1
|
Xiong Z, Yang X, Wang S, Smart CJ, Sisson HM, Lin Z, Hu T, Ran Y, Xu C, Yang X, Zhao Y, Jowsey WJ, Cook GM, McNeil MB, Guddat LW, Rao Z, Zhang B. Structure and assembly of the MmpL5/MmpS5 efflux transporter from Mycobacterium tuberculosis. Nat Commun 2025; 16:4976. [PMID: 40442140 PMCID: PMC12122801 DOI: 10.1038/s41467-025-60365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 05/21/2025] [Indexed: 06/02/2025] Open
Abstract
The MmpL5/MmpS5 efflux system in Mycobacterium tuberculosis plays crucial roles in extruding therapeutic drugs (e.g., bedaquiline), and exporting siderophores (i.e., (carboxy)mycobactins). However, the molecular basis underlying these processes remains unknown due to the lack of structural information. Here, we report the cryo-electron microscopy structures of Mycobacterium tuberculosis MmpL5/MmpS5 at resolutions ranging from 2.64 to 3.31 Å, revealing it to be a trimer. The core of this complex is formed by three MmpL5 subunits assembled in a unique shoulder-to-shoulder ring-like configuration, with each MmpS5 subunit positioned between the two adjacent MmpL5 subunits. A remarkable feature of this system is the extracellular stalk, which spans approximately 130 Å in length and is composed of three intertwined anti-parallel coiled-coil portions of MmpL5. The stalk secures the tight association of the three MmpL5 subunits and exhibits intrinsic structural flexibility. Additionally, an unexpected MmpL5 binder, AcpM, a mycobacterial acyl carrier protein, has also been identified. Collectively, the study provides insights into the biological assembly and molecular function of MmpL5/MmpS5, which will facilitate the discovery of innovative inhibitors for this system.
Collapse
Affiliation(s)
- Zhiqi Xiong
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Laboratory of Structural Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xiaolin Yang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Shule Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Caitlan J Smart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Hazel M Sisson
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zhenli Lin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuting Ran
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chuyao Xu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - William J Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Matthew B McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
2
|
Fountain AJ, Waller NJE, Cheung CY, Jowsey W, Chrisp MT, Troll M, Edelstein PH, Cook GM, McNeil MB, Ramakrishnan L. Verapamil and its metabolite norverapamil inhibit the Mycobacterium tuberculosis MmpS5L5 efflux pump to increase bedaquiline activity. Proc Natl Acad Sci U S A 2025; 122:e2426827122. [PMID: 40244664 PMCID: PMC12036985 DOI: 10.1073/pnas.2426827122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Bedaquiline is the cornerstone of a new regimen for the treatment of drug-resistant tuberculosis. However, its clinical use is threatened by the emergence of bedaquiline-resistant strains of Mycobacterium tuberculosis. Bedaquiline targets mycobacterial ATP synthase but the predominant route to clinical bedaquiline resistance is via upregulation of the MmpS5L5 efflux pump due to mutations that inactivate the transcriptional repressor Rv0678. Here, we show that the MmpS5L5 efflux pump reduces susceptibility to bedaquiline as well as its new, more potent derivative TBAJ-876 and other antimicrobial substrates, including clofazimine and the DprE1 inhibitors PBTZ-169 and OPC-167832. Furthermore, the increased resistance of Rv0678 mutants stems entirely from increased MmpS5L5 expression. These results highlight the potential of a pharmacological MmpS5L5 inhibitor to increase drug efficacy. Verapamil, primarily used as a calcium channel inhibitor, is known to inhibit diverse efflux pumps and to potentiate bedaquiline and clofazimine activity in M. tuberculosis. Here, we show that verapamil potentiates the activity of multiple diverse MmpS5L5 substrates. Using biochemical approaches, we demonstrate that verapamil does not exert this effect by acting as a disruptor of the protonmotive force used to power MmpS5L5, as previously proposed, suggesting that verapamil inhibits the function of the MmpS5L5 pump. Finally, norverapamil, the major verapamil metabolite, which has greatly reduced calcium channel activity, has equal potency in reducing resistance to MmpS5L5 substrates. Our findings highlight verapamil's potential for enhancing bedaquiline TB treatment, for preventing acquired resistance to bedaquiline and other MmpS5L5 substrates, while also providing the impetus to identify additional MmpS5L5 inhibitors.
Collapse
Affiliation(s)
- Adam J. Fountain
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Natalie J. E. Waller
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - William Jowsey
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Michael T. Chrisp
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Mark Troll
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Paul H. Edelstein
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Matthew B. McNeil
- Department of Microbiology and Immunology, University of Otago, Dunedin9053, New Zealand
| | - Lalita Ramakrishnan
- Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CambridgeCB2 0AW, United Kingdom
| |
Collapse
|
3
|
Voskuil MI, Covey CR, Reichlen MJ, Chatterjee A, Duerkop BA, Dawadi S, Aldrich CC, Aaring A. Mycobactin and clofazimine activity are negatively correlated in mycobacteria. Front Microbiol 2025; 16:1539139. [PMID: 40248424 PMCID: PMC12003420 DOI: 10.3389/fmicb.2025.1539139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/06/2025] [Indexed: 04/19/2025] Open
Abstract
Clofazimine (CFZ) is an anti-leprosy drug shown to improve outcomes in treatment of multidrug-resistant tuberculosis (TB) and nontuberculous mycobacterial infections. Studies in Mycobacterium tuberculosis and Mycobacterium avium identified CFZ resistance mutations in the gene that encodes the MmpR5/MmpT5 regulator, which increase expression of the mycobactin (MBT) transporter, MmpS5/L5. We found exposure of M. tuberculosis to CFZ induced a pattern of gene expression that mirrored low iron conditions, including strong induction of genes that encode MBT synthesis and transport. We identified a corresponding increase in MBT levels indicating a role in iron homeostasis in CFZ activity. CFZ bactericidal activity against both Mycobacterium smegmatis and M. tuberculosis was increased in high iron conditions in which MTB synthesis and transport was limited. We show the presence of MBT correlated with decreased CFZ killing activity while inhibition of MBT synthesis increased killing. Considerable iron efflux was observed during CFZ treatment indicating iron loss may be a feature of CFZ anti-mycobacterial activity. CFZ solubility studies and CFZ-mediated reduction of free iron indicate a potential redox interaction between CFZ and iron. MBT or MBT flux across the cell envelope appears to block CFZ killing in M. smegmatis and potentially M. tuberculosis. The specific mechanism by which MBT inhibits CFZ lethality remains unclear but may involve, increased iron acquisition, the MmpS5/L5 MBT efflux pump, or the CFZ subcellular localization altered by the redox state and solubility of CFZ. CFZ has thus far been proven most effective against Mycobacterium leprae, which lacks MBT, indicating an understanding of the complex interaction of CFZ with iron acquisition systems may suggest more effective therapeutic applications.
Collapse
Affiliation(s)
- Martin I. Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christopher R. Covey
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Matthew J. Reichlen
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Alexander Aaring
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
4
|
McGowen K, Funck T, Wang X, Zinga S, Wolf ID, Akusobi C, Denkinger CM, Rubin EJ, Sullivan MR. Efflux pumps and membrane permeability contribute to intrinsic antibiotic resistance in Mycobacterium abscessus. PLoS Pathog 2025; 21:e1013027. [PMID: 40208857 PMCID: PMC12017575 DOI: 10.1371/journal.ppat.1013027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 04/23/2025] [Accepted: 03/08/2025] [Indexed: 04/12/2025] Open
Abstract
Mycobacterium abscessus is a pulmonary pathogen that exhibits intrinsic resistance to antibiotics, but the factors driving this resistance are incompletely understood. Insufficient intracellular drug accumulation could explain broad-spectrum resistance, but whether antibiotics fail to accumulate in M. abscessus and the mechanisms required for drug exclusion remain poorly understood. We measured antibiotic accumulation in M. abscessus using mass spectrometry and found a wide range of drug accumulation across clinically relevant antibiotics. Of these compounds, linezolid accumulates the least, suggesting that inadequate uptake impacts its efficacy. We utilized transposon mutagenesis screening to identify genes that cause linezolid resistance and found multiple transporters that promote membrane permeability or efflux, including an uncharacterized protein that effluxes linezolid and several chemically related antibiotics. This demonstrates that membrane permeability and drug efflux are critical mechanisms of antibiotic resistance in M. abscessus and suggests that targeting membrane transporters could potentiate the efficacy of certain antibiotics.
Collapse
Affiliation(s)
- Kerry McGowen
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Tobias Funck
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital & German Center of Infection Research partner site, Heidelberg, Germany
| | - Xin Wang
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Samuel Zinga
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Ian D. Wolf
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Chidiebere Akusobi
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Claudia M. Denkinger
- Department of Infectious Disease and Tropical Medicine, Heidelberg University Hospital & German Center of Infection Research partner site, Heidelberg, Germany
| | - Eric J. Rubin
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Mark R. Sullivan
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Araújo-Pereira M, Andrade BB. Oxidative battles in tuberculosis: walking the ferroptotic tightrope. Trends Immunol 2025; 46:338-351. [PMID: 40122726 DOI: 10.1016/j.it.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of death worldwide. TB pathogenesis is shaped by a complex interaction between the pathogen and host immune responses, particularly through mechanisms such as oxidative stress and ferroptosis; a form of regulated necrotic cell death driven by iron-dependent lipid peroxidation. This Review highlights recent insights into how Mtb modulates oxidative stress pathways and thus triggers ferroptosis in host cells. Understanding the interplay between oxidative stress responses and cellular and tissue necrosis opens new avenues for therapeutic interventions of TB by controlling bacterial growth and preventing host tissue damage.
