1
|
Li X, Ning L, Zhao H, Xu Y, Si Y, Hua J, Ren Q. Targeted and untargeted metabolomics uncovering the effects of Jiawei Ermiao Granule on patients with persistent HPV infection. Front Cell Infect Microbiol 2025; 15:1550908. [PMID: 40260114 PMCID: PMC12009767 DOI: 10.3389/fcimb.2025.1550908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Jiawei Ermiao Granule (JWEMG) is a traditional Chinese herbal formulation widely used in China for the treatment of human papilloma virus (HPV) infections. However, the mechanisms underlying their efficacy in clearing HPV infections remain unclear. This study aimed to elucidate the mechanisms by which JWEMG clears persistent HPV infections from a metabolomics perspective using modern analytical techniques. Untargeted and targeted metabolomics analyses were performed on vaginal lavage samples from 33 patients using liquid chromatograph mass spectrometer (LC-MS) and hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS). Untargeted metabolomics identified 47 potential biomarkers through volcano plot analysis, among which 30 exhibited a reversal trend following JWEMG intervention. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that JWEMG may exert therapeutic effects on patients with persistent HPV infections via pathways related to starch and sucrose metabolism, galactose metabolism, fructose and mannose metabolism, and amino sugar and nucleotide sugar metabolism. Targeted metabolomics revealed a significant increase in tyrosine levels in the vaginal/cervical microenvironment following JWEMG treatment. By integrating targeted and untargeted metabolomics, this study provides a comprehensive exploration of the holistic effects of JWEMG on HPV-infected patients, addressing the challenges of scientifically explaining the pharmacological mechanisms of multi-component, multi-target traditional Chinese medicines.
Collapse
Affiliation(s)
- Xiu Li
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Ning
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongting Zhao
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yating Xu
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Si
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiayi Hua
- The First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qingling Ren
- Jiangsu Clinical Medicine Innovation Center for Obstetrics and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Blanco R, Muñoz JP. Molecular Insights into HR-HPV and HCMV Co-Presence in Cervical Cancer Development. Cancers (Basel) 2025; 17:582. [PMID: 40002177 PMCID: PMC11853276 DOI: 10.3390/cancers17040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Cervical cancer remains a significant health concern worldwide and the primary cause of cancerous cervical lesions is the infection with high-risk human papillomavirus (HR-HPV). However, emerging evidence suggests that HR-HPV infection alone is insufficient for cancer development, and other co-factors may contribute to cervical carcinogenesis. Human cytomegalovirus (HCMV), a common herpesvirus frequently detected in cervical cancer samples, has demonstrated oncogenic potential. OBJECTIVES This review aims to explore the molecular interactions between HR-HPV and HCMV in promoting cervical cancer progression. METHODS A comprehensive search was conducted in PubMed and Google Scholar, focusing on articles examining the role of HCMV in cervical tissues and/or cells, selected based on relevance and significance. RESULTS The reviewed literature indicates that HCMV and HR-HPV share several oncogenic mechanisms that could drive cervical cell transformation. CONCLUSIONS Both viruses may synergistically promote cervical epithelial transformation and tumor progression in multiple ways. HR-HPV may facilitate HCMV entry by increasing host cell receptors essential for viral attachment. Additionally, HR-HPV and HCMV may cooperatively disrupt cellular processes, enhancing carcinogenesis. Both viruses may also modulate the local immune environment, enabling immune evasion and lesion persistence. However, further in vitro and in vivo studies are required to validate these hypotheses.
Collapse
Affiliation(s)
- Rancés Blanco
- Independent Researcher, Av. Vicuña Mackenna Poniente 6315, La Florida 8240000, Chile
| | - Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| |
Collapse
|
3
|
Gutierrez-Camacho JR, Avila-Carrasco L, Garza-Veloz I, Monárrez-Espino J, Martinez-Vazquez MC, Araujo-Espino R, Trejo-Ortiz PM, Martinez-Flores RB, Gurrola-Carlos R, Troncoso-Vazquez L, Martinez-Fierro ML. Connexin 43 Expression as Biomarker of Oral Squamous Cell Carcinoma and Its Association with Human Papillomavirus 16 and 18. Int J Mol Sci 2025; 26:1232. [PMID: 39941000 PMCID: PMC11818288 DOI: 10.3390/ijms26031232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the main form of head and neck cancer. Gap junctions (GJs) are communication channels involved in cell proliferation control; they consist of hemichannels formed by connexin (Cx) proteins. The abnormal expression/function of Cx43 has been associated with tumor progression. Also, some human papillomaviruses (HPVs) have been linked to squamous cell cancer. Therefore, this study aimed at assessing Cx43 as a potential OSCC biomarker and exploring its association with histopathological differentiation and HPV infection. OSCC samples were inspected using hematoxylin and eosin staining, and Cx43 expression and HPV 16/18 were tested by immunofluorescence. Pearson correlation tests, ANOVA, and Kaplan-Meier curves were used in the analysis. Samples from 39 patients with OSCC were studied. Most had well-differentiated histology and 61.5% were HPV+. Cx43 expression was significantly associated with HPV infection (p = 0.047), differentiation (p < 0.001), and survival (p = 0.009), and HPV positivity was also associated with the degree of differentiation (p = 0.012). Cx43 shows potential as a prognostic biomarker for OSCC. Lower Cx43 expression, correlated with poorer differentiation, is associated with an unfavorable prognosis. Further studies are needed to confirm its clinical utility.
Collapse
Affiliation(s)
| | - Lorena Avila-Carrasco
- Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (I.G.-V.); (J.M.-E.); (M.C.M.-V.); (R.A.-E.); (P.M.T.-O.); (R.B.M.-F.); (R.G.-C.); (L.T.-V.)
| | | | | | | | | | | | | | | | | | - Margarita L. Martinez-Fierro
- Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (J.R.G.-C.); (I.G.-V.); (J.M.-E.); (M.C.M.-V.); (R.A.-E.); (P.M.T.-O.); (R.B.M.-F.); (R.G.-C.); (L.T.-V.)
| |
Collapse
|
4
|
Burmeister CA, Khan SF, Prince S. Drugs and drug targets for the treatment of HPV-positive cervical cancer. Tumour Virus Res 2024; 19:200309. [PMID: 39709045 PMCID: PMC11733058 DOI: 10.1016/j.tvr.2024.200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
Cervical cancer is primarily driven by persistent infection with high-risk human papillomavirus (HPV) strains and remains a significant global health challenge, particularly in low- and middle-income countries where late-stage diagnoses is common. While vaccination and screening programs have reduced incidence rates, the need for novel and more effacacious and cost-effective therapeutic options is therefore critical especially for advanced cervical cancer. This review highlights several key advances in the understanding of HPV-induced carcinogenesis and the development of therapeutic strategies over the past five years. Important areas of focus include the role of HPV oncoproteins E5, E6 and E7 in modulating signalling pathways, treatment strategies for precancerous lesions, the potential of natural compounds to target cervical cancer cells, and the emergence of immunotherapies, checkpoint inhibitors, antibody-drug conjugates, and novel drug combinations to treat cervical cancer. Additionally, lifestyle recommendations and the integration of natural supplements are discussed for their potential to enhance treatment efficacy and improve patient outcomes. The developments reported in this review underscore the evolving landscape of cervical cancer treatment and the need for continued research to validate and integrate these emerging therapies into clinical practice.
Collapse
Affiliation(s)
- Carly A Burmeister
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Saif F Khan
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
5
|
Arega S, Dey S, Pani S, Dash SR, Budhwar R, Kundu CN, Ganguly N. Determining the effect of long non-coding RNA maternally expressed gene 3 (lncRNA MEG3) on the transcriptome profile in cervical cancer cell lines. Genomics 2024; 116:110957. [PMID: 39510199 DOI: 10.1016/j.ygeno.2024.110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
This study investigates the role of the long non-coding RNA Maternally Expressed Gene3 (lncRNA MEG3) gene in cervical cancer, as evidenced by its downregulation in cancerous cell lines. The study demonstrates the effects of the overexpression of lncRNA MEG3 in cervical cancer cell lines, particularly in C33A and CaSki. Through comprehensive analyses, including Next-Generation Sequencing (NGS), alterations in global mRNA expression were analyzed. In C33A cells, 67 genes were upregulated, while 303 genes were downregulated. Similarly, in CaSki cells, 221 genes showed upregulation and 248 genes displayed downregulation. Gene ontology and KEGG pathway analyses were conducted to gain insight into potential mechanisms. Furthermore, the study delves into gene regulatory networks, uncovering intricate interactions among genes. The RNA sequencing data were confirmed for eight genes: PAX3, EGR2, ROR1, NRP1, OAS2, STRA6, CA9, and EDN2 by Real-time PCR. The findings illuminate the complex landscape of gene expression alterations and pathways impacted by the overexpression of lncRNA MEG3. The impact of MEG3 on the overall cervical cancer cells' mRNA profile is reported for the first time. New biomarkers for the prognosis of cervical cancer are also reported in this study. Moreover, identifying specific genes within the regulatory networks provides valuable insights into potential therapeutic targets for managing cervical cancer.
Collapse
Affiliation(s)
- Solomon Arega
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India.
| | - Suchanda Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Sunil Pani
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Somya Ranjan Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd, Bangalore 560043, India
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Niladri Ganguly
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
6
|
Patterson MR, Meijers AS, Ryder EL, Wootton LM, Scarth JA, Evans D, Turner AL, Wasson CW, Darell JE, Theobald DA, Cogan JA, James CD, Wang M, Ladbury JE, Morgan IM, Samson A, Morgan EL, Macdonald A. E7-mediated repression of miR-203 promotes LASP1-dependent proliferation in HPV-positive cervical cancer. Oncogene 2024; 43:2184-2198. [PMID: 38789663 PMCID: PMC11226402 DOI: 10.1038/s41388-024-03067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ~5% of all human cancers worldwide, including most cervical cancer cases and a growing number of anogenital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited the oncogenic phenotype in vitro, whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we demonstrate that the LASP1 SH3 domain is essential for LASP1-mediated oncogenicity in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulates LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrate that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival in cervical cancer, thus identifying a potential therapeutic target in these cancers.
