1
|
Adhikari B, Verchot J, Brandizzi F, Ko DK. ER stress and viral defense: Advances and future perspectives on plant unfolded protein response in pathogenesis. J Biol Chem 2025; 301:108354. [PMID: 40015641 PMCID: PMC11982459 DOI: 10.1016/j.jbc.2025.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Viral infections pose significant threats to crop productivity and agricultural sustainability. The frequency and severity of these infections are increasing, and pathogens are evolving rapidly under the influence of climate change. This underscores the importance of exploring the fundamental mechanisms by which plants defend themselves against dynamic viral threats. One such mechanism is the unfolded protein response (UPR), which is activated when the protein folding demand exceeds the capacity of the endoplasmic reticulum, particularly under adverse environmental conditions. While the key regulators of the UPR in response to viral infections have been identified, our understanding of how they modulate the UPR to suppress plant viral infections at the molecular and genetic levels is still in its infancy. Recent findings have shown that, in response to plant viral infections, the UPR swiftly reprograms transcriptional changes to support cellular, metabolic, and physiological processes associated with cell viability. However, the underlying mechanisms and functional outcomes of these changes remain largely unexplored. Here, we highlight recent advances in plant UPR research and summarize key findings related to viral infection-induced UPR, focusing on the balance between prosurvival and prodeath strategies. We also discuss the potential of systems-level approaches to uncover the full extent of the functional link between the UPR and plant responses to viral infections.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA.
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
2
|
Huang J, Du J, Liu Y, Lu L, Xu Y, Shi J, Liu Q, Li Q, Liu Y, Chen Y, Du M, Zhao Y, Huo L, Wang W, Ding C, Wei L, Wu J, Yuan YW, Chen J, Li R, Cui F, Zhang X. RH3 enhances antiviral defense by facilitating small RNA loading into Argonaute 2 at endoplasmic reticulum-chloroplast membrane contact sites. Nat Commun 2025; 16:1953. [PMID: 40000658 PMCID: PMC11862194 DOI: 10.1038/s41467-025-57296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
While RNA silencing is crucial for plant resistance against viruses, the cellular connections between RNA silencing and antiviral responses in plants remain poorly understood. In this study, we aim to investigate this relationship by examining the subcellular localization of small RNA loading and viral replication in Arabidopsis. Our findings reveal that Argonaute 2 (AGO2), a key component of RNA silencing, loads small RNAs at the endoplasmic reticulum (ER)-chloroplast membrane contact sites (MCSs). We identify a chloroplast-localized protein, RNA helicase 3 (RH3), which interacts with AGO2 and facilitates the loading of small RNAs into AGO2 at these MCSs. Furthermore, we discover that MCSs serve as replication sites for certain plant viruses. RH3 also promotes the loading of viral-derived small RNAs into AGO2, thereby enhancing plant antiviral resistance. Overall, our study sheds light on the roles of RH3 in RNA silencing and plant antiviral defenses, providing valuable insights into the cytobiological connections between RNA silencing, viral replication, and antiviral immunity.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lu Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanzhuo Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiu Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangxiao Huo
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Weiran Wang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Chenxi Ding
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT, 06269, USA
| | - Jinfeng Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruixi Li
- SUSTech-PKU Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Seed Industry Laboratory, Sanya, 572025, China.
| |
Collapse
|
3
|
Herath V, Casteel CL, Verchot J. Comprehensive transcriptomic analysis reveals turnip mosaic virus infection and its aphid vector Myzus persicae cause large changes in gene regulatory networks and co-transcription of alternative spliced mRNAs in Arabidopsis thaliana. BMC PLANT BIOLOGY 2025; 25:128. [PMID: 39885390 PMCID: PMC11780806 DOI: 10.1186/s12870-024-06014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV). RESULTS By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors. This study presents evidence that the combination of virus-vector-host interactions induces significant changes in hormone and secondary metabolite biosynthesis, as well as downstream factors involved in feedback loops within hormone signaling pathways. This study also shows that gene expressions are regulated through alternative pre-mRNA splicing and the use of alternative transcription start and termination sites. CONCLUSIONS These combined data suggest that complex genetic changes occur as plants adapt to the combined challenges posed by aphids and the viruses they vector. This study also provides more advanced analyses that could be used in the future to dissect the genetic mechanisms mediating tripartite interactions and inform future breeding programs.
Collapse
Affiliation(s)
- Venura Herath
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Kandy, 20400, Sri Lanka
| | - Clare L Casteel
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
- School of Integrative Plant Science, Section of Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77845, USA.
| |
Collapse
|
4
|
Sanfaçon H. 3C-like proteases at the interface of plant-virus-vector interactions: Focus on potyvirid NIa proteases and secovirid proteases. Virology 2025; 602:110299. [PMID: 39579507 DOI: 10.1016/j.virol.2024.110299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Plant viruses of the families Potyviridae and Secoviridae encode 3C-like proteases (3CLpro) that are related to picornavirus 3C proteases. This review discusses recent advances in deciphering the multifunctional activities of plant virus 3CLpro. These proteases regulate viral polyprotein processing and facilitate virus replication. They are also determinants of host range, virulence, symptomatology and super-infection exclusion in some plant-virus interactions and facilitate aphid transmission. Potyvirid NIa-Pro proteases interact with host factors to interfere with a variety of defense mechanisms: salicylic acid-dependent signaling, ethylene-dependent signaling, transcriptional gene silencing and RNA decay. Potyvirid NIa-Pro also cleave host proteins at signature cleavage sites, although the biological impact of these cleavage remains to be determined. Recently, a plant defense mechanism was uncovered that inhibits the proteolytic activity of a comovirus 3CLpro. Future perspectives are discussed including using proteomic and degradomic techniques to elucidate the network of interactions of plant virus 3CLpro with the host proteome.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, V0H 1Z0, Summerland, BC, Canada.
| |
Collapse
|
5
|
Kang B, Liu L, Liu L, Liu M, Wu H, Peng B, Liang Z, Liu F, Zang Y, Gu Q. A Bifunctional Nuclease Promotes the Infection of Zucchini Yellow Mosaic Virus in Watermelon by Targeting P3. PLANTS (BASEL, SWITZERLAND) 2024; 13:3431. [PMID: 39683224 DOI: 10.3390/plants13233431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Potyviral P3 is involved in viral replication, movement, and pathogenicity; however, its biochemical function is unknown. In this study, the P3 of the zucchini yellow mosaic virus (ZYMV) interacted with ClBBD, a protein with high ortholog bifunctional nuclease activity, in watermelon. The binding site was shown via yeast two-hybrid screening and BiFC assay to be located at the N-terminus of P3 rather than P3N-PIPO. ClBBD localized predominantly to the chloroplast and plasma membrane. ZYMV P3 was also present in the nucleus and cytoplasm as aggregates. When co-expressed with P3 in tobacco, ClBBD formed aggregates with P3 in the cytoplasm. The knockdown of ClBBD using the VIGS vector pV190 and challenge with ZYMV revealed a positive correlation between viral accumulation and ClBBD expression, indicating that ClBBD reduces the resistance of watermelon to ZYMV. Furtherly, we found that when P3 and ClBBD were transiently co-expressed in tobacco, the level of P3 was significantly higher than that when it was expressed alone or co-expressed with GUS. It inferred that ClBBD may be able to stabilize the expression of P3. Overall, the results suggest that the interaction of P3 with ClBBD promotes virus infection, and ClBBD may be involved in stabilizing the expression level of P3.
Collapse
Affiliation(s)
- Baoshan Kang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang 453500, China
| | - Lifeng Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Liming Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Mei Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Huijie Wu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Bin Peng
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Zhiling Liang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Fengnan Liu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Yaoxing Zang
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| | - Qinsheng Gu
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, China
| |
Collapse
|
6
|
Bhandari DD, Brandizzi F. Linking secretion and cytoskeleton in immunity- a case for Arabidopsis TGNap1. Bioessays 2024; 46:e2400150. [PMID: 39302180 DOI: 10.1002/bies.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
In plants, robust defense depends on the efficient and resilient trafficking supply chains to the site of pathogen attack. Though the importance of intracellular trafficking in plant immunity has been well established, a lack of clarity remains regarding the contribution of the various trafficking pathways in transporting immune-related proteins. We have recently identified a trans-Golgi network protein, TGN-ASSOCIATED PROTEIN 1 (TGNap1), which functionally links post-Golgi vesicles with the cytoskeleton to transport immunity-related proteins in the model plant species Arabidopsis thaliana. We propose new hypotheses on the various functional implications of TGNap1 and then elaborate on the surprising heterogeneity of TGN vesicles during immunity revealed by the discovery of TGNap1 and other TGN-associated proteins in recent years.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Wu G, Wang L, He R, Cui X, Chen X, Wang A. Two plant membrane-shaping reticulon-like proteins play contrasting complex roles in turnip mosaic virus infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e70017. [PMID: 39412487 PMCID: PMC11481689 DOI: 10.1111/mpp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Positive-sense RNA viruses remodel cellular cytoplasmic membranes as the membranous sources for the formation of viral replication organelles (VROs) for viral genome replication. In plants, they traffic through plasmodesmata (PD), plasma membrane-lined pores enabling cytoplasmic connections between cells for intercellular movement and systemic infection. In this study, we employed turnip mosaic virus (TuMV), a plant RNA virus to investigate the involvement of RTNLB3 and RTNLB6, two ER (endoplasmic reticulum) membrane-bending, PD-located reticulon-like (RTNL) non-metazoan group B proteins (RTNLBs) in viral infection. We show that RTNLB3 interacts with TuMV 6K2 integral membrane protein and RTNLB6 binds to TuMV coat protein (CP). Knockdown of RTNLB3 promoted viral infection, whereas downregulation of RTNLB6 restricted viral infection, suggesting that these two RTNLs play contrasting roles in TuMV infection. We further demonstrate that RTNLB3 targets the α-helix motif 42LRKSM46 of 6K2 to interrupt 6K2 self-interactions and compromise 6K2-induced VRO formation. Moreover, overexpression of AtRTNLB3 apparently promoted the selective degradation of the ER and ER-associated protein calnexin, but not 6K2. Intriguingly, mutation of the α-helix motif of 6K2 that is required for induction of VROs severely affected 6K2 stability and abolished TuMV infection. Thus, RTNLB3 attenuates TuMV replication, probably through the suppression of 6K2 function. We also show that RTNLB6 promotes viral intercellular movement but does not affect viral replication. Therefore, the proviral role of RTNLB6 is probably by enhancing viral cell-to-cell trafficking. Taken together, our data demonstrate that RTNL family proteins may play diverse complex, even opposite, roles in viral infection in plants.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Liping Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xin Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
8
|
Hossain R, Willems G, Wynant N, Borgolte S, Govaerts K, Varrelmann M. Aphid-mediated beet yellows virus transmission initiates proviral gene deregulation in sugar beet at early stages of infection. PLoS One 2024; 19:e0311368. [PMID: 39352913 PMCID: PMC11444407 DOI: 10.1371/journal.pone.0311368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
Beet yellows virus (BYV), one of the causal agents of virus yellows (VY) disease in sugar beet (Beta vulgaris subsp. vulgaris), induces economically important damage to the sugar production in Europe. In the absence of effective natural resistance traits, a deeper understanding of molecular reactions in plants to virus infection is required. In this study, the transcriptional modifications in a BYV susceptible sugar beet genotype following aphid-mediated inoculation on mature leaves were studied at three early infection stages [6, 24 and 72 hours post inoculation (hpi)] using RNA sequencing libraries. On average, 93% of the transcripts could be mapped to the B. vulgaris reference genome RefBeet-1.2.2. In total, 588 differentially expressed genes (DEGs) were identified across the three infection stages. Of these, 370 were up- regulated and 218 down-regulated when individually compared to mock-aphid inoculated leaf samples at the same time point, thereby eliminating the effect of aphid feeding itself. Using MapMan ontology for categorisation of sugar beet transcripts, early differential gene expression identified importance of the BIN categories "enzyme classification", "RNA biosynthesis", "cell wall organisation" and "phytohormone action". A particularly high transcriptional change was found for diverse transcription factors, cell wall regulating proteins, signalling peptides and transporter proteins. 28 DEGs being important in "nutrient uptake", "lipid metabolism", "phytohormone action", "protein homeostasis" and "solute transport", were represented at more than one infection stage. The RT-qPCR validation of thirteen selected transcripts confirmed that BYV is down-regulating chloroplast-related genes 72 hpi, putatively already paving the way for the induction of yellowing symptoms characteristic for the disease. Our study provides deeper insight into the early interaction between BYV and the economically important crop plant sugar beet and opens up the possibility of using the knowledge of identified proviral plant factors as well as plant defense-related factors for resistance breeding.
Collapse
Affiliation(s)
- Roxana Hossain
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Lower–Saxony, Germany
| | - Glenda Willems
- Department Genomics and Biotechnologies, SESVanderHave SE, Flemish Brabant, Tienen, Belgium
| | - Niels Wynant
- Department Biotic Stress Management, SESVanderHave SE, Flemish Brabant, Tienen, Belgium
| | - Simon Borgolte
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Lower–Saxony, Germany
| | - Kristof Govaerts
- Department Genomics and Biotechnologies, SESVanderHave SE, Flemish Brabant, Tienen, Belgium
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Lower–Saxony, Germany
| |
Collapse
|
9
|
Pollari ME, Aspelin WWE, Wang L, Mäkinen KM. The Molecular Maze of Potyviral and Host Protein Interactions. Annu Rev Virol 2024; 11:147-170. [PMID: 38848589 DOI: 10.1146/annurev-virology-100422-034124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The negative effects of potyvirus diseases on the agricultural industry are extensive and global. Understanding how protein-protein interactions contribute to potyviral infections is imperative to developing resistant varieties that help counter the threat potyviruses pose. While many protein-protein interactions have been reported, only a fraction are essential for potyviral infection. Accumulating evidence demonstrates that potyviral infection processes are interconnected. For instance, the interaction between the eukaryotic initiation factor 4E (eIF4E) and viral protein genome-linked (VPg) is crucial for both viral translation and protecting viral RNA (vRNA). Additionally, recent evidence for open reading frames on the reverse-sense vRNA and for nonequimolar expression of viral proteins has challenged the previous polyprotein expression model. These discoveries will surely reveal more about the potyviral protein interactome. In this review, we present a synthesis of the potyviral infection cycle and discuss influential past discoveries and recent work on protein-protein interactions in various infection processes.
Collapse
Affiliation(s)
- Maija E Pollari
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - William W E Aspelin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Linping Wang
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Kristiina M Mäkinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| |
Collapse
|
10
|
Zhang H, Yang Z, Cheng G, Luo T, Zeng K, Jiao W, Zhou Y, Huang G, Zhang J, Xu J. Sugarcane mosaic virus employs 6K2 protein to impair ScPIP2;4 transport of H2O2 to facilitate virus infection. PLANT PHYSIOLOGY 2024; 194:715-731. [PMID: 37930811 DOI: 10.1093/plphys/kiad567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Sugarcane mosaic virus (SCMV), one of the main pathogens causing sugarcane mosaic disease, is widespread in sugarcane (Saccharum spp. hybrid) planting areas and causes heavy yield losses. RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) NADPH oxidases and plasma membrane intrinsic proteins (PIPs) have been associated with the response to SCMV infection. However, the underlying mechanism is barely known. In the present study, we demonstrated that SCMV infection upregulates the expression of ScRBOHs and the accumulation of hydrogen peroxide (H2O2), which inhibits SCMV replication. All eight sugarcane PIPs (ScPIPs) interacted with SCMV-encoded protein 6K2, whereby two PIP2s (ScPIP2;1 and ScPIP2;4) were verified as capable of H2O2 transport. Furthermore, we revealed that SCMV-6K2 interacts with ScPIP2;4 via transmembrane domain 5 to interfere with the oligomerization of ScPIP2;4, subsequently impairing ScPIP2;4 transport of H2O2. This study highlights a mechanism adopted by SCMV to employ 6K2 to counteract the host resistance mediated by H2O2 to facilitate virus infection and provides potential molecular targets for engineering sugarcane resistance against SCMV.
Collapse
Affiliation(s)
- Hai Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zongtao Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Guangyuan Cheng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Tingxu Luo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Kang Zeng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Wendi Jiao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Yingshuan Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Guoqiang Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, P. R. China
| | - Jingsheng Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| |
Collapse
|
11
|
Lin J, Zhao J, Du L, Wang P, Sun B, Zhang C, Shi Y, Li H, Sun H. Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. PLANT COMMUNICATIONS 2024; 5:100659. [PMID: 37434356 PMCID: PMC10811337 DOI: 10.1016/j.xplc.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.
Collapse
Affiliation(s)
- Jiayu Lin
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jinpeng Zhao
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Linlin Du
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengkun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yan Shi
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hangjun Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
12
|
Li Y, Wang A. Monitoring the Intracellular Trafficking of Virus-Induced Structures and Intercellular Spread of Viral Infection in Plants Using Endomembrane Trafficking Pathway-Specific Chemical Inhibitor and Organelle-Selective Fluorescence Dye. Methods Mol Biol 2024; 2724:127-137. [PMID: 37987903 DOI: 10.1007/978-1-0716-3485-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Infection by positive-strand RNA viruses induces extensive remodeling of the host endomembrane system in favor of viral replication and movement. The integral membrane protein 6K2 of potyviruses induces the formation of membranous virus replication vesicles at the endoplasmic reticulum exit site (ERES). The intracellular trafficking of 6K2-induced vesicles along with microfilaments requires the vesicular transport pathway, actomyosin motility system, and possibly post-Golgi compartments such as endosomes as well. Recent studies have shown that endocytosis is essential for the intracellular movement of potyviruses from the site of viral genome replication/assembly site to plasmodesmata (PD) to enter neighboring cells. In this chapter, we describe a detailed protocol of how to use endomembrane trafficking pathway-specific chemical inhibitors and organelle-selective fluorescence dye to study the trafficking of potyviral proteins and potyvirus-induced vesicles and to unravel the role of endocytosis and the endocytic pathway in potyvirus infection in Nicotiana benthamiana plants.
Collapse
Affiliation(s)
- Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
13
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
14
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
16
|
Zhang H, Zhou J, Kou X, Liu Y, Zhao X, Qin G, Wang M, Qian G, Li W, Huang Y, Wang X, Zhao Z, Li S, Wu X, Jiang L, Feng X, Zhu JK, Li L. Syntaxin of plants71 plays essential roles in plant development and stress response via regulating pH homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1198353. [PMID: 37342145 PMCID: PMC10277689 DOI: 10.3389/fpls.2023.1198353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
SYP71, a plant-specific Qc-SNARE with multiple subcellular localization, is essential for symbiotic nitrogen fixation in nodules in Lotus, and is implicated in plant resistance to pathogenesis in rice, wheat and soybean. Arabidopsis SYP71 is proposed to participate in multiple membrane fusion steps during secretion. To date, the molecular mechanism underlying SYP71 regulation on plant development remains elusive. In this study, we clarified that AtSYP71 is essential for plant development and stress response, using techniques of cell biology, molecular biology, biochemistry, genetics, and transcriptomics. AtSYP71-knockout mutant atsyp71-1 was lethal at early development stage due to the failure of root elongation and albinism of the leaves. AtSYP71-knockdown mutants, atsyp71-2 and atsyp71-3, had short roots, delayed early development, and altered stress response. The cell wall structure and components changed significantly in atsyp71-2 due to disrupted cell wall biosynthesis and dynamics. Reactive oxygen species homeostasis and pH homeostasis were also collapsed in atsyp71-2. All these defects were likely resulted from blocked secretion pathway in the mutants. Strikingly, change of pH value significantly affected ROS homeostasis in atsyp71-2, suggesting interconnection between ROS and pH homeostasis. Furthermore, we identified AtSYP71 partners and propose that AtSYP71 forms distinct SNARE complexes to mediate multiple membrane fusion steps in secretory pathway. Our findings suggest that AtSYP71 plays an essential role in plant development and stress response via regulating pH homeostasis through secretory pathway.
Collapse
Affiliation(s)
- Hailong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jingwen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guochen Qin
- Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wen Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoting Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoqian Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Cao B, Ge L, Zhang M, Li F, Zhou X. Geminiviral C2 proteins inhibit active autophagy to facilitate virus infection by impairing the interaction of ATG7 and ATG8. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1328-1343. [PMID: 36639894 DOI: 10.1111/jipb.13452] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/13/2023] [Indexed: 05/13/2023]
Abstract
Autophagy is a conserved intracellular degradation process that plays an active role in plant response to virus infections. Here we report that geminiviruses counteract activated autophagy-mediated antiviral defense in plant cells through the C2 proteins they encode. We found that, in Nicotiana benthamiana plants, tomato leaf curl Yunnan virus (TLCYnV) infection upregulated the transcription levels of autophagy-related genes (ATGs). Overexpression of NbATG5, NbATG7, or NbATG8a in N. benthamiana plants decreased TLCYnV accumulation and attenuated viral symptoms. Interestingly, transgenic overexpression of NbATG7 promoted the growth of N. benthamiana plants and enhanced plant resistance to TLCYnV. We further revealed that the C2 protein encoded by TLCYnV directly interacted with the ubiquitin-activating domain of ATG7. This interaction competitively disrupted the ATG7-ATG8 binding in N. benthamiana and Solanum lycopersicum plants, thereby inhibiting autophagy activity. Furthermore, we uncovered that the C2-mediated autophagy inhibition mechanism was conserved in three other geminiviruses. In summary, we discovered a novel counter-defensive strategy employed by geminiviruses that enlists their C2 proteins as disrupters of ATG7-ATG8 interactions to defeat antiviral autophagy.
Collapse
Affiliation(s)
- Buwei Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Wang P, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T. Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. THE NEW PHYTOLOGIST 2023; 238:482-499. [PMID: 36651025 DOI: 10.1111/nph.18745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
19
|
He R, Li Y, Bernards MA, Wang A. Manipulation of the Cellular Membrane-Cytoskeleton Network for RNA Virus Replication and Movement in Plants. Viruses 2023; 15:744. [PMID: 36992453 PMCID: PMC10056259 DOI: 10.3390/v15030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Viruses infect all cellular life forms and cause various diseases and significant economic losses worldwide. The majority of viruses are positive-sense RNA viruses. A common feature of infection by diverse RNA viruses is to induce the formation of altered membrane structures in infected host cells. Indeed, upon entry into host cells, plant-infecting RNA viruses target preferred organelles of the cellular endomembrane system and remodel organellar membranes to form organelle-like structures for virus genome replication, termed as the viral replication organelle (VRO) or the viral replication complex (VRC). Different viruses may recruit different host factors for membrane modifications. These membrane-enclosed virus-induced replication factories provide an optimum, protective microenvironment to concentrate viral and host components for robust viral replication. Although different viruses prefer specific organelles to build VROs, at least some of them have the ability to exploit alternative organellar membranes for replication. Besides being responsible for viral replication, VROs of some viruses can be mobile to reach plasmodesmata (PD) via the endomembrane system, as well as the cytoskeleton machinery. Viral movement protein (MP) and/or MP-associated viral movement complexes also exploit the endomembrane-cytoskeleton network for trafficking to PD where progeny viruses pass through the cell-wall barrier to enter neighboring cells.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St., London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond St. N., London, ON N6A 5B7, Canada
| |
Collapse
|
20
|
Peng Q, Li W, Zhou X, Sun C, Hou Y, Hu M, Fu S, Zhang J, Kundu JK, Lei L. Genetic Diversity Analysis of Brassica Yellows Virus Causing Aberrant Color Symptoms in Oilseed Rape. PLANTS (BASEL, SWITZERLAND) 2023; 12:1008. [PMID: 36903869 PMCID: PMC10005696 DOI: 10.3390/plants12051008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The emergence of brassica yellow virus (BrYV) has increasingly damaged crucifer crops in China in recent years. In 2020, a large number of oilseed rape in Jiangsu showed aberrant leaf color. A combined RNA-seq and RT-PCR analysis identified BrYV as the major viral pathogen. A subsequent field survey showed that the average incidence of BrYV was 32.04%. In addition to BrYV, turnip mosaic virus (TuMV) was also frequently detected. As a result, two near full-length BrYV isolates, BrYV-814NJLH and BrYV-NJ13, were cloned. Based on the newly obtained sequences and the reported BrYV and turnip yellow virus (TuYV) isolates, a phylogenetic analysis was performed, and it was found that all BrYV isolates share a common root with TuYV. Pairwise amino acid identity analysis revealed that both P2 and P3 were conserved in BrYV. Additionally, recombination analysis revealed seven recombinant events in BrYV as TuYV. We also attempted to determine BrYV infection by quantitative leaf color index, but no significant correlation was found between the two. Systemic observations indicated that BrYV-infected plants had different symptoms, such as no symptom, purple stem base and red old leaves. Overall, our work proves that BrYV is closely related to TuYV and could be considered as an epidemic strain for oilseed rape in Jiangsu.
Collapse
Affiliation(s)
- Qi Peng
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Wei Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoying Zhou
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chengming Sun
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yan Hou
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Maolong Hu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sanxiong Fu
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions-Centre for Plant Virus Research, Crop Research Institute, Drnovska 507/73, 161 06 Praha, Czech Republic
- Laboratory of Virology-Centre for Plant Virus Research, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague, Czech Republic
| | - Lei Lei
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| |
Collapse
|
21
|
Bwalya J, Kim KH. The Crucial Role of Chloroplast-Related Proteins in Viral Genome Replication and Host Defense against Positive-Sense Single-Stranded RNA Viruses. THE PLANT PATHOLOGY JOURNAL 2023; 39:28-38. [PMID: 36760047 PMCID: PMC9929168 DOI: 10.5423/ppj.rw.10.2022.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Plant viruses are responsible for worldwide production losses of numerous economically important crops. The most common plant RNA viruses are positivesense single-stranded RNA viruses [(+)ss RNA viruses]. These viruses have small genomes that encode a limited number of proteins. The viruses depend on their host's machinery for the replication of their RNA genome, assembly, movement, and attraction to the vectors for dispersal. Recently researchers have reported that chloroplast proteins are crucial for replicating (+)ss plant RNA viruses. Some chloroplast proteins, including translation initiation factor [eIF(iso)4E] and 75 DEAD-box RNA helicase RH8, help viruses fulfill their infection cycle in plants. In contrast, other chloroplast proteins such as PAP2.1, PSaC, and ATPsyn-α play active roles in plant defense against viruses. This is also consistent with the idea that reactive oxygen species, salicylic acid, jasmonic acid, and abscisic acid are produced in chloroplast. However, knowledge of molecular mechanisms and functions underlying these chloroplast host factors during the virus infection is still scarce and remains largely unknown. Our review briefly summarizes the latest knowledge regarding the possible role of chloroplast in plant virus replication, emphasizing chloroplast-related proteins. We have highlighted current advances regarding chloroplast-related proteins' role in replicating plant (+)ss RNA viruses.
Collapse
Affiliation(s)
- John Bwalya
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Kook-Hyung Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826,
Korea
- Research of Institute Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
22
|
Zhao Z, Li M, Zhang H, Yu Y, Ma L, Wang W, Fan Y, Huang N, Wang X, Liu K, Dong S, Tang H, Wang J, Zhang H, Bao Y. Comparative Proteomic Analysis of Plasma Membrane Proteins in Rice Leaves Reveals a Vesicle Trafficking Network in Plant Immunity That Is Provoked by Blast Fungi. FRONTIERS IN PLANT SCIENCE 2022; 13:853195. [PMID: 35548300 PMCID: PMC9083198 DOI: 10.3389/fpls.2022.853195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases in rice and can affect rice production worldwide. Rice plasma membrane (PM) proteins are crucial for rapidly and precisely establishing a defense response in plant immunity when rice and blast fungi interact. However, the plant-immunity-associated vesicle trafficking network mediated by PM proteins is poorly understood. In this study, to explore changes in PM proteins during M. oryzae infection, the PM proteome was analyzed via iTRAQ in the resistant rice landrace Heikezijing. A total of 831 differentially expressed proteins (DEPs) were identified, including 434 upregulated and 397 downregulated DEPs. In functional analyses, DEPs associated with vesicle trafficking were significantly enriched, including the "transport" term in a Gene Ontology enrichment analysis, the endocytosis and phagosome pathways in a Encyclopedia of Genes and Genomes analysis, and vesicle-associated proteins identified via a protein-protein interaction network analysis. OsNPSN13, a novel plant-specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) 13 protein, was identified as an upregulated DEP, and transgenic plants overexpressing this gene showed enhanced blast resistance, while transgenic knockdown plants were more susceptible than wild-type plants. The changes in abundance and putative functions of 20 DEPs revealed a possible vesicle trafficking network in the M. oryzae-rice interaction. A comparative proteomic analysis of plasma membrane proteins in rice leaves revealed a plant-immunity-associated vesicle trafficking network that is provoked by blast fungi; these results provide new insights into rice resistance responses against rice blast fungi.
Collapse
|
23
|
Chen R, Tu Z, He C, Nie X, Li K, Fei S, Song B, Nie B, Xie C. Susceptibility factor StEXA1 interacts with StnCBP to facilitate potato virus Y accumulation through the stress granule-dependent RNA regulatory pathway in potato. HORTICULTURE RESEARCH 2022; 9:uhac159. [PMID: 36204208 PMCID: PMC9531334 DOI: 10.1093/hr/uhac159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/22/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses recruit multiple host factors for translation, replication, and movement in the infection process. The loss-of-function mutation of the susceptibility genes will lead to the loss of susceptibility to viruses, which is referred to as 'recessive resistance'. Essential for potexvirus Accumulation 1 (EXA1) has been identified as a susceptibility gene required for potexvirus, lolavirus, and bacterial and oomycete pathogens. In this study, EXA1 knockdown in potato (StEXA1) was found to confer novel resistance to potato virus Y (PVY, potyvirus) in a strain-specific manner. It significantly compromised PVYO accumulation but not PVYN:O and PVYNTN. Further analysis revealed that StEXA1 is associated with the HC-Pro of PVY through a member of eIF4Es (StnCBP). HC-ProO and HC-ProN, two HC-Pro proteins from PVYO and PVYN, exhibited strong and weak interactions with StnCBP, respectively, due to their different spatial conformation. Moreover, the accumulation of PVYO was mainly dependent on the stress granules (SGs) induced by StEXA1 and StnCBP, whereas PVYN:O and PVYNTN could induce SGs by HC-ProN independently through an unknown mechanism. These results could explain why StEXA1 or StnCBP knockdown conferred resistance to PVYO but not to PVYN:O and PVYNTN. In summary, our results for the first time demonstrate that EXA1 can act as a susceptibility gene for PVY infection. Finally, a hypothetical model was proposed for understanding the mechanism by which StEXA1 interacts with StnCBP to facilitate PVY accumulation in potato through the SG-dependent RNA regulatory pathway.
Collapse
Affiliation(s)
- Ruhao Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, E3B 4Z7,
Canada
| | - Kun Li
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sitian Fei
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
24
|
Zhou X, Zheng Y, Wang L, Li H, Guo Y, Li M, Sun MX, Zhao P. SYP72 interacts with the mechanosensitive channel MSL8 to protect pollen from hypoosmotic shock during hydration. Nat Commun 2022; 13:73. [PMID: 35013278 PMCID: PMC8748641 DOI: 10.1038/s41467-021-27757-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
In flowering plants, hydration of desiccated pollen grains on stigma is a prerequisite for pollen germination, during which pollen increase markedly in volume through water uptake, requiring them to survive hypoosmotic shock to maintain cellular integrity. However, the mechanisms behind the adaptation of pollen to this hypoosmotic challenge are largely unknown. Here, we identify the Qc-SNARE protein SYP72, which is specifically expressed in male gametophytes, as a critical regulator of pollen survival upon hypoosmotic shock during hydration. SYP72 interacts with the MSCS-LIKE 8 (MSL8) and is required for its localization to the plasma membrane. Intraspecies and interspecies genetic complementation experiments reveal that SYP72 paralogs and orthologs from green algae to angiosperms display conserved molecular functions and rescue the defects of Arabidopsis syp72 mutant pollen facing hypoosmotic shock following hydration. Our findings demonstrate a critical role for SYP72 in pollen resistance to hypoosmotic shock through the MSL8 cascade during pollen hydration. Pollen grains undergo desiccation and rehydration prior to germination and must survive osmotic shock. Here the authors show that the Qc-SNARE protein SYP72 is required for the localization of the mechanosensitive channel MSL8 at the plasma membrane and to maintain viability during rehydration.
Collapse
Affiliation(s)
- Xuemei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,College of Life Sciences, South-Central University for Nationalities, 430074, Wuhan, China
| | - Yifan Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Ling Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Haiming Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Yingying Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072, Wuhan, China. .,Hubei Hongshan Laboratory, 430070, Wuhan, China.
| |
Collapse
|
25
|
Abstract
The NIa protease of potyviruses is a chymotrypsin-like cysteine protease related to the picornavirus 3C protease. It is also a multifunctional protein known to play multiple roles during virus infection. Picornavirus 3C proteases cleave hundreds of host proteins to facilitate virus infection. However, whether or not potyvirus NIa proteases cleave plant proteins has so far not been tested. Regular expression search using the cleavage site consensus sequence [EQN]xVxH[QE]/[SGTA] for the plum pox virus (PPV) protease identified 90 to 94 putative cleavage events in the proteomes of Prunus persica (a crop severely affected by PPV), Arabidopsis thaliana, and Nicotiana benthamiana (two experimental hosts). In vitro processing assays confirmed cleavage of six A. thaliana and five P. persica proteins by the PPV protease. These proteins were also cleaved in vitro by the protease of turnip mosaic virus (TuMV), which has a similar specificity. We confirmed in vivo cleavage of a transiently expressed tagged version of AtEML2, an EMSY-like protein belonging to a family of nuclear histone readers known to be involved in pathogen resistance. Cleavage of AtEML2 was efficient and was observed in plants that coexpressed the PPV or TuMV NIa proteases or in plants that were infected with TuMV. We also showed partial in vivo cleavage of AtDUF707, a membrane protein annotated as lysine ketoglutarate reductase trans-splicing protein. Although cleavage of the corresponding endogenous plant proteins remains to be confirmed, the results show that a plant virus protease can cleave host proteins during virus infection and highlight a new layer of plant-virus interactions. IMPORTANCE Viruses are highly adaptive and use multiple molecular mechanisms to highjack or modify the cellular resources to their advantage. They must also counteract or evade host defense responses. One well-characterized mechanism used by vertebrate viruses is the proteolytic cleavage of host proteins to inhibit the activities of these proteins and/or to produce cleaved protein fragments that are beneficial to the virus infection cycle. Even though almost half of the known plant viruses encode at least one protease, it was not known whether plant viruses employ this strategy. Using an in silico prediction approach and the well-characterized specificity of potyvirus NIa proteases, we were able to identify hundreds of putative cleavage sites in plant proteins, several of which were validated by downstream experiments. It can be anticipated that many other plant virus proteases also cleave host proteins and that the identification of these cleavage events will lead to novel antiviral strategies.
Collapse
|
26
|
Incarbone M, Clavel M, Monsion B, Kuhn L, Scheer H, Vantard É, Poignavent V, Dunoyer P, Genschik P, Ritzenthaler C. Immunocapture of dsRNA-bound proteins provides insight into Tobacco rattle virus replication complexes and reveals Arabidopsis DRB2 to be a wide-spectrum antiviral effector. THE PLANT CELL 2021; 33:3402-3420. [PMID: 34436604 PMCID: PMC8566308 DOI: 10.1093/plcell/koab214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/17/2021] [Indexed: 05/02/2023]
Abstract
Plant RNA viruses form organized membrane-bound replication complexes to replicate their genomes. This process requires virus- and host-encoded proteins and leads to the production of double-stranded RNA (dsRNA) replication intermediates. Here, we describe the use of Arabidopsis thaliana expressing GFP-tagged dsRNA-binding protein (B2:GFP) to pull down dsRNA and associated proteins in planta upon infection with Tobacco rattle virus (TRV). Mass spectrometry analysis of the dsRNA-B2:GFP-bound proteins from infected plants revealed the presence of viral proteins and numerous host proteins. Among a selection of nine host candidate proteins, eight showed relocalization upon infection, and seven of these colocalized with B2-labeled TRV replication complexes. Infection of A. thaliana T-DNA mutant lines for eight such factors revealed that genetic knockout of dsRNA-BINDING PROTEIN 2 (DRB2) leads to increased TRV accumulation and DRB2 overexpression caused a decrease in the accumulation of four different plant RNA viruses, indicating that DRB2 has a potent and wide-ranging antiviral activity. We propose B2:GFP-mediated pull down of dsRNA to be a versatile method to explore virus replication complex proteomes and to discover key host virus replication factors. Given the universality of dsRNA, development of this tool holds great potential to investigate RNA viruses in other host organisms.
Collapse
Affiliation(s)
- Marco Incarbone
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
- Author for correspondence: (M.I.), (C.R.)
| | - Marion Clavel
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Baptiste Monsion
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade FR1589 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Hélène Scheer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Émilie Vantard
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Vianney Poignavent
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France
- Author for correspondence: (M.I.), (C.R.)
| |
Collapse
|
27
|
Zhai Y, Yuan Q, Qiu S, Li S, Li M, Zheng H, Wu G, Lu Y, Peng J, Rao S, Chen J, Yan F. Turnip mosaic virus impairs perinuclear chloroplast clustering to facilitate viral infection. PLANT, CELL & ENVIRONMENT 2021; 44:3681-3699. [PMID: 34331318 DOI: 10.1111/pce.14157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 05/22/2023]
Abstract
Chloroplasts play crucial roles in plant defence against viral infection. We now report that chloroplast NADH dehydrogenase-like (NDH) complex M subunit gene (NdhM) was first up-regulated and then down-regulated in turnip mosaic virus (TuMV)-infected N. benthamiana. NbNdhM-silenced plants were more susceptible to TuMV, whereas overexpression of NbNdhM inhibited TuMV accumulation. Overexpression of NbNdhM significantly induced the clustering of chloroplasts around the nuclei and disturbing this clustering facilitated TuMV infection, suggesting that the clustering mediated by NbNdhM is a defence against TuMV. It was then shown that NbNdhM interacted with TuMV VPg, and that the NdhMs of different plant species interacted with the proteins of different viruses, implying that NdhM may be a common target of viruses. In the presence of TuMV VPg, NbNdhM, which is normally localized in the nucleus, chloroplasts, cell periphery and chloroplast stromules, colocalized with VPg at the nucleus and nucleolus, with significantly increased nuclear accumulation, while NbNdhM-mediated chloroplast clustering was significantly impaired. This study therefore indicates that NbNdhM has a defensive role in TuMV infection probably by inducing the perinuclear clustering of chloroplasts, and that the localization of NbNdhM is altered by its interaction with TuMV VPg in a way that promotes virus infection.
Collapse
Affiliation(s)
- Yushan Zhai
- College of Plant Protection, Northwest A & F University, Yangling, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Quan Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shiyou Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Saisai Li
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Miaomiao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Plant Protection, Northwest A & F University, Yangling, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
28
|
Modulation of Expression of PVY NTN RNA-Dependent RNA Polymerase (NIb) and Heat Shock Cognate Host Protein HSC70 in Susceptible and Hypersensitive Potato Cultivars. Vaccines (Basel) 2021; 9:vaccines9111254. [PMID: 34835185 PMCID: PMC8619674 DOI: 10.3390/vaccines9111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Potato virus Y (PVY) belongs to the genus Potyvirus and is considered to be one of the most harmful and important plant pathogens. Its RNA-dependent RNA polymerase (RdRp) is known as nuclear inclusion protein b (NIb). The recent findings show that the genome of PVY replicates in the cytoplasm of the plant cell by binding the virus replication complex to the membranous structures of different organelles. In some potyviruses, NIb has been found to be localized in the nucleus and associated with the endoplasmic reticulum membranes. Moreover, NIb has been shown to interact with other host proteins that are particularly involved in promoting the virus infection cycle, such as the heat shock proteins (HSPs). HSP70 is the most conserved among the five major HSP families that are known to affect the plant-pathogen interactions. Some plant viruses can induce the production of HSP70 during the development of infection. To understand the molecular mechanisms underlying the interactive response to PVYNTN (necrotic tuber necrosis strain of PVY), the present study focused on StHSC70-8 and PVYNTN-NIb gene expression via localization of HSC70 and NIb proteins during compatible (susceptible) and incompatible (hypersensitive) potato-PVYNTN interactions. Our results demonstrate that NIb and HSC70 are involved in the response to PVYNTN infections and probably cooperate at some stages of the virus infection cycle. Enhanced deposition of HSC70 proteins during the infection cycle was associated with the dynamic induction of PVYNTN-NIb gene expression and NIb localization during susceptible infections. In hypersensitive response (HR), a significant increase in HSC70 expression was observed up to 3 days post-inoculation (dpi) in the nucleus and chloroplasts. Thereafter, between 3 and 21 dpi, the deposition of NIb decreased, which can be attributed to a reduction in the levels of both virus accumulation and PVYNTN-NIb gene expression. Therefore, we postulate that increase in the expression of both StHSC70-8 and PVYNTN-NIb induces the PVY infection during susceptible infections. In contrast, during HRs, HSC70 cooperates with PVYNTN only at the early stages of interaction and mediates the defense response signaling pathway at the later stages of infection.
Collapse
|
29
|
Hinge VR, Chavhan RL, Kale SP, Suprasanna P, Kadam US. Engineering Resistance Against Viruses in Field Crops Using CRISPR- Cas9. Curr Genomics 2021; 22:214-231. [PMID: 34975291 PMCID: PMC8640848 DOI: 10.2174/1389202922666210412102214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Food security is threatened by various biotic stresses that affect the growth and production of agricultural crops. Viral diseases have become a serious concern for crop plants as they incur huge yield losses. The enhancement of host resistance against plant viruses is a priority for the effective management of plant viral diseases. However, in the present context of the climate change scenario, plant viruses are rapidly evolving, resulting in the loss of the host resistance mechanism. Advances in genome editing techniques, such as CRISPR-Cas9 [clustered regularly interspaced palindromic repeats-CRISPR-associated 9], have been recognized as promising tools for the development of plant virus resistance. CRISPR-Cas9 genome editing tool is widely preferred due to high target specificity, simplicity, efficiency, and reproducibility. CRISPR-Cas9 based virus resistance in plants has been successfully achieved by gene targeting and cleaving the viral genome or altering the plant genome to enhance plant innate immunity. In this article, we have described the CRISPR-Cas9 system, mechanism of plant immunity against viruses and highlighted the use of the CRISPR-Cas9 system to engineer virus resistance in plants. We also discussed prospects and challenges on the use of CRISPR-Cas9-mediated plant virus resistance in crop improvement.
Collapse
Affiliation(s)
| | | | | | | | - Ulhas S. Kadam
- Address correspondenceto this author at the Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany; E-mail: ,
‡Present Address: Division of Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyenongsang National University, Jinju-si, Republic of Korea; E-mail:
| |
Collapse
|
30
|
Agaoua A, Bendahmane A, Moquet F, Dogimont C. Membrane Trafficking Proteins: A New Target to Identify Resistance to Viruses in Plants. PLANTS 2021; 10:plants10102139. [PMID: 34685948 PMCID: PMC8541145 DOI: 10.3390/plants10102139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Replication cycles from most simple-stranded positive RNA viruses infecting plants involve endomembrane deformations. Recent published data revealed several interactions between viral proteins and plant proteins associated with vesicle formation and movement. These plant proteins belong to the COPI/II, SNARE, clathrin and ESCRT endomembrane trafficking mechanisms. In a few cases, variations of these plant proteins leading to virus resistance have been identified. In this review, we summarize all known interactions between these plant cell mechanisms and viruses and highlight strategies allowing fast identification of variant alleles for membrane-associated proteins.
Collapse
Affiliation(s)
- Aimeric Agaoua
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences-Paris-Saclay (IPS2), Université Paris-Saclay, INRAE, CNRS, Univ Evry, 91405 Orsay, France;
| | | | - Catherine Dogimont
- INRAE Génétique et Amélioration des Fruits et Légumes (GAFL), 84140 Montfavet, France;
- Correspondence:
| |
Collapse
|
31
|
Cheng DJ, Xu XJ, Yan ZY, Tettey CK, Fang L, Yang GL, Geng C, Tian YP, Li XD. The chloroplast ribosomal protein large subunit 1 interacts with viral polymerase and promotes virus infection. PLANT PHYSIOLOGY 2021; 187:174-186. [PMID: 34618134 PMCID: PMC8418413 DOI: 10.1093/plphys/kiab249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/06/2021] [Indexed: 05/18/2023]
Abstract
Chloroplasts play an indispensable role in the arms race between plant viruses and hosts. Chloroplast proteins are often recruited by plant viruses to support viral replication and movement. However, the mechanism by which chloroplast proteins regulate potyvirus infection remains largely unknown. In this study, we observed that Nicotiana benthamiana ribosomal protein large subunit 1 (NbRPL1), a chloroplast ribosomal protein, localized to the chloroplasts via its N-terminal 61 amino acids (transit peptide), and interacted with tobacco vein banding mosaic virus (TVBMV) nuclear inclusion protein b (NIb), an RNA-dependent RNA polymerase. Upon TVBMV infection, NbRPL1 was recruited into the 6K2-induced viral replication complexes in chloroplasts. Silencing of NbRPL1 expression reduced TVBMV replication. NbRPL1 competed with NbBeclin1 to bind NIb, and reduced the NbBeclin1-mediated degradation of NIb. Therefore, our results suggest that NbRPL1 interacts with NIb in the chloroplasts, reduces NbBeclin1-mediated NIb degradation, and enhances TVBMV infection.
Collapse
Affiliation(s)
- De-Jie Cheng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiao-Jie Xu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Zhi-Yong Yan
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Carlos Kwesi Tettey
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Le Fang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Guang-Ling Yang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yan-Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xiang-Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Laboratory of Plant Virology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
32
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
33
|
Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Sci Rep 2021; 11:15730. [PMID: 34344928 PMCID: PMC8333424 DOI: 10.1038/s41598-021-95116-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.
Collapse
|
34
|
Qiu S, Chen X, Zhai Y, Cui W, Ai X, Rao S, Chen J, Yan F. Downregulation of Light-Harvesting Complex II Induces ROS-Mediated Defense Against Turnip Mosaic Virus Infection in Nicotiana benthamiana. Front Microbiol 2021; 12:690988. [PMID: 34290685 PMCID: PMC8287655 DOI: 10.3389/fmicb.2021.690988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
The light-harvesting chlorophyll a/b complex protein 3 (LHCB3) of photosystem II plays important roles distributing the excitation energy and modulating the rate of state transition and stomatal response to abscisic acid. However, the functions of LHCB3 in plant immunity have not been well investigated. Here, we show that the expression of LHCB3 in Nicotiana benthamiana (NbLHCB3) was down-regulated by turnip mosaic virus (TuMV) infection. When NbLHCB3 was silenced by tobacco rattle virus-induced gene silencing, systemic infection of TuMV was inhibited. H2O2 was over-accumulated in NbLHCB3-silenced plants. Chemical treatment to inhibit or eliminate reactive oxygen species (ROS) impaired the resistance of the NbLHCB3-silenced plants to TuMV infection. Co-silencing of NbLHCB3 with genes involved in ROS production compromised the resistance of plants to TuMV but co-silencing of NbLHCB3 with genes in the ROS scavenging pathway increased resistance to the virus. Transgenic plants overexpressing NbLHCB3 were more susceptible to TuMV. These results indicate that downregulation of NbLHCB3 is involved in defense against TuMV by inducing ROS production.
Collapse
Affiliation(s)
- Shiyou Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuwei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yushan Zhai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weijun Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuhong Ai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.,Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
35
|
Changes in Subcellular Localization of Host Proteins Induced by Plant Viruses. Viruses 2021; 13:v13040677. [PMID: 33920930 PMCID: PMC8071230 DOI: 10.3390/v13040677] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Viruses are dependent on host factors at all parts of the infection cycle, such as translation, genome replication, encapsidation, and cell-to-cell and systemic movement. RNA viruses replicate their genome in compartments associated with the endoplasmic reticulum, chloroplasts, and mitochondria or peroxisome membranes. In contrast, DNA viruses replicate in the nucleus. Viral infection causes changes in plant gene expression and in the subcellular localization of some host proteins. These changes may support or inhibit virus accumulation and spread. Here, we review host proteins that change their subcellular localization in the presence of a plant virus. The most frequent change is the movement of host cytoplasmic proteins into the sites of virus replication through interactions with viral proteins, and the protein contributes to essential viral processes. In contrast, only a small number of studies document changes in the subcellular localization of proteins with antiviral activity. Understanding the changes in the subcellular localization of host proteins during plant virus infection provides novel insights into the mechanisms of plant–virus interactions and may help the identification of targets for designing genetic resistance to plant viruses.
Collapse
|
36
|
Nagy PD, Feng Z. Tombusviruses orchestrate the host endomembrane system to create elaborate membranous replication organelles. Curr Opin Virol 2021; 48:30-41. [PMID: 33845410 DOI: 10.1016/j.coviro.2021.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 02/09/2023]
Abstract
Positive-strand RNA viruses depend on intensive manipulation of subcellular organelles and membranes to create unique viral replication organelles (VROs), which represent the sites of robust virus replication. The host endomembrane-based protein-trafficking and vesicle-trafficking pathways are specifically targeted by many (+)RNA viruses to take advantage of their rich resources. We summarize the critical roles of co-opted endoplasmic reticulum subdomains and associated host proteins and COPII vesicles play in tombusvirus replication. We also present the surprising contribution of the early endosome and the retromer tubular transport carriers to VRO biogenesis. The central player is tomato bushy stunt virus (TBSV), which provides an outstanding system based on the identification of a complex network of interactions with the host cells. We present the emerging theme on how TBSV uses tethering and membrane-shaping proteins and lipid modifying enzymes to build the sophisticated VRO membranes with unique lipid composition.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | - Zhike Feng
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
37
|
Sánchez Pina MA, Gómez-Aix C, Méndez-López E, Gosalvez Bernal B, Aranda MA. Imaging Techniques to Study Plant Virus Replication and Vertical Transmission. Viruses 2021; 13:358. [PMID: 33668729 PMCID: PMC7996213 DOI: 10.3390/v13030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Plant viruses are obligate parasites that need to usurp plant cell metabolism in order to infect their hosts. Imaging techniques have been used for quite a long time to study plant virus-host interactions, making it possible to have major advances in the knowledge of plant virus infection cycles. The imaging techniques used to study plant-virus interactions have included light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopies. Here, we review the use of these techniques in plant virology, illustrating recent advances in the area with examples from plant virus replication and virus plant-to-plant vertical transmission processes.
Collapse
Affiliation(s)
- María Amelia Sánchez Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Cristina Gómez-Aix
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Murcia, Spain;
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Blanca Gosalvez Bernal
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| |
Collapse
|
38
|
ShNPSN11, a vesicle-transport-related gene, confers disease resistance in tomato to Oidium neolycopersici. Biochem J 2021; 477:3851-3866. [PMID: 32955082 DOI: 10.1042/bcj20190776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Tomato powdery mildew, caused by Oidium neolycopersici, is a fungal disease that results in severe yield loss in infected plants. Herein, we describe the function of a class of proteins, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which play a role in vesicle transport during defense signaling. To date, there have been no reports describing the function of tomato SNAREs during resistance signaling to powdery mildew. Using a combination of classical plant pathology-, genetics-, and cell biology-based approaches, we evaluate the role of ShNPSN11 in resistance to the powdery mildew pathogen O. neolycopersici. Quantitative RT-PCR analysis of tomato SNAREs revealed that ShNPSN11 mRNA accumulation in disease-resistant varieties was significantly increased following pathogen, compared with susceptible varieties, suggesting a role during induced defense signaling. Using in planta subcellular localization, we demonstrate that ShNPSN11 was primarily localized at the plasma membrane, consistent with the localization of SNARE proteins and their role in defense signaling and trafficking. Silencing of ShNPSN11 resulted in increased susceptibility to O. neolycopersici, with pathogen-induced levels of H2O2 and cell death elicitation in ShNPSN11-silenced lines showing a marked reduction. Transient expression of ShNPSN11 did not result in the induction of a hypersensitive cell death response or suppress cell death induced by BAX. Taken together, these data demonstrate that ShNPSNl11 plays an important role in defense activation and host resistance to O. neolycopersici in tomato LA1777.
Collapse
|
39
|
Palukaitis P, Kim S. Resistance to Turnip Mosaic Virus in the Family Brassicaceae. THE PLANT PATHOLOGY JOURNAL 2021; 37:1-23. [PMID: 33551693 PMCID: PMC7847761 DOI: 10.5423/ppj.rw.09.2020.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women’s University, Seoul 0797, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| | - Su Kim
- Institute of Plant Analysis Technology Development, The Saeron Co., Suwon 16648, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| |
Collapse
|
40
|
Sun X, Cai X, Yin K, Gu L, Shen Y, Hu B, Wang Y, Chen Y, Zhu Y, Jia B, Sun M. Wild soybean SNARE proteins BET1s mediate the subcellular localization of the cytoplasmic receptor-like kinases CRCK1s to modulate salt stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:771-785. [PMID: 33160290 DOI: 10.1111/tpj.15072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 05/27/2023]
Abstract
Plants have evolved numerous receptor-like kinases (RLKs) that modulate environmental stress responses. However, little is known regarding soybean (Glycine max) RLKs. We have previously identified that Glycine soja Ca2+ /CAM-binding RLK (GsCBRLK) is involved in salt tolerance. Here, we report that soluble NSF attachment protein receptor proteins BET1s mediate subcellular localization of calmodulin-binding receptor-like cytoplasmic kinases CRCK1s to modulate salt stress responses. Direct interaction between GsCBRLK and GsBET11a was initially identified via yeast two-hybrid and bimolecular fluorescence complementation assays. Further analysis demonstrated conserved interaction between BET1s and CRCK1s. GsCBRLK interacted with all BET1 proteins in wild soybean (Glycine soja) and Arabidopsis, and GsBET11a strongly associated with GsCRCK1a-1d, but slightly with AtCRCK1. In addition, GsBET11a interacted with GsCBRLK via its C-terminal transmembrane domain (TMD), where the entire TMD, not the sequence, was critical for the interaction. Moreover, the N-terminal variable domain (VD) of GsCBRLK was responsible for interacting with GsBET11a, and the intensity of interaction between GsCBRLK/AtCRCK1 and GsBET11a was dependent on VD. Furthermore, GsBET11a was able to mediate the GsCBRLK subcellular localization via direct interaction with VD. Additionally, knockout of AtBET11 or AtBET12 individually did not alter GsCBRLK localization, while GsBET11a expression caused partial internalization of GsCBRLK from the plasma membrane (PM). We further suggest the necessity of GsCBRLK VD for its PM localization via N-terminal truncation assays. Finally, GsBET11a was shown to confer enhanced salt stress tolerance when overexpressed in Arabidopsis and soybean. These results revealed the conserved and direct interaction between BET1s and CRCK1s, and suggested their involvement in salt stress responses.
Collapse
Affiliation(s)
- Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoxi Cai
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Kuide Yin
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Liwei Gu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yang Shen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bingshuang Hu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yan Wang
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yue Chen
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yanming Zhu
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bowei Jia
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mingzhe Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
41
|
Gao F, Zhao S, Men S, Kang Z, Hong J, Wei C, Hong W, Li Y. A non-structural protein encoded by Rice Dwarf Virus targets to the nucleus and chloroplast and inhibits local RNA silencing. SCIENCE CHINA. LIFE SCIENCES 2020; 63:1703-1713. [PMID: 32303960 DOI: 10.1007/s11427-019-1648-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/13/2020] [Indexed: 02/08/2023]
Abstract
RNA silencing is a potent antiviral mechanism in plants and animals. As a counter-defense, many viruses studied to date encode one or more viral suppressors of RNA silencing (VSR). In the latter case, how different VSRs encoded by a virus function in silencing remains to be fully understood. We previously showed that the nonstructural protein Pns10 of a Phytoreovirus, Rice dwarf virus (RDV), functions as a VSR. Here we present evidence that another nonstructural protein, Pns11, also functions as a VSR. While Pns10 was localized in the cytoplasm, Pns11 was localized both in the nucleus and chloroplasts. Pns11 has two bipartite nuclear localization signals (NLSs), which were required for nuclear as well as chloroplastic localization. The NLSs were also required for the silencing activities of Pns11. This is the first report that multiple VSRs encoded by a virus are localized in different subcellular compartments, and that a viral protein can be targeted to both the nucleus and chloroplast. These findings may have broad significance in studying the subcellular targeting of VSRs and other viral proteins in viral-host interactions.
Collapse
Affiliation(s)
- Feng Gao
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - Shanshan Zhao
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- College of Plant Protection, Fujian Agriculture & Forestry University, Fuzhou, 350002, China
| | - Shuzhen Men
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhensheng Kang
- Department of Plant Protection, Northwestern Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Hong
- College of Agriculture, Zhejiang University, Hangzhou, 310029, China
| | - Chunhong Wei
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Wei Hong
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Yi Li
- The State Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
42
|
López‐González S, Navarro JA, Pacios LF, Sardaru P, Pallás V, Sánchez F, Ponz F. Association between flower stalk elongation, an Arabidopsis developmental trait, and the subcellular location and movement dynamics of the nonstructural protein P3 of Turnip mosaic virus. MOLECULAR PLANT PATHOLOGY 2020; 21:1271-1286. [PMID: 32737952 PMCID: PMC7488469 DOI: 10.1111/mpp.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/05/2023]
Abstract
Virus infections affect plant developmental traits but this aspect of the interaction has not been extensively studied so far. Two strains of Turnip mosaic virus differentially affect Arabidopsis development, especially flower stalk elongation, which allowed phenotypical, cellular, and molecular characterization of the viral determinant, the P3 protein. Transiently expressed wild-type green fluorescent protein-tagged P3 proteins of both strains and selected mutants of them revealed important differences in their behaviour as endoplasmic reticulum (ER)-associated peripheral proteins flowing along the reticulum, forming punctate accumulations. Three-dimensional (3D) model structures of all expressed P3 proteins were computationally constructed through I-TASSER protein structure predictions, which were used to compute protein surfaces and map electrostatic potentials to characterize the effect of amino acid changes on features related to protein interactions and to phenotypical and subcellular results. The amino acid at position 279 was the main determinant affecting stalk development. It also determined the speed of ER-flow of the expressed proteins and their final location. A marked change in the protein surface electrostatic potential correlated with changes in subcellular location. One single amino acid in the P3 viral protein determines all the analysed differential characteristics between strains differentially affecting flower stalk development. A model proposing a role of the protein in the intracellular movement of the viral replication complex, in association with the viral 6K2 protein, is proposed. The type of association between both viral proteins could differ between the strains.
Collapse
Affiliation(s)
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), IBMCPValenciaSpain
| | - Luis F. Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Papaiah Sardaru
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), IBMCPValenciaSpain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| |
Collapse
|
43
|
Ibrahim A, Yang X, Liu C, Cooper KD, Bishop BA, Zhu M, Kwon S, Schoelz JE, Nelson RS. Plant SNAREs SYP22 and SYP23 interact with Tobacco mosaic virus 126 kDa protein and SYP2s are required for normal local virus accumulation and spread. Virology 2020; 547:57-71. [PMID: 32560905 DOI: 10.1016/j.virol.2020.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Viral proteins often interact with multiple host proteins during virus accumulation and spread. Identities and functions of all interacting host proteins are not known. Through a yeast two-hybrid screