
During natural parasitization, Asobara japonica wasps introduce lateral oviduct (LO) components into their Drosophila hosts soon after the venom injection to neutralize its strong toxicity; otherwise, the host will die. Although the orchestrated relationship between the venom and LO components necessary for successful parasitism has attracted the attention of many researchers in this field, the molecular natures of both factors remain ambiguous. We here showed that precipitation of the venom components by ultracentrifugation yielded a toxic fraction that was inactivated by ultraviolet light irradiation, boiling, and sonication, suggesting that it is a virus-like entity. Morphological observation of the precipitate after ultracentrifugation showed small spherical heterogeneous virus-like particles 20-40 nm in diameter. The venom's detrimental effect on D. melanogaster larvae was not directly neutralized by the LO components but blocked by a hemolymphal neutralizing factor activated by the LO factor. Furthermore, we found that A. japonica venom and LO components acted similarly on the larvae of the common cutworm Spodoptera litura: the venom injection caused mortality but coinjection of the LO factor protected S. litura larvae from the venom's toxicity. In contrast, D. ficusphila and D. bipectinata, which are closely related to D. melanogaster but non-habitual host species of A. japonica, were not negatively affected by A. japonica venom due to an intrinsic neutralizing activity in their hemolymph, indicating that these species must have acquired a neutralizer of A. japonica venom during evolution. These results give new insights into the characteristics of both the venom and LO components: A. japonica females have utilized the virus-like toxic venom factor to exploit a wider range of host species after the evolutionary process enabled them to use the LO factor for activation of the host hemolymph neutralizer precursor, although the non-habitual host Drosophila species possess an active intrinsic neutralizer in their hemolymph.
Collapse
Affiliation(s)
- Shunsuke Furihata
- Department of Applied Biological Sciences, Saga University, Saga 840–8502, Japan
| | - Takashi Matsumura
- Department of Applied Biological Sciences, Saga University, Saga 840–8502, Japan
| | - Makiko Hirata
- Department of Applied Biological Sciences, Saga University, Saga 840–8502, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183–8509, Japan
| | - Noriyo Nagata
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 280–0011, Japan
| | - Michiyo Kataoka
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 280–0011, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183–8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183–8509, Japan
| | - Hitoshi Matsumoto
- Department of Applied Biological Sciences, Saga University, Saga 840–8502, Japan
| | - Yoichi Hayakawa
- Department of Applied Biological Sciences, Saga University, Saga 840–8502, Japan
- * E-mail:
| |
Collapse
|
41
|
Analysis of Genetic Variation across the Encapsidated Genome of Microplitis demolitor Bracovirus in Parasitoid Wasps. PLoS One 2016; 11:e0158846. [PMID: 27390861 PMCID: PMC4938607 DOI: 10.1371/journal.pone.0158846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/22/2016] [Indexed: 11/19/2022] Open
Abstract
Insect parasitoids must complete part of their life cycle within or on another insect, ultimately resulting in the death of the host insect. One group of parasitoid wasps, the ‘microgastroid complex’ (Hymenoptera: Braconidae), engage in an association with beneficial symbiotic viruses that are essential for successful parasitism of hosts. These viruses, known as Bracoviruses, persist in an integrated form in the wasp genome, and activate to replicate in wasp ovaries during development to ultimately be delivered into host insects during parasitism. The lethal nature of host-parasitoid interactions, combined with the involvement of viruses in mediating these interactions, has led to the hypothesis that Bracoviruses are engaged in an arms race with hosts, resulting in recurrent adaptation in viral (and host) genes. Deep sequencing was employed to characterize sequence variation across the encapsidated Bracovirus genome within laboratory and field populations of the parasitoid wasp species Microplitis demolitor. Contrary to expectations, there was a paucity of evidence for positive directional selection among virulence genes, which generally exhibited signatures of purifying selection. These data suggest that the dynamics of host-parasite interactions may not result in recurrent rounds of adaptation, and that adaptation may be more variable in time than previously expected.
Collapse
|
42
|
Gao F, Gu QJ, Pan J, Wang ZH, Yin CL, Li F, Song QS, Strand MR, Chen XX, Shi M. Cotesia vestalis teratocytes express a diversity of genes and exhibit novel immune functions in parasitism. Sci Rep 2016; 6:26967. [PMID: 27254821 PMCID: PMC4890588 DOI: 10.1038/srep26967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/11/2016] [Indexed: 01/25/2023] Open
Abstract
Some endoparasitoid wasps lay eggs that produce cells called teratocytes. In this study, we sequenced and analyzed the transcriptome of teratocytes from the solitary endoparasitoid Cotesia vestalis (Braconidae), which parasitizes larval stage Plutella xylostella (Plutellidae). Results identified many teratocyte transcripts with potential functions in affecting host immune defenses, growth or metabolism. Characterization of teratocyte-secreted venom-like protein 8 (TSVP-8) indicated it inhibits melanization of host hemolymph in vitro, while two predicted anti-microbial peptides (CvT-def 1 and 3) inhibited the growth of bacteria. Results also showed the parasitized hosts lacking teratocytes experienced higher mortality after immune challenge by pathogens than hosts with teratocytes. Taken together, these findings indicate that C. vestalis teratocytes secrete products that alter host immune functions while also producing anti-microbial peptides with functions that help protect the host from infection by other organisms.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qi-juan Gu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Pan
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ze-hua Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Chuan-lin Yin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University and Key Lab of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, 1 Weigang Road, Nanjing, Jiangsu 210095, China
| | - Fei Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Qi-sheng Song
- Molecular Insect Physiology, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, Georgia 30602, USA
| | - Xue-xin Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Shi
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
43
|
Permissiveness of lepidopteran hosts is linked to differential expression of bracovirus genes. Virology 2016; 492:259-72. [DOI: 10.1016/j.virol.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023]
|
44
|
Abstract
Virus-host associations are usually viewed as parasitic, but several studies in recent years have reported examples of viruses that benefit host organisms. The Polydnaviridae are of particular interest because these viruses are all obligate mutualists of insects called parasitoid wasps. Parasitoids develop during their immature stages by feeding inside the body of other insects, which serve as their hosts. Polydnaviruses are vertically transmitted as proviruses through the germ line of wasps but also function as gene delivery vectors that wasps rely upon to genetically manipulate the hosts they parasitize. Here we review the evolutionary origin of polydnaviruses, the organization and function of their genomes, and some of their roles in parasitism.
Collapse
Affiliation(s)
- Michael R Strand
- Department of Entomology, University of Georgia, Athens, Georgia 30602; ,
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, Georgia 30602; ,
| |
Collapse
|
45
|
Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression. Toxins (Basel) 2016; 8:52. [PMID: 26907346 PMCID: PMC4773805 DOI: 10.3390/toxins8020052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 11/16/2022] Open
Abstract
Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Here, we report that Pteromalus puparum venom impairs the antimicrobial activity of its host Pieris rapae. Inhibition zone results showed that bead injection induced the antimicrobial activity of the host hemolymph but that venom inhibited it. The cDNAs encoding cecropin and lysozyme were screened. Relative quantitative PCR results indicated that all of the microorganisms and bead injections up-regulated the transcript levels of the two genes but that venom down-regulated them. At 8 h post bead challenge, there was a peak in the transcript level of the cecropin gene, whereas the peak of lysozyme gene occurred at 24 h. The transcripts levels of the two genes were higher in the granulocytes and fat body than in other tissues. RNA interference decreased the transcript levels of the two genes and the antimicrobial activity of the pupal hemolymph. Venom injections similarly silenced the expression of the two genes during the first 8 h post-treatment in time- and dose-dependent manners, after which the silence effects abated. Additionally, recombinant cecropin and lysozyme had no significant effect on the emergence rate of pupae that were parasitized by P. puparum females. These findings suggest one mechanism of impairing host antimicrobial activity by parasitoid venom.
Collapse
|
46
|
Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila. Proc Natl Acad Sci U S A 2016; 113:698-703. [PMID: 26739560 DOI: 10.1073/pnas.1516122113] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Viruses are obligatory intracellular parasites that suffer strong evolutionary pressure from the host immune system. Rapidly evolving viral genomes can adapt to this pressure by acquiring genes that counteract host defense mechanisms. For example, many vertebrate DNA viruses have hijacked cellular genes encoding cytokines or cytokine receptors to disrupt host cell communication. Insect viruses express suppressors of RNA interference or apoptosis, highlighting the importance of these cell intrinsic antiviral mechanisms in invertebrates. Here, we report the identification and characterization of a family of proteins encoded by insect DNA viruses that are homologous to a 12-kDa circulating protein encoded by the virus-induced Drosophila gene diedel (die). We show that die mutant flies have shortened lifespan and succumb more rapidly than controls when infected with Sindbis virus. This reduced viability is associated with deregulated activation of the immune deficiency (IMD) pathway of host defense and can be rescued by mutations in the genes encoding the homolog of IKKγ or IMD itself. Our results reveal an endogenous pathway that is exploited by insect viruses to modulate NF-κB signaling and promote fly survival during the antiviral response.
Collapse
|
47
|
Querenet M, Danjoy ML, Mollereau B, Davoust N. Expression of dengue virus NS3 protein in Drosophila alters its susceptibility to infection. Fly (Austin) 2015; 9:1-6. [PMID: 26267447 DOI: 10.1080/19336934.2015.1072662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We developed a Drosophila model in which the dengue virus NS3 protein is expressed in a tissue specific and inducible manner. Dengue virus NS3 is a multifunctional protein playing a major role during viral replication. Both protease and helicase domains of NS3 are interacting with human and insect host proteins including innate immune components of the host machinery. We characterized the NS3 transgenic flies showing that NS3 expression did not affect fly development. To further study the links between NS3 and the innate immune response, we challenge the flies with gram-positive and gram-negative bacteria. Interestingly, the Drosophila transgenic flies expressing NS3 were more susceptible to bacterial infections than control flies. However ubiquitous or immune-specific NS3 expression affected neither the life span nor the response to a non-infectious stress of the flies. In conclusion, we generated a new in vivo system to study the functional impact of DENV NS3 protein on the innate immune response.
Collapse
Affiliation(s)
- Matthieu Querenet
- a Université de Lyon; Laboratory of Molecular Biology of the Cell; UMR5239 CNRS/Ecole Normale Supérieure de Lyon ; Lyon , France
| | | | | | | |
Collapse
|
48
|
Chevignon G, Cambier S, Da Silva C, Poulain J, Drezen JM, Huguet E, Moreau SJM. Transcriptomic response of Manduca sexta immune tissues to parasitization by the bracovirus associated wasp Cotesia congregata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:86-99. [PMID: 25584519 DOI: 10.1016/j.ibmb.2014.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/15/2014] [Accepted: 12/20/2014] [Indexed: 05/26/2023]
Abstract
During oviposition, Cotesia congregata parasitoid wasps inject into their host, Manduca sexta, some biological factors such as venom, ovarian fluid and a symbiotic polydnavirus (PDV) named Cotesia congregata bracovirus (CcBV). During parasitism, complex interactions occur between wasp-derived factors and host targets that lead to important modifications in host physiology. In particular, the immune response leading to wasp egg encapsulation is inhibited allowing wasp survival. To date, the regulation of host genes during the interaction had only been studied for a limited number of genes. In this study, we analysed the global impact of parasitism on host gene regulation 24 h post oviposition by high throughput 454 transcriptomic analyses of two tissues known to be involved in the host immune response (hemocytes and fat body). To identify specific effects of parasitism on host transcription at this time point, transcriptomes were obtained from non-treated and parasitized larvae, and also from larvae injected with heat-killed bacteria and double stimulated larvae that were parasitized prior to bacterial challenge. Results showed that, immune challenge by bacteria leads to induction of certain antimicrobial peptide (AMP) genes in M. sexta larvae whether they were parasitized or not prior to bacterial challenge. These results show that at 24 h post oviposition pathways leading to expression of AMP genes are not all inactivated suggesting wasps are in an antiseptic environment. In contrast, at this time point genes involved in phenoloxidase activation and cellular immune responses were globally down-regulated after parasitism in accordance with the observed inhibition of wasp egg encapsulation.
Collapse
Affiliation(s)
- Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Sébastien Cambier
- Department of Environment and Agrobiotechnologies Centre de Recherche Public - Gabriel Lippmann, Belvaux, Luxembourg
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Julie Poulain
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France.
| | - Sébastien J M Moreau
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR Sciences et Techniques, Université François-Rabelais, Tours, France
| |
Collapse
|
49
|
Ovary ecdysteroidogenic hormone requires a receptor tyrosine kinase to activate egg formation in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2015; 112:5057-62. [PMID: 25848040 DOI: 10.1073/pnas.1501814112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes are major disease vectors because most species must feed on blood from a vertebrate host to produce eggs. Blood feeding by the vector mosquito Aedes aegypti triggers the release of two neurohormones, ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs), which activate multiple processes required for egg formation. ILPs function by binding to the insulin receptor, which activates downstream components in the canonical insulin signaling pathway. OEH in contrast belongs to a neuropeptide family called neuroparsins, whose receptor is unknown. Here we demonstrate that a previously orphanized receptor tyrosine kinase (RTK) from A. aegypti encoded by the gene AAEL001915 is an OEH receptor. Phylogenetic studies indicated that the protein encoded by this gene, designated AAEL001915, belongs to a clade of RTKs related to the insulin receptor, which are distinguished by an extracellular Venus flytrap module. Knockdown of AAEL001915 by RNAi disabled OEH-mediated egg formation in A. aegypti. AAEL001915 was primarily detected in the mosquito ovary in association with follicular epithelial cells. Both monomeric and dimeric AAEL001915 were detected in mosquito ovaries and transfected Drosophila S2 cells. Functional assays further indicated that OEH bound to dimeric AAEL001915, which resulted in downstream phosphorylation of Ak strain transforming factor (Akt). We hypothesize that orthologs of AAEL001915 in other insects are neuroparsin receptors.
Collapse
|
50
|
Strand MR, Burke GR. Polydnaviruses: From discovery to current insights. Virology 2015; 479-480:393-402. [PMID: 25670535 DOI: 10.1016/j.virol.2015.01.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/12/2015] [Accepted: 01/21/2015] [Indexed: 11/30/2022]
Abstract
The International Committee on Taxonomy of Viruses (ICTV) recognized the Polydnaviridae in 1991 as a virus family associated with insects called parasitoid wasps. Polydnaviruses (PDVs) have historically received limited attention but advances in recent years have elevated interest because their unusual biology sheds interesting light on the question of what viruses are and how they function. Here, we present a succinct history of the PDV literature. We begin with the findings that first led ICTV to recognize the Polydnaviridae. We then discuss what subsequent studies revealed and how these findings have shaped views of PDV evolution.
Collapse
Affiliation(s)
- Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, United States of America.
| | - Gaelen R Burke
- Department of Entomology, University of Georgia, Athens, GA 30602, United States of America
| |
Collapse
|