1
|
Venkataraman S, Savithri HS, Murthy MRN. Recent advances in the structure and assembly of non-enveloped spherical viruses. Virology 2025; 606:110454. [PMID: 40081202 DOI: 10.1016/j.virol.2025.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 03/15/2025]
Abstract
Non-enveloped spherical viruses (NSVs) are characterized by their highly symmetrical capsids that serve to protect and encapsulate the genomes. The stability and functionality of the capsids determine their ability for survival and proliferation in harsh environments. Over four decades of structural studies using X-ray crystallography and NMR have provided static, high-resolution snapshots of several viruses. Recently, advances in cryo-electron microscopy, together with AI-based structure predictions and traditional methods, have aided in elucidating not only the structural details of complex NSVs but also the mechanistic processes underlying their assembly. The knowledge thus generated has been instrumental in critical understanding of the conformational changes and interactions associated with the coat proteins, the genome, and the auxiliary factors that regulate the capsid dynamics. This review seeks to summarize current literature regarding the structure and assembly of the NSVs and discusses how the data has facilitated a deeper understanding of their biology and phylogeny.
Collapse
Affiliation(s)
| | | | - M R N Murthy
- Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
2
|
Podadera A, Leuthold M, Martín-Alonso JM, Casais R, Álvarez AL, Lobo-Castañón MJ, Parra F, Dalton KP. Epitope mapping of a neutralizing antibody against rabbit hemorrhagic disease virus GI.2. Vet Res 2025; 56:74. [PMID: 40176146 PMCID: PMC11963670 DOI: 10.1186/s13567-025-01505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/05/2025] [Indexed: 04/04/2025] Open
Abstract
In 2010, rabbit hemorrhagic disease virus (RHDV) GI.2 emerged, and unlike RHDV GI.1, it caused mortality in young rabbits, while existing vaccines were not fully protective. The GI.2-specific monoclonal antibody (mAb) 2D9 has been used as a tool to discriminate between these viruses in diagnostic tests. In this study, we mapped the binding epitope for 2D9 on the GI.2 The VP60 capsid protein demonstrated the neutralizing capacity of this mAb, which was able to prevent GI.2 infections in an experimental challenge. Our results suggest that external loops (1, 4 and 5) in the P2 subdomain of VP60 contribute to the discontinuous neutralizing epitope recognized by mAb 2D9. Moreover, analysis of naturally occurring RHDV GI.2 isolates revealed key residues involved in mAb 2D9 binding that are under selective pressure. The findings described in this work provide valuable information regarding our understanding of virus neutralization and immune escape, which may help in the development of novel antiviral compounds.
Collapse
Affiliation(s)
- Ana Podadera
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
- Chemistry and Biochemistry Department, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Mila Leuthold
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - José Manuel Martín-Alonso
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - Rosa Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Centro de Biotecnología Animal, 33394, Gijón, Asturias, Spain
| | - Angel Luis Álvarez
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - M J Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain
| | - Kevin Paul Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, 33006, Oviedo, Spain.
| |
Collapse
|
3
|
Urbinati C, Pezzoni G, Cavadini P, Giovanni VD, Capucci L, Rusnati M. Validation of plasmonic-based biosensors for rapid and in depth characterization of monoclonal antibodies directed against rabbit haemorrhagic and foot-and-mouth disease viruses in biological samples. Methods 2025; 234:85-92. [PMID: 39653303 DOI: 10.1016/j.ymeth.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/08/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
ELISA and RT-PCR represent the standard tools for the sensitive identification of viruses in biological samples, but they lack the capacity to finely characterize the binding of viruses or viral antigens to monoclonal antibodies (MAbs). Biosensing technologies are gaining increasing importance as powerful MAb characterization tools in the field of virology. Surface plasmon resonance (SPR) is an optical biosensing technology already used for the in depth characterization of MAbs of diagnostic and therapeutic value. Rabbit haemorrhagic disease virus (RHDV) and foot-and-mouth disease virus (FMDV) are top veterinary issues for which the development of novel methods aimed at the characterization of antiviral MAbs represents a priority with important livestock healthcare and economic implications. With these premises in mind, here we prepared a series of SPR biosensors by immobilizing RHDV2 or its 6S subunit by different strategies that were then used to characterize the binding capacity of a panel of anti-RHDV2 MAbs. From the comparison of the results obtained, the biosensor composed of intact RHDV2 captured with catcher-MAb covalently immobilized to the surface showed the best analytical performances. To evaluate the versatility of the biosensor, the same strategy was then adopted using FMVD in cell extracts. The results obtained are discussed in view of the exploitation of SPR in the rapid and resilient fine characterization of antiviral MAbs for diagnostic or therapeutic purposes in the field of animal virology.
Collapse
Affiliation(s)
- Chiara Urbinati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulia Pezzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and WOAH, Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and WOAH, Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Vittoria Di Giovanni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and WOAH, Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and WOAH, Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario Biotecnologie (CIB), Unit of Brescia, Brescia, Italy.
| |
Collapse
|
4
|
Ruan Z, Shao Q, Song Y, Hu B, Fan Z, Wei H, Liu Y, Wang F, Fang Q. Near-atomic structures of RHDV reveal insights into capsid assembly and different conformations between mature virion and VLP. J Virol 2024; 98:e0127524. [PMID: 39436094 PMCID: PMC11575418 DOI: 10.1128/jvi.01275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) poses a significant threat to rabbits, causing substantial economic losses in rabbit farming. The virus also endangers wild populations of rabbit species and the predatory animals that rely on rabbits as a food source, thereby disturbing the ecological balance. However, the structural understanding of RHDV has been limited due to the lack of high-resolution structures. Here, we present the first high-resolution cryo-EM structures of the mature virion and virus-like particles (VLPs) derived from both full-length and N-terminal arm (NTA)-truncated VP60. These structures reveal intricate structural details of the icosahedral capsid and crucial NTA-mediated interactions essential for capsid assembly. In addition, dramatic conformational differences are unexpectedly observed between the mature virion and VLP. The protruding spikes of the A-B dimers adopt a "raised" state in the mature virion and a "resting" state in the VLP. These findings enhance our understanding of the structure, assembly, and conformational dynamics of the RHDV capsid, laying the essential groundwork for further virological research and therapeutic advancements.IMPORTANCERHDV is a pathogen with significant economic and ecological impact. By presenting the first high-resolution cryo-EM structures of RHDV, we have uncovered detailed interactions among neighboring VP60 subunits of the icosahedral capsid. The NTA of VP60 is uniquely clustered around the threefold axis of the capsid, probably play a critical role in dragging the six VP60 dimers around the threefold axis during capsid assembly. Additionally, we observed dramatic conformational differences between the mature virion and VLPs. VLPs are commonly used for vaccine development, under the assumption that their structure closely resembles that of the mature virion. Our findings significantly advance the understanding of the RHDV capsid structure, which may be used for developing potential therapeutic strategies against RHDV.
Collapse
Affiliation(s)
- Zhiyang Ruan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yunshu Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biologicals Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Tokarz-Deptuła B, Kulus J, Baraniecki Ł, Stosik M, Deptuła W. Characterisation of Lagovirus europaeus GI-RHDVs (Rabbit Haemorrhagic Disease Viruses) in Terms of Their Pathogenicity and Immunogenicity. Int J Mol Sci 2024; 25:5342. [PMID: 38791380 PMCID: PMC11120834 DOI: 10.3390/ijms25105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.
Collapse
Affiliation(s)
| | - Jakub Kulus
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| |
Collapse
|
6
|
Krejmer-Rąbalska M, Peplińska M, Szewczyk B, Fitzner A. Serological characterisation of Lagovirus virus-like particles originating from native and mutated VP60 of rabbit haemorrhagic disease virus 2 and European brown hare syndrome virus. J Vet Res 2024; 68:9-17. [PMID: 38525228 PMCID: PMC10960260 DOI: 10.2478/jvetres-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Since lagoviruses cannot be cultivated in vitro, using expression systems is an alternative and promising way of producing diagnostic viral antigens. It opens up their use as active immunogens for vaccine production. Material and Methods Virus-like particles (VLPs) were produced in a baculovirus expression system in Spodoptera frugiperda 9 (Sf9) insect cells based on wild-type and mutated variants of the virus capsid VP60 protein from a Polish strain of European brown hare syndrome virus (EBHSV) and wild-type and mutated versions of this protein from a Polish strain of rabbit haemorrhagic disease virus 2 (RHDV2). The mutations were the substitution of an arginylglycylaspartic acid (Arg-Gly-Asp/RGD) motif in the P2 subdomain and, in the S or P2 domain, the substitution of three lysines. The VLPs were purified with sucrose gradient ultracentrifugation. Results Protein production was confirmed by Western blot analysis using rabbit or hare sera and ELISA tests with different types of monoclonal antibody. The haemagglutination properties of some VLPs were also evaluated. Electron microscopy of wild-type EBHSV, wild-type RHDV2 and the four VP60 variants produced in this experiment revealed the formation of characteristic VLP structures. Conclusion For the first time, mutated VLPs of RHDV2 with an RGD motif in the VP60 sequence were obtained, which could potentially be used to deliver cargo to eukaryotic cells. Virus-like particles based on the VP60 proteins of EBHSV and RHDV with a three-lysine substitution in the S or P2 domains were also obtained. Potential exists for VLPs of EBHSV and RHDV2 as vaccine candidates.