Collapse
Affiliation(s)
- Mariana Araújo-Pereira
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia 40296-710, Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), Medicina Zarns, Clariens Educação, Salvador, Bahia 41720-200, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Institute, Salvador, Bahia 41810-710, Brazil.
| | - Bruno B Andrade
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia 40296-710, Brazil; Instituto de Pesquisa Clínica e Translacional (IPCT), Medicina Zarns, Clariens Educação, Salvador, Bahia 41720-200, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Institute, Salvador, Bahia 41810-710, Brazil.
| |
Collapse
|
6
|
Zimenkov D, Ushtanit A, Gordeeva E, Guselnikova E, Schwartz Y, Stavitskaya N. High Prevalence of atpE Mutations in Bedaquiline-Resistant Mycobacterium tuberculosis Isolates, Russia. Emerg Infect Dis 2025; 31:525-536. [PMID: 40023803 PMCID: PMC11878324 DOI: 10.3201/eid3103.241488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
Bedaquiline is a cornerstone drug for treating drug-resistant tuberculosis. We analyzed 11 isolates from 9 patients who were treated with a bedaquiline-based regimen and remained culture-positive long after treatment start. In 4 of 8 resistant isolates, we found substitutions in AtpE, which encodes subunit c of the Mycobacterium tuberculosis ATP synthase and is rarely identified in clinical isolates. We found Ile66Met and Glu61Asp substitutions in 2 cases each. Additional mutations in mmpL5, mmpL4, and atpB genes could affect the susceptibility to bedaquiline. MmpL5(Asn772Thr) emerged during bedaquiline treatment, whereas AtpB(Val165Leu) was found in 1 case simultaneously with the loss-of-function mmpR5 mutation in a susceptible strain. The loss-of-function mutation in the mmpL4 efflux gene was identified in the mixed state, pointing to ongoing selection in a bedaquiline-resistant isolate. Another case of the emergence of the mmpL4 mutation, accompanied by a proportional increase in bedaquiline MIC, was identified by retrospective analysis of genomes from bedaquiline-resistant isolates.
Collapse
|
7
|
Fakher S, Westenberg D. Properties and antibacterial effectiveness of metal-ion doped borate-based bioactive glasses. Future Microbiol 2025; 20:315-331. [PMID: 40079871 PMCID: PMC11938980 DOI: 10.1080/17460913.2025.2470029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Bioactive glasses (BGs) are physiologically reactive surface biomaterials widely used in biomedical applications and various treatments. Borate bioactive glasses (BBGs) are third-generation BGs, and they exhibit superior biodegradable, bioactive, osteoconductive, antibacterial, and biocompatible properties compared to other types of BGs. Certain concentrations of dopant ions can be incorporated into the chemical structure of BBGs to enhance their biological functionalities and antimicrobial properties. It was demonstrated that those ions play a crucial role in the biological responsiveness in vitro and in vivo once in contact with a physiological environment. The dissolution products of ion-doped BBGs were noted in their ability to stimulate gene expression related to cell differentiation and proliferation, promote angiogenesis, display anti-inflammatory effects, and inhibit bacterial growth within a few hours. Thus, metal-ion-doped BBGs address several limitations encountered by biomedical, tissue engineering, and infection control applications. Considering the research studies on BBGs to date, this review aims to analyze metal-ion-doped BBGs based on their primary antibacterial properties and effectiveness.
Collapse
Affiliation(s)
- Sarah Fakher
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - David Westenberg
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
8
|
Earp JC, Garaeva AA, Meikle V, Niederweis M, Seeger MA. Structural basis of siderophore export and drug efflux by Mycobacterium tuberculosis. Nat Commun 2025; 16:1934. [PMID: 39994240 PMCID: PMC11850643 DOI: 10.1038/s41467-025-56888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
To replicate and cause disease, Mycobacterium tuberculosis secretes siderophores called mycobactins to scavenge iron from the human host. Two closely related transporters, MmpL4 and MmpL5, are required for mycobactin secretion and drug efflux. In clinical strains, overproduction of MmpL5 confers resistance towards bedaquiline and clofazimine, key drugs to combat multidrug resistant tuberculosis. Here, we present cryogenic-electron microscopy structures of MmpL4 and identify a mycobactin binding site, which is accessible from the cytosol and also required for bedaquiline efflux. An unusual coiled-coil domain predicted to extend 130 Å into the periplasm is essential for mycobactin and bedaquiline efflux by MmpL4 and MmpL5. The mycobacterial acyl carrier protein MbtL forms a complex with MmpL4, indicating that mycobactin synthesis and export are coupled. Thus, MmpL4 and MmpL5 constitute the core components of a unique multi-subunit machinery required for iron acquisition and drug efflux by M. tuberculosis.
Collapse
Affiliation(s)
- Jennifer C Earp
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Alisa A Garaeva
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Gonda I, Sorrentino S, Galazzo L, Lichti NP, Arnold FM, Mehdipour AR, Bordignon E, Seeger MA. The mycobacterial ABC transporter IrtAB employs a membrane-facing crevice for siderophore-mediated iron uptake. Nat Commun 2025; 16:1133. [PMID: 39880813 PMCID: PMC11779899 DOI: 10.1038/s41467-024-55136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025] Open
Abstract
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface. Mutations introduced at the crevice abrogate mycobactin import and in corresponding structures, the crevice is collapsed. A conserved triple histidine motif coordinating a zinc ion is present below the mycobactin binding site. Substitution of these histidine residues with alanine results in a decoupled transporter, which hydrolyzes ATP, but lost its capacity to import mycobactins. Our data suggest that IrtAB imports mycobactin via a credit-card mechanism in a transport cycle that is coupled to the presence of zinc.
Collapse
Affiliation(s)
- Imre Gonda
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Simona Sorrentino
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Nicolas P Lichti
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Ahmad R Mehdipour
- UGent Center for Molecular Modelling, Ghent University, Ghent, Belgium
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland.
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Mazza L, Bory A, Luscher A, Kloehn J, Wolfender JL, van Delden C, Köhler T. Multidrug efflux pumps of Pseudomonas aeruginosa show selectivity for their natural substrates. Front Microbiol 2025; 15:1512472. [PMID: 39850140 PMCID: PMC11754269 DOI: 10.3389/fmicb.2024.1512472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025] Open
Abstract
Antibiotic-resistant Gram-negative bacteria are an increasing threat to human health. Strategies to restore antibiotic efficacy include targeting multidrug efflux pumps by competitive efflux pump inhibitors. These could be derived from natural substrates of these efflux systems. In this work, we aimed to elucidate the natural substrates of the clinically relevant Mex efflux pumps of Pseudomonas aeruginosa by an untargeted metabolomic approach. We constructed a PA14 mutant, genetically deleted in the major multidrug efflux pumps MexAB-OprM, MexCD-OprJ, MexXY-OprM, and MexEF-OprN and expressed in this mutant each efflux pump individually from an inducible promoter. Comparative analysis of the exo-metabolomes identified 210 features that were more abundant in the supernatant of efflux pump overexpressors compared to the pump-deficient mutant. Most of the identified features were efflux pump specific, while only a few were shared among several Mex pumps. We identified by-products of secondary metabolites as well as signaling molecules. Supernatants of the pump-deficient mutant also showed decreased accumulation of fatty acids, including long chain homoserine lactone quorum sensing molecules. Our data suggests that Mex efflux pumps of P. aeruginosa appear to have dedicated roles in extruding signaling molecules, metabolic by-products, as well as oxidized fatty acids. These findings represent an interesting starting point for the development of competitive efflux pump inhibitors.
Collapse
Affiliation(s)
- Léna Mazza
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre Bory
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Alexandre Luscher
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Thilo Köhler
- Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Maharjan R, Zhang Z, Klenotic PA, Gregor WD, Purdy GE, Yu EW. Cryo-EM structure of the Mycobacterium smegmatis MmpL5-AcpM complex. mBio 2024; 15:e0303524. [PMID: 39480109 PMCID: PMC11633376 DOI: 10.1128/mbio.03035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Mycobacterium tuberculosis, the causative agent of the airborne infection tuberculosis (TB), contains 13 mycobacterial membrane protein large (MmpL) transporters that can be divided into two distinct subclasses. These MmpL proteins play important functional roles within the mycobacterium and subsequently are considered attractive drug targets to combat TB infection. Previously, we reported both X-ray and cryo-electron microscopy (cryo-EM) structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins. Thus far, there is no structural information available for the other subclass, which includes MmpL5, an inner membrane transporter that plays a critical role in iron hemostasis. Here, we report the first cryo-EM structure of the Mycobacterium smegmatis MmpL5 transporter bound with the meromycolate extension acyl carrier protein M (AcpM) to a resolution of 2.81 Å. Our structural data reveals that MmpL5 and AcpM interact in the cytoplasm to form a complex, and this allows us to propose that MmpL5 may also associate with the mycobactin L (MbtL) protein in a similar fashion to form a heterocomplex important for iron acquisition, which enables the survival and replication of the mycobacterium. IMPORTANCE The emergence and spread of multidrug-resistant tuberculosis (TB) present enormous challenges to the global public health. The causative agent, Mycobacterium tuberculosis, has now infected more than one-third of the world's population. Here, we report the first structure of the mycobacterial membrane protein large 5 (MmpL5), an essential transporter for iron acquisition, bound with the meromycolate extension acyl carrier protein M (AcpM), indicating a plausible pathway for mycobactin translocation. Our studies will ultimately inform an era in structure-guided drug design to combat TB infection.