Collapse
Affiliation(s)
- Molly R Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aniek S Meijers
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Emma L Ryder
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - James A Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Debra Evans
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Christopher W Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, St-James University Teaching Hospital, Leeds, UK
| | - Janne E Darell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Daisy A Theobald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Joseph A Cogan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Claire D James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Iain M Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
- VCU Massey Cancer Center, VCU, Richmond, VA, USA
| | - Adel Samson
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
7
|
Trammel J, Amusan O, Hultgren A, Raikhy G, Bodily JM. Epidermal growth factor receptor-dependent stimulation of differentiation by human papillomavirus type 16 E5. Virology 2024; 590:109952. [PMID: 38103269 PMCID: PMC10842332 DOI: 10.1016/j.virol.2023.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Human papillomaviruses (HPVs) infect keratinocytes of stratified squamous epithelia, and persistent infection with high-risk HPV types, such as HPV16, may lead to the development of malignancies. HPV evades host immunity in part by linking its gene expression to the host differentiation program, and therefore relies on differentiation to complete its life cycle. Based on previous reports indicating that the HPV16 protein E5 is important in the late stages of the differentiation-dependent life cycle, we found that organotypic cultures harboring HPV16 genomes lacking E5 showed reduced markers of terminal differentiation compared to wild type HPV16-containing cultures. We found that epidermal growth factor receptor (EGFR) levels and activation were increased in an E5-depdendent manner in these tissues, and that EGFR promoted terminal differentiation and expression of the HPV16 L1 gene. These findings suggest a function for E5 in preserving the ability of HPV16 containing keratinocytes to differentiate, thus facilitating the production of new virus progeny.
Collapse
Affiliation(s)
- Jessica Trammel
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA
| | - Oluwamuyiwa Amusan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA
| | - Allison Hultgren
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA; School of Medicine, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA
| | - Gaurav Raikhy
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
8
|
Patterson MR, Meijers AS, Ryder EL, Scarth JA, Evans D, Turner AL, Wasson CW, Darell JE, Theobald D, Cogan J, James CD, Wang M, Ladbury JE, Morgan IM, Samson A, Morgan EL, Macdonald A. E7-mediated repression of miR-203 promotes LASP1-dependent proliferation in HPV-positive cervical cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574687. [PMID: 38293147 PMCID: PMC10827106 DOI: 10.1101/2024.01.08.574687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ∼5% of all human cancers worldwide, including most cervical cancer cases and a growing number of ano-genital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited proliferation in vitro , whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we show that the LASP1 SH3 domain is essential for LASP1-mediated proliferation in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulated LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrated that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival role in cervical cancer, thus identifying a potential therapeutic target in these cancers.
Collapse
|
9
|
Skelin J, Luk HY, Butorac D, Boon SS, Tomaić V. The effects of HPV oncoproteins on host communication networks: Therapeutic connotations. J Med Virol 2023; 95:e29315. [PMID: 38115222 DOI: 10.1002/jmv.29315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
Human papillomavirus (HPV) infections are a leading cause of viral-induced malignancies worldwide, with a prominent association with cervical and head and neck cancers. The pivotal role of HPV oncoproteins, E5, E6, and E7, in manipulating cellular events, which contribute to viral pathogenesis in various ways, has been extensively documented. This article reviews the influence of HPV oncoproteins on cellular signaling pathways within the host cell, shedding light on the underlying molecular mechanisms. A comprehensive understanding of these molecular alterations is essential for the development of targeted therapies and strategies to combat HPV-induced premalignancies and prevent their progress to cancer. Furthermore, this review underscores the intricate interplay between HPV oncoproteins and some of the most important cellular signaling pathways: Notch, Wnt/β-catenin, MAPK, JAK/STAT, and PI3K AKT/mTOR. The treatment efficacies of the currently available inhibitors on these pathways in an HPV-positive context are also discussed. This review also highlights the importance of continued research to advance our knowledge and enhance therapeutic interventions for HPV-associated diseases.
Collapse
Affiliation(s)
- Josipa Skelin
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ho Yin Luk
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Dražan Butorac
- Department of Gynecology and Obstetrics, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Siaw Shi Boon
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
10
|
Chen B, Zhao L, Yang R, Xu T. Advances in molecular mechanism of HPV16 E5 oncoprotein carcinogenesis. Arch Biochem Biophys 2023; 745:109716. [PMID: 37553047 DOI: 10.1016/j.abb.2023.109716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/10/2023]
Abstract
For a considerable duration, cervical cancer has posed a significant risk to the well-being and survival of women. The emergence and progression of cervical cancer have garnered extensive attention, with prolonged chronic infection of HPV serving as a crucial etiological factor. Consequently, investigating the molecular mechanism underlying HPV-induced cervical cancer has become a prominent research area. The HPV molecule is composed of a long control region (LCR), an early coding region and a late coding region.The early coding region encompasses E1, E2, E4, E5, E6, E7, while the late coding region comprises L1 and L2 ORF.The investigation into the molecular structure and function of HPV has garnered significant attention, with the aim of elucidating the carcinogenic mechanism of HPV and identifying potential targets for the treatment of cervical cancer. Research has demonstrated that the HPV gene and its encoded protein play a crucial role in the invasion and malignant transformation of host cells. Consequently, understanding the function of HPV oncoprotein is of paramount importance in comprehending the pathogenesis of cervical cancer. E6 and E7, the primary HPV oncogenic proteins, have been the subject of extensive study. Moreover, a number of contemporary investigations have demonstrated the significant involvement of HPV16 E5 oncoprotein in the malignant conversion of healthy cells through its regulation of cell proliferation, differentiation, and apoptosis via diverse pathways, albeit the precise molecular mechanism remains unclear. This manuscript aims to provide a comprehensive account of the molecular structure and life cycle of HPV.The HPV E5 oncoprotein mechanism modulates cellular processes such as proliferation, differentiation, apoptosis, and energy metabolism through its interaction with cell growth factor receptors and other cellular proteins. This mechanism is crucial for the survival, adhesion, migration, and invasion of tumor cells in the early stages of carcinogenesis. Recent studies have identified the HPV E5 oncoprotein as a promising therapeutic target for early-stage cervical cancer, thus offering a novel approach for treatment.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Liping Zhao
- The Second Hospital of Jilin University, Changchun, China
| | - Rulin Yang
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A, El Gaaied ABA. Gut microbiota, an emergent target to shape the efficiency of cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:240-265. [PMID: 37205307 PMCID: PMC10185446 DOI: 10.37349/etat.2023.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 05/21/2023] Open
Abstract
It is now well-acknowledged that microbiota has a profound influence on both human health and illness. The gut microbiota has recently come to light as a crucial element that influences cancer through a variety of mechanisms. The connections between the microbiome and cancer therapy are further highlighted by a number of preclinical and clinical evidence, suggesting that these complicated interactions may vary by cancer type, treatment, or even by tumor stage. The paradoxical relationship between gut microbiota and cancer therapies is that in some cancers, the gut microbiota may be necessary to maintain therapeutic efficacy, whereas, in other cancers, gut microbiota depletion significantly increases efficacy. Actually, mounting research has shown that the gut microbiota plays a crucial role in regulating the host immune response and boosting the efficacy of anticancer medications like chemotherapy and immunotherapy. Therefore, gut microbiota modulation, which aims to restore gut microbial balance, is a viable technique for cancer prevention and therapy given the expanding understanding of how the gut microbiome regulates treatment response and contributes to carcinogenesis. This review will provide an outline of the gut microbiota's role in health and disease, along with a summary of the most recent research on how it may influence the effectiveness of various anticancer medicines and affect the growth of cancer. This study will next cover the newly developed microbiota-targeting strategies including prebiotics, probiotics, and fecal microbiota transplantation (FMT) to enhance anticancer therapy effectiveness, given its significance.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Oumaima Zidi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Department of Biologu, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Henda Rais
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
- Service d’Oncologie Médicale, Hôpital Salah-Azaïz, Tunis 1006, Tunisia
| | - Aida Ayadi
- Department of Pathology, Abderrahman Mami Hospital, University of Tunis El Manar, Ariana 2080, Tunisia
| | - Farhat Ben Ayed
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Amor Mosbah
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
12
|
Zaryouh H, Van Loenhout J, Peeters M, Vermorken JB, Lardon F, Wouters A. Co-Targeting the EGFR and PI3K/Akt Pathway to Overcome Therapeutic Resistance in Head and Neck Squamous Cell Carcinoma: What about Autophagy? Cancers (Basel) 2022; 14:cancers14246128. [PMID: 36551613 PMCID: PMC9776372 DOI: 10.3390/cancers14246128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Resistance to EGFR-targeted therapy is a major obstacle on the road to effective treatment options for head and neck cancers. During the search for underlying mechanisms and regulators of this resistance, there were several indications that EGFR-targeted therapy resistance is (partially) mediated by aberrant signaling of the PI3K/Akt pathway. Genomic alterations in and/or overexpression of major components of the PI3K/Akt pathway are common in HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising targets in the search for novel therapeutic strategies overcoming resistance to EGFR inhibitors. As both the EGFR/Ras/Raf/MAPK and the PI3K/Akt pathway are involved in autophagy, combinations of EGFR and PI3K/Akt pathway inhibitors can induce an autophagic response in tumor cells. This activation of autophagy can be seen as a "double-edge sword", depending on the cellular context. Autophagy is largely known as a cytoprotective mechanism, but it can also be a mechanism of programmed (autophagic) cell death. The activation of autophagy during anti-cancer treatment is, therefore, not necessarily a bad sign. However, in HNSCC, the role of therapy-induced autophagy as an anti-tumor mechanism is still largely unclear. Further research is warranted to understand the potential of combination treatments targeting both the EGFR and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Correspondence: ; Tel.: +32-3-265-25-33
| | - Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
- Department of Medical Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
13
|
Wang JL, Lee WJ, Fang CL, Hsu HL, Chen BJ, Liu HE. Human Papillomavirus Oncoproteins Confer Sensitivity to Cisplatin by Interfering with Epidermal Growth Factor Receptor Nuclear Trafficking Related to More Favorable Clinical Survival Outcomes in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14215333. [PMID: 36358752 PMCID: PMC9657246 DOI: 10.3390/cancers14215333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer death in the world. Identifying prognostic factors is crucial to improve the survival time of those with lung cancer. Our previous studies have reported that human papillomavirus (HPV) infections and epidermal growth factor receptor (EGFR) expression are associated with a better survival prognosis in lung adenocarcinoma. The purpose of this study was to detect the molecular evidence of HPV oncoproteins interfering with EGFR nuclear trafficking related to better prognosis in lung cancer. Based on the study results for a better response to cisplatin in transfected HPV 16E5/16E6/16E7 H292 xenograft animal models, as well as better survival in lung adenocarcinoma patients with either 16E6/18E6 or EGFR expression, we suggest that clinicians should adjust the treatment protocol according to HPV 16E6/18E6 expression and EGFR expression to increase the overall survival time in lung cancer. Abstract High-risk human papillomavirus (HPV) infections and epidermal growth factor receptor (EGFR) expression have been reported to be associated with more favorable survival outcomes in lung adenocarcinoma patients. In this study, we utilized transfected HPV 16E5/16E6/16E7 H292 cells to investigate the mechanism of HPV oncoproteins interfering with EGFR nuclear trafficking related to a better response to cisplatin. Furthermore, we correlated HPV 16E6/18E6 expression and differentially localized EGFR expression with the clinical association and survival impact in lung adenocarcinoma patients. Our results found significantly higher phosphorylated nuclear EGFR expression upon epidermal growth factor stimulus and better responses to cisplatin in transfected HPV 16E5/16E6/16E7 NCI-H292 cells and xenograft animal models. Our data were compatible with clinical results of a high correlation of HPV 16E6/18E6 and EGFR expression in non-small cell lung cancer tissues and the synergistic effects of both with the best survival prognosis in a lung adenocarcinoma cohort, especially in patients with older age, no brain metastasis, smoking history, and wild-type EGFR status. Cumulatively, our study supports HPV 16E5/16E6/16E7 oncoproteins interfering with EGFR nuclear trafficking, resulting in increased sensitivity to cisplatin. HPV 16E6/18E6 and EGFR expression serve as good prognostic factors in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jinn-Li Wang
- Division of Hematology and Oncology, Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (J.-L.W.); (H.-E.L.); Tel.: +886-2-2930-7930 (ext. 8106) (J.-L.W.); Fax: +886-2-2930-2448 (J.-L.W.)