Collapse
Affiliation(s)
- Martyna Krejmer-Rąbalska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Marta Peplińska
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Bogusław Szewczyk
- Laboratory of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-307Gdańsk, Poland
| | - Andrzej Fitzner
- Department of Foot and Mouth Disease, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
7
|
Cavadini P, Trogu T, Velarde R, Lavazza A, Capucci L. Recombination between non-structural and structural genes as a mechanism of selection in lagoviruses: The evolutionary dead-end of an RHDV2 isolated from European hare. Virus Res 2024; 339:199257. [PMID: 38347757 PMCID: PMC10654597 DOI: 10.1016/j.virusres.2023.199257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/15/2024]
Abstract
The genus Lagovirus, belonging to the family Caliciviridae, emerged around the 1980s. It includes highly pathogenic species, rabbit hemorrhagic disease virus (RHDV/GI.1) and European brown hare syndrome virus (EBHSV/GII.1), which cause fatal hepatitis, and nonpathogenic viruses with enteric tropism, rabbit calicivirus (RCV/GI.3,4) and hare calicivirus (HaCV/GII.2). Lagoviruses have evolved along two independent genetic lineages: GI (RHDV and RCV) in rabbits and GII (EBHSV and HaCV) in hares. To be emphasized is that genomes of lagoviruses, like other caliciviruses, are highly conserved at RdRp-VP60 junctions, favoring intergenotypic recombination events at this point. The recombination between an RCV (genotype GI.3), donor of non-structural (NS) genes, and an unknown virus, donor of structural (S) genes, likely led to the emergence of a new lagovirus in the European rabbit, called RHDV type 2 (GI.2), identified in Europe in 2010. New RHDV2 intergenotypic recombinants isolated in rabbits in Europe and Australia originated from similar events between RHDV2 (GI.2) and RHDV (GI.1) or RCV (GI.3,4). RHDV2 (GI.2) rapidly spread worldwide, replacing RHDV and showing several lagomorph species as secondary hosts. The recombination events in RHDV2 viruses have led to a number of viruses with very different combinations of NS and S genes. Recombinant RHDV2 with NS genes from hare lineage (GII) was recently identified in the European hare. This study investigated the first RHDV2 (GI.2) identified in Italy in European hare (RHDV2_Bg12), demonstrating that it was a new virus that originated from the recombination between RHDV2, as an S-gene donor and a hare lagovirus, not yet identified but presumably nonpathogenic, as an NS gene donor. When rabbits were inoculated with RHDV2_Bg12, neither deaths nor seroconversions were recorded, demonstrating that RHDV2_Bg12 cannot infect the rabbit. Furthermore, despite intensive and continuous field surveillance, RHDV2_Bg12 has never again been identified in either hares or rabbits in Italy or elsewhere. This result showed that the host specificity of lagoviruses can depend not only on S genes, as expected until today, but potentially also on some species-specific NS gene sequences. Therefore, because RHDV2 (GI.2) infects several lagomorphs, which in turn probably harbor several specific nonpathogenic lagoviruses, the possibility of new speciation, especially in those other than rabbits, is real. RHDV2 Bg_12 demonstrated this, although the attempt apparently failed.
Collapse
Affiliation(s)
- Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna Via Bianchi 9, 25124 Brescia, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna Via Bianchi 9, 25124 Brescia, Italy
| | - Roser Velarde
- Wildlife Ecology & Health group (WEH) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna Via Bianchi 9, 25124 Brescia, Italy.
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
8
|
Salmen W, Hu L, Bok M, Chaimongkol N, Ettayebi K, Sosnovtsev SV, Soni K, Ayyar BV, Shanker S, Neill FH, Sankaran B, Atmar RL, Estes MK, Green KY, Parreño V, Prasad BVV. A single nanobody neutralizes multiple epochally evolving human noroviruses by modulating capsid plasticity. Nat Commun 2023; 14:6516. [PMID: 37845211 PMCID: PMC10579229 DOI: 10.1038/s41467-023-42146-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
Acute gastroenteritis caused by human noroviruses (HuNoVs) is a significant global health and economic burden and is without licensed vaccines or antiviral drugs. The GII.4 HuNoV causes most epidemics worldwide. This virus undergoes epochal evolution with periodic emergence of variants with new antigenic profiles and altered specificity for histo-blood group antigens (HBGA), the determinants of cell attachment and susceptibility, hampering the development of immunotherapeutics. Here, we show that a llama-derived nanobody M4 neutralizes multiple GII.4 variants with high potency in human intestinal enteroids. The crystal structure of M4 complexed with the protruding domain of the GII.4 capsid protein VP1 revealed a conserved epitope, away from the HBGA binding site, fully accessible only when VP1 transitions to a "raised" conformation in the capsid. Together with dynamic light scattering and electron microscopy of the GII.4 VLPs, our studies suggest a mechanism in which M4 accesses the epitope by altering the conformational dynamics of the capsid and triggering its disassembly to neutralize GII.4 infection.
Collapse
Affiliation(s)
- Wilhelm Salmen
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Marina Bok
- Virology Institute and Technology Innovation, IVIT, CONICET-INTA, Hurlingham, Buenos Aires, Argentina
| | - Natthawan Chaimongkol
- Caliciviruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stanislav V Sosnovtsev
- Caliciviruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kaundal Soni
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - B Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sreejesh Shanker
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Frederick H Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kim Y Green
- Caliciviruses Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Viviana Parreño
- Virology Institute and Technology Innovation, IVIT, CONICET-INTA, Hurlingham, Buenos Aires, Argentina
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Shah PT, Bahoussi AN, Yang C, Yao G, Dong L, Wu C, Xing L. Genetic Characteristics and Phylogeographic Dynamics of Lagoviruses, 1988-2021. Viruses 2023; 15:815. [PMID: 37112796 PMCID: PMC10143477 DOI: 10.3390/v15040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV), European brown hare syndrome virus (EBHSV), rabbit calicivirus (RCV), and hare calicivirus (HaCV) belong to the genus Lagovirus of the Caliciviridae family that causes severe diseases in rabbits and several hare (Lepus) species. Previously, Lagoviruses were classified into two genogroups, e.g., GI (RHDVs and RCVs) and GII (EBHSV and HaCV) based on partial genomes, e.g., VP60 coding sequences. Herein, we provide a robust phylogenetic classification of all the Lagovirus strains based on full-length genomes, grouping all the available 240 strains identified between 1988 and 2021 into four distinct clades, e.g., GI.1 (classical RHDV), GI.2 (RHDV2), HaCV/EBHSV, and RCV, where the GI.1 clade is further classified into four (GI.1a-d) and GI.2 into six sub-clades (GI.2a-f). Moreover, the phylogeographic analysis revealed that the EBHSV and HaCV strains share their ancestor with the GI.1, while the RCV shares with the GI.2. In addition, all 2020-2021 RHDV2 outbreak strains in the USA are connected to the strains from Canada and Germany, while RHDV strains isolated in Australia are connected with the USA-Germany haplotype RHDV strain. Furthermore, we identified six recombination events in the VP60, VP10, and RNA-dependent RNA polymerase (RdRp) coding regions using the full-length genomes. The amino acid variability analysis showed that the variability index exceeded the threshold of 1.00 in the ORF1-encoded polyprotein and ORF2-encoded VP10 protein, respectively, indicating significant amino acid drift with the emergence of new strains. The current study is an update of the phylogenetic and phylogeographic information of Lagoviruses that may be used to map the evolutionary history and provide hints for the genetic basis of their emergence and re-emergence.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Guanhan Yao
- Department of Molecular Genetics and Development, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Li Dong
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Panasiuk M, Chraniuk M, Zimmer K, Hovhannisyan L, Krapchev V, Peszyńska-Sularz G, Narajczyk M, Węsławski J, Konopacka A, Gromadzka B. Characterization of surface-exposed structural loops as insertion sites for foreign antigen delivery in calicivirus-derived VLP platform. Front Microbiol 2023; 14:1111947. [PMID: 36922971 PMCID: PMC10010390 DOI: 10.3389/fmicb.2023.1111947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 03/02/2023] Open
Abstract
Chimeric virus-like particles (cVLPs) show great potential in improving public health as they are safe and effective vaccine candidates. The capsid protein of caliciviruses has been described previously as a self-assembling, highly immunogenic delivery platform. The ability to significantly induce cellular and humoral immunity can be used to boost the immune response to low immunogenic foreign antigens displayed on the surface of VLPs. Capsid proteins of caliciviruses despite sequence differences share similar architecture with structural loops that can be genetically modified to present foreign epitopes on the surface of cVLPs. Here, based on the VP1 protein of norovirus (NoV), we investigated the impact of the localization of the epitope in different structural loops of the P domain on the immunogenicity of the presented epitope. In this study, three distinct loops of NoV VP1 protein were genetically modified to present a multivalent influenza virus epitope consisting of a tandem repeat of M2/NP epitopes. cVLPs presenting influenza virus-conserved epitopes in different localizations were produced in the insect cells and used to immunize BALB/c mice. Specific reaction to influenza epitopes was compared in sera from vaccinated mice to determine whether the localization of the foreign epitope has an impact on the immunogenicity.
Collapse
Affiliation(s)
- Mirosława Panasiuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland.,Nano Expo Sp z.o.o, Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Milena Chraniuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland.,Nano Expo Sp z.o.o, Gdańsk, Poland
| | - Karolina Zimmer
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.,Faculty of Health Sciences, Department of Biochemistry and Molecular Biology, University of Bielsko-Biala, Bielsko-Biala, Poland
| | - Lilit Hovhannisyan
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
| | - Vasil Krapchev
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Central Animal Laboratory Research and Service Center, Medical University of Gdańsk, Gdańsk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jan Węsławski
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Beata Gromadzka
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland.,Nano Expo Sp z.o.o, Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
11
|
Al-Ebshahy E, Abas O, Abo-ElKhair M. Co-circulation of GI.1 and GI.2 genotypes of rabbit hemorrhagic disease virus in Egypt. Virusdisease 2022; 33:422-428. [PMID: 36447817 PMCID: PMC9701251 DOI: 10.1007/s13337-022-00791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, Egypt has experienced an increased incidence of rabbit hemorrhagic disease virus (RHDV) infection even among vaccinated rabbits. The present study estimates the emergence of RHDV in vaccinated (n = 10) and unvaccinated (n = 8) domestic rabbitries in Beheira and Kafr El-Sheikh provinces, Egypt, during the period 2018-2020. A total of 8 out of 18 (44.4%) liver extracts were able to agglutinate human type O RBCs with HA titers ranged from 8 to 12 log2, and then subsequently confirmed for the presence of RHDV RNA using a reverse transcriptase-polymerase chain reaction (RT-PCR). The VP60 gene sequences of three selected isolates, designated Beh-1, Beh-9 and kaf-14, were submitted to the GenBank database and the accession numbers MZ782083 to MZ782085 were assigned, respectively. Phylogenetic analysis revealed that the Kaf-14 isolate was placed into the GI.1 genotype, while the Beh-1 and Beh-9 isolates were grouped into the GI.2 genotype. Overall, the three isolates shared 78.6-98.7%.nucleotide identity with previously published Egyptian sequences. In comparison with the GI.1a Giza2006 vaccine strain, the three isolates exhibited divergence ranging from 4.5 to 17.4% at the amino acid level. Approximately 55.5-87.5% of the amino acid substitutions were located in the P2 subdomain of the VP60 capsid protein which contains the main determinants of antigenicity and cellular recognition. In conclusion, our results provide crucial evidence for the co-circulation of RHDV GI.1 and GI.2 genotypes in Egypt and highlight the antigenic diversity among vaccine and field strains. Therefore, new effective vaccines are urgently required to counter the spread of GI.1 and GI.2 genotypes in Egypt.
Collapse
Affiliation(s)
- Emad Al-Ebshahy
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Osama Abas
- Department of Animal Medicine, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
12
|
Structural Basis for Rabbit Hemorrhagic Disease Virus Antibody Specificity. J Virol 2022; 96:e0121722. [PMID: 36326275 PMCID: PMC9682983 DOI: 10.1128/jvi.01217-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isolated RHDV antibodies have been used for decades to distinguish between antigenic variants, monitor temporal capsid evolution, and examine neutralizing capacities. In this study, we provided the structural basis for an RHDV GI.2 specific diagnostic antibody (2D9) binding and reveal that a small number of amino acid substitutions at the binding site could differentiate between RHDV GI.2 and GI.1b.
Collapse
|
13
|
Atomic Structure of the Human Sapovirus Capsid Reveals a Unique Capsid Protein Conformation in Caliciviruses. J Virol 2022; 96:e0029822. [PMID: 35435722 PMCID: PMC9093105 DOI: 10.1128/jvi.00298-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sapovirus (SaV) is a member of the Caliciviridae family, which causes acute gastroenteritis in humans and animals. Human sapoviruses (HuSaVs) are genetically and antigenically diverse, but the lack of a viral replication system and structural information has hampered the development of vaccines and therapeutics. Here, we successfully produced a self-assembled virus-like particle (VLP) from the HuSaV GI.6 VP1 protein, and the first atomic structure was determined using single-particle cryo-electron microscopy (cryo-EM) at a 2.9-Å resolution. The atomic model of the VP1 protein revealed a unique capsid protein conformation in caliciviruses. All N-terminal arms in the A, B, and C subunits interacted with adjacent shell domains after extending through their subunits. The roof of the arched VP1 dimer was formed between the P2 subdomains by the interconnected β strands and loops, and its buried surface was minimized compared to those of other caliciviruses. Four hypervariable regions that are potentially involved in the antigenic diversity of SaV formed extensive clusters on top of the P domain. Potential receptor binding regions implied by tissue culture mutants of porcine SaV were also located near these hypervariable clusters. Conserved sequence motifs of the VP1 protein, “PPG” and “GWS,” may stabilize the inner capsid shell and the outer protruding domain, respectively. These findings will provide the structural basis for the medical treatment of HuSaV infections and facilitate the development of vaccines, antivirals, and diagnostic systems. IMPORTANCE SaV and norovirus, belonging to the Caliciviridae family, are common causes of acute gastroenteritis in humans and animals. SaV and norovirus infections are public health problems in all age groups, which occur explosively and sporadically worldwide. HuSaV is genetically and antigenically diverse and is currently classified into 4 genogroups consisting of 18 genotypes based on the sequence similarity of the VP1 proteins. Despite these detailed genetic analyses, the lack of structural information on viral capsids has become a problem for the development of vaccines or antiviral drugs. The 2.9-Å atomic model of the HuSaV GI.6 VLP presented here not only revealed the location of the amino acid residues involved in immune responses and potential receptor binding sites but also provided essential information for the design of stable constructs needed for the development of vaccines and antivirals.
Collapse
|
14
|
Bao K, Qi X, Li Y, Gong M, Wang X, Zhu P. Cryo-EM structures of infectious bursal disease viruses with different virulences provide insights into their assembly and invasion. Sci Bull (Beijing) 2022; 67:646-654. [PMID: 36546126 DOI: 10.1016/j.scib.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 01/06/2023]
Abstract
Infectious bursal disease virus (IBDV) causes a highly contagious immunosuppressive disease in chickens, resulting in significant economic losses. The very virulent IBDV strain (vvIBDV) causes high mortality and cannot adapt to cell culture. In contrast, attenuated strains of IBDV are nonpathogenic to chickens and can replicate in cell culture. Although the crystal structure of T = 1 subviral particles (SVP) has been reported, the structures of intact IBDV virions with different virulences remain elusive. Here, we determined the cryo-electron microscopy (cryo-EM) structures of the vvIBDV Gx strain and its attenuated IBDV strain Gt at resolutions of 3.3 Å and 3.2 Å, respectively. Compared with the structure of T = 1 SVP, IBDV contains several conserved structural elements unique to the T = 13 virion. Notably, the N-terminus of VP2, which is disordered in the SVP, interacts with the SF strand of VP2 from its neighboring trimer, completing the β-sheet of the S domain. This interaction helps to form a contact network by tethering the adjacent VP2 trimers and contributes to the assembly and stability of the IBDV virion. Structural comparison of the Gx and Gt strains indicates that H253 and T284 in the VP2 P domain of Gt, in contrast to Gx, form a hydrogen bond with a positively charged surface. This suggests that the combined mutations Q253H/A284T and the associated structural electrostatic features of the attenuated Gt strain may contribute to adaptation to cell culture. Furthermore, a negatively charged groove in VP2, containing an integrin binding IDA motif that is critical for virus attachment, was speculated to play a functional role in the entry of IBDV.
Collapse
Affiliation(s)
- Keyan Bao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaole Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Minqing Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; OIE Reference Laboratory for Infectious Bursal Disease, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Hu L, Salmen W, Chen R, Zhou Y, Neill F, Crowe JE, Atmar RL, Estes MK, Prasad BVV. Atomic structure of the predominant GII.4 human norovirus capsid reveals novel stability and plasticity. Nat Commun 2022; 13:1241. [PMID: 35273142 PMCID: PMC8913647 DOI: 10.1038/s41467-022-28757-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/08/2022] [Indexed: 12/30/2022] Open
Abstract
Human noroviruses (HuNoVs) cause sporadic and epidemic viral gastroenteritis worldwide. The GII.4 variants are responsible for most HuNoV infections, and GII.4 virus-like particles (VLPs) are being used in vaccine development. The atomic structure of the GII.4 capsid in the native T = 3 state has not been determined. Here we present the GII.4 VLP structure with T = 3 symmetry determined using X-ray crystallography and cryo-EM at 3.0 Å and 3.8 Å resolution, respectively, which reveals unanticipated novel features. A novel aspect in the crystal structure determined without imposing icosahedral symmetry is the remarkable adaptability of the capsid protein VP1 driven by the flexible hinge between the shell and the protruding domains. In both crystal and cryo-EM structures, VP1 adopts a stable conformation with the protruding domain resting on the shell domain, in contrast to the 'rising' conformation observed in recent cryo-EM structures of other GII.4 VLPs. Our studies further revealed that the resting state of VP1 dimer is stabilized by a divalent ion, and chelation using EDTA increases capsid diameter, exposing new hydrophobic and antigenic sites and suggesting a transition to the rising conformation. These novel insights into GII.4 capsid structure, stability, and antigen presentation may be useful for ongoing vaccine development.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wilhelm Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yi Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Frederick Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.,Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.,Section of Infectious Diseases, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
16
|
Development and Evaluation of a Duplex Lateral Flow Assay for the Detection and Differentiation between Rabbit Haemorrhagic Disease Virus Lagovirus europaeus/GI.1 and /GI.2. BIOLOGY 2022; 11:biology11030401. [PMID: 35336775 PMCID: PMC8945490 DOI: 10.3390/biology11030401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023]
Abstract
Simple Summary Rabbit Haemorrhagic Disease is caused by a virus that affects the liver, the spleen and the lungs of rabbits, causing hepatitis, splenomegaly and haemorrhages. A new genotype of the virus was first reported in France in 2010 and has spread globally since then, replacing most of the circulating former viruses in many countries. The detection of the virus and the differentiation of both genotypes is of crucial importance for disease surveillance. In this article, a rapid test for antigen detection is described and evaluated, providing the first description of a quick and easy-to-use test that allows for the simultaneous detection and differentiation of the genotypes. A total of 136 samples, rabbit liver samples and liver exudates (liquid collected after freeze–thawing) classified as infected and non-infected, were analysed, with good results. These data confirm that the developed rapid test can be used as a reliable diagnostic test for disease surveillance, especially in farms and the field. Abstract Rabbit Haemorrhagic Disease Virus 2 (RHDV2, recently named Lagovirus europaeus/GI.2) was first reported in France in 2010 and has spread globally since then, replacing most of the circulating former RHDV (genotype GI.1) in many countries. The detection and differentiation of both genotypes is of crucial importance for the surveillance of the disease. In this article, a duplex lateral flow assay (LFA) for antigen detection is described and evaluated, providing the first description of a quick and easy-to-use test that allows for the simultaneous detection and differentiation of RHDV genotypes GI.1 and GI.2. A panel of GI.1- or GI.2-infected and non-infected rabbit liver samples and liver exudates (136 samples) was analysed, obtaining a total sensitivity of 94.4% and specificity of 100%. These data confirm that the developed duplex LFA can be used as a reliable diagnostic test for RHD surveillance, especially in farms and the field.
Collapse
|
17
|
Exploring cryo-electron microscopy with molecular dynamics. Biochem Soc Trans 2022; 50:569-581. [PMID: 35212361 DOI: 10.1042/bst20210485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
Single particle analysis cryo-electron microscopy (EM) and molecular dynamics (MD) have been complimentary methods since cryo-EM was first applied to the field of structural biology. The relationship started by biasing structural models to fit low-resolution cryo-EM maps of large macromolecular complexes not amenable to crystallization. The connection between cryo-EM and MD evolved as cryo-EM maps improved in resolution, allowing advanced sampling algorithms to simultaneously refine backbone and sidechains. Moving beyond a single static snapshot, modern inferencing approaches integrate cryo-EM and MD to generate structural ensembles from cryo-EM map data or directly from the particle images themselves. We summarize the recent history of MD innovations in the area of cryo-EM modeling. The merits for the myriad of MD based cryo-EM modeling methods are discussed, as well as, the discoveries that were made possible by the integration of molecular modeling with cryo-EM. Lastly, current challenges and potential opportunities are reviewed.
Collapse
|
18
|
Zamora-Ceballos M, Moreno N, Gil-Cantero D, Castón JR, Blanco E, Bárcena J. Immunogenicity of Multi-Target Chimeric RHDV Virus-like Particles Delivering Foreign B-Cell Epitopes. Vaccines (Basel) 2022; 10:vaccines10020229. [PMID: 35214688 PMCID: PMC8875457 DOI: 10.3390/vaccines10020229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
The rabbit hemorrhagic disease virus (RHDV) vaccine platform is a nanoparticle composed of 180 copies of the viral capsid protein, VP60, self-assembled into virus-like particles (VLPs). RHDV VLPs are able to accept the simultaneous incorporation of target epitopes at different insertion sites. The resulting chimeric RHDV VLPs displaying immunogenic foreign antigens have been shown to induce specific protective immune responses against inserted heterologous T-cytotoxic and B-cell epitopes in the mouse and pig models. In this study, we explored whether RHDV-based engineered VLPs can be developed as efficient multivalent vaccines co-delivering different foreign B-cell antigens. We generated bivalent chimeric RHDV VLPs displaying two model B-cell epitopes at different surface-exposed insertion sites, as well as the corresponding monovalent chimeric VLPs. The immunogenic potential of the bivalent chimeric VLPs versus the monovalent constructs was assessed in the mouse model. We found that the bivalent chimeric VLPs elicited a strong and balanced antibody response towards the two target epitopes tested, although slight reductions were observed in the levels of specific serum antibody titers induced by bivalent chimeric VLPs as compared with the corresponding monovalent constructs. These results suggest that RHDV VLPs could represent a promising platform for the development of efficient multivalent vaccines.
Collapse
Affiliation(s)
- María Zamora-Ceballos
- Instituto Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain; (M.Z.-C.); (N.M.); (E.B.)
| | - Noelia Moreno
- Instituto Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain; (M.Z.-C.); (N.M.); (E.B.)
| | - David Gil-Cantero
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (D.G.-C.); (J.R.C.)
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (D.G.-C.); (J.R.C.)
| | - Esther Blanco
- Instituto Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain; (M.Z.-C.); (N.M.); (E.B.)
| | - Juan Bárcena
- Instituto Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain; (M.Z.-C.); (N.M.); (E.B.)
- Correspondence: ; Tel.: +34-916-202-300
| |
Collapse
|
19
|
Mahar JE, Jenckel M, Huang N, Smertina E, Holmes EC, Strive T, Hall RN. Frequent intergenotypic recombination between the non-structural and structural genes is a major driver of epidemiological fitness in caliciviruses. Virus Evol 2021; 7:veab080. [PMID: 34754513 PMCID: PMC8570162 DOI: 10.1093/ve/veab080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The diversity of lagoviruses (Caliciviridae) in Australia has increased considerably in recent years. By the end of 2017, five variants from three viral genotypes were present in populations of Australian rabbits, while prior to 2014 only two variants were known. To understand the evolutionary interactions among these lagovirus variants, we monitored their geographical distribution and relative incidence over time in a continental-scale competition study. Within 3 years of the incursion of rabbit haemorrhagic disease virus 2 (RHDV2, denoted genotype GI.1bP-GI.2 [polymerase genotype]P-[capsid genotype]) into Australia, two novel recombinant lagovirus variants emerged: RHDV2-4e (genotype GI.4eP-GI.2) in New South Wales and RHDV2-4c (genotype GI.4cP-GI.2) in Victoria. Although both novel recombinants contain non-structural genes related to those from benign, rabbit-specific, enterotropic viruses, these variants were recovered from the livers of both rabbits and hares that had died acutely. This suggests that the determinants of host and tissue tropism for lagoviruses are associated with the structural genes, and that tropism is intricately connected with pathogenicity. Phylogenetic analyses demonstrated that the RHDV2-4c recombinant emerged independently on multiple occasions, with five distinct lineages observed. Both the new RHDV2-4e and -4c recombinant variants replaced the previous dominant parental RHDV2 (genotype GI.1bP-GI.2) in their respective geographical areas, despite sharing an identical or near-identical (i.e. single amino acid change) VP60 major capsid protein with the parental virus. This suggests that the observed replacement by these recombinants was not driven by antigenic variation in VP60, implicating the non-structural genes as key drivers of epidemiological fitness. Molecular clock estimates place the RHDV2-4e recombination event in early to mid-2015, while the five RHDV2-4c recombination events occurred from late 2015 through to early 2017. The emergence of at least six viable recombinant variants within a 2-year period highlights the high frequency of these events, detectable only through intensive surveillance, and demonstrates the importance of recombination in lagovirus evolution.
Collapse
Affiliation(s)
- Jackie E Mahar
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Jenckel
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| | - Nina Huang
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| | - Elena Smertina
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| | - Robyn N Hall
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| |
Collapse
|
20
|
Perišić O, Wriggers W. Mechanism for the Unfolding of the TOP7 Protein in Steered Molecular Dynamics Simulations as Revealed by Mutual Information Analysis. Front Mol Biosci 2021; 8:696609. [PMID: 34660691 PMCID: PMC8516001 DOI: 10.3389/fmolb.2021.696609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
We employed mutual information (MI) analysis to detect motions affecting the mechanical resistance of the human-engineered protein Top7. The results are based on the MI analysis of pair contact correlations measured in steered molecular dynamics (SMD) trajectories and their statistical dependence on global unfolding. This study is the first application of the MI analysis to SMD forced unfolding, and we furnish specific SMD recommendations for the utility of parameters and options in the TimeScapes package. The MI analysis provided a global overview of the effect of perturbation on the stability of the protein. We also employed a more conventional trajectory analysis for a detailed description of the mechanical resistance of Top7. Specifically, we investigated 1) the hydropathy of the interactions of structural segments, 2) the H2O concentration near residues relevant for unfolding, and 3) the changing hydrogen bonding patterns and main chain dihedral angles. The results show that the application of MI in the study of protein mechanical resistance can be useful for the engineering of more resistant mutants when combined with conventional analysis. We propose a novel mutation design based on the hydropathy of residues that would stabilize the unfolding region by mimicking its more stable symmetry mate. The proposed design process does not involve the introduction of covalent crosslinks, so it has the potential to preserve the conformational space and unfolding pathway of the protein.
Collapse
Affiliation(s)
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
21
|
Rangel G, Martín V, Bárcena J, Blanco E, Alejo A. An Adenovirus Vector Expressing FMDV RNA Polymerase Combined with a Chimeric VLP Harboring a Neutralizing Epitope as a Prime Boost Strategy to Induce FMDV-Specific Humoral and Cellular Responses. Pharmaceuticals (Basel) 2021; 14:ph14070675. [PMID: 34358101 PMCID: PMC8308840 DOI: 10.3390/ph14070675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Foot and mouth disease is a highly contagious disease affecting cattle, sheep, and swine among other cloven-hoofed animals that imposes serious economic burden by its direct effects on farm productivity as well as on commerce of farmed produce. Vaccination using inactivated viral strains of the different serotypes is an effective protective measure, but has several drawbacks including a lack of cross protection and the perils associated with the large-scale growth of infectious virus. We have previously developed chimeric virus-like particles (VLPs) bearing an FMDV epitope which induced strong specific humoral responses in vaccinated pigs but conferred only partial protection against homologous challenge. While this and other FMD vaccines under development mostly rely on the induction of neutralizing responses, it is thought that induction of specific T-cell responses might improve both cross protective efficacy as well as duration of immunity. Therefore, we here describe the development of a recombinant adenovirus expressing the highly conserved nonstructural FMDV 3D protein as well as its capacity to induce specific T-cell responses in a murine model. We further describe the generation of an FMDV serotype C-specific chimeric VLP and analyze the immunogenicity of two different prime-boost strategies combining both elements in mice. This combination can effectively induce both humoral and cellular FMDV-specific responses eliciting high titers of ELISA and neutralizing antibodies anti-FMDV as well as a high frequency of IFNγ-secreting cells. These results provide the basis for further testing of this anti FMD vaccination strategy in cattle or pig, two of the most relevant natural host of this pathogen.
Collapse
Affiliation(s)
- Giselle Rangel
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICA-SAT-AIP), City of Knowledge, Panama 0843-01103, Panama
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal (INIA, CSIC), Ctra de Algete a El Casar de Talamanca, Valdeolmos, 28130 Madrid, Spain; (G.R.); (V.M.); (J.B.); (E.B.)
- Correspondence: ; Tel.: +34-91-6202300
| |
Collapse
|
22
|
The Cryo-EM Structure of Vesivirus 2117 Highlights Functional Variations in Entry Pathways for Viruses in Different Clades of the Vesivirus Genus. J Virol 2021; 95:e0028221. [PMID: 33853966 DOI: 10.1128/jvi.00282-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesivirus 2117 is an adventitious agent that has been responsible for lost productivity in biopharmaceutical production following contamination of Chinese hamster ovary cell cultures in commercial bioreactors. A member of the Caliciviridae, 2117 is classified within the Vesivirus genus in a clade that includes canine and mink caliciviruses but is distinct from the vesicular exanthema of swine virus (VESV) clade, which includes the extensively studied feline calicivirus (FCV). We have used cryogenic electron microscopy (cryo-EM) to determine the structure of the capsid of this small, icosahedral, positive-sense-RNA-containing virus. We show that the outer face of the dimeric capsomeres, which contains the receptor binding site and major immunodominant epitopes in all caliciviruses studied thus far, is quite different from that of FCV. This is a consequence of a 22-amino-acid insertion in the sequence of the FCV major capsid protein that forms a "cantilevered arm" that both plays an important role in receptor engagement and undergoes structural rearrangements thought to be important for genome delivery to the cytosol. Our data highlight a potentially important difference in the attachment and entry pathways employed by the different clades of the Vesivirus genus. IMPORTANCE Vesivirus 2117 has caused significant losses in manufacturing of biopharmaceutical products following contamination of cell cultures used in their production. We report the structure of the vesivirus 2117 capsid, the shell that encloses the virus's genome. Comparison of this structure with that of a related vesivirus, feline calicivirus (FCV), highlighted potentially important differences related to virus attachment and entry. Our findings suggest that these two viruses may bind differently to receptors at the host cell surface. We also show that a region of the capsid protein of FCV that rearranges following receptor engagement is not present in vesivirus 2117. These structural changes in the FCV capsid have been shown to allow the assembly of a portal-like structure that is hypothesized to deliver the viral genome to the cell's interior. Our data suggest that the 2117 portal assembly may employ a different means of anchoring to the outer face of the capsid.
Collapse
|
23
|
Machado MR, Pantano S. Fighting viruses with computers, right now. Curr Opin Virol 2021; 48:91-99. [PMID: 33975154 DOI: 10.1016/j.coviro.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The synergistic conjunction of various technological revolutions with the accumulated knowledge and workflows is rapidly transforming several scientific fields. Particularly, Virology can now feed from accurate physical models, polished computational tools, and massive computational power to readily integrate high-resolution structures into biological representations of unprecedented detail. That preparedness allows for the first time to get crucial information for vaccine and drug design from in-silico experiments against emerging pathogens of worldwide concern at relevant action windows. The present work reviews some of the main milestones leading to these breakthroughs in Computational Virology, providing an outlook for future developments in capacity building and accessibility to computational resources.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| |
Collapse
|
24
|
Rangel G, Bárcena J, Moreno N, Mata CP, Castón JR, Alejo A, Blanco E. Chimeric RHDV Virus-Like Particles Displaying Foot-and-Mouth Disease Virus Epitopes Elicit Neutralizing Antibodies and Confer Partial Protection in Pigs. Vaccines (Basel) 2021; 9:vaccines9050470. [PMID: 34066934 PMCID: PMC8148555 DOI: 10.3390/vaccines9050470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Currently there is a clear trend towards the establishment of virus-like particles (VLPs) as a powerful tool for vaccine development. VLPs are tunable nanoparticles that can be engineered to be used as platforms for multimeric display of foreign antigens. We have previously reported that VLPs derived from rabbit hemorrhagic disease virus (RHDV) constitute an excellent vaccine vector, capable of inducing specific protective immune responses against inserted heterologous T-cytotoxic and B-cell epitopes. Here, we evaluate the ability of chimeric RHDV VLPs to elicit immune response and protection against Foot-and-Mouth disease virus (FMDV), one of the most devastating livestock diseases. For this purpose, we generated a set of chimeric VLPs containing two FMDV-derived epitopes: a neutralizing B-cell epitope (VP1 (140-158)) and a T-cell epitope [3A (21-35)]. The epitopes were inserted joined or individually at two different locations within the RHDV capsid protein. The immunogenicity and protection potential of the chimeric VLPs were analyzed in the mouse and pig models. Herein we show that the RHDV engineered VLPs displaying FMDV-derived epitopes elicit a robust neutralizing immune response in mice and pigs, affording partial clinical protection against an FMDV challenge in pigs.
Collapse
Affiliation(s)
- Giselle Rangel
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Noelia Moreno
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Carlos P. Mata
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (C.P.M.); (J.R.C.)
| | - José R. Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, 28049 Madrid, Spain; (C.P.M.); (J.R.C.)
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA, CSIC-INIA), Valdeolmos, 28130 Madrid, Spain; (G.R.); (J.B.); (N.M.); (A.A.)
- Correspondence: ; Tel.: +34-916-202-300
| |
Collapse
|
25
|
Abrantes J, Lopes AM. A Review on the Methods Used for the Detection and Diagnosis of Rabbit Hemorrhagic Disease Virus (RHDV). Microorganisms 2021; 9:972. [PMID: 33946292 PMCID: PMC8146303 DOI: 10.3390/microorganisms9050972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
Since the early 1980s, the European rabbit (Oryctolagus cuniculus) has been threatened by the rabbit hemorrhagic disease (RHD). The disease is caused by a lagovirus of the family Caliciviridae, the rabbit hemorrhagic disease virus (RHDV). The need for detection, identification and further characterization of RHDV led to the development of several diagnostic tests. Owing to the lack of an appropriate cell culture system for in vitro propagation of the virus, much of the methods involved in these tests contributed to our current knowledge on RHD and RHDV and to the development of vaccines to contain the disease. Here, we provide a comprehensive review of the RHDV diagnostic tests used since the first RHD outbreak and that include molecular, histological and serological techniques, ranging from simpler tests initially used, such as the hemagglutination test, to the more recent and sophisticated high-throughput sequencing, along with an overview of their potential and their limitations.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana M. Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Abstract
Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.
Collapse
|
27
|
Müller C, Hrynkiewicz R, Bębnowska D, Maldonado J, Baratelli M, Köllner B, Niedźwiedzka-Rystwej P. Immunity against Lagovirus europaeus and the Impact of the Immunological Studies on Vaccination. Vaccines (Basel) 2021; 9:vaccines9030255. [PMID: 33805607 PMCID: PMC8002203 DOI: 10.3390/vaccines9030255] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
In the early 1980s, a highly contagious viral hemorrhagic fever in rabbits (Oryctolagus cuniculus) emerged, causing a very high rate of mortality in these animals. Since the initial occurrence of the rabbit hemorrhagic disease virus (RHDV), several hundred million rabbits have died after infection. The emergence of genetically-different virus variants (RHDV GI.1 and GI.2) indicated the very high variability of RHDV. Moreover, with these variants, the host range broadened to hare species (Lepus). The circulation of RHDV genotypes displays different virulences and a limited induction of cross-protective immunity. Interestingly, juvenile rabbits (<9 weeks of age) with an immature immune system display a general resistance to RHDV GI.1, and a limited resistance to RHDV GI.2 strains, whereas less than 3% of adult rabbits survive an infection by either RHDV GI.1. or GI.2. Several not-yet fully understood phenomena characterize the RHD. A very low infection dose followed by an extremely rapid viral replication could be simplified to the induction of a disseminated intravascular coagulopathy (DIC), a severe loss of lymphocytes—especially T-cells—and death within 36 to 72 h post infection. On the other hand, in animals surviving the infection or after vaccination, very high titers of RHDV-neutralizing antibodies were induced. Several studies have been conducted in order to deepen the knowledge about the virus’ genetics, epidemiology, RHDV-induced pathology, and the anti-RHDV immune responses of rabbits in order to understand the phenomenon of the juvenile resistance to this virus. Moreover, several approaches have been used to produce efficient vaccines in order to prevent an infection with RHDV. In this review, we discuss the current knowledge about anti-RHDV resistance and immunity, RHDV vaccination, and the further need to establish rationally-based RHDV vaccines.
Collapse
Affiliation(s)
- Claudia Müller
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany;
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
| | | | | | - Bernd Köllner
- Institute of Immunology, Friedrich-Loeffler-Institute, 17493 Greifswald-Insel Riems, Germany
- Correspondence: (B.K.); (P.N.-R.)
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (D.B.)
- Correspondence: (B.K.); (P.N.-R.)
| |
Collapse
|
28
|
Bao S, An K, Liu C, Xing X, Fu X, Xue H, Wen F, He X, Wang J. Rabbit Hemorrhagic Disease Virus Isolated from Diseased Alpine Musk Deer ( Moschus sifanicus). Viruses 2020; 12:v12080897. [PMID: 32824417 PMCID: PMC7472292 DOI: 10.3390/v12080897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) is the causative agent of rabbit hemorrhagic disease (RHD), and its infection results in mortality of 70-90% in farmed and wild rabbits. RHDV is thought to replicate strictly in rabbits. However, there are also reports showing that gene segments from the RHDV genome or antibodies against RHDV have been detected in other animals. Here, we report the detection and isolation of a RHDV from diseased Alpine musk deer (Moschussifanicus). The clinical manifestations in those deer were sudden death without clinical signs and hemorrhage in the internal organs. To identify the potential causative agents of the disease, we used sequence independent single primer amplification (SISPA) to detect gene segments from viruses in the tissue samples collected from the dead deer. From the obtained sequences, we identified some gene fragments showing very high nucleotide sequence similarity with RHDV genome. Furthermore, we identified caliciviral particles using an electron microscope in the samples. The new virus was designated as RHDV GS/YZ. We then designed primers based on the genome sequence of an RHDV strain CD/China to amplify and sequence the whole genome of the virus. The genome of the virus was determined to be 7437 nucleotides in length, sharing the highest genome sequence identity of 98.7% with a Chinese rabbit strain HB. The virus was assigned to the G2 genotype of RHDVs according to the phylogenetic analyses based on both the full-length genome and VP60 gene sequences. Animal experiments showed that GS/YZ infection in rabbits resulted in the macroscopic and microscopic lesions similar to that caused by the other RHDVs. This is the first report of RHDV isolated from Alpine musk deer, and our findings extended the epidemiology and host range of RHDV.
Collapse
Affiliation(s)
- Shijun Bao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
- Correspondence: (S.B.); (J.W.); Tel.: +86-931-7631229 (S.B.); +86-451-51051770 (J.W.)
| | - Kai An
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Chunguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (C.L.); (X.H.)
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Xiaoping Fu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Huiwen Xue
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Fengqin Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.A.); (X.X.); (X.F.); (H.X.); (F.W.)
| | - Xijun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (C.L.); (X.H.)
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (C.L.); (X.H.)
- Correspondence: (S.B.); (J.W.); Tel.: +86-931-7631229 (S.B.); +86-451-51051770 (J.W.)
| |
Collapse
|
29
|
Song C, Takai-Todaka R, Miki M, Haga K, Fujimoto A, Ishiyama R, Oikawa K, Yokoyama M, Miyazaki N, Iwasaki K, Murakami K, Katayama K, Murata K. Dynamic rotation of the protruding domain enhances the infectivity of norovirus. PLoS Pathog 2020; 16:e1008619. [PMID: 32614892 PMCID: PMC7331980 DOI: 10.1371/journal.ppat.1008619] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Norovirus is the major cause of epidemic nonbacterial gastroenteritis worldwide. Lack of structural information on infection and replication mechanisms hampers the development of effective vaccines and remedies. Here, using cryo-electron microscopy, we show that the capsid structure of murine noroviruses changes in response to aqueous conditions. By twisting the flexible hinge connecting two domains, the protruding (P) domain reversibly rises off the shell (S) domain in solutions of higher pH, but rests on the S domain in solutions of lower pH. Metal ions help to stabilize the resting conformation in this process. Furthermore, in the resting conformation, the cellular receptor CD300lf is readily accessible, and thus infection efficiency is significantly enhanced. Two similar P domain conformations were also found simultaneously in the human norovirus GII.3 capsid, although the mechanism of the conformational change is not yet clear. These results provide new insights into the mechanisms of non-enveloped norovirus transmission that invades host cells, replicates, and sometimes escapes the hosts immune system, through dramatic environmental changes in the gastrointestinal tract.
Collapse
Affiliation(s)
- Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Kei Haga
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akira Fujimoto
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuki Oikawa
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Suita, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Suita, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (KK); (KM)
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Japan
- * E-mail: (KK); (KM)
| |
Collapse
|
30
|
Nanobody-Mediated Neutralization Reveals an Achilles Heel for Norovirus. J Virol 2020; 94:JVI.00660-20. [PMID: 32321816 DOI: 10.1128/jvi.00660-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Human norovirus frequently causes outbreaks of acute gastroenteritis. Although discovered more than five decades ago, antiviral development has, until recently, been hampered by the lack of a reliable human norovirus cell culture system. Nevertheless, a lot of pathogenesis studies were accomplished using murine norovirus (MNV), which can be grown routinely in cell culture. In this study, we analyzed a sizeable library of nanobodies that were raised against the murine norovirus virion with the main purpose of developing nanobody-based inhibitors. We discovered two types of neutralizing nanobodies and analyzed the inhibition mechanisms using X-ray crystallography, cryo-electron microscopy (cryo-EM), and cell culture techniques. The first type bound on the top region of the protruding (P) domain. Interestingly, this nanobody binding region closely overlapped the MNV receptor-binding site and collectively shared numerous P domain-binding residues. In addition, we showed that these nanobodies competed with the soluble receptor, and this action blocked virion attachment to cultured cells. The second type bound at a dimeric interface on the lower side of the P dimer. We discovered that these nanobodies disrupted a structural change in the capsid associated with binding cofactors (i.e., metal cations/bile acid). Indeed, we found that capsids underwent major conformational changes following addition of Mg2+ or Ca2+ Ultimately, these nanobodies directly obstructed a structural modification reserved for a postreceptor attachment stage. Altogether, our new data show that nanobody-based inhibition could occur by blocking functional and structural capsid properties.IMPORTANCE This research discovered and analyzed two different types of MNV-neutralizing nanobodies. The top-binding nanobodies sterically inhibited the receptor-binding site, whereas the dimeric-binding nanobodies interfered with a structural modification associated with cofactor binding. Moreover, we found that the capsid contained a number of vulnerable regions that were essential for viral replication. In fact, the capsid appeared to be organized in a state of flux, which could be important for cofactor/receptor-binding functions. Blocking these capsid-binding events with nanobodies directly inhibited essential capsid functions. Moreover, a number of MNV-specific nanobody binding epitopes were comparable to human norovirus-specific nanobody inhibitors. Therefore, this additional structural and inhibition information could be further exploited in the development of human norovirus antivirals.
Collapse
|
31
|
Cubillos-Zapata C, Angulo I, Almanza H, Borrego B, Zamora-Ceballos M, Castón JR, Mena I, Blanco E, Bárcena J. Precise location of linear epitopes on the capsid surface of feline calicivirus recognized by neutralizing and non-neutralizing monoclonal antibodies. Vet Res 2020; 51:59. [PMID: 32357948 PMCID: PMC7195702 DOI: 10.1186/s13567-020-00785-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
We report the generation, characterization and epitope mapping of a panel of 26 monoclonal antibodies (MAbs) against the VP1 capsid protein of feline calicivirus (FCV). Two close but distinct linear epitopes were identified at the capsid outermost surface (P2 subdomain) of VP1, within the E5′HVR antigenic hypervariable region: one spanning amino acids 431-435 (PAGDY), highly conserved and recognized by non-neutralizing MAbs; and a second epitope spanning amino acids 445-451 (ITTANQY), highly variable and recognized by neutralizing MAbs. These antibodies might be valuable for diagnostic applications, as well as for further research in different aspects of the biology of FCV.
Collapse
Affiliation(s)
- Carolina Cubillos-Zapata
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Iván Angulo
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain
| | - Horacio Almanza
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain.,Facultad de Medicina y Psicología de la Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain
| | | | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - Ignacio Mena
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain.
| |
Collapse
|
32
|
Multiscale modelling and simulation of viruses. Curr Opin Struct Biol 2020; 61:146-152. [PMID: 31991326 DOI: 10.1016/j.sbi.2019.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 11/20/2022]
Abstract
In recent years, advances in structural biology, integrative modelling, and simulation approaches have allowed us to gain unprecedented insights into viral structure and dynamics. In this article we survey recent studies utilizing this wealth of structural information to build computational models of partial or complete viruses and to elucidate mechanisms of viral function. Additionally, the close interplay of viral pathogens with host factors - such as cellular and intracellular membranes, receptors, antibodies, and other host proteins - makes accurate models of viral interactions and dynamics essential. As viruses continue to pose severe challenges in prevention and treatment, enhancing our mechanistic understanding of viral infection is vital to enable the development of novel therapeutic strategies.
Collapse
|
33
|
Qi R, Zhu J, Miao Q, Tang A, Dong D, Wang X, Liu G. Bioinformatics analysis of capsid protein of different subtypes rabbit hemorrhagic disease virus. BMC Vet Res 2019; 15:423. [PMID: 31775738 PMCID: PMC6882040 DOI: 10.1186/s12917-019-2161-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background Rabbit Hemorrhagic Disease Virus (RHDV) belongs to the Caliciviridae family, is a highly lethal pathogen to rabbits. Increasing numbers of studies have demonstrated the existence of antigenic variation in RHDV, leading to the emergence of a new RHDV isolate (RHDVb). However, the underlying factors determining the emergence of the new RHDV and its unpredictable epidemiology remain unclear. To investigate these issues, we selected more than 184 partial and/or complete genome sequences of RHDV from GenBank and analyzed their phylogenetic relationships, divergence, and predicted protein modification sites. Results Phylogenetic analysis showed that classic RHDV isolates, RHDVa, and RHDVb formed different clades. It’s interesting to note that RHDVa being more closely related to classic RHDV than RHDVb, while RHDVb had a closer genetic relationship to Rabbit Calicivirus (RCV) than to classic RHDV isolates. Moreover, divergence analysis suggested that the accumulation of amino acid (aa) changes might be a consequence of adaptive diversification of capsid protein (VP60) during the division between classical RHDV, RHDVa, RHDVb, and RCV. Notably, the prediction of N-glycosylation sites suggested that RHDVb subtypes had two unique N-glycosylation sites (aa 301, 362) but lacked three other N-glycosylation sites (aa 45, 308, 474) displayed in classic RHDV and RHDVa VP60 implying this divergence of N-glycosylation sites in RHDV might affect viral virulence. Analysis of phosphorylation sites also indicated that some phosphorylation sites in RHDVa and RHDVb differed from those in classic RHDV, potentially related to antigenic variation in RHDV. Conclusion The genetic relationship between RHDVb and RCV was closer than classic RHDV isolates. Moreover, compared to RHDV and RHDVa, RHDVb had two unique N-glycosylation sites but lacked three sites, which might affect the virulence of RHDV. These results may provide new clues for further investigations of the origin of new types of RHDV and the mechanisms of genetic variation in RHDV.
Collapse
Affiliation(s)
- Ruibin Qi
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Jie Zhu
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Qiuhong Miao
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Aoxing Tang
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Dandan Dong
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Xiaoxue Wang
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China
| | - Guangqing Liu
- Innovation Team of Small animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, People's Republic of China.
| |
Collapse
|
34
|
Chan C, Pang X, Zhang Y, Niu T, Yang S, Zhao D, Li J, Lu L, Hsu VW, Zhou J, Sun F, Fan J. ACAP1 assembles into an unusual protein lattice for membrane deformation through multiple stages. PLoS Comput Biol 2019; 15:e1007081. [PMID: 31291238 PMCID: PMC6663034 DOI: 10.1371/journal.pcbi.1007081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/29/2019] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
Abstract
Studies on the Bin-Amphiphysin-Rvs (BAR) domain have advanced a fundamental understanding of how proteins deform membrane. We previously showed that a BAR domain in tandem with a Pleckstrin Homology (PH domain) underlies the assembly of ACAP1 (Arfgap with Coil-coil, Ankryin repeat, and PH domain I) into an unusual lattice structure that also uncovers a new paradigm for how a BAR protein deforms membrane. Here, we initially pursued computation-based refinement of the ACAP1 lattice to identify its critical protein contacts. Simulation studies then revealed how ACAP1, which dimerizes into a symmetrical structure in solution, is recruited asymmetrically to the membrane through dynamic behavior. We also pursued electron microscopy (EM)-based structural studies, which shed further insight into the dynamic nature of the ACAP1 lattice assembly. As ACAP1 is an unconventional BAR protein, our findings broaden the understanding of the mechanistic spectrum by which proteins assemble into higher-ordered structures to achieve membrane deformation.
Collapse
Affiliation(s)
- Chun Chan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaoyun Pang
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tongxin Niu
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Daohui Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Jian Li
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Victor W. Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
- * E-mail: (JZ); (FS); (JF)
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for excellence in biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JZ); (FS); (JF)
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Hong Kong, China
- * E-mail: (JZ); (FS); (JF)
| |
Collapse
|
35
|
Conley MJ, McElwee M, Azmi L, Gabrielsen M, Byron O, Goodfellow IG, Bhella D. Calicivirus VP2 forms a portal-like assembly following receptor engagement. Nature 2019; 565:377-381. [PMID: 30626974 DOI: 10.1038/s41586-018-0852-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/10/2018] [Indexed: 11/08/2022]
Abstract
To initiate infection, many viruses enter their host cells by triggering endocytosis following receptor engagement. However, the mechanisms by which non-enveloped viruses escape the endosome are poorly understood. Here we present near-atomic-resolution cryo-electron microscopy structures for feline calicivirus both undecorated and labelled with a soluble fragment of its cellular receptor, feline junctional adhesion molecule A. We show that VP2, a minor capsid protein encoded by all caliciviruses1,2, forms a large portal-like assembly at a unique three-fold axis of symmetry, following receptor engagement. This assembly-which was not detected in undecorated virions-is formed of twelve copies of VP2, arranged with their hydrophobic N termini pointing away from the virion surface. Local rearrangement at the portal site leads to the opening of a pore in the capsid shell. We hypothesize that the portal-like assembly functions as a channel for the delivery of the calicivirus genome, through the endosomal membrane, into the cytoplasm of a host cell, thereby initiating infection. VP2 was previously known to be critical for the production of infectious virus3; our findings provide insights into its structure and function that advance our understanding of the Caliciviridae.
Collapse
Affiliation(s)
- Michaela J Conley
- Medical Research Council University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marion McElwee
- Medical Research Council University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Liyana Azmi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Olwyn Byron
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Bhella
- Medical Research Council University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
36
|
Srivastava A, Nagai T, Srivastava A, Miyashita O, Tama F. Role of Computational Methods in Going beyond X-ray Crystallography to Explore Protein Structure and Dynamics. Int J Mol Sci 2018; 19:E3401. [PMID: 30380757 PMCID: PMC6274748 DOI: 10.3390/ijms19113401] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022] Open
Abstract
Protein structural biology came a long way since the determination of the first three-dimensional structure of myoglobin about six decades ago. Across this period, X-ray crystallography was the most important experimental method for gaining atomic-resolution insight into protein structures. However, as the role of dynamics gained importance in the function of proteins, the limitations of X-ray crystallography in not being able to capture dynamics came to the forefront. Computational methods proved to be immensely successful in understanding protein dynamics in solution, and they continue to improve in terms of both the scale and the types of systems that can be studied. In this review, we briefly discuss the limitations of X-ray crystallography in studying protein dynamics, and then provide an overview of different computational methods that are instrumental in understanding the dynamics of proteins and biomacromolecular complexes.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | - Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Arpita Srivastava
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Osamu Miyashita
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI), Nagoya University, Nagoya, Aichi 464-8601, Japan.
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- RIKEN-Center for Computational Science, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
37
|
Zhu J, Miao Q, Tang J, Wang X, Dong D, Liu T, Qi R, Yang Z, Liu G. Nucleolin mediates the internalization of rabbit hemorrhagic disease virus through clathrin-dependent endocytosis. PLoS Pathog 2018; 14:e1007383. [PMID: 30339712 PMCID: PMC6209375 DOI: 10.1371/journal.ppat.1007383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Rabbit hemorrhagic disease virus (RHDV) is an important member of the Caliciviridae family and a highly lethal pathogen in rabbits. Although the cell receptor of RHDV has been identified, the mechanism underlying RHDV internalization remains unknown. In this study, the entry and post-internalization of RHDV into host cells were investigated using several biochemical inhibitors and RNA interference. Our data demonstrate that rabbit nucleolin (NCL) plays a key role in RHDV internalization. Further study revealed that NCL specifically interacts with the RHDV capsid protein (VP60) through its N-terminal residues (aa 285-318), and the exact position of the VP60 protein for the interaction with NCL is located in a highly conserved region (472Asp-Val-Asn474; DVN motif). Following competitive blocking of the interaction between NCL and VP60 with an artificial DVN peptide (RRTGDVNAAAGSTNGTQ), the internalization efficiency of the virus was markedly reduced. Moreover, NCL also interacts with the C-terminal residues of clathrin light chain A, which is an important component in clathrin-dependent endocytosis. In addition, the results of animal experiments also demonstrated that artificial DVN peptides protected most rabbits from RHDV infection. These findings demonstrate that NCL is involved in RHDV internalization through clathrin-dependent endocytosis.
Collapse
Affiliation(s)
- Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Qiuhong Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
- Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| | - Jingyu Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Xiaoxue Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Dandan Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Teng Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Ruibin Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| |
Collapse
|
38
|
Sharma KK, Marzinek JK, Tantirimudalige SN, Bond PJ, Wohland T. Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:38-51. [PMID: 30223001 DOI: 10.1016/j.pbiomolbio.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Flaviviruses are simple enveloped viruses exhibiting complex structural and functional heterogeneities. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology approaches. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that are employed to investigate flaviviruses. In particular, we review how (i) time-resolved Förster resonance energy transfer (trFRET) was applied to probe dengue envelope conformations; (ii) FRET-fluorescence correlation spectroscopy to investigate dengue envelope intrinsic dynamics and (iii) single particle tracking to follow the path of dengue viruses in cells. We also discuss how such methods may be supported by molecular dynamics (MD) simulations over a range of spatio-temporal scales, to provide complementary data on the structure and dynamics of flaviviral systems. We describe recent improvements in multiscale MD approaches that allowed the simulation of dengue particle envelopes in near-atomic resolution. We hope this review is an incentive for setting up and applying similar single-molecule studies and combine them with MD simulations to investigate structural dynamics of entire flavivirus particles over the nanosecond-to-millisecond time-scale and follow viruses during infection in cells over milliseconds to minutes.
Collapse
Affiliation(s)
- Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jan K Marzinek
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Chemistry, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
| |
Collapse
|
39
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
40
|
Silvério D, Lopes AM, Melo-Ferreira J, Magalhães MJ, Monterroso P, Serronha A, Maio E, Alves PC, Esteves PJ, Abrantes J. Insights into the evolution of the new variant rabbit haemorrhagic disease virus (GI.2) and the identification of novel recombinant strains. Transbound Emerg Dis 2018; 65:983-992. [DOI: 10.1111/tbed.12830] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 12/29/2022]
Affiliation(s)
- D. Silvério
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| | - A. M. Lopes
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB); Institute of Biomedical Sciences Abel Salazar (ICBAS); University of Porto; Porto Portugal
| | - J. Melo-Ferreira
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - M. J. Magalhães
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - P. Monterroso
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - A. Serronha
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - E. Maio
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| | - P. C. Alves
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
- Wildlife Biology Program; University of Montana; Missoula MT USA
| | - P. J. Esteves
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
- Faculdade de Ciências; Departamento de Biologia; Universidade do Porto; Porto Portugal
| | - J. Abrantes
- Centro de Investigação em Biodiversidade e Recursos Genéticos; CIBIO/InBIO; Vairão Portugal
| |
Collapse
|
41
|
Rabbit Hemorrhagic Disease Virus 2 (RHDV2; GI.2) Is Replacing Endemic Strains of RHDV in the Australian Landscape within 18 Months of Its Arrival. J Virol 2018; 92:JVI.01374-17. [PMID: 29093089 DOI: 10.1128/jvi.01374-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Rabbit hemorrhagic disease virus 2 (RHDV2; Lagovirus GI.2) is a pathogenic calicivirus that affects European rabbits (Oryctolagus cuniculus) and various hare (Lepus) species. GI.2 was first detected in France in 2010 and subsequently caused epidemics in wild and domestic lagomorph populations throughout Europe. In May 2015, GI.2 was detected in Australia. Within 18 months of its initial detection, GI.2 had spread to all Australian states and territories and rapidly became the dominant circulating strain, replacing Rabbit hemorrhagic disease virus (RHDV/GI.1) in mainland Australia. Reconstruction of the evolutionary history of 127 Australian GI.2 isolates revealed that the virus arrived in Australia at least several months before its initial description and likely circulated unnoticed in wild rabbit populations in the east of the continent prior to its detection. GI.2 sequences isolated from five hares clustered with sequences from sympatric rabbit populations sampled contemporaneously, indicating multiple spillover events into hares rather than an adaptation of the Australian GI.2 to a new host. Since the presence of GI.2 in Australia may have wide-ranging consequences for rabbit biocontrol, particularly with the release of the novel biocontrol agent GI.1a/RHDVa-K5 in March 2017, ongoing surveillance is critical to understanding the interactions of the various lagoviruses in Australia and their impact on host populations.IMPORTANCE This study describes the spread and distribution of Rabbit hemorrhagic disease virus 2 (GI.2) in Australia since its first detection in May 2015. Within the first 18 months following its detection, RHDV2 spread from east to west across the continent and became the dominant strain in all mainland states of Australia. This has important implications for pest animal management and for owners of pet and farmed rabbits, as there currently is no effective vaccine available in Australia for GI.2. The closely related RHDV (GI.1) is used to control overabundant wild rabbits, a serious environmental and agricultural pest in this country, and it is currently unclear how the widespread circulation of GI.2 will impact ongoing targeted wild rabbit management operations.
Collapse
|
42
|
Huber RG, Marzinek JK, Holdbrook DA, Bond PJ. Multiscale molecular dynamics simulation approaches to the structure and dynamics of viruses. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:121-132. [DOI: 10.1016/j.pbiomolbio.2016.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
|
43
|
Donaldson B, Al-Barwani F, Pelham SJ, Young K, Ward VK, Young SL. Multi-target chimaeric VLP as a therapeutic vaccine in a model of colorectal cancer. J Immunother Cancer 2017; 5:69. [PMID: 28806910 PMCID: PMC5556368 DOI: 10.1186/s40425-017-0270-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer is responsible for almost 700,000 deaths annually worldwide. Therapeutic vaccination is a promising alternative to conventional treatment for colorectal cancer, using vaccines to induce targeted immune responses against tumour-associated antigens. In this study, we have developed chimaeric virus-like particles (VLP), a form of non-infectious non-replicative subunit vaccine consisting of rabbit haemorrhagic disease virus (RHDV) VP60 capsid proteins containing recombinantly inserted epitopes from murine topoisomerase IIα and survivin. These vaccines were developed in mono- (T.VP60, S.VP60) and multi-target (TS.VP60) forms, aiming to elucidate the potential benefits from multi-target vaccination. Methods Chimaeric RHDV VLP were developed by recombinantly inserting immune epitopes at the N-terminus of VP60. Vaccines were tested against a murine model of colorectal cancer by establishing MC38-OVA tumours subcutaneously. Unmethylated CpG DNA oligonucleotides (CpGs) were used as a vaccine adjuvant. Statistical tests employed included the Mantel-Cox log-rank test, ANOVA and unpaired t-tests depending on the data analysed, with a post hoc Bonferroni adjustment for multiple measures. Results Chimaeric RHDV VLP were found to form a composite particle in the presence of CpGs. Overall survival was significantly improved amongst mice bearing MC38-OVA tumours following vaccination with T.VP60 (60%, 9/15), S.VP60 (60%, 9/15) or TS.VP60 (73%, 11/15). TS.VP60 significantly prolonged the vaccine-induced remission period in comparison to each mono-therapy. Conclusions Chimaeric VLP containing multiple epitopes were found to confer an advantage for therapeutic vaccination in a model of colorectal cancer based on the prolongation of remission prior to tumour escape. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0270-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Braeden Donaldson
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Farah Al-Barwani
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Simon J Pelham
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Katie Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sarah L Young
- Department of Pathology, Dunedin School of Medicine, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
44
|
Song Y, Fan Z, Zuo Y, Wei H, Hu B, Chen M, Qiu R, Xue J, Wang F. Binding of rabbit hemorrhagic disease virus-like particles to host histo-blood group antigens is blocked by antisera from experimentally vaccinated rabbits. Arch Virol 2017; 162:3425-3430. [PMID: 28780630 DOI: 10.1007/s00705-017-3509-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/05/2017] [Indexed: 01/28/2023]
Abstract
During infection host histo-blood group antigens (HBGAs) act as attachment factors that interact with rabbit hemorrhagic disease virus (RHDV) and participate in the infectious process. In the present study, baculovirus expressing recombinant RHDV capsid protein (VP60r) as a vaccine immunogen was used to test its antigenicity and immunogenicity via immunization experiments. Each group of rabbits immunized with VP60r was found to be fully protected against RHDV challenge. The duration of immunity of the vaccine following the inoculation of a single dose was determined to be at least 240 days. RHDV-specific humoral responses in antisera from inoculated rabbits were analyzed using VP60r virus-like particle (VLP)-based ELISA. Anti-VP60-specific antibody was produced by 7 days post-primary immunization. Following this stage, the levels of this antibody increased steadily, peaking at 90 days and maintaining a high level until 240 days. We developed a synthetic carbohydrate assay to detect blockage in attachment of RHDV VLPs to HBGAs by the rabbit antisera. On day 7 post-immunization, serum samples were demonstrated to block the binding of H type 2 to RHDV VLPs, with a blocking rate of almost 60%, a value that then increased steadily over time. From day 60 to day 240 post-immunization, serum samples completely blocked the binding of H type 2 to RHDV VLPs, with a blocking rate of almost 100%. This indicated that VP60-induced antibodies neutralize the interaction of RHDV with HBGAs.
Collapse
Affiliation(s)
- Yanhua Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Zhiyu Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Yuanyuan Zuo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Houjun Wei
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Bo Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Mengmeng Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Rulong Qiu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Jiabin Xue
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China
| | - Fang Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing, 210014, China.
| |
Collapse
|
45
|
Adaptive diversification between the classic rabbit hemorrhagic disease virus (RHDV) and the RHDVa isolates: A genome-wide perspective. Microb Pathog 2017; 110:527-532. [PMID: 28743597 DOI: 10.1016/j.micpath.2017.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/23/2023]
Abstract
Rabbit haemorrhagic disease virus (RHDV) is a highly infectious pathogen that causes high mortality in wild and domestic rabbits. RHDV could be divided into two subtypes, classic RHDV and RHDVa, which present clear genetic, antigenic, and epidemiological differences. To further understand the nature of the diversity, we performed a genome-wide evolutionary study on the classic RHDV and RHDVa isolates. The results show that RHDV had experienced adaptive diversification with the dividing process of these subtypes. Furthermore, amino acid changes relevant to the adaptive diversification mainly cluster in viral capsid protein VP60. These results might be beneficial for a further understanding the function of VP60 and provide helpful hints for the genetic basis of RHDV emergence and re-emergence.
Collapse
|
46
|
Carvalho CL, Silva S, Gouveia P, Costa M, Duarte EL, Henriques AM, Barros SS, Luís T, Ramos F, Fagulha T, Fevereiro M, Duarte MD. Emergence of rabbit haemorrhagic disease virus 2 in the archipelago of Madeira, Portugal (2016-2017). Virus Genes 2017. [PMID: 28639220 DOI: 10.1007/s11262-017-1483-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the detection of rabbit haemorrhagic disease virus 2 (RHDV2) in the Madeira archipelago, Portugal. Viral circulation was confirmed by RT-qPCR and vp60 sequencing. Epidemiological data revealed the outbreak initiated in October 2016 in Porto Santo affecting wild and domestic rabbits. It was then detected three months later on the island of Madeira. Five haplotypes were identified and a genetic overall similarity of 99.54 to 99.89% was observed between the two viral populations. Unique single nucleotide polymorphisms were recognised in the Madeira archipelago strains, two of which resulting in amino acid substitutions at positions 480 and 570 in the VP60 protein. Phylogenetic investigation by Maximum Likelihood showed all the vp60 sequences from the Madeira archipelago group together with high bootstraps. The analysis also showed that the Madeira archipelago strains are closely related to the strains detected in the south of mainland Portugal in 2016, suggesting a possible introduction from the mainland. The epidemiological data and high genetic similarity indicate a common source for the Porto Santo and Madeira RHDV2 outbreaks. Human activity related to hunting was most probably at the origin of the Madeira outbreak.
Collapse
Affiliation(s)
- Carina Luísa Carvalho
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Núcleo da Mitra, 7000, Évora, Portugal
- Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Núcleo da Mitra, 7000, Évora, Portugal
| | - Sara Silva
- Direção Regional para a Administração Pública do Porto Santo (DRAPS), Avenida Vieira de Castro, nº1, 9400-179, Porto Santo, Portugal
| | - Paz Gouveia
- Laboratório Regional de Veterinária e Segurança Alimentar, Direção Regional de Agricultura (DRA) da Região Autónoma da Madeira, Caminho das Quebradas de Baixo, nº 79, S. Martinho, 9000-233, Funchal, Madeira, Portugal
| | - Margarida Costa
- Laboratório Regional de Veterinária e Segurança Alimentar, Direção Regional de Agricultura (DRA) da Região Autónoma da Madeira, Caminho das Quebradas de Baixo, nº 79, S. Martinho, 9000-233, Funchal, Madeira, Portugal
| | - Elsa Leclerc Duarte
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Núcleo da Mitra, 7000, Évora, Portugal
- Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Núcleo da Mitra, 7000, Évora, Portugal
- Departamento de Medicina Veterinária, Universidade de Évora, Núcleo da Mitra, 7000, Évora, Portugal
| | - Ana Margarida Henriques
- Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Sílvia Santos Barros
- Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Tiago Luís
- Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Fernanda Ramos
- Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Teresa Fagulha
- Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Miguel Fevereiro
- Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal
| | - Margarida Dias Duarte
- Laboratório de Virologia, Instituto Nacional de Investigação Agrária e Veterinária (INIAV), Av. da República, Quinta do Marquês, 2780-157, Oeiras, Portugal.
| |
Collapse
|
47
|
Zhu J, Miao Q, Tan Y, Guo H, Liu T, Wang B, Chen Z, Li C, Liu G. Inclusion of an Arg-Gly-Asp receptor-recognition motif into the capsid protein of rabbit hemorrhagic disease virus enables culture of the virus in vitro. J Biol Chem 2017; 292:8605-8615. [PMID: 28381555 DOI: 10.1074/jbc.m117.780924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
The fact that rabbit hemorrhagic disease virus (RHDV), an important member of the Caliciviridae family, cannot be propagated in vitro has greatly impeded the progress of investigations into the mechanisms of pathogenesis, translation, and replication of this and related viruses. In this study, we have successfully bypassed this obstacle by constructing a mutant RHDV (mRHDV) by using a reverse genetics technique. By changing two amino acids (S305R,N307D), we produced a specific receptor-recognition motif (Arg-Gly-Asp; called RGD) on the surface of the RHDV capsid protein. mRHDV was recognized by the intrinsic membrane receptor (integrin) of the RK-13 cells, which then gained entry and proliferated as well as imparted apparent cytopathic effects. After 20 passages, the titers of RHDV reached 1 × 104.3 50% tissue culture infectious dose (TCID50)/ml at 72 h. Furthermore, mRHDV-infected rabbits showed typical rabbit plague symptoms and died within 48-72 h. After immunization with inactivated mRHDV, the rabbits survived wild-type RHDV infection, indicating that mRHDV could be a candidate virus strain for producing a vaccine against RHDV infection. In summary, this study offers a novel strategy for overcoming the challenges of proliferating RHDV in vitro Because virus uptake via specific membrane receptors, several of which specifically bind to the RGD peptide motif, is a common feature of host cells, we believe that this the strategy could also be applied to other RNA viruses that currently lack suitable cell lines for propagation such as hepatitis E virus and norovirus.
Collapse
Affiliation(s)
- Jie Zhu
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Qiuhong Miao
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yonggui Tan
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Huimin Guo
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Teng Liu
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Binbin Wang
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zongyan Chen
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chuanfeng Li
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Guangqing Liu
- From the Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
48
|
Carvalho C, Duarte E, Monteiro J, Afonso C, Pacheco J, Carvalho P, Mendonça P, Botelho A, Albuquerque T, Themudo P, Fevereiro M, Henriques A, Santos Barros S, Dias Duarte M. Progression of rabbit haemorrhagic disease virus 2 upon vaccination in an industrial rabbitry: a laboratorial approach. WORLD RABBIT SCIENCE 2017. [DOI: 10.4995/wrs.2017.5708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
<p>Rabbit haemorrhagic disease virus 2 (RHDV2) emerged recently in several European countries, leading to extensive economic losses in the industry. In response to this new infection, specific inactivated vaccines were developed in Europe and full and rapid setup of protective immunity induced by vaccination was reported. However, data on the efficacy of these vaccines in an ongoing-infection scenario is unavailable. In this study we investigated an infected RHDV2 indoor industrial meat rabbitry, where fatalities continued to occur after the implementation of the RHDV2 vaccination, introduced to control the disease. The aim of this study was to understand if these mortalities were RHDV2-related, to discover if the dead animals showed any common features such as age or time distance from vaccination, and to identify the source of the outbreak. Anatomo-pathological analysis of vaccinated animals with the virus showed lesions compatible with systemic haemorrhagic disease and RHDV2-RNA was detected in 85.7% of the animals tested. Sequencing of the <em>vp60</em> gene amplified from liver samples led to the recognition of RHDV2 field strains demonstrating that after the implementation of vaccination, RHDV2 continued to circulate in the premises and to cause sporadic deaths. A nearby, semi-intensive, RHDV2 infected farm belonging to the same owner was identified as the most probable source of the virus. The main risk factors for virus introduction in these two industries were identified. Despite the virus being able to infect a few of the vaccinated rabbits, the significant decrease in mortality rate observed in vaccinated adult rabbits clearly reflects the efficacy of the vaccination. Nonetheless, the time taken to control the infection also highlights the importance of RHDV2 vaccination prior to the first contact with the virus, highly recommendable in endemic areas, to mitigate the infection’s impact on the industry.</p>
Collapse
|
49
|
Hall RN, Capucci L, Matthaei M, Esposito S, Kerr PJ, Frese M, Strive T. An in vivo system for directed experimental evolution of rabbit haemorrhagic disease virus. PLoS One 2017; 12:e0173727. [PMID: 28288206 PMCID: PMC5348035 DOI: 10.1371/journal.pone.0173727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/24/2017] [Indexed: 11/25/2022] Open
Abstract
The calicivirus Rabbit haemorrhagic disease virus (RHDV) is widely used in Australia as a biocontrol agent to manage wild European rabbit (Oryctolagus cuniculus) populations. However, widespread herd immunity limits the effectiveness of the currently used strain, CAPM V-351. To overcome this, we developed an experimental platform for the selection and characterisation of novel RHDV strains. As RHDV does not replicate in cell culture, variant viruses were selected by serially passaging a highly virulent RHDV field isolate in immunologically naïve laboratory rabbits that were passively immunised 18–24 hours post-challenge with a neutralising monoclonal antibody. After seven passages, two amino acid substitutions in the P2 domain of the capsid protein became fixed within the virus population. Furthermore, a synonymous substitution within the coding sequence of the viral polymerase appeared and was also maintained in all subsequent passages. These findings demonstrate proof-of-concept that RHDV evolution can be experimentally manipulated to select for virus variants with altered phenotypes, in this case partial immune escape.
Collapse
Affiliation(s)
- Robyn N. Hall
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
| | - Lorenzo Capucci
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Markus Matthaei
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| | - Simona Esposito
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, Brescia, Italy
| | - Peter J. Kerr
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael Frese
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
- Invasive Animals Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
- * E-mail:
| |
Collapse
|
50
|
Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IJL, Gronenborn AM, Polenova T, Zhang P. CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations. J Phys Chem B 2017; 121:3853-3863. [PMID: 28181439 DOI: 10.1021/acs.jpcb.6b13105] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Single particle cryoEM has emerged as a powerful method for structure determination of proteins and complexes, complementing X-ray crystallography and NMR spectroscopy. Yet, for many systems, the resolution of cryoEM density map has been limited to 4-6 Å, which only allows for resolving bulky amino acids side chains, thus hindering accurate model building from the density map. On the other hand, experimental chemical shifts (CS) from solution and solid state MAS NMR spectra provide atomic level data for each amino acid within a molecule or a complex; however, structure determination of large complexes and assemblies based on NMR data alone remains challenging. Here, we present a novel integrated strategy to combine the highly complementary experimental data from cryoEM and NMR computationally by molecular dynamics simulations to derive an atomistic model, which is not attainable by either approach alone. We use the HIV-1 capsid protein (CA) C-terminal domain as well as the large capsid assembly to demonstrate the feasibility of this approach, termed NMR CS-biased cryoEM structure refinement.
Collapse
Affiliation(s)
- Juan R Perilla
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Guangjin Hou
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - In-Ja L Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Tatyana Polenova
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN, U.K.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus , Didcot OX11 0DE, U.K
| |
Collapse
|