Collapse
Affiliation(s)
- Rakesh Maharjan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - William D. Gregor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Georgiana E. Purdy
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
13
|
Yadav R, Saini DK. A conserved two-component system senses intracellular iron levels and regulates redox balance in Mycobacterium spp. Microbiol Spectr 2024; 12:e0110624. [PMID: 39315783 PMCID: PMC11537054 DOI: 10.1128/spectrum.01106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
For bacteria, an intricate coordination between sensing and regulating iron levels and managing oxidative stress is required as their levels are tightly interlinked. While various oxidative stress and heme-based redox sensors have been reported for both pathogenic and non-pathogenic bacteria, the mechanisms governing the modulation of intracellular iron levels in response to changes in redox status remain unclear. In this study, a gene-inactivated strain of mycobacterial sensor kinase PdtaS showed dysregulated expression of genes associated with iron metabolism, including Fe-S clusters, NADH dehydrogenases, and iron uptake. The strain showed poor growth in nutrient-limiting conditions, a defect rescuable by heme but not by Fe3+ supplementation. This observation was associated with the PAS domain of the PdtaS sensor kinase. Biochemical and biophysical experiments established heme-binding to the PAS domain and its inhibitory effect on PdtaS auto-kinase activity, suggesting that the absence of heme induces activation of this sensor kinase. Interestingly, despite having an endogenous heme biosynthetic pathway or even external heme supplementation, the ∆pdtaS mutant exhibited persistent low intracellular iron levels concomitant with elevated oxidative stress. Antioxidant supplementation mitigated growth defects, emphasizing the link between oxidative stress, intracellular iron levels, and PdtaS activity. RNA-IP identified key targets associated with redox homeostasis and iron metabolism as targets of the PdtaR response regulator. The study proposes a novel role for the PdtaS-PdtaR TCS in sensing heme, regulation of intracellular iron levels, and redox balance.IMPORTANCEThe research article investigates the intricate interplay between bacteria's ability to take and utilize iron without inducing excess iron's toxic effects, including oxidative stress. The study shows that bacteria achieve this by sensing intracellular iron available as heme through a sensory protein PdtaS, which turns off when heme is in excess and prevents iron uptake and iron efflux. The process shields bacteria from generating Fe-dependent free radicals and allows it to maintain viability. The absence of sensor kinase abrogates all these processes, increasing bacteria susceptibility to ROS and thereby slowing growth. This feature of the sensor kinase PdtaS makes it an attractive co-therapeutic target for tuberculosis therapy, where its inhibition will prevent iron uptake, even in the presence of low iron, thereby halting bacterial proliferation.
Collapse
Affiliation(s)
- Rahul Yadav
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
- Department of Bioengineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
14
|
Varshney A, Jia Z, Howe MD, Keiler KC, Baughn AD. A trans-translation inhibitor is potentiated by zinc and kills Mycobacterium tuberculosis and non-tuberculous mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621434. [PMID: 39554143 PMCID: PMC11566007 DOI: 10.1101/2024.11.02.621434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mycobacterium tuberculosis poses a serious challenge for human health, and new antibiotics with novel targets are needed. Here we demonstrate that an acylaminooxadiazole, MBX-4132, specifically inhibits the trans-translation ribosome rescue pathway to kill M. tuberculosis. Our data demonstrate that MBX-4132 is bactericidal against multiple pathogenic mycobacterial species and kills M. tuberculosis in macrophages. We also show that acylaminooxadiazole activity is antagonized by iron but is potentiated by zinc. Our transcriptomic data reveals dysregulation of multiple metal homeostasis pathways after exposure to MBX-4132. Furthermore, we see differential expression of genes related to zinc sensing and efflux when trans-translation is inhibited. Taken together, these data suggest that there is a link between disturbing intracellular metal levels and acylaminooxadiazole-mediated inhibition of trans-translation. These findings provide an important proof-of-concept that trans-translation is a promising antitubercular drug target.
Collapse
Affiliation(s)
- Akanksha Varshney
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
- These authors contributed equally
| | - Ziyi Jia
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
- These authors contributed equally
| | - Michael D. Howe
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Kenneth C. Keiler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Anthony D. Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| |
Collapse
|
15
|
Nakamura H, Hikichi H, Seto S, Hijikata M, Keicho N. Transcriptional regulators SP110 and SP140 modulate inflammatory response genes in Mycobacterium tuberculosis-infected human macrophages. Microbiol Spectr 2024; 12:e0010124. [PMID: 39162523 PMCID: PMC11448263 DOI: 10.1128/spectrum.00101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Understanding the functions of human transcriptional regulatory genes SP110 and SP140 during Mycobacterium tuberculosis infection is crucial; in a mouse model, homologous genes Sp110 and Sp140 have been shown to negatively regulate inflammatory response genes, including the type I interferon (IFN) response. The reduction of these genes in mice is associated with susceptibility to M. tuberculosis infection and the development of necrotizing granulomatous lesions. To investigate the involvement of SP110 and SP140 in human inflammatory response, we analyzed their regulatory manner in THP-1 macrophages infected with M. tuberculosis. Genome-wide transcriptional profiling revealed that the depletion of SP110 and/or SP140 impaired the induction of gene expression associated with inflammatory responses, including IFN response genes, although it had little effect on the intracellular proliferation of M. tuberculosis. By contrast, genes related to phosphorylation were upregulated in infected macrophages with SP110 and/or SP140 knockdown, but downregulated in infected control macrophages without their knockdown. Reverse transcription-quantitative PCR and ELISA further confirmed the impairment of the induction of IFN response genes by the depletion of SP110 and/or SP140 in M. tuberculosis-infected macrophages. These findings suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses in M. tuberculosis-infected macrophages. IMPORTANCE Tuberculosis (TB) is one of the most serious infectious diseases, with high morbidity and mortality worldwide. C3HeB/FeJ mice are widely utilized for evaluating anti-TB drugs because their drug sensitivity and pathology during M. tuberculosis infection resemble those of human TB, including the development of necrotizing granulomas. Downregulation of the transcriptional regulatory genes Sp110 and Sp140 in C3HeB/FeJ mice has been demonstrated to activate gene expression associated with inflammatory responses during M. tuberculosis infection, resulting in susceptibility to the infection. Here, we examined the regulatory manner of SP110 and SP140 using transcriptomic analysis in M. tuberculosis-infected human macrophages. Depletion of SP110 and/or SP140 in M. tuberculosis-infected THP-1 macrophages impaired the induction of gene expression associated with inflammatory responses, including interferon response genes, compared with that in control macrophages. These results suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses upon M. tuberculosis infection.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
16
|
Maharjan R, Zhang Z, Klenotic PA, Gregor WD, Tringides ML, Cui M, Purdy GE, Yu EW. Structures of the mycobacterial MmpL4 and MmpL5 transporters provide insights into their role in siderophore export and iron acquisition. PLoS Biol 2024; 22:e3002874. [PMID: 39423221 PMCID: PMC11524445 DOI: 10.1371/journal.pbio.3002874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/30/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
The Mycobacterium tuberculosis (Mtb) pathogen, the causative agent of the airborne infection tuberculosis (TB), harbors a number of mycobacterial membrane protein large (MmpL) transporters. These membrane proteins can be separated into 2 distinct subclasses, where they perform important functional roles, and thus, are considered potential drug targets to combat TB. Previously, we reported both X-ray and cryo-EM structures of the MmpL3 transporter, providing high-resolution structural information for this subclass of the MmpL proteins. Currently, there is no structural information available for the subclass associated with MmpL4 and MmpL5, transporters that play a critical role in iron homeostasis of the bacterium. Here, we report cryo-EM structures of the M. smegmatis MmpL4 and MmpL5 transporters to resolutions of 2.95 Å and 3.00 Å, respectively. These structures allow us to propose a plausible pathway for siderophore translocation via these 2 transporters, an essential step for iron acquisition that enables the survival and replication of the mycobacterium.
Collapse
Affiliation(s)
- Rakesh Maharjan
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Zhemin Zhang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - William D. Gregor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Marios L. Tringides
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Boston, Massachusetts, United States of America
| | - Georgiana E. Purdy
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
17
|
Datta D, Jamwal S, Jyoti N, Patnaik S, Kumar D. Actionable mechanisms of drug tolerance and resistance in Mycobacterium tuberculosis. FEBS J 2024; 291:4433-4452. [PMID: 38676952 DOI: 10.1111/febs.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/23/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
The emergence of antimicrobial resistance (AMR) across bacterial pathogens presents a serious threat to global health. This threat is further exacerbated in tuberculosis (TB), mainly due to a protracted treatment regimen involving a combination of drugs. A diversity of factors contributes to the emergence of drug resistance in TB, which is caused by the pathogen Mycobacterium tuberculosis (Mtb). While the traditional genetic mutation-driven drug resistance mechanisms operate in Mtb, there are also several additional unique features of drug resistance in this pathogen. Research in the past decade has enriched our understanding of such unconventional factors as efflux pumps, bacterial heterogeneity, metabolic states, and host microenvironment. Given that the discovery of new antibiotics is outpaced by the emergence of drug resistance patterns displayed by the pathogen, newer strategies for combating drug resistance are desperately needed. In the context of TB, such approaches include targeting the efflux capability of the pathogen, modulating the host environment to prevent bacterial drug tolerance, and activating the host anti-mycobacterial pathways. In this review, we discuss the traditional mechanisms of drug resistance in Mtb, newer understandings and the shaping of a set of unconventional approaches to target both the emergence and treatment of drug resistance in TB.
Collapse
Affiliation(s)
- Dipanwita Datta
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Shaina Jamwal
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Nishant Jyoti
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
18
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
19
|
Sailer AL, Jevtic Z, Stoll B, Wörtz J, Sharma K, Urlaub H, Dyall-Smith M, Pfeiffer F, Marchfelder A, Lenz C. Iron starvation results in up-regulation of a probable Haloferax volcanii siderophore transporter. Front Microbiol 2024; 15:1422844. [PMID: 39206359 PMCID: PMC11349517 DOI: 10.3389/fmicb.2024.1422844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The response of the haloarchaeal model organism Haloferax volcanii to iron starvation was analyzed at the proteome level by data-independent acquisition mass spectrometry. Cells grown in minimal medium with normal iron levels were compared to those grown under low iron conditions, with samples being separated into membrane and cytoplasmic fractions in order to focus on import/export processes which are frequently associated with metal homeostasis. Iron starvation not only caused a severe retardation of growth but also altered the levels of many proteins. Using a comprehensive annotated spectral library and data-independent acquisition mass spectrometry (DIA-MS), we found that iron starvation resulted in significant changes to both the membrane and the soluble proteomes of Hfx. volcanii. The most affected protein is the RND family permease HVO_A0467, which is 44-fold enriched in cells grown under iron starvation. The gene HVO_A0467 can be deleted suggesting that it is not essential under standard conditions. Compared to wild type cells the deletion strain shows only slight changes in growth and cell morphologies show no differences. Molecular docking predictions indicated that HVO_A0467 may be an exporter of the siderophore schizokinen for which a potential biosynthesis cluster is encoded in the Hfx. volcanii genome. Together, these findings confirm the importance of iron for archaeal cells and suggest HVO_0467 as a siderophore exporter.
Collapse
Affiliation(s)
| | - Zivojin Jevtic
- Department of Biomedicine, University Children’s Hospital, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | - Kundan Sharma
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Mike Dyall-Smith
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, Germany
- Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, University of Melbourne, Parkville, VIC, Australia
| | - Friedhelm Pfeiffer
- Biology II, Ulm University, Ulm, Germany
- Computational Systems Biochemistry, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
20
|
Laborda P, Molin S, Johansen HK, Martínez JL, Hernando-Amado S. Role of bacterial multidrug efflux pumps during infection. World J Microbiol Biotechnol 2024; 40:226. [PMID: 38822187 DOI: 10.1007/s11274-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
21
|
Feng Q, Lin Q, Yao F, Liao Y, Zhang H, Sun Y, Liu W, Zhang R, Rao W, Zhang G, Xu Y. Discovering novel biomarkers for diagnosis and treatment monitoring of active pulmonary tuberculosis by ion metabolism analysis. Microbiol Res 2024; 283:127670. [PMID: 38479231 DOI: 10.1016/j.micres.2024.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
Tuberculosis (TB) is a highly lethal infectious disease that poses a global threat. Timely and accurate biomarker for TB diagnosis and treatment monitoring remains a pressing need. Ions, the crucial trace element for humans, may be potential targets for TB diagnosis and the forecasting of TB development. To explore the potential of ions as biomarkers, we measured and compared the levels of various ions in whole blood and plasma samples from healthy control (HC), pulmonary TB patients (TB), cured pulmonary TB patients (RxTB), and other non-TB pneumonia patients (PN) by using ultra-high performance liquid chromatography-tandem mass spectrometry. Our study demonstrated that Cu (AUC = 0.670), Pb (AUC = 0.660), and Zn (AUC = 0.701) in whole blood exhibited promising diagnostic performance for TB. Then we used a neural network (NNET) for TB prediction, the AUC values used to differentiate definite TB from HC or PN in plasma were 0.867 and 0.864, respectively. The AUC values used to differentiate definite TB from HC or PN in whole blood were 0.818 and 0.660, respectively. Our correlation analysis showed that Zn (r= 0.356, p=0.001) and Cu (r= 0.361, p=0.0004) in plasma are most closely related to disease severity. Additionally, six ions (Cu, Sb, V, Mn, Fe, Sr) in plasma and whole blood were altered following anti-TB therapy. These results showed that ions could be diagnostic biomarkers for TB. Furthermore, the level of particular ions can forecast the degree of lung damage and the success of the TB treatment. In conclusion, this study highlights the possibility of using ions from blood samples to enable rapid tuberculosis diagnosis.
Collapse
Affiliation(s)
- Qishun Feng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Qiao Lin
- The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Fusheng Yao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Yunli Liao
- Department of Mass Spectrometry, BGI-Shenzhen, Shenzhen 518083, China
| | - Huihua Zhang
- Department of Pathogen Biology, School of Medicine, Shenzhen University, Shenzhen 518037, China
| | - Yunmei Sun
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Wenfeng Liu
- The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China
| | - Ruiqi Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Weiqiao Rao
- Department of Mass Spectrometry, BGI-Shenzhen, Shenzhen 518083, China.
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Yuzhong Xu
- The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen 518101, China.
| |
Collapse
|
22
|
Hu T, Yang X, Zhu Y, Liu F, Yang X, Xiong Z, Liang J, Lin Z, Ran Y, Guddat LW, Rao Z, Zhang B. Molecular basis for substrate transport of Mycobacterium tuberculosis ABC importer DppABCD. SCIENCE ADVANCES 2024; 10:eadk8521. [PMID: 38507491 PMCID: PMC10954201 DOI: 10.1126/sciadv.adk8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
The type I adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter DppABCD is believed to be responsible for the import of exogenous heme as an iron source into the cytoplasm of the human pathogen Mycobacterium tuberculosis (Mtb). Additionally, this system is also known to be involved in the acquisition of tri- or tetra-peptides. Here, we report the cryo-electron microscopy structures of the dual-function Mtb DppABCD transporter in three forms, namely, the apo, substrate-bound, and ATP-bound states. The apo structure reveals an unexpected and previously uncharacterized assembly mode for ABC importers, where the lipoprotein DppA, a cluster C substrate-binding protein (SBP), stands upright on the translocator DppBCD primarily through its hinge region and N-lobe. These structural data, along with biochemical studies, reveal the assembly of DppABCD complex and the detailed mechanism of DppABCD-mediated transport. Together, these findings provide a molecular roadmap for understanding the transport mechanism of a cluster C SBP and its translocator.
Collapse
Affiliation(s)
- Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaolin Yang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Yuanchen Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Zhenli Lin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuting Ran
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen 518112, China
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510005, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
23
|
Jaisinghani N, Previti ML, Andrade J, Askenazi M, Ueberheide B, Seeliger JC. Proteomics from compartment-specific APEX2 labeling in Mycobacterium tuberculosis reveals Type VII secretion substrates in the cell wall. Cell Chem Biol 2024; 31:523-533.e4. [PMID: 37967559 PMCID: PMC11106752 DOI: 10.1016/j.chembiol.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
The cell wall of mycobacteria plays a key role in interactions with the environment. Its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites, from ions to lipids to proteins. Identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that although chemical labeling of live cells did not exclusively label surface proteins, protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis accurately identified the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mary L Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
24
|
Cuthbert BJ, Mendoza J, de Miranda R, Papavinasasundaram K, Sassetti CM, Goulding CW. The structure of Mycobacterium thermoresistibile MmpS5 reveals a conserved disulfide bond across mycobacteria. Metallomics 2024; 16:mfae011. [PMID: 38425033 PMCID: PMC10929441 DOI: 10.1093/mtomcs/mfae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
The tuberculosis (TB) emergency has been a pressing health threat for decades. With the emergence of drug-resistant TB and complications from the COVID-19 pandemic, the TB health crisis is more serious than ever. Mycobacterium tuberculosis (Mtb), the causative agent of TB, requires iron for its survival. Thus, Mtb has evolved several mechanisms to acquire iron from the host. Mtb produces two siderophores, mycobactin and carboxymycobactin, which scavenge for host iron. Mtb siderophore-dependent iron acquisition requires the export of apo-siderophores from the cytosol to the host environment and import of iron-bound siderophores. The export of Mtb apo-siderophores across the inner membrane is facilitated by two mycobacterial inner membrane proteins with their cognate periplasmic accessory proteins, designated MmpL4/MmpS4 and MmpL5/MmpS5. Notably, the Mtb MmpL4/MmpS4 and MmpL5/MmpS5 complexes have also been implicated in the efflux of anti-TB drugs. Herein, we solved the crystal structure of M. thermoresistibile MmpS5. The MmpS5 structure reveals a previously uncharacterized, biologically relevant disulfide bond that appears to be conserved across the Mycobacterium MmpS4/S5 homologs, and comparison with structural homologs suggests that MmpS5 may be dimeric.
Collapse
Affiliation(s)
- Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Jessica Mendoza
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
25
|
Comín J, Campos E, Gonzalo-Asensio J, Samper S. Transcriptomic profile of the most successful Mycobacterium tuberculosis strain in Aragon, the MtZ strain, during exponential and stationary growth phases. Microbiol Spectr 2023; 11:e0468522. [PMID: 37882511 PMCID: PMC10714837 DOI: 10.1128/spectrum.04685-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Aragon Community suffered, during the first years of the beginning of this century, a large outbreak caused by the MtZ strain, producing more than 240 cases to date. MtZ strain and the outbreak have been previously studied from an epidemiological and molecular point of view. In this work, we analyzed the transcriptomic profile of the strain for better understanding of its success among our population. We have discovered that MtZ has some upregulated virulence pathways, such as the ESX-1 system, the cholesterol degradation pathway or the peptidoglycan biosynthesis. Interestingly, MtZ has downregulated the uptake of iron. Another special feature of MtZ strain is the interruption of desA3 gene, essential for producing oleic acid. Although the strain takes a long time to grow in the initial culture media, eventually it is able to reach normal optical densities, suggestive of the presence of another route for obtaining oleic acid in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Jessica Comín
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
| | | | - Jesús Gonzalo-Asensio
- Universidad de Zaragoza, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Sofía Samper
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
26
|
Rakshit G, Biswas A, Jayaprakash V. In Silico Drug Repurposing Studies for the Discovery of Novel Salicyl-AMP Ligase (MbtA)Inhibitors. Pathogens 2023; 12:1433. [PMID: 38133316 PMCID: PMC10745912 DOI: 10.3390/pathogens12121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Tuberculosis (TB) continues to pose a global health challenge, exacerbated by the rise of drug-resistant strains. The development of new TB therapies is an arduous and time-consuming process. To expedite the discovery of effective treatments, computational structure-based drug repurposing has emerged as a promising strategy. From this perspective, conditionally essential targets present a valuable opportunity, and the mycobactin biosynthesis pathway stands out as a prime example highlighting the intricate response of Mycobacterium tuberculosis (Mtb) to changes in iron availability. This study focuses on the repurposing and revival of FDA-approved drugs (library) as potential inhibitors of MbtA, a crucial enzyme in mycobactin biosynthesis in Mtb conserved among all species of mycobacteria. The literature suggests this pathway to be associated with drug efflux pumps, which potentially contribute to drug resistance. This makes it a potential target for antitubercular drug discovery. Herein, we utilized cheminformatics and structure-based drug repurposing approaches, viz., molecular docking, dynamics, and PCA analysis, to decode the intermolecular interactions and binding affinity of the FDA-reported molecules against MbtA. Virtual screening revealed ten molecules with significant binding affinities and interactions with MbtA. These drugs, originally designed for different therapeutic indications (four antiviral, three anticancer, one CYP450 inhibitor, one ACE inhibitor, and one leukotriene antagonist), were repurposed as potential MbtA inhibitors. Furthermore, our study explores the binding modes and interactions between these drugs and MbtA, shedding light on the structural basis of their inhibitory potential. Principal component analysis highlighted significant motions in MbtA-bound ligands, emphasizing the stability of the top protein-ligand complexes (PLCs). This computational approach provides a swift and cost-effective method for identifying new MbtA inhibitors, which can subsequently undergo validation through experimental assays. This streamlined process is facilitated by the fact that these compounds are already FDA-approved and have established safety and efficacy profiles. This study has the potential to lay the groundwork for addressing the urgent global health challenge at hand, specifically in the context of combating antimicrobial resistance (AMR) and tuberculosis (TB).