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Lin Hsu
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Bo-Jung Chen
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Hsingjin-Eugene Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (J.-L.W.); (H.-E.L.); Tel.: +886-2-2930-7930 (ext. 8106) (J.-L.W.); Fax: +886-2-2930-2448 (J.-L.W.)
| |
Collapse
|
14
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
15
|
Zhou ZW, Long HZ, Xu SG, Li FJ, Cheng Y, Luo HY, Gao LC. Therapeutic Effects of Natural Products on Cervical Cancer: Based on Inflammatory Pathways. Front Pharmacol 2022; 13:899208. [PMID: 35645817 PMCID: PMC9136176 DOI: 10.3389/fphar.2022.899208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 12/09/2022] Open
Abstract
Inflammation is a protective response of the body to an irritant. When an inflammatory response occurs, immune cells are recruited to the injury, eliminating the irritation. The excessive inflammatory response can cause harm to the organism. Inflammation has been found to contribute to cervical cancer if there is a problem with the regulation of inflammatory response. Cervical cancer is one of the most common malignant tumors globally, and the incidence tends to be younger. The harm of cervical cancer cannot be ignored. The standard treatments for cervical cancer include surgery, radiotherapy and chemotherapy. However, the prognosis for this treatment is poor, so it is urgent to find a safer and more effective treatment. Natural products are considered excellent candidates for the treatment of cervical cancer. In this review, we first describe the mechanisms by which inflammation induces cervical cancer. Subsequently, we highlight natural products that can treat cervical cancer through inflammatory pathways. We also introduce natural products for the treatment of cervical cancer in clinical trials. Finally, methods to improve the anticancer properties of natural products were added, and the development status of natural products was discussed.
Collapse
Affiliation(s)
- Zi-Wei Zhou
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Hui-Zhi Long
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Shuo-Guo Xu
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Feng-Jiao Li
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Yan Cheng
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Hong-Yu Luo
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| | - Li-Chen Gao
- School of Pharmacy, University of South China, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, China
| |
Collapse
|
16
|
PIK3CA Gene Mutations in HNSCC: Systematic Review and Correlations with HPV Status and Patient Survival. Cancers (Basel) 2022; 14:cancers14051286. [PMID: 35267596 PMCID: PMC8909011 DOI: 10.3390/cancers14051286] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
PIK3CA mutations are believed to contribute to the pathogenesis of human papillomavirus (HPV)-associated head and neck squamous cell carcinomas (HNSCC). This study aims to establish the frequency of PIK3CA mutations in a Portuguese HNSCC cohort and to determine their association with the HPV status and patient survival. A meta-analysis of scientific literature also revealed widely different mutation rates in cohorts from different world regions and a trend towards improved prognosis among patients with PIK3CA mutations. DNA samples were available from 95 patients diagnosed with HNSCC at the Portuguese Institute of Oncology in Lisbon between 2010 and 2019. HPV status was established based on viral DNA detected using real-time PCR. The evaluation of PIK3CA gene mutations was performed by real-time PCR for four mutations (H1047L; E542K, E545K, and E545D). Thirty-seven cases were found to harbour PIK3CA mutations (39%), with the E545D mutation (73%) more frequently detected. There were no significant associations between the mutational status and HPV status (74% WT and 68% MUT were HPV (+); p = 0.489) or overall survival (OS) (3-year OS: WT 54% and MUT 65%; p = 0.090). HPV status was the only factor significantly associated with both OS and disease-free survival (DFS), with HPV (+) patients having consistently better outcomes (3-year OS: HPV (+) 65% and HPV (-) 36%; p = 0.007; DFS HPV (+) 83% and HPV (-) 43%; p = 0.001). There was a statistically significant interaction effect between HPV status and PIK3CA mutation regarding DFS (Interaction test: p = 0.026). In HPV (+) patients, PIK3CA wild-type is associated with a significant 4.64 times increase in the hazard of recurrence or death (HR = 4.64; 95% CI 1.02-20.99; p = 0.047). Overall, PIK3CA gene mutations are present in a large number of patients and may help define patient subsets who can benefit from therapies targeting the PI3K pathway. The systematic assessment of PIK3CA gene mutations in HNSCC patients will require further methodological standardisation.
Collapse
|
17
|
Haręża DA, Wilczyński JR, Paradowska E. Human Papillomaviruses as Infectious Agents in Gynecological Cancers. Oncogenic Properties of Viral Proteins. Int J Mol Sci 2022; 23:1818. [PMID: 35163748 PMCID: PMC8836588 DOI: 10.3390/ijms23031818] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/25/2023] Open
Abstract
Human papillomaviruses (HPVs), which belong to the Papillomaviridae family, constitute a group of small nonenveloped double-stranded DNA viruses. HPV has a small genome that only encodes a few proteins, and it is also responsible for 5% of all human cancers, including cervical, vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV types may be classified as high- and low-risk genotypes (HR-HPVs and LR-HPVs, respectively) according to their oncogenic potential. HR-HPV 16 and 18 are the most common types worldwide and are the primary types that are responsible for most HPV-related cancers. The activity of the viral E6 and E7 oncoproteins, which interfere with critical cell cycle points such as suppressive tumor protein p53 (p53) and retinoblastoma protein (pRB), is the major contributor to HPV-induced neoplastic initiation and progression of carcinogenesis. In addition, the E5 protein might also play a significant role in tumorigenesis. The role of HPV in the pathogenesis of gynecological cancers is still not fully understood, which indicates a wide spectrum of potential research areas. This review focuses on HPV biology, the distribution of HPVs in gynecological cancers, the properties of viral oncoproteins, and the molecular mechanisms of carcinogenesis.
Collapse
Affiliation(s)
- Daria A. Haręża
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Lodz, Poland
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 93-232 Lodz, Poland;
| |
Collapse
|
18
|
Gao C, Wu P, Yu L, Liu L, Liu H, Tan X, Wang L, Huang X, Wang H. The application of CRISPR/Cas9 system in cervical carcinogenesis. Cancer Gene Ther 2022; 29:466-474. [PMID: 34349239 PMCID: PMC9113934 DOI: 10.1038/s41417-021-00366-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 02/02/2023]
Abstract
Integration of high-risk HPV genomes into cellular chromatin has been confirmed to promote cervical carcinogenesis, with HPV16 being the most prevalent high-risk type. Herein, we evaluated the therapeutic effect of the CRISPR/Cas9 system in cervical carcinogenesis, especially for cervical precancerous lesions. In cervical cancer/pre-cancer cell lines, we transfected the HPV16 E7 targeted CRISPR/Cas9, TALEN, ZFN plasmids, respectively. Compared to previous established ZFN and TALEN systems, CRISPR/Cas9 has shown comparable efficiency and specificity in inhibiting cell growth and colony formation and inducing apoptosis in cervical cancer/pre-cancer cell lines, which seemed to be more pronounced in the S12 cell line derived from the low-grade cervical lesion. Furthermore, in xenograft formation assays, CRISPR/Cas9 inhibited tumor formation of the S12 cell line in vivo and affected the corresponding protein expression. In the K14-HPV16 transgenic mice model of HPV-driven spontaneous cervical carcinogenesis, cervical application of CRISPR/Cas9 treatment caused mutations of the E7 gene and restored the expression of RB, E2F1, and CDK2, thereby reversing the cervical carcinogenesis phenotype. In this study, we have demonstrated that CRISPR/Cas9 targeting HPV16 E7 could effectively revert the HPV-related cervical carcinogenesis in vitro, as well as in K14-HPV16 transgenic mice, which has shown great potential in clinical treatment for cervical precancerous lesions.
Collapse
Affiliation(s)
- Chun Gao
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Ping Wu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lan Yu
- grid.488530.20000 0004 1803 6191Department of Gynecologic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liting Liu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hong Liu
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xiangyu Tan
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Liming Wang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xiaoyuan Huang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Hui Wang
- grid.412793.a0000 0004 1799 5032Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.412793.a0000 0004 1799 5032Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China ,grid.431048.a0000 0004 1757 7762Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
19
|
Janecka-Widła A, Majchrzyk K, Mucha-Małecka A, Słonina D, Biesaga B. Prognostic potential of Akt, pAkt(Ser473) and pAkt(Thr308) immunoreactivity in relation to HPV prevalence in head and neck squamous cell carcinoma patients. Pathol Res Pract 2021; 229:153684. [PMID: 34839095 DOI: 10.1016/j.prp.2021.153684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The prognosis of squamous cell carcinoma of head and neck (HNSCC) patients remains relatively poor over the last years. Tobacco, alcohol and active human papillomavirus (HPV) infection are involved in HNSCC development. Akt is a serine-threonine protein kinase with main phosphorylation sites at Thr308 and Ser473, which are critical to generate a high level of Akt activity. MATERIALS AND METHODS The aim of the study was to compare the expression and prognostic potential of total Akt and its 2 phosphorylated forms - pAkt(Ser473) and pAkt(Thr308) in relation to HPV status in HNSCC patients. The expression levels of proteins were assessed immunohistochemically. To select independent prognostic factors univariate and multivariate analyses with Cox proportional regression model were performed. RESULTS Among HNSCC with active HPV16 infection significantly more tumors with high Akt (67.86%, p = 0.026) and low pAkt(Ser473) (64.29%, p = 0.000) expressions were found as compared to those with HPV negativity, while there was no significant difference in the pAkt(Thr308) expression level between HPV positive and negative tumors (p = 0.359). In the whole group of HNSCC patients independent favorable prognostic factors were low T stage, low pAkt(Thr308) expression, HPV16 active infection presence (for OS and DFS) and female gender (for OS only). CONCLUSIONS Our results indicate an important role of pAkt(Thr308) as prognostic biomarker for HNSCC patients. There is a high probability that using Akt inhibitors would improve therapeutical benefits and treatment effectiveness, especially in HNSCC patients with high expression of pAkt.
Collapse
Affiliation(s)
- Anna Janecka-Widła
- Department of Tumour Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Garncarska 11, 31-115 Cracow, Poland.
| | - Kaja Majchrzyk
- Department of Tumour Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Garncarska 11, 31-115 Cracow, Poland
| | - Anna Mucha-Małecka
- Department of Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Cracow Branch, Garncarska 11, 31-115 Cracow, Poland
| | - Dorota Słonina
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Beata Biesaga
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| |
Collapse
|
20
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
21
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Morgan EL, Scarth JA, Patterson MR, Wasson CW, Hemingway GC, Barba-Moreno D, Macdonald A. E6-mediated activation of JNK drives EGFR signalling to promote proliferation and viral oncoprotein expression in cervical cancer. Cell Death Differ 2021; 28:1669-1687. [PMID: 33303976 PMCID: PMC8166842 DOI: 10.1038/s41418-020-00693-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy worldwide, contributing to ~5% of all human cancers including almost all cases of cervical cancer and a growing number of ano-genital and oral cancers. HPV-induced malignancy is primarily driven by the viral oncogenes, E6 and E7, which manipulate host cellular pathways to increase cell proliferation and enhance cell survival, ultimately predisposing infected cells to malignant transformation. Consequently, a more detailed understanding of viral-host interactions in HPV-associated disease offers the potential to identify novel therapeutic targets. Here, we identify that the c-Jun N-terminal kinase (JNK) signalling pathway is activated in cervical disease and in cervical cancer. The HPV E6 oncogene induces JNK1/2 phosphorylation in a manner that requires the E6 PDZ binding motif. We show that blockade of JNK1/2 signalling using small molecule inhibitors, or knockdown of the canonical JNK substrate c-Jun, reduces cell proliferation and induces apoptosis in cervical cancer cells. We further demonstrate that this phenotype is at least partially driven by JNK-dependent activation of EGFR signalling via increased expression of EGFR and the EGFR ligands EGF and HB-EGF. JNK/c-Jun signalling promoted the invasive potential of cervical cancer cells and was required for the expression of the epithelial to mesenchymal transition (EMT)-associated transcription factor Slug and the mesenchymal marker Vimentin. Furthermore, JNK/c-Jun signalling is required for the constitutive expression of HPV E6 and E7, which are essential for cervical cancer cell growth and survival. Together, these data demonstrate a positive feedback loop between the EGFR signalling pathway and HPV E6/E7 expression, identifying a regulatory mechanism in which HPV drives EGFR signalling to promote proliferation, survival and EMT. Thus, our study has identified a novel therapeutic target that may be beneficial for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ethan L. Morgan
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.94365.3d0000 0001 2297 5165Present Address: Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD USA
| | - James A. Scarth
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Molly R. Patterson
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Christopher W. Wasson
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Present Address: Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, St-James University Teaching Hospital, Leeds, West Yorkshire UK
| | - Georgia C. Hemingway
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Diego Barba-Moreno
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| | - Andrew Macdonald
- grid.9909.90000 0004 1936 8403School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire LS2 9JT UK
| |
Collapse
|
23
|
Zaryouh H, De Pauw I, Baysal H, Peeters M, Vermorken JB, Lardon F, Wouters A. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma. Med Res Rev 2021; 42:112-155. [PMID: 33928670 DOI: 10.1002/med.21806] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Resistance to therapies targeting the epidermal growth factor receptor (EGFR), such as cetuximab, remains a major roadblock in the search for effective therapeutic strategies in head and neck squamous cell carcinoma (HNSCC). Due to its close interaction with the EGFR pathway, redundant or compensatory activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been proposed as a major driver of resistance to EGFR inhibitors. Understanding the role of each of the main proteins involved in this pathway is utterly important to develop rational combination strategies able to circumvent resistance. Therefore, the current work reviewed the role of PI3K/Akt pathway proteins, including Ras, PI3K, tumor suppressor phosphatase and tensing homolog, Akt and mammalian target of rapamycin in resistance to anti-EGFR treatment in HNSCC. In addition, we summarize PI3K/Akt pathway inhibitors that are currently under (pre)clinical investigation with focus on overcoming resistance to EGFR inhibitors. In conclusion, genomic alterations in and/or overexpression of one or more of these proteins are common in both human papillomavirus (HPV)-positive and HPV-negative HNSCC tumors. Therefore, downstream effectors of the PI3K/Akt pathway serve as promising drug targets in the search for novel therapeutic strategies that are able to overcome resistance to anti-EGFR treatment. Co-targeting EGFR and the PI3K/Akt pathway can lead to synergistic drug interactions, possibly restoring sensitivity to EGFR inhibitors and hereby improving clinical efficacy. Better understanding of the predictive value of PI3K/Akt pathway alterations is needed to allow the identification of patient populations that might benefit most from these combination strategies.
Collapse
Affiliation(s)
- Hannah Zaryouh
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Ines De Pauw
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hasan Baysal
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Jan Baptist Vermorken
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.,Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
24
|
Dias TR, Santos JMO, Gil da Costa RM, Medeiros R. Long non-coding RNAs regulate the hallmarks of cancer in HPV-induced malignancies. Crit Rev Oncol Hematol 2021; 161:103310. [PMID: 33781867 DOI: 10.1016/j.critrevonc.2021.103310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is the most frequent sexually transmitted agent worldwide and is responsible for approximately 5% of human cancers. Identifying novel biomarkers and therapeutic targets for these malignancies requires a deeper understanding of the mechanisms involved in the progression of HPV-induced cancers. Long non-coding RNAs (lncRNAs) are crucial in the regulation of biological processes. Importantly, these molecules are key players in the progression of multiple malignancies and are able to regulate the development of the different hallmarks of cancer. This review highlights the action of lncRNAs in the regulation of cellular processes leading to the typical hallmarks of cancer. The regulation of lncRNAs by HPV oncogenes, their targets and also their mechanisms of action are also discussed, in the context of HPV-induced malignancies. Overall, accumulating data indicates that lncRNAs may have a significant potential to become useful tools for clinical practice as disease biomarkers or therapy targets.
Collapse
Affiliation(s)
- Tânia R Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal.
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465, Porto, Portugal; Postgraduate Programme in Adult Health (PPGSAD), Tumour and DNA Biobank, Federal University of Maranhão (UFMA), 65080-805, São Luís, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; Faculty of Medicine of the University of Porto (FMUP), 4200-319, Porto, Portugal; Research Department of the Portuguese League Against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200-177, Porto, Portugal; Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072, Porto, Portugal; CEBIMED, Faculty of Health Sciences of the Fernando Pessoa University, 4249-004, Porto, Portugal.
| |
Collapse
|
25
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
26
|
Gao YH, Yu L, Liu ZS, Li YF. Aristocratic human papillomavirus drove cervical cancer: a study of the therapeutic potential of the combination of interferon with zinc. Mol Cell Biochem 2021; 476:757-765. [PMID: 33099745 DOI: 10.1007/s11010-020-03941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 10/23/2022]
Abstract
Human papillomavirus (HPV) infection is related to cancer growth of vaginal, cervical, vulva, penile, anogenital, and non-genital oropharyngeal sites. HPV, as a sexually transmitted virus, infects all sexes similarly but with more significant pathological risks in women. This accounts for high mortality due to late detection and poor prognosis. The initial development and eventual progress of this cancer type depend entirely on three main oncogenes E5, E6 and E7, constitutively expressed to lead to carcinogenesis. Despite an opportunity for pharmacological therapy, there is still a shortage of medical treatment that may remove HPV from infected lesions. This study offers a concise summary of the nature of the issue and the current status of work on potential lead molecules and therapeutic approaches that show the capacity of HPV therapies to counteract the roles of deregulation of E5, E6, and E7.
Collapse
Affiliation(s)
- Yun-He Gao
- Department of Pathology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Lei Yu
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Zhong-Shan Liu
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Yun-Feng Li
- Department of Radiation Oncology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China.
| |
Collapse
|
27
|
The deubiquitinase (DUB) USP13 promotes Mcl-1 stabilisation in cervical cancer. Oncogene 2021; 40:2112-2129. [PMID: 33627786 PMCID: PMC7979541 DOI: 10.1038/s41388-021-01679-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
Protein ubiquitination is a critical regulator of cellular homeostasis. Aberrations in the addition or removal of ubiquitin can result in the development of cancer and key components of the ubiquitination machinery serve as oncogenes or tumour suppressors. An emerging target in the development of cancer therapeutics are the deubiquitinase (DUB) enzymes that remove ubiquitin from protein substrates. Whether this class of enzyme plays a role in cervical cancer has not been fully explored. By interrogating the cervical cancer data from the TCGA consortium, we noted that the DUB USP13 is amplified in ~15% of cervical cancer cases. We confirmed that USP13 expression was increased in cervical cancer cell lines, cytology samples from patients with cervical disease and in cervical cancer tissue. Depletion of USP13 inhibited cervical cancer cell proliferation. Mechanistically, USP13 bound to, deubiquitinated and stabilised Mcl-1, a pivotal member of the anti-apoptotic BCL-2 family. Furthermore, reduced Mcl-1 expression partially contributed to the observed proliferative defect in USP13 depleted cells. Importantly, the expression of USP13 and Mcl-1 proteins correlated in cervical cancer tissue. Finally, we demonstrated that depletion of USP13 expression or inhibition of USP13 enzymatic activity increased the sensitivity of cervical cancer cells to the BH3 mimetic inhibitor ABT-263. Together, our data demonstrates that USP13 is a potential oncogene in cervical cancer that functions to stabilise the pro-survival protein Mcl-1, offering a potential therapeutic target for these cancers.
Collapse
|
28
|
Morgan EL, Macdonald A. Manipulation of JAK/STAT Signalling by High-Risk HPVs: Potential Therapeutic Targets for HPV-Associated Malignancies. Viruses 2020; 12:E977. [PMID: 32899142 PMCID: PMC7552066 DOI: 10.3390/v12090977] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are small, DNA viruses that cause around 5% of all cancers in humans, including almost all cervical cancer cases and a significant proportion of anogenital and oral cancers. The HPV oncoproteins E5, E6 and E7 manipulate cellular signalling pathways to evade the immune response and promote virus persistence. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has emerged as a key mediator in a wide range of important biological signalling pathways, including cell proliferation, cell survival and the immune response. While STAT1 and STAT2 primarily drive immune signalling initiated by interferons, STAT3 and STAT5 have widely been linked to the survival and proliferative potential of a number of cancers. As such, the inhibition of STAT3 and STAT5 may offer a therapeutic benefit in HPV-associated cancers. In this review, we will discuss how HPV manipulates JAK/STAT signalling to evade the immune system and promote cell proliferation, enabling viral persistence and driving cancer development. We also discuss approaches to inhibit the JAK/STAT pathway and how these could potentially be used in the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
29
|
Xu Z, Shu H, Zhang F, Luo W, Li Y, Chu J, Zhao Q, Lv Y. Nimotuzumab Combined With Irradiation Enhances the Inhibition to the HPV16 E6-Promoted Growth of Cervical Squamous Cell Carcinoma. Front Oncol 2020; 10:1327. [PMID: 32850421 PMCID: PMC7419688 DOI: 10.3389/fonc.2020.01327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) 16 E6 has been proved to increase the radiosensitivity and lead to the EGFR overexpression in cervical cancer cells. In this study, to investigate the inhibition of nimotuzumab-mediated EGFR blockade combined with radiotherapy, we established a C33A cervical squamous cell line overexpressed HPV16-E6 and a nude mouse model bearing these cell lines. The CCK-8 assay was used to detect the effects of various treatments on the proliferation of C33A cells. Flow cytometry was used to detect the rates of apoptosis and cell cycle arrest. Gene transcription and protein expression were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. Immunohistochemical staining was used to evaluate protein expression in tumor tissue. We revealed that E6-overexpressing C33A cells grew faster and were more sensitive to radiotherapy than control cells in vitro and in vivo. The expression levels of EGFR, as well as those of downstream signaling molecules AKT and ERK 1/2, were significantly upregulated in C33A cells that overexpressed E6. We observed that nimotuzumab combined with radiotherapy could enhance the inhibition of C33A cell growth induced by E6, both in vitro and in vivo. We also observed enhanced effect after combination on G2/M cell cycle arrest and apoptosis in E6-overexpressing C33A cells. Furthermore, the combined therapy of nimotuzumab and radiation remarkably reduced the protein expression levels of EGFR, AKT, ERK 1/2 in vitro, and in vivo. In conclusion, HPV16 E6 expression is positively correlated with levels of EGFR, AKT, and ERK 1/2 protein expression. The combined treatment with nimotuzumab and radiotherapy to enhance radiosensitivity in E6-positive cervical squamous cell carcinoma was related to enhanced G2/M cell cycle arrest and caspase-related apoptosis.
Collapse
Affiliation(s)
- Zhonghua Xu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hang Shu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weiwei Luo
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Li
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinjin Chu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yin Lv
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
30
|
Abstract
Human papillomaviruses cause around 5% of all human cancers, yet there are no specific antiviral therapeutic approaches available for combatting these cancers. These cancers are currently treated with standard chemoradiation therapy (CRT). Specific antiviral reagents are desperately required, particularly for HPV+HNSCC whose incidence is increasing and for which there are no diagnostic tools available for combatting this disease. Using data from The Cancer Genome Atlas (TCGA), we and others determined that the estrogen receptor alpha (ERα) is overexpressed in HPV+HNSCC and that elevated levels are associated with an improved disease outcome. This has led to the proposal that estrogen treatment could be a novel therapeutic approach for combatting HPV+cancers. Here, we demonstrate that estrogen attenuates the growth of HPV+epithelial cells using multiple mechanisms, supporting the idea that estrogen has potential as a therapeutic agent for the treatment of HPV+HNSCC. Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that are significant risk factors in the development of cancer, and HPV accounts for approximately 5% of all worldwide cancers. Recent studies using data from The Cancer Genome Atlas (TCGA) have demonstrated that elevated levels of estrogen receptor alpha (ERα) are associated with improved survival in oropharyngeal cancers, and these elevated receptor levels were linked with human papillomavirus-positive cancers (HPV+cancers). There has been a dramatic increase in HPV-related head and neck squamous cell carcinomas (HPV+HNSCCs) over the last 2 decades, and therapeutic options for this ongoing health crisis are a priority; currently, there are no antiviral therapeutics available for combatting HPV+cancers. During our TGCA studies on head and neck cancer, we had also discovered the overexpression of ERα in HPV+cancers. Here, we demonstrate that 17β-estradiol (estrogen) attenuates the growth/cell viability of HPV+cancers in vitro, but not HPV-negative cancer cells. In addition, N/Tert-1 cells (foreskin keratinocytes immortalized with human telomerase reverse transcriptase [hTERT]) containing human papillomavirus 16 (HPV16) have elevated levels of ERα and growth sensitivity after estrogen treatment compared with parental N/Tert-1 cells. Finally, we demonstrate that there are potentially two mechanisms contributing to the attenuation of HPV+ cell growth following estrogen treatment. First, estrogen represses the viral transcriptional long control region (LCR) downregulating early gene expression, including E6/E7. Second, expression of E6 and E7 by themselves sensitizes cells to estrogen. Overall, our results support the recent proposal that estrogen could be exploited therapeutically for the treatment of HPV-positive oral cancers. IMPORTANCE Human papillomaviruses cause around 5% of all human cancers, yet there are no specific antiviral therapeutic approaches available for combatting these cancers. These cancers are currently treated with standard chemoradiation therapy (CRT). Specific antiviral reagents are desperately required, particularly for HPV+HNSCC whose incidence is increasing and for which there are no diagnostic tools available for combatting this disease. Using data from The Cancer Genome Atlas (TCGA), we and others determined that the estrogen receptor alpha (ERα) is overexpressed in HPV+HNSCC and that elevated levels are associated with an improved disease outcome. This has led to the proposal that estrogen treatment could be a novel therapeutic approach for combatting HPV+cancers. Here, we demonstrate that estrogen attenuates the growth of HPV+epithelial cells using multiple mechanisms, supporting the idea that estrogen has potential as a therapeutic agent for the treatment of HPV+HNSCC.
Collapse
|
31
|
Pal A, Kundu R. Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Front Microbiol 2020; 10:3116. [PMID: 32038557 PMCID: PMC6985034 DOI: 10.3389/fmicb.2019.03116] [Citation(s) in RCA: 329] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/24/2019] [Indexed: 01/14/2023] Open
Abstract
Human papillomavirus (HPV)-induced cervical cancer is a major health issue among women from the poorly/under-developed sectors of the world. It accounts for a high-mortality rate because of its late diagnosis and poor prognosis. Initial establishment and subsequent progression of this form of cancer are completely dependent on two major oncogenes E6 and E7, which are expressed constitutively leading to tumorigenesis. Thus, manipulation of these genes represents the most successful form of cervical cancer therapy. In the present article, information on structural, functional, and clinical dimensions of E6 and E7 activity has been reviewed. The genome organization and protein structure of E6 and E7 have been discussed followed by their mechanism to establish the six major cancer hallmarks in cervical tissues for tumor propagation. The later section of this review article deals with the different modes of therapeutics, which functions by deregulating E6 and E7 activity. Since E6 and E7 are the biomarkers of a cervical cancer cell and are the ones driving the cancer progression, therapeutic approaches targeting E6 and E7 have been proved to be highly efficient in terms of focused removal of abnormally propagating malignant cells. Therapeutics including different forms of vaccines to advanced genome editing techniques, which suppress E6 and E7 activity, have been found to successfully bring down the population of cervical cancer cells infected with HPV. T-cell mediated immunotherapy is another upcoming successful form of treatment to eradicate HPV-infected tumorigenic cells. Additionally, therapeutics using natural compounds from plants or other natural repositories, i.e., phytotherapeutic approaches have also been reviewed here, which prove their anticancer potential through E6 and E7 inhibitory effects. Thus, E6 and E7 repression through any of these methods is a significant approach toward cervical cancer therapy, described in details in this review along with an insight into the signaling pathways and molecular mechanistic of E6 and E7 action.
Collapse
Affiliation(s)
| | - Rita Kundu
- Cell Biology Laboratory, Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| |
Collapse
|
32
|
Al-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Genome-Wide CpG Island Methylation Profiles of Cutaneous Skin with and without HPV Infection. Int J Mol Sci 2019; 20:E4822. [PMID: 31569353 PMCID: PMC6801420 DOI: 10.3390/ijms20194822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
HPV infection is one of the most commonly transmitted diseases among the global population. While it can be asymptomatic, non-genital HPV infection often gives rise to cutaneous warts, which are benign growths arising from the epidermal layer of the skin. This study aimed to produce a global analysis of the ways in which cutaneous wart formation affected the CpG island methylome. The Infinium MethylationEPIC BeadChip microarray was utilized in order to quantitatively interrogate CpG island methylation in genomic DNA extracted from 24 paired wart and normal skin samples. Differential methylation analysis was carried out by means of assigning a combined rank score using RnBeads. The 1000 top-ranking CpG islands were then subject to Locus Overlap Analysis (LOLA) for enrichment of genomic ranges, while signaling pathway analysis was carried out on the top 100 differentially methylated CpG islands. Differential methylation analysis illustrated that the most differentially methylated CpG islands in warts lay within the ITGB5, DTNB, RBFOX3, SLC6A9, and C2orf27A genes. In addition, the most enriched genomic region sets in warts were Sheffield's tissue-clustered DNase hypersensitive sites, ENCODE's segmentation and transcription factor binding sites, codex sites, and the epigenome sites from cistrome. Lastly, signaling pathway analysis showed that the GRB2, GNB1, NTRK1, AXIN1, and SKI genes were the most common regulators of the genes associated with the top 100 most differentially methylated CpG islands in warts. Our study shows that HPV-induced cutaneous warts have a clear CpG island methylation profile that sets them apart from normal skin. Such a finding could account for the temporary nature of warts and the capacity for individuals to undergo clinical remission.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Mansour A Alghamdi
- Department of Human Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Amneh H Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Firas A Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
33
|
Level of phospho-STAT3 (Tyr705) correlates with copy number and physical state of human papillomavirus 16 genome in cervical precancer and cancer lesions. PLoS One 2019; 14:e0222089. [PMID: 31487312 PMCID: PMC6728030 DOI: 10.1371/journal.pone.0222089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/21/2019] [Indexed: 12/03/2022] Open
Abstract
Our earlier studies indicated an important role of inducible transcription factor STAT3 in the establishment of persistent infection of human papillomavirus (HPV) type 16 and promotion of cervical carcinogenesis. Since HPV load and its physical state are two potential determinants of this virally-induced carcinogensis, though with some exceptions, we extended our study to examine the role of active STAT3 level in cervical precancer and cancer lesions and it’s association with HPV viral load and physical state. An elevated level of active STAT3 was measured by assessing phospho-STAT3-Y705 (pSTAT3), in tumor tissues harboring higher viral load irrespective of the disease grade. Physical state analysis of HPV16 by assessing the degree of amplification of full length E2 and comparing it with E6 (E2:E6 ratio), which predominantly represent episomal form of HPV16, revealed low or undetectable pSTAT3. A strong pSTAT3 immunoreactivity was found in tissues those harbored either mixed or predominantly integrated form of viral genome. Cumulative analysis of pSTAT3 expression, viral load and physical state demonstrated a direct correlation between pSTAT3 expression, viral load and physical state of HPV. The study suggests that there exists a strong clinical correlation between level of active STAT3 expression and HPV genome copy number, and integrated state of the virus that may play a pivotal role in promotion/maintanence of tumorigenic phenotype.
Collapse
|
34
|
DuShane JK, Maginnis MS. Human DNA Virus Exploitation of the MAPK-ERK Cascade. Int J Mol Sci 2019; 20:ijms20143427. [PMID: 31336840 PMCID: PMC6679023 DOI: 10.3390/ijms20143427] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) comprise a particular branch of the mitogen-activated protein kinase cascades (MAPK) that transmits extracellular signals into the intracellular environment to trigger cellular growth responses. Similar to other MAPK cascades, the MAPK-ERK pathway signals through three core kinases—Raf, MAPK/ERK kinase (MEK), and ERK—which drive the signaling mechanisms responsible for the induction of cellular responses from extracellular stimuli including differentiation, proliferation, and cellular survival. However, pathogens like DNA viruses alter MAPK-ERK signaling in order to access DNA replication machineries, induce a proliferative state in the cell, or even prevent cell death mechanisms in response to pathogen recognition. Differential utilization of this pathway by multiple DNA viruses highlights the dynamic nature of the MAPK-ERK pathway within the cell and the importance of its function in regulating a wide variety of cellular fates that ultimately influence viral infection and, in some cases, result in tumorigenesis.
Collapse
Affiliation(s)
- Jeanne K DuShane
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04401, USA
| | - Melissa S Maginnis
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, ME 04401, USA.
- Graduate School in Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04401, USA.
| |
Collapse
|
35
|
Banerjee S, Karunagaran D. An integrated approach for mining precise RNA-based cervical cancer staging biomarkers. Gene 2019; 712:143961. [PMID: 31279709 DOI: 10.1016/j.gene.2019.143961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Since international federation of gynecology and obstetrics (FIGO) staging is mainly based on clinical assessment, an integrated approach for mining RNA based biomarkers for understanding the molecular deregulation of signaling pathways and RNAs in cervical cancer was proposed in this study. Publicly available data were mined for identifying significant RNAs after patient staging. Significant miRNA families were identified from mRNA-miRNA and lncRNA-miRNA interaction network analyses followed by stage specific mRNA-miRNA-lncRNA association network generation. Integrated bioinformatic analyses of selected mRNAs and lncRNAs were performed. Results suggest that HBA1, HBA2, HBB, SLC2A1, CXCL10 (stage I), PKIA (stage III) and S100A7 (stage IV) were important. miRNA family enrichment of interacting miRNA partners of selected RNAs indicated the enrichment of let-7 family. Assembly of collagen fibrils and other multimeric structures_Homosapiens_R-HSA-2022090 in pathway analysis and progesterone_CTD_00006624 in DSigDB analysis were the most significant and SLC2A1, hsa-miR-188-3p, hsa-miR-378a-3p and hsa-miR-150-5p were selected as survival markers.
Collapse
Affiliation(s)
- Satarupa Banerjee
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai 600036, India.
| |
Collapse
|
36
|
Brand TM, Hartmann S, Bhola NE, Li H, Zeng Y, O'Keefe RA, Ranall MV, Bandyopadhyay S, Soucheray M, Krogan NJ, Kemp C, Duvvuri U, LaVallee T, Johnson DE, Ozbun MA, Bauman JE, Grandis JR. Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Res 2018; 78:2383-2395. [PMID: 29440171 PMCID: PMC6537867 DOI: 10.1158/0008-5472.can-17-1672] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV) type 16 is implicated in approximately 75% of head and neck squamous cell carcinomas (HNSCC) that arise in the oropharynx, where viral expression of the E6 and E7 oncoproteins promote cellular transformation, tumor growth, and maintenance. An important oncogenic signaling pathway activated by E6 and E7 is the PI3K pathway, a key driver of carcinogenesis. The PI3K pathway is also activated by mutation or amplification of PIK3CA in over half of HPV(+) HNSCC. In this study, we investigated the efficacy of PI3K-targeted therapies in HPV(+) HNSCC preclinical models and report that HPV(+) cell line- and patient-derived xenografts are resistant to PI3K inhibitors due to feedback signaling emanating from E6 and E7. Receptor tyrosine kinase profiling indicated that PI3K inhibition led to elevated expression of the HER3 receptor, which in turn increased the abundance of E6 and E7 to promote PI3K inhibitor resistance. Targeting HER3 with siRNA or the mAb CDX-3379 reduced E6 and E7 abundance and enhanced the efficacy of PI3K-targeted therapies. Together, these findings suggest that cross-talk between HER3 and HPV oncoproteins promotes resistance to PI3K inhibitors and that cotargeting HER3 and PI3K may be an effective therapeutic strategy in HPV(+) tumors.Significance: These findings suggest a new therapeutic combination that may improve outcomes in HPV(+) head and neck cancer patients. Cancer Res; 78(9); 2383-95. ©2018 AACR.
Collapse
Affiliation(s)
- Toni M Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Stefan Hartmann
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Rachel A O'Keefe
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Max V Ranall
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Carolyn Kemp
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Julie E Bauman
- Division of Hematology/Oncology, University of Arizona Cancer Center, Tucson, Arizona
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
37
|
Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog 2018; 14:e1006975. [PMID: 29630659 PMCID: PMC5908086 DOI: 10.1371/journal.ppat.1006975] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/19/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.
Collapse
Affiliation(s)
- Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christopher W. Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Lucy Hanson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria McGuire
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Cinzia Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Taute S, Pfister HJ, Steger G. Induction of Tyrosine Phosphorylation of UV-Activated EGFR by the Beta-Human Papillomavirus Type 8 E6 Leads to Papillomatosis. Front Microbiol 2017; 8:2197. [PMID: 29176966 PMCID: PMC5686093 DOI: 10.3389/fmicb.2017.02197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence is accumulating that beta-human papillomaviruses (HPV) synergize with UV-light in the development of precancerous actinic keratosis, and cutaneous squamous cell carcinomas (cSCC), one of the most common cancers in the Caucasian population. We previously demonstrated the tumorigenic activity of beta-HPV type 8 (HPV8) in the skin of transgenic mice and its cooperation with UV-light. Analysis of underlying mechanisms now showed that in keratinocytes expressing the HPV8E6 protein a transient increase of tyrosine phosphorylated epidermal growth factor receptor (EGFR) in response to UV-irradiation occurred, while EGFR tyrosine phosphorylation, i.e., receptor tyrosine kinase (RTK)-activity was hardly affected in empty vector control cells. FACS and immunofluorescences revealed that the EGFR was internalized into early endosomes in response to UV-exposure in both, HPV8E6 positive and in control cells, yet with a higher rate in the presence of HPV8E6. Moreover, only in HPV8E6 expressing keratinocytes the EGFR was further sorted into CD63+ intraluminal vesicles, indicative for trafficking to late endosomes. The latter requires the ubiquitination of the EGFR, and in correlation, we could show that only in HPV8E6 positive keratinocytes the EGFR was ubiquitinated upon UV-exposure. HPV8E6 and tyrosine phosphorylated EGFR directly interacted which was enhanced by UV-irradiation. The treatment of K14-HPV8E6 transgenic mice with Canertinib, an inhibitor of the RTK-activity of the EGFR, suppressed skin papilloma growth in response to UV-irradiation. This confirms the crucial role of the RTK-activity of the EGFR in HPV8E6 and UV-mediated papillomatosis in transgenic mice. Taken together, our results demonstrate that HPV8E6 alters the signaling of the UV-activated EGFR and this is a critical step in papilloma formation in response to UV-light in transgenic mice. Our results provide a molecular basis how a beta-HPV type may support early steps of skin tumor formation in cooperation with UV-light.
Collapse
Affiliation(s)
- Stefanie Taute
- Institute of Virology, University of Cologne, Cologne, Germany
| | | | - Gertrud Steger
- Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
39
|
Peta E, Cappellesso R, Masi G, Sinigaglia A, Trevisan M, Grassi A, Di Camillo B, Vassarotto E, Fassina A, Palù G, Barzon L. Down-regulation of microRNA-146a is associated with high-risk human papillomavirus infection and epidermal growth factor receptor overexpression in penile squamous cell carcinoma. Hum Pathol 2017; 61:33-40. [DOI: 10.1016/j.humpath.2016.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/03/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
|
40
|
Brand TM, Hartmann S, Bhola NE, Peyser ND, Li H, Zeng Y, Isaacson Wechsler E, Ranall MV, Bandyopadhyay S, Duvvuri U, LaVallee TM, Jordan RCK, Johnson DE, Grandis JR. Human Papillomavirus Regulates HER3 Expression in Head and Neck Cancer: Implications for Targeted HER3 Therapy in HPV + Patients. Clin Cancer Res 2016; 23:3072-3083. [PMID: 27986750 DOI: 10.1158/1078-0432.ccr-16-2203] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/17/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022]
Abstract
Purpose: Human papillomavirus (HPV) 16 plays an etiologic role in a growing subset of head and neck squamous cell carcinomas (HNSCC), where viral expression of the E6 and E7 oncoproteins is necessary for tumor growth and maintenance. Although patients with HPV+ tumors have a more favorable prognosis, there are currently no HPV-selective therapies. Recent studies identified differential receptor tyrosine kinase (RTK) profiles in HPV+ versus HPV- tumors. One such RTK, HER3, is overexpressed and interacts with phosphoinositide-3-kinase (PI3K) in HPV+ tumors. Therefore, we investigated the role of HPV oncoproteins in regulating HER3-mediated signaling and determined whether HER3 could be a molecular target in HPV+ HNSCC.Experimental Design: HER3 was investigated as a molecular target in HPV+ HNSCC using established cell lines, patient-derived xenografts (PDX), and human tumor specimens. A mechanistic link between HPV and HER3 was examined by augmenting E6 and E7 expression levels in HNSCC cell lines. The dependency of HPV+ and HPV- HNSCC models on HER3 was evaluated with anti-HER3 siRNAs and the clinical stage anti-HER3 monoclonal antibody KTN3379.Results: HER3 was overexpressed in HPV+ HNSCC, where it was associated with worse overall survival in patients with pharyngeal cancer. Further investigation indicated that E6 and E7 regulated HER3 protein expression and downstream PI3K pathway signaling. Targeting HER3 with siRNAs or KTN3379 significantly inhibited the growth of HPV+ cell lines and PDXs.Conclusions: This study uncovers a direct relationship between HPV infection and HER3 in HNSCC and provides a rationale for the clinical evaluation of targeted HER3 therapy for the treatment of HPV+ patients. Clin Cancer Res; 23(12); 3072-83. ©2016 AACR.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Cell Line, Tumor
- Elafin/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Viral/genetics
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/virology
- Human papillomavirus 16/pathogenicity
- Humans
- Mice
- Molecular Targeted Therapy
- Oncogene Proteins, Viral/genetics
- Papillomavirus E7 Proteins/genetics
- Papillomavirus Infections/genetics
- Papillomavirus Infections/virology
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Receptor, ErbB-3/antagonists & inhibitors
- Receptor, ErbB-3/genetics
- Repressor Proteins/genetics
- Squamous Cell Carcinoma of Head and Neck
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Toni M Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Stefan Hartmann
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Noah D Peyser
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Erin Isaacson Wechsler
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Max V Ranall
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Richard C K Jordan
- Departments of Orofacial Sciences and Pathology, University of California San Francisco, San Francisco, California
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
41
|
Felis catus papillomavirus type 2 E6 oncogene enhances mitogen-activated protein kinases and Akt activation but not EGFR expression in an in vitro feline model of viral pathogenesis. Vet Microbiol 2016; 195:96-100. [DOI: 10.1016/j.vetmic.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 11/22/2022]
|
42
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
43
|
Padash Barmchi M, Gilbert M, Thomas M, Banks L, Zhang B, Auld VJ. A Drosophila Model of HPV E6-Induced Malignancy Reveals Essential Roles for Magi and the Insulin Receptor. PLoS Pathog 2016; 12:e1005789. [PMID: 27537218 PMCID: PMC4990329 DOI: 10.1371/journal.ppat.1005789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy. Human papillomaviruses (HPV) are the causative agents of cervical cancer, one of the leading causes of cancer death in women worldwide. The E6 oncoprotein encoded by HPV has been implicated in the progression of primary tumors to metastatic disease and we have developed a new model in the fruit fly (Drosophila melanogaster) to study the cellular effects of E6. The E6 protein recruits an E3 ubiquitin ligase (UBE3A) to induce the degradation of a number of cellular proteins, including members of the MAGUK family of scaffolding proteins that control the structure and polarity of epithelial cells: Dlg, Scribble and Magi. Expression of E6 and human UBE3A in the wing and eye of Drosophila disrupted these tissues. Similar to human cells we found that Drosophila Magi was a major E6 degradation target and that overexpression of Magi rescued the tissue disruption. However, Drosophila p53 was not degraded by E6/UBE3A, making our fly model potentially useful for studying the p53-independent activities of the E6+UBE3A complex. When we paired E6 expression with oncogenic proteins, including activated Ras, we observed that epithelia were transformed into mesechymal-like cells that left the epithelium and spread through the body. As a test of the potential of our system, we carried out a pilot genetic screen and identified the insulin receptor as a strong modulator of the E6-mediated disruption of Drosophila tissues. Therefore, we have developed a new system and approach to help us better understand the mechanisms that underlie how HPV infection leads to cell transformation and cancer.
Collapse
Affiliation(s)
- Mojgan Padash Barmchi
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Mary Gilbert
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Bing Zhang
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (MPB); (BZ); (VJA)
| | - Vanessa J. Auld
- Department of Zoology, University of British Columbia, Vancouver, Canada
- * E-mail: (MPB); (BZ); (VJA)
| |
Collapse
|
44
|
He C, Mao D, Hua G, Lv X, Chen X, Angeletti PC, Dong J, Remmenga SW, Rodabaugh KJ, Zhou J, Lambert PF, Yang P, Davis JS, Wang C. The Hippo/YAP pathway interacts with EGFR signaling and HPV oncoproteins to regulate cervical cancer progression. EMBO Mol Med 2016; 7:1426-49. [PMID: 26417066 PMCID: PMC4644376 DOI: 10.15252/emmm.201404976] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Hippo signaling pathway controls organ size and tumorigenesis through a kinase cascade that inactivates Yes-associated protein (YAP). Here, we show that YAP plays a central role in controlling the progression of cervical cancer. Our results suggest that YAP expression is associated with a poor prognosis for cervical cancer. TGF-α and amphiregulin (AREG), via EGFR, inhibit the Hippo signaling pathway and activate YAP to induce cervical cancer cell proliferation and migration. Activated YAP allows for up-regulation of TGF-α, AREG, and EGFR, forming a positive signaling loop to drive cervical cancer cell proliferation. HPV E6 protein, a major etiological molecule of cervical cancer, maintains high YAP protein levels in cervical cancer cells by preventing proteasome-dependent YAP degradation to drive cervical cancer cell proliferation. Results from human cervical cancer genomic databases and an accepted transgenic mouse model strongly support the clinical relevance of the discovered feed-forward signaling loop. Our study indicates that combined targeting of the Hippo and the ERBB signaling pathways represents a novel therapeutic strategy for prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Chunbo He
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dagan Mao
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Guohua Hua
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Lv
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xingcheng Chen
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter C Angeletti
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jixin Dong
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steven W Remmenga
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kerry J Rodabaugh
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jin Zhou
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA Department of Obstetrics and Gynecology, Urumqi General Hospital of Lanzhou Military Region, Urumqi, China
| | - Paul F Lambert
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA Omaha Veterans Affairs Medical Center, Omaha, NE, USA
| | - Cheng Wang
- Olson Center for Women's Health, Department of Obstetrics & Gynecology, University of Nebraska Medical Center, Omaha, NE, USA Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
45
|
Hochmann J, Sobrinho JS, Villa LL, Sichero L. The Asian-American variant of human papillomavirus type 16 exhibits higher activation of MAPK and PI3K/AKT signaling pathways, transformation, migration and invasion of primary human keratinocytes. Virology 2016; 492:145-54. [PMID: 26945151 DOI: 10.1016/j.virol.2016.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
Asian-American (AA) HPV-16 variants are associated with higher risk of cancer. Abnormal activation of intracellular signaling play a critical role in cancer development and progression. Our aim was to elucidate mechanisms underlying the higher oncogenic potential attributed to AA variant. We evaluated activation of MAPK and PI3K/AKT pathways in primary human keratinocytes (PHKs) transduced with E6/E7 of three HPV-16 variants: E-P, AA, E-350G. Phenotypes examined included migration, anchorage independent growth and invasion. AA PHKs presented the highest levels of active proteins involved in all cascades analyzed: MAPK-ERK, MAPK-p38 and PI3K-AKT. AA PHKs were more efficient in promoting anchorage independent growth, and in stimulating cell migration and invasion. MEK1 inhibition decreased migration. The mesenchymal phenotype marker vimentin was increased in AA PHKs. Our results suggest that MEK1, ERK2, AKT2 hyperactivation influence cellular behavior by means of GSK-3b inactivation and EMT induction prompting AA immortalized PHKs to more efficiently surpass carcinogenesis steps.
Collapse
Affiliation(s)
- Jimena Hochmann
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
| | - João S Sobrinho
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
| | - Luisa L Villa
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil; Department of Radiology and Oncology, School of Medicine, University of São Paulo, Brazil.
| | - Laura Sichero
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
| |
Collapse
|
46
|
Kurmyshkina OV, Belova LL, Kovchur PI, Volkova TO. [Remodeling of angiogenesis and lymphangiogenesis in cervical cancer development]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:579-97. [PMID: 26539865 DOI: 10.18097/pbmc20156105579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ability to stimulate angiogenesis/lymphangiogenesis is recognized as an inherent feature of cancer cells providing necessary conditions for their growth and dissemination. "Angiogenic switch" is one of the earliest consequences of malignant transformation that encompasses a great number of genes and triggers a complex set of signaling cascades in endothelial cells. The processes of tumor microvasculature development are closely connected to the steps of carcinogenesis (from benign lesions to invasive forms) and occur through multiple deviations from the norm. Analysis of expression of proangiogenic factors at successive steps of cervical cancer development (intraepithelial neoplasia, cancer in situ, microinvasive, and invasive cancer) enables to reconstruct the regulatory mechanisms of (lymph-)angiogenesis and to discriminate the most important components. This review presents detailed analysis of literature data on expression of the key regulators of angiogenesis in cervical intraepithelial neoplasia and cervical cancer. Their possible involvement in molecular mechanisms of neoplastic transformation of epithelial cells, as well as invasion and tumor metastasis is discussed. Correlation between expression of proangiogenic molecular factors and various clinicopathological parameters is considered, the potential of their use in molecular diagnostics and targeted therapy of cervical cancer is reviewed. Particular attention is paid to relatively poorly studied regulators of lymphangiogenesis and "non-VEGF dependent", or alternative, angiogenic pathways that constitute the prospect of future research in the field.
Collapse
Affiliation(s)
- O V Kurmyshkina
- Institute of High-Tech Biomedicine, Petrozavodsk State University, Petrozavodsk, Russia
| | - L L Belova
- Institute of High-Tech Biomedicine, Petrozavodsk State University, Petrozavodsk, Russia
| | - P I Kovchur
- Institute of High-Tech Biomedicine, Petrozavodsk State University, Petrozavodsk, Russia
| | - T O Volkova
- Institute of High-Tech Biomedicine, Petrozavodsk State University, Petrozavodsk, Russia
| |
Collapse
|
47
|
Neupane M, Clark AP, Landini S, Birkbak NJ, Eklund AC, Lim E, Culhane AC, Barry WT, Schumacher SE, Beroukhim R, Szallasi Z, Vidal M, Hill DE, Silver DP. MECP2 Is a Frequently Amplified Oncogene with a Novel Epigenetic Mechanism That Mimics the Role of Activated RAS in Malignancy. Cancer Discov 2015; 6:45-58. [PMID: 26546296 DOI: 10.1158/2159-8290.cd-15-0341] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED An unbiased genome-scale screen for unmutated genes that drive cancer growth when overexpressed identified methyl cytosine-guanine dinucleotide (CpG) binding protein 2 (MECP2) as a novel oncogene. MECP2 resides in a region of the X-chromosome that is significantly amplified across 18% of cancers, and many cancer cell lines have amplified, overexpressed MECP2 and are dependent on MECP2 expression for growth. MECP2 copy-number gain and RAS family member alterations are mutually exclusive in several cancer types. The MECP2 splicing isoforms activate the major growth factor pathways targeted by activated RAS, the MAPK and PI3K pathways. MECP2 rescued the growth of a KRAS(G12C)-addicted cell line after KRAS downregulation, and activated KRAS rescues the growth of an MECP2-addicted cell line after MECP2 downregulation. MECP2 binding to the epigenetic modification 5-hydroxymethylcytosine is required for efficient transformation. These observations suggest that MECP2 is a commonly amplified oncogene with an unusual epigenetic mode of action. SIGNIFICANCE MECP2 is a commonly amplified oncogene in human malignancies with a unique epigenetic mechanism of action. Cancer Discov; 6(1); 45-58. ©2015 AACR.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Manish Neupane
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Serena Landini
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nicolai J Birkbak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Aron C Eklund
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Aedin C Culhane
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - William T Barry
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, and Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Steven E Schumacher
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zoltan Szallasi
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology, and Harvard Medical School, Boston, Massachusetts
| | - Marc Vidal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - David E Hill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Daniel P Silver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
48
|
Sun P, Dong L, MacDonald AI, Akbari S, Edward M, Hodgins MB, Johnstone SR, Graham SV. HPV16 E6 Controls the Gap Junction Protein Cx43 in Cervical Tumour Cells. Viruses 2015; 7:5243-56. [PMID: 26445057 PMCID: PMC4632379 DOI: 10.3390/v7102871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) causes a range of cancers including cervical and head and neck cancers. HPV E6 oncoprotein binds the cell polarity regulator hDlg (human homologue of Drosophila Discs Large). Previously we showed in vitro, and now in vivo, that hDlg also binds Connexin 43 (Cx43), a major component of gap junctions that mediate intercellular transfer of small molecules. In HPV16-positive non-tumour cervical epithelial cells (W12G) Cx43 localised to the plasma membrane, while in W12T tumour cells derived from these, it relocated with hDlg into the cytoplasm. We now provide evidence that E6 regulates this cytoplasmic pool of Cx43. E6 siRNA depletion in W12T cells resulted in restoration of Cx43 and hDlg trafficking to the cell membrane. In C33a HPV-negative cervical tumour cells expressing HPV16 or 18 E6, Cx43 was located primarily in the cytoplasm, but mutation of the 18E6 C-terminal hDlg binding motif resulted in redistribution of Cx43 to the membrane. The data indicate for the first time that increased cytoplasmic E6 levels associated with malignant progression alter Cx43 trafficking and recycling to the membrane and the E6/hDlg interaction may be involved. This suggests a novel E6-associated mechanism for changes in Cx43 trafficking in cervical tumour cells.
Collapse
Affiliation(s)
- Peng Sun
- Feinberg School of Medicine, North Western University, Chicago, IL 60611, USA.
| | - Li Dong
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK.
| | - Alasdair I MacDonald
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK.
| | - Shahrzad Akbari
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK.
| | - Michael Edward
- Dermatology, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, Scotland, UK.
| | - Malcolm B Hodgins
- Dermatology, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, Scotland, UK.
| | - Scott R Johnstone
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, Scotland, UK.
| | - Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
49
|
Liu S, Song L, Zeng S, Zhang L. MALAT1-miR-124-RBG2 axis is involved in growth and invasion of HR-HPV-positive cervical cancer cells. Tumour Biol 2015; 37:633-40. [PMID: 26242259 DOI: 10.1007/s13277-015-3732-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/28/2015] [Indexed: 12/31/2022] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT 1) is a large, infrequently spliced non-coding RNA aberrantly expressed in cervical cancer. But the molecular mechanisms of its oncogenic role are still not quite clear. The present study explored whether there is a competing endogenous RNAs (ceRNAs) mechanism involved in the oncogenic effect of MALAT1. MALAT1 expression was firstly verified in high-risk human papillomavirus (HR-HPV)-positive tumor tissues and cell lines. Its regulation over miR-124 and the downstream target of miR-124 in regulation of growth, invasion, and apoptosis of the cancer cells are also studied. Findings of this study confirmed higher MALAT1 expression in HR-HPV (+) cervical cancer. Knockdown of endogenous MALAT1 significantly reduced cell growth rate and invasion and increased cell apoptosis of Hela and siHa cells. Besides, knockdown of MALAT1 increased the expression of miRNA-124, while ectopic expression of miR-124 decreased MALAT1 expression. In addition, we also verified a direct interaction between miR-124 and 3'UTR of GRB2. MALAT1 can indirectly modulate GRB2 expression via competing miR-124. Knockdown of GRB2 reduced cell invasion and increased cell apoptosis. In conclusion, MALAT1 can promote HR-HPV (+) cancer cell growth and invasion at least partially through the MALAT1-miR-124-RBG2 axis. This finding might provide some useful evidence about the lncRNA interaction regulatory network in tumorigenesis cervical cancer.
Collapse
Affiliation(s)
- Shikai Liu
- Cangzhou Central Hospital, No. 16, Xinhua West Road, Canal Zone, Cangzhou City, Hebei Province, 061001, China
| | - Lili Song
- Cangzhou Central Hospital, No. 16, Xinhua West Road, Canal Zone, Cangzhou City, Hebei Province, 061001, China.
| | - Saitian Zeng
- Cangzhou Central Hospital, No. 16, Xinhua West Road, Canal Zone, Cangzhou City, Hebei Province, 061001, China
| | - Liang Zhang
- Cangzhou Central Hospital, No. 16, Xinhua West Road, Canal Zone, Cangzhou City, Hebei Province, 061001, China
| |
Collapse
|
50
|
Bumrungthai S, Munjal K, Nandekar S, Cooper K, Ekalaksananan T, Pientong C, Evans MF. Epidermal growth factor receptor pathway mutation and expression profiles in cervical squamous cell carcinoma: therapeutic implications. J Transl Med 2015. [PMID: 26209091 PMCID: PMC4513684 DOI: 10.1186/s12967-015-0611-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Cervical squamous cell carcinoma (CSCC) is a major cause of female mortality worldwide. This study has examined epidermal growth factor receptor (EGFR) pathway markers that represent actionable pharmacological targets. Methods HPV16 positive CSCCs (n = 105 patients) from Madhya Pradesh, India were screened for KRAS and PIK3CA mutations by PNA-clamp real-time PCR. Immunohistochemistry (IHC) was performed for EGFR, PIK3CA, PTEN, phospho-AKT, phospho-mTOR and phospho-44/42 MAPK (ERK1/2). Results KRAS mutations were detected in 0/91 (0%) and PIK3CA mutations in 19/95 (20.0%) informative specimens: exon 9, E542 (n = 3) and E545 (n = 15); exon 20, H1047R (n = 1). PIK3CA mutation detection was associated with older mean patient age [48.2 vs. 56.6 years (P = 0.007)] and with post-menopausal age: 5/45 (11.1%) patients <50 years vs. 14/50 (28.0%) patients ≥50 years (P = 0.045; OR = 3.11). EGFR expression was present in 60/101 (59.4%) CSCCs and was associated with PIK3CA mutation detection (P < 0.05) but not age (P > 0.05). EGFR and phospho-AKT staining showed associations with tumor grade and/or lymph node status (P < 0.05). Significant associations were not found for the other study markers (P > 0.05). Conclusion These data show that PIK3CA mutation acquisition is related to patient age and EGFR expression. The absence of KRAS mutations supports the potential of anti-EGFR therapies for CSCC treatment. The relatively high PIK3CA mutation rates indicate that PI3K may be a therapeutic target for a significant subset of CSCC patients. Qualitatively distinct IHC staining profiles for the marker panel were noted patient to patient; however, across patients, consistent linear relationships between up- and downstream pathway markers were not observed. Evaluation of the expression status of potential cancer pathway targets may be of value in addition to molecular profiling for choosing among therapeutic options. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0611-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Kavita Munjal
- Department of Pathology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, 453555, India.
| | - Shirish Nandekar
- Department of Pathology, Sri Aurobindo Institute of Medical Sciences, Indore, Madhya Pradesh, 453555, India.
| | - Kumarasen Cooper
- Department of Pathology and Laboratory Medicine, Pearlman School of Medicine, University of Pennsylvania, Philadelphia, 19104-4283, USA.
| | | | - Chamsai Pientong
- Department of Microbiology, Khon Kaen University, Khon Kaen, 40002, Thailand. .,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Mark Francis Evans
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, 05405, VT, USA. .,University of Vermont Cancer Center, Burlington, VT, 05405, USA.
| |
Collapse
|