Collapse
Affiliation(s)
| | | | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India; (G.R.); (A.B.)
| |
Collapse
|
27
|
Salini S, Muralikrishnan B, Bhat SG, Ghate SD, Rao RSP, Kumar RA, Kurthkoti K. Overexpression of a membrane transport system MSMEG_1381 and MSMEG_1382 confers multidrug resistance in Mycobacterium smegmatis. Microb Pathog 2023; 185:106384. [PMID: 37838146 DOI: 10.1016/j.micpath.2023.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Mycobacterium tuberculosis is a leading cause of human mortality worldwide, and the emergence of drug-resistant strains demands the discovery of new classes of antimycobacterial that can be employed in the therapeutic pipeline. Previously, a secondary metabolite, chrysomycin A, isolated from Streptomyces sp. OA161 displayed potent bactericidal activity against drug-resistant clinical isolates of M. tuberculosis and different species of mycobacteria. The antibiotic inhibits mycobacterial topoisomerase I and DNA gyrase, leading to bacterial death, but the mechanisms that could cause resistance to this antibiotic are currently unknown. To further understand the resistance mechanism, using M. smegmatis as a model, spontaneous resistance mutants were isolated and subjected to whole-genome sequencing. Mutation in a TetR family transcriptional regulator MSMEG_1380 was identified in the resistant isolates wherein the gene was adjacent to an operon encoding membrane proteins MSMEG_1381 and MSMEG_1382. Sequence analysis and modeling studies indicated that MSMEG_1381 and MSMEG_1382 are components of the Mmp family of efflux pumps and over-expression of either the operon or individual genes conferred resistance to chrysomycin A, isoniazid, and ethambutol. Our study highlights the role of membrane transporter proteins in conferring multiple drug resistance and the utility of recombinant strains overexpressing membrane transporters in the drug screening pipeline.
Collapse
Affiliation(s)
- S Salini
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Balaji Muralikrishnan
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India; Indian Institute of Science Education and Research (IISER), Tirupati, 517507, India
| | - Sinchana G Bhat
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru 575018, India
| | - R Shyama Prasad Rao
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru 575018, India
| | - R Ajay Kumar
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | - Krishna Kurthkoti
- Mycobacterium Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India.
| |
Collapse
|
28
|
Tan CG, Oberlag NM, McGowan AE, Dawrs SN, Chan YL, Strong M, Hasan NA, Honda JR. Genomic and microbiological analyses of iron acquisition pathways among respiratory and environmental nontuberculous mycobacteria from Hawai'i. Front Microbiol 2023; 14:1268963. [PMID: 38029173 PMCID: PMC10667711 DOI: 10.3389/fmicb.2023.1268963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
As environmental opportunistic pathogens, nontuberculous mycobacteria (NTM) can cause severe and difficult to treat pulmonary disease. In the United States, Hawai'i has the highest prevalence of infection. Rapid growing mycobacteria (RGM) such as Mycobacterium abscessus and M. porcinum and the slow growing mycobacteria (SGM) including M. intracellulare subspecies chimaera are common environmental NTM species and subspecies in Hawai'i. Although iron acquisition is an essential process of many microorganisms, iron acquisition via siderophores among the NTM is not well-characterized. In this study, we apply genomic and microbiological methodologies to better understand iron acquisition via siderophores for environmental and respiratory isolates of M. abscessus, M. porcinum, and M. intracellulare subspecies chimaera from Hawai'i. Siderophore synthesis and transport genes, including mycobactin (mbt), mmpL/S, and esx-3 were compared among 47 reference isolates, 29 respiratory isolates, and 23 environmental Hawai'i isolates. Among all reference isolates examined, respiratory isolates showed significantly more siderophore pertinent genes compared to environmental isolates. Among the Hawai'i isolates, RGM M. abscessus and M. porcinum had significantly less esx-3 and mbt genes compared to SGM M. chimaera when stratified by growth classification. However, no significant differences were observed between the species when grown on low iron culture agar or siderophore production by the chrome azurol S (CAS) assay in vitro. These results indicate the complex mechanisms involved in iron sequestration and siderophore activity among diverse NTM species.
Collapse
Affiliation(s)
| | - Nicole M. Oberlag
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | | | - Stephanie N. Dawrs
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | | | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Nabeeh A. Hasan
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Jennifer R. Honda
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| |
Collapse
|
29
|
Williams JT, Baker JJ, Zheng H, Dechow SJ, Fallon J, Murto M, Albrecht VJ, Gilliland HN, Olive AJ, Abramovitch RB. A genetic selection for Mycobacterium smegmatis mutants tolerant to killing by sodium citrate defines a combined role for cation homeostasis and osmotic stress in cell death. mSphere 2023; 8:e0035823. [PMID: 37681985 PMCID: PMC10597346 DOI: 10.1128/msphere.00358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 09/09/2023] Open
Abstract
Mycobacteria can colonize environments where the availability of metal ions is limited. Biological or inorganic chelators play an important role in limiting metal availability, and we developed a model to examine Mycobacterium smegmatis survival in the presence of the chelator sodium citrate. We observed that instead of restricting M. smegmatis growth, concentrated sodium citrate killed M. smegmatis. RNAseq analysis during sodium citrate treatment revealed transcriptional signatures of metal starvation and hyperosmotic stress. Notably, metal starvation and hyperosmotic stress, individually, do not kill M. smegmatis under these conditions. A forward genetic transposon selection was conducted to examine why sodium citrate was lethal, and several sodium-citrate-tolerant mutants were isolated. Based on the identity of three tolerant mutants, mgtE, treZ, and fadD6, we propose a dual stress model of killing by sodium citrate, where sodium citrate chelate metals from the cell envelope and then osmotic stress in combination with a weakened cell envelope causes cell lysis. This sodium citrate tolerance screen identified mutants in several other genes with no known function, with most conserved in the pathogen M. tuberculosis. Therefore, this model will serve as a basis to define their functions, potentially in maintaining cell wall integrity, cation homeostasis, or osmotolerance. IMPORTANCE Bacteria require mechanisms to adapt to environments with differing metal availability. When Mycobacterium smegmatis is treated with high concentrations of the metal chelator sodium citrate, the bacteria are killed. To define the mechanisms underlying killing by sodium citrate, we conducted a genetic selection and observed tolerance to killing in mutants of the mgtE magnesium transporter. Further characterization studies support a model where killing by sodium citrate is driven by a weakened cell wall and osmotic stress, that in combination cause cell lysis.
Collapse
Affiliation(s)
- John T. Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jacob J. Baker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Huiqing Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Shelby J. Dechow
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Jared Fallon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Megan Murto
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Veronica J. Albrecht
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Haleigh N. Gilliland
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
30
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
31
|
Meikle V, Zhang L, Niederweis M. Intricate link between siderophore secretion and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2023; 67:e0162922. [PMID: 37676015 PMCID: PMC10583673 DOI: 10.1128/aac.01629-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/30/2023] [Indexed: 09/08/2023] Open
Abstract
Drug-resistant Mycobacterium tuberculosis is a worldwide health-care problem rendering current tuberculosis (TB) drugs ineffective. Drug efflux is an important mechanism in bacterial drug resistance. The MmpL4 and MmpL5 transporters form functionally redundant complexes with their associated MmpS4 and MmpS5 proteins and constitute the inner membrane components of an essential siderophore secretion system of M. tuberculosis. Inactivating siderophore secretion is toxic for M. tuberculosis due to self-poisoning at low-iron conditions and leads to a strong virulence defect in mice. In this study, we show that M. tuberculosis mutants lacking components of the MmpS4-MmpL4 and MmpS5-MmpL5 systems are more susceptible to bedaquiline, clofazimine, and rifabutin, important drugs for treatment of drug-resistant TB. While genetic deletion experiments revealed similar functions of the MmpL4 and MmpL5 transporters in siderophore and drug secretion, complementation experiments indicated that the MmpS4-MmpL4 proteins alone are not sufficient to restore drug efflux in an M. tuberculosis mutant lacking both operons, in contrast to MmpS5-MmpL5. Importantly, an M. tuberculosis mutant lacking the recently discovered periplasmic Rv0455c protein, which is also essential for siderophore secretion, is more susceptible to the same drugs. These results reveal a promising target for the development of dual-function TB drugs, which might poison M. tuberculosis by blocking siderophore secretion and synergize with other drugs by impairing drug efflux.
Collapse
Affiliation(s)
- Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
de Miranda R, Cuthbert BJ, Klevorn T, Chao A, Mendoza J, Arbing M, Sieminski PJ, Papavinasasundaram K, Abdul-Hafiz S, Chan S, Sassetti CM, Ehrt S, Goulding CW. Differentiating the roles of Mycobacterium tuberculosis substrate binding proteins, FecB and FecB2, in iron uptake. PLoS Pathog 2023; 19:e1011650. [PMID: 37747938 PMCID: PMC10553834 DOI: 10.1371/journal.ppat.1011650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/05/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, poses a great threat to human health. With the emergence of drug resistant Mtb strains, new therapeutics are desperately needed. As iron is critical to the growth and survival of Mtb, mechanisms through which Mtb acquires host iron represent attractive therapeutic targets. Mtb scavenges host iron via Mtb siderophore-dependent and heme iron uptake pathways. While multiple studies describe the import of heme and ferric-siderophores and the export of apo-siderophores across the inner membrane, little is known about their transport across the periplasm and cell-wall environments. Mtb FecB and FecB2 are predicted periplasmic binding proteins implicated in host iron acquisition; however, their precise roles are not well understood. This study sought to differentiate the roles FecB and FecB2 play in Mtb iron acquisition. The crystallographic structures of Mtb FecB and FecB2 were determined to 2.0 Å and 2.2 Å resolution, respectively, and show distinct ligand binding pockets. In vitro ligand binding experiments for FecB and FecB2 were performed with heme and bacterial siderophores from Mtb and other species, revealing that both FecB and FecB2 bind heme, while only FecB binds the Mtb sideophore ferric-carboxymycobactin (Fe-cMB). Subsequent structure-guided mutagenesis of FecB identified a single glutamate residue-Glu339-that significantly contributes to Fe-cMB binding. A role for FecB in the Mtb siderophore-mediated iron acquisition pathway was corroborated by Mycobacterium smegmatis and Mtb pull-down assays, which revealed interactions between FecB and members of the mycobacterial siderophore export and import machinery. Similarly, pull-down assays with FecB2 confirms its role in heme uptake revealing interactions with a potential inner membrane heme importer. Due to ligand preference and protein partners, our data suggest that Mtb FecB plays a role in siderophore-dependent iron and heme acquisition pathways; in addition, we confirm that Mtb FecB2 is involved in heme uptake.
Collapse
Affiliation(s)
- Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Bonnie J. Cuthbert
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Thaís Klevorn
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Alex Chao
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Jessica Mendoza
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Mark Arbing
- UCLA-DOE Institute, UCLA, Los Angeles, Calofornia, United States of America
| | - Paul J. Sieminski
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sumer Abdul-Hafiz
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Sum Chan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Celia W. Goulding
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, Califiornia, United States of America
| |
Collapse
|
33
|
Khan MT, Mahmud A, Islam MM, Sumaia MSN, Rahim Z, Islam K, Iqbal A. Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach. Genomics Inform 2023; 21:e42. [PMID: 37813638 PMCID: PMC10584640 DOI: 10.5808/gi.23021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Toll-like receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.
Collapse
Affiliation(s)
- Md Tahsin Khan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Araf Mahmud
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Muzahidul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mst. Sayedatun Nessa Sumaia
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Zeaur Rahim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Kamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Asif Iqbal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
34
|
Carbone J, Paradis NJ, Bennet L, Alesiani MC, Hausman KR, Wu C. Inhibition Mechanism of Anti-TB Drug SQ109: Allosteric Inhibition of TMM Translocation of Mycobacterium Tuberculosis MmpL3 Transporter. J Chem Inf Model 2023; 63:5356-5374. [PMID: 37589273 PMCID: PMC10466384 DOI: 10.1021/acs.jcim.3c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 08/18/2023]
Abstract
The mycolic acid transporter MmpL3 is driven by proton motive forces (PMF) and functions via an antiport mechanism. Although the crystal structures of the Mycobacterium smegmatis MmpL3 transporter alone and in complex with a trehalose monomycolate (TMM) substrate and an antituberculosis drug candidate SQ109 under Phase 2b-3 Clinical Trials are available, no water and no conformational change in MmpL3 were observed in these structures to explain SQ109's inhibition mechanism of proton and TMM transportation. In this study, molecular dynamics simulations of both apo form and inhibitor-bound MmpL3 in an explicit membrane were used to decipher the inhibition mechanism of SQ109. In the apo system, the close-open motion of the two TM domains, likely driven by the proton translocation, drives the close-open motion of the two PD domains, presumably allowing for TMM translocation. In contrast, in the holo system, the two PD domains are locked in a closed state, and the two TM domains are locked in an off pathway wider open state due to the binding of the inhibitor. Consistent with the close-open motion of the two PD domains, TMM entry size changes in the apo system, likely loading and moving the TMM, but does not vary much in the holo system and probably impair the movement of the TMM. Furthermore, we observed that water molecules passed through the central channel of the MmpL3 transporter to the cytoplasmic side in the apo system but not in the holo system, with a mean passing time of ∼135 ns. Because water wires play an essential role in transporting protons, our findings shed light on the importance of PMF in driving the close-open motion of the two TM domains. Interestingly, the key channel residues involved in water passage display considerable overlap with conserved residues within the MmpL protein family, supporting their critical function role.
Collapse
Affiliation(s)
| | | | | | - Mark C. Alesiani
- Department of Chemistry & Biochemistry,
College of Science and Mathematics, Rowan
University, Glassboro, New Jersey 08028, United States
| | - Katherine R. Hausman
- Department of Chemistry & Biochemistry,
College of Science and Mathematics, Rowan
University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Department of Chemistry & Biochemistry,
College of Science and Mathematics, Rowan
University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
35
|
Nelson SJ, Williams JT, Buglino JA, Nambi S, Lojek LJ, Glickman MS, Ioerger TR, Sassetti CM. The Rip1 intramembrane protease contributes to iron and zinc homeostasis in Mycobacterium tuberculosis. mSphere 2023; 8:e0038922. [PMID: 37318217 PMCID: PMC10449499 DOI: 10.1128/msphere.00389-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
Mycobacterium tuberculosis is exposed to a variety of stresses during a chronic infection, as the immune system simultaneously produces bactericidal compounds and starves the pathogen of essential nutrients. The intramembrane protease, Rip1, plays an important role in the adaptation to these stresses, at least partially by the cleavage of membrane-bound transcriptional regulators. Although Rip1 is known to be critical for surviving copper intoxication and nitric oxide exposure, these stresses do not fully account for the regulatory protein's essentiality during infection. In this work, we demonstrate that Rip1 is also necessary for growth in low-iron and low-zinc conditions, similar to those imposed by the immune system. Using a newly generated library of sigma factor mutants, we show that the known regulatory target of Rip1, SigL, shares this defect. Transcriptional profiling under iron-limiting conditions supported the coordinated activity of Rip1 and SigL and demonstrated that the loss of these proteins produces an exaggerated iron starvation response. These observations demonstrate that Rip1 coordinates several aspects of metal homeostasis and suggest that a Rip1- and SigL-dependent pathway is necessary to thrive in the iron-deficient environments encountered during infection. IMPORTANCE Metal homeostasis represents a critical point of interaction between the mammalian immune system and potential pathogens. While the host attempts to intoxicate microbes with high concentrations of copper or starve the invader of iron and zinc, successful pathogens have acquired mechanisms to overcome these defenses. Our work identifies a regulatory pathway consisting of the Rip1 intramembrane protease and the sigma factor, SigL, that is essential for the important human pathogen, Mycobacterium tuberculosis, to grow in low-iron or low-zinc conditions such as those encountered during infection. In conjunction with Rip1's known role in resisting copper toxicity, our work implicates this protein as a critical integration point that coordinates the multiple metal homeostatic systems required for this pathogen to survive in host tissue.
Collapse
Affiliation(s)
- Samantha J. Nelson
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John T. Williams
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John A. Buglino
- Immunology Program, Sloan Kettering Institute, New York City, New York, USA
| | - Subhalaxmi Nambi
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa J. Lojek
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
36
|
Xu J, Li D, Shi J, Wang B, Ge F, Guo Z, Mu X, Nuermberger E, Lu Y. Bedquiline Resistance Mutations: Correlations with Drug Exposures and Impact on the Proteome in M. tuberculosis. Antimicrob Agents Chemother 2023; 67:e0153222. [PMID: 37255473 PMCID: PMC10353445 DOI: 10.1128/aac.01532-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Bedaquiline (BDQ) is an effective drug for the treatment of drug-resistant tuberculosis. Mutations in atpE, which encodes the target of BDQ, are associated with large increases in MICs. Mutations in Rv0678 that derepress the transcription of the MmpL5-MmpS5 efflux transporter are associated with smaller increases in MICs. However, Rv0678 mutations are the most common mutations that are associated with BDQ resistance in clinical isolates, and they also confer cross-resistance to clofazimine (CFZ). To investigate the mechanism of BDQ resistance and the correlation between Rv0678 mutations and target-based atpE mutations, M. tuberculosis strains were exposed to different concentrations of BDQ or CFZ to select Rv0678 mutations and atpE mutations. Gene overexpression strains were constructed to illustrate the roles of MmpL5 and MmpS5. A quantitative proteome analysis was performed to compare the BDQ-resistant mutants to the isogenic strain H37Rv. Here, we report that the Rv0678 mutations were more readily selected than were the atpE mutations at low concentrations of BDQ or CFZ. The atpE mutations were selected by high concentrations of BDQ exposure. The overexpression of both mmpL5 and mmpS5 reduced the susceptibility of Mycobacterium tuberculosis to BDQ and CFZ. Secreted immunogenic proteins and proteins involved in the biosynthesis and transport of phthiocerol dimycocerosates were associated with Rv0678 mutations conferring BDQ resistance in the proteome analysis. In conclusion, exposure to different bedaquiline concentrations resulted in the selection of different mutations. The coexpression of MmpL5 and MmpS5 contributed to drug resistance and upregulated pathogenic proteins in M. tuberculosis, suggesting MmpL5-MmpS5 as a new potential target for antituberculosis drug development. These results warrant further surveillance for the evolution of BDQ resistance during clinical usage.
Collapse
Affiliation(s)
- Jian Xu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dongshuo Li
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinghua Shi
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fei Ge
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhenyong Guo
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaopan Mu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Sun S, Gao Y, Yang X, Yang X, Hu T, Liang J, Xiong Z, Ran Y, Ren P, Bai F, Guddat LW, Yang H, Rao Z, Zhang B. Cryo-EM structures for the Mycobacterium tuberculosis iron-loaded siderophore transporter IrtAB. Protein Cell 2023; 14:448-458. [PMID: 36882106 PMCID: PMC10246721 DOI: 10.1093/procel/pwac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022] Open
Abstract
The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.
Collapse
Affiliation(s)
- Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Yuting Ran
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengxuan Ren
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| |
Collapse
|
38
|
Hegde P, Orimoloye MO, Sharma S, Engelhart CA, Schnappinger D, Aldrich CC. Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis. Tuberculosis (Edinb) 2023; 140:102346. [PMID: 37119793 PMCID: PMC10247463 DOI: 10.1016/j.tube.2023.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a leading cause of infectious disease mortality. The salicylic acid derived small molecule siderophores known as mycobactins are essential in vivo for iron acquisition of Mtb where iron is restricted in the host. Herein, we synthesize and explore the mechanism of action of polyfluorinated salicylic acid derivates, which were previously reported to possess potent antimycobacterial activity. We hypothesized fluorinated salicylic acid derivates may inhibit mycobactin biosynthesis through initial bioactivation and conversion to downstream metabolites that block late steps in assembly of the mycobactins. Enzymatic studies demonstrated that some of the fluorinated salicylic acid derivatives compounds were readily activated by the bifunctional adenylating enzyme MbtA, responsible for incorporation of salicylic acid into the mycobactin biosynthetic pathway; however, they did not inhibit mycobactin biosynthesis as confirmed by LS-MS/MS using an authentic synthetic mycobactin standard. Further mechanistic analysis of the most active derivative (Sal-4) using an MbtA-overexpressing Mtb strain as well as complementation studies with iron and salicylic acid revealed Sal-4 cannot be antagonized by overexpression of MbtA or through supplementation with iron or salicylic acid. Taken together, our results indicate the observed antimycobacterial activity of polyfluorinated salicylic acid derivative is independent of mycobactin biosynthesis.
Collapse
Affiliation(s)
- Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
39
|
Sankey N, Merrick H, Singh P, Rogers J, Reddi A, Hartson SD, Mitra A. Role of the Mycobacterium tuberculosis ESX-4 Secretion System in Heme Iron Utilization and Pore Formation by PPE Proteins. mSphere 2023; 8:e0057322. [PMID: 36749044 PMCID: PMC10117145 DOI: 10.1128/msphere.00573-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is transmitted through aerosols and primarily colonizes within the lung. The World Health Organization estimates that Mtb kills ~1.4 million people every year. A key aspect that makes Mtb such a successful pathogen is its ability to overcome iron limitation mounted by the host immune response. In our previous studies, we have shown that Mtb can utilize iron from heme, the largest source of iron in the human host, and that it uses two redundant heme utilization pathways. In this study, we show that the ESX-4 type VII secretion system (T7SS) is necessary for extracellular heme uptake into the Mtb cell through both heme utilization pathways. ESX-4 influences the secretion of the culture filtrate proteins Rv0125 and Rv1085c, which are also necessary for efficient heme utilization. We also discovered that deletion of the alternative sigma factor SigM significantly reduced Mtb heme utilization through both pathways and predict that SigM is a global positive regulator of core heme utilization genes of both pathways. Finally, we present the first direct evidence that some mycobacterial PPE (proline-proline-glutamate motif) proteins of the PPE protein family are pore-forming membrane proteins. Altogether, we identified core components of both Mtb Heme utilization pathways that were previously unknown and identified a novel channel-forming membrane protein of Mtb. IMPORTANCE M. tuberculosis (Mtb) is completely dependent on iron acquisition in the host to cause disease. The largest source of iron for Mtb in the human host is heme. Here, we show that the ancestral ESX-4 type VII secretion system is required for the efficient utilization of heme as a source of iron, which is an essential nutrient. This is another biological function identified for ESX-4 in Mtb, whose contribution to Mtb physiology is poorly understood. A most exciting finding is that some mycobacterial PPE (proline-proline-glutamate motif) proteins that have been implicated in the nutrient acquisition are membrane proteins that can form channels in a lipid bilayer. These observations have far-reaching implications because they support an emerging theme that PPE proteins can function as channel proteins in the outer mycomembrane for nutrient acquisition. Mtb has evolved a heme uptake system that is drastically different from all other known bacterial heme acquisition systems.
Collapse
Affiliation(s)
- November Sankey
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Haley Merrick
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Padam Singh
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Janet Rogers
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Amit Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Steven D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Avishek Mitra
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
40
|
Jaisinghani N, Previti ML, Andrade J, Askenazi M, Ueberheide B, Seeliger JC. Cell wall proteomics in live Mycobacterium tuberculosis uncovers exposure of ESX substrates to the periplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534792. [PMID: 37034674 PMCID: PMC10081232 DOI: 10.1101/2023.03.29.534792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The cell wall of mycobacteria plays a key role in interactions with the environment and its ability to act as a selective filter is crucial to bacterial survival. Proteins in the cell wall enable this function by mediating the import and export of diverse metabolites from ions to lipids to proteins. Accurately identifying cell wall proteins is an important step in assigning function, especially as many mycobacterial proteins lack functionally characterized homologues. Current methods for protein localization have inherent limitations that reduce accuracy. Here we showed that protein tagging by the engineered peroxidase APEX2 within live Mycobacterium tuberculosis enabled the accurate identification of the cytosolic and cell wall proteomes. Our data indicate that substrates of the virulence-associated Type VII ESX secretion system are exposed to the Mtb periplasm, providing insight into the currently unknown mechanism by which these proteins cross the mycobacterial cell envelope.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Mary L Previti
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Joshua Andrade
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Beatrix Ueberheide
- Proteomics Laboratory, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
41
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
42
|
Abstract
Bacterial pathogens and their hosts engage in intense competition for critical nutrients during infection, including metals such as iron, copper, and zinc. Some metals are limited by the host, and some are deployed by the host as antimicrobials. To counter metal limitation, pathogens deploy high-affinity metal acquisition systems, best exemplified by siderophores to acquire iron. Although pathogen strategies to resist the toxic effects of high Cu have been elucidated, the role of Cu starvation and the existence of Cu acquisition systems are less well characterized. In this study, we examined the role of diisonitrile chalkophores of pathogenic mycobacteria, synthesized by the enzymes encoded by the virulence-associated nrp gene cluster, in metal acquisition. nrp gene cluster expression is strongly induced by starvation or chelation of Cu but not starvation of Zn or excess Cu. Mycobacterium tuberculosis and Mycobacterium marinum strains lacking the nrp-encoded nonribosomal peptide sythetase, the fadD10 adenylate-forming enzyme, or the uncharacterized upstream gene ppe1 are all sensitized to Cu, but not Zn, starvation. This low Cu sensitivity is rescued by genetic complementation or by provision of a synthetic diisonitrile chalkophore. These data demonstrate that diisonitrile lipopeptides in mycobacteria are chalkophores that facilitate survival under Cu-limiting conditions and suggest that Cu starvation is a relevant stress for M. tuberculosis in the host.
Collapse
|
43
|
Khan MT, Khan TA, Ahmad I, Muhammad S, Wei DQ. Diversity and novel mutations in membrane transporters of Mycobacterium tuberculosis. Brief Funct Genomics 2022; 22:168-179. [PMID: 35868449 DOI: 10.1093/bfgp/elac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis (TB), encodes a family of membrane proteins belonging to Resistance-Nodulation-Cell Division (RND) permeases also called multidrug resistance pumps. Mycobacterial membrane protein Large (MmpL) transporters represent a subclass of RND transporters known to participate in exporting of lipid components across the cell envelope. These proteins perform an essential role in MTB survival; however, there are no data regarding mutations in MmpL, polyketide synthase (PKS) and acyl-CoA dehydrogenase FadE proteins from Khyber Pakhtunkhwa, Pakistan. This study aimed to screen mutations in transmembrane transporter proteins including MmpL, PKS and Fad through whole-genome sequencing (WGS) in local isolates of Khyber Pakhtunkhwa province, Pakistan. Fourteen samples were collected from TB patients and drug susceptibility testing was performed. However, only three samples were completely sequenced. Moreover, 209 whole-genome sequences of the same geography were also retrieved from NCBI GenBank to analyze the diversity of mutations in MmpL, PKS and Fad proteins. Among the 212 WGS (Accession ID: PRJNA629298, PRJNA629388, and ERR2510337-ERR2510345, ERR2510546-ERR2510645), numerous mutations in Fad (n = 756), PKS (n = 479), and MmpL (n = 306) have been detected. Some novel mutations were also detected in MmpL, PKS and acyl-CoA dehydrogenase Fad. Novel mutations including Asn576Ser in MmpL8, Val943Gly in MmpL9 and Asn145Asp have been detected in MmpL3. The presence of a large number of mutations in the MTB membrane may have functional consequences on proteins. However, further experimental studies are needed to elucidate the variants' effect on MmpL, PKS and FadE functions.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Phase V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Irshad Ahmad
- Department of Molecular Biology and Genetics. Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, P.R. China
| |
Collapse
|
44
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022. [PMID: 35672469 DOI: 10.1007/s00253-022-11995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
45
|
Soares EV. Perspective on the biotechnological production of bacterial siderophores and their use. Appl Microbiol Biotechnol 2022; 106:3985-4004. [PMID: 35672469 DOI: 10.1007/s00253-022-11995-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
Abstract
Iron (Fe) is an essential element in several fundamental cellular processes. Although present in high amounts in the Earth's crust, Fe can be a scarce element due to its low bioavailability. To mitigate Fe limitation, microorganism (bacteria and fungi) and grass plant biosynthesis and secret secondary metabolites, called siderophores, with capacity to chelate Fe(III) with high affinity and selectivity. This review focuses on the current state of knowledge concerning the production of siderophores by bacteria. The main siderophore types and corresponding siderophore-producing bacteria are summarized. A concise outline of siderophore biosynthesis, secretion and regulation is given. Important aspects to be taken into account in the selection of a siderophore-producing bacterium, such as biological safety, complexing properties of the siderophores and amount of siderophores produced are summarized and discussed. An overview containing recent scientific advances on culture medium formulation and cultural conditions that influence the production of siderophores by bacteria is critically presented. The recovery, purification and processing of siderophores are outlined. Potential applications of siderophores in different sectors including agriculture, environment, biosensors and the medical field are sketched. Finally, future trends regarding the production and use of siderophores are discussed. KEY POINTS : • An overview of siderophore production by bacteria is critically presented • Scientific advances on factors that influence siderophores production are discussed • Potential applications of siderophores, in different fields, are outlined.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. .,CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga-Guimaraes, Portugal.
| |
Collapse
|
46
|
Shyam M, Shilkar D, Rakshit G, Jayaprakash V. Approaches for Targeting the Mycobactin Biosynthesis Pathway for Novel Anti-tubercular Drug Discovery: Where We Stand. Expert Opin Drug Discov 2022; 17:699-715. [PMID: 35575503 DOI: 10.1080/17460441.2022.2077328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Several decades of antitubercular drug discovery efforts have focused on novel antitubercular chemotherapies. However, recent efforts have greatly shifted towards countering extremely/multi/total drug-resistant species. Targeting the conditionally essential elements inside Mycobacterium is a relatively new approach against tuberculosis and has received lackluster attention. The siderophore, Mycobactin, is a conditionally essential molecule expressed by mycobacteria in iron-stress conditions. It helps capture the micronutrient iron, essential for the smooth functioning of cellular processes. AREAS COVERED The authors discuss opportunities to target the conditionally essential pathways to help develop newer drugs and prolong the shelf life of existing therapeutics, emphasizing the bottlenecks in fast-tracking antitubercular drug discovery. EXPERT OPINION While the lack of iron supply can cripple bacterial growth and multiplication, excess iron can cause oxidative overload. Constant up-regulation can strain the bacterial synthetic machinery, further slowing its growth. Mycobactin synthesis is tightly controlled by a genetically conserved mega enzyme family via up-regulation (HupB) or down-regulation (IdeR) based on iron availability in its microenvironment. Furthermore, the recycling of siderophores by the MmpL-MmpS4/5 orchestra provides endogenous drug targets to beat the bugs with iron-toxicity contrivance. These processes can be exploited as chinks in the armor of Mycobacterium and be used for new drug development.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
47
|
Rodriguez GM, Sharma N, Biswas A, Sharma N. The Iron Response of Mycobacterium tuberculosis and Its Implications for Tuberculosis Pathogenesis and Novel Therapeutics. Front Cell Infect Microbiol 2022; 12:876667. [PMID: 35646739 PMCID: PMC9132128 DOI: 10.3389/fcimb.2022.876667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Most pathogenic bacteria require iron for growth. However, this metal is not freely available in the mammalian host. Due to its poor solubility and propensity to catalyze the generation of reactive oxygen species, host iron is kept in solution bound to specialized iron binding proteins. Access to iron is an important factor in the outcome of bacterial infections; iron limitation frequently induces virulence and drives pathogenic interactions with host cells. Here, we review the response of Mycobacterium tuberculosis to changes in iron availability, the relevance of this response to TB pathogenesis, and its potential for the design of new therapeutic interventions.
Collapse
|
48
|
Zhang L, Kent JE, Whitaker M, Young DC, Herrmann D, Aleshin AE, Ko YH, Cingolani G, Saad JS, Moody DB, Marassi FM, Ehrt S, Niederweis M. A periplasmic cinched protein is required for siderophore secretion and virulence of Mycobacterium tuberculosis. Nat Commun 2022; 13:2255. [PMID: 35474308 PMCID: PMC9042941 DOI: 10.1038/s41467-022-29873-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins. Here, we show that the rv0455c gene is essential for M. tuberculosis to grow in low-iron medium and that secretion of both mycobactins and carboxymycobactins is drastically reduced in the rv0455c deletion mutant. Both water-soluble and membrane-anchored Rv0455c are functional in siderophore secretion, supporting an intracellular role. Lack of Rv0455c results in siderophore toxicity, a phenotype observed for other siderophore secretion mutants, and severely impairs replication of M. tuberculosis in mice, demonstrating the importance of Rv0455c and siderophore secretion during disease. The crystal structure of a Rv0455c homolog reveals a novel protein fold consisting of a helical bundle with a 'cinch' formed by an essential intramolecular disulfide bond. These findings advance our understanding of the distinct M. tuberculosis siderophore secretion system.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James E Kent
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Meredith Whitaker
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - David C Young
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Alexander E Aleshin
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Ying-Hui Ko
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
49
|
Ma R, Farrell D, Gonzalez G, Browne JA, Nakajima C, Suzuki Y, Gordon SV. The TbD1 Locus Mediates a Hypoxia-Induced Copper Response in Mycobacterium bovis. Front Microbiol 2022; 13:817952. [PMID: 35495699 PMCID: PMC9048740 DOI: 10.3389/fmicb.2022.817952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) contains the causative agents of tuberculosis (TB) in mammals. The archetypal members of the MTBC, Mycobacterium tuberculosis and Mycobacterium bovis, cause human tuberculosis and bovine tuberculosis, respectively. Although M. tuberculosis and M. bovis share over 99.9% genome identity, they show distinct host adaptation for humans and animals; hence, while the molecular basis of host adaptation is encoded in their genomes, the mechanistic basis of host tropism is still unclear. Exploration of the in vitro phenotypic consequences of known genetic difference between M. bovis and M. tuberculosis offers one route to explore genotype–phenotype links that may play a role in host adaptation. The TbD1 (“Mycobacterium tuberculosis deletion 1 region”) locus encompasses the mmpS6 and mmpL6 genes. TbD1 is absent in M. tuberculosis “modern” lineages (Lineages 2, 3, and 4) but present in “ancestral” M. tuberculosis (Lineages 1 and 7), Mycobacterium africanum lineages (Lineages 5 and 6), newly identified M. tuberculosis lineages (Lineages 8 and 9), and animal adapted strains, such as M. bovis. The function of TbD1 has previously been investigated in M. tuberculosis, where conflicting data has emerged on the role of TbD1 in sensitivity to oxidative stress, while the underlying mechanistic basis of such a phenotype is unclear. In this study, we aimed to shed further light on the role of the TbD1 locus by exploring its function in M. bovis. Toward this, we constructed an M. bovis TbD1 knockout (ΔTbD1) strain and conducted comparative transcriptomics to define global gene expression profiles of M. bovis wild-type (WT) and the ΔTbD1 strains under in vitro culture conditions (rolling and standing cultures). This analysis revealed differential induction of a hypoxia-driven copper response in WT and ΔTbD1 strains. In vitro phenotypic assays demonstrated that the deletion of TbD1 sensitized M. bovis to H2O2 and hypoxia-specific copper toxicity. Our study provides new information on the function of the TbD1 locus in M. bovis and its role in stress responses in the MTBC.
Collapse
Affiliation(s)
- Ruoyao Ma
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Gabriel Gonzalez
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
| | - John A. Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Chie Nakajima
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Stephen V. Gordon,
| |
Collapse
|
50
|
Lavin RC, Tan S. Spatial relationships of intra-lesion heterogeneity in Mycobacterium tuberculosis microenvironment, replication status, and drug efficacy. PLoS Pathog 2022; 18:e1010459. [PMID: 35344572 PMCID: PMC8989358 DOI: 10.1371/journal.ppat.1010459] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/07/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
A hallmark of Mycobacterium tuberculosis (Mtb) infection is the marked heterogeneity that exists, spanning lesion type differences to microenvironment changes as infection progresses. A mechanistic understanding of how this heterogeneity affects Mtb growth and treatment efficacy necessitates single bacterium level studies in the context of intact host tissue architecture; however, such an evaluation has been technically challenging. Here, we exploit fluorescent reporter Mtb strains and the C3HeB/FeJ murine model in an integrated imaging approach to study microenvironment heterogeneity within a single lesion in situ, and analyze how these differences relate to non-uniformity in Mtb replication state, activity, and drug efficacy. We show that the pH and chloride environments differ spatially even within a single caseous necrotic lesion, with increased acidity and chloride levels in the lesion cuff versus core. Strikingly, a higher percentage of Mtb in the lesion core versus cuff were in an actively replicating state, and correspondingly active in transcription/translation. Finally, examination of three first-line anti-tubercular drugs showed that isoniazid efficacy was conspicuously poor against Mtb in the lesion cuff. Our study reveals spatial relationships of intra-lesion heterogeneity, sheds light on important considerations in anti-tubercular treatment strategies, and establishes a foundational framework for Mtb infection heterogeneity analysis at the single bacterium level in situ.
Collapse
Affiliation(s)
- Richard C. Lavin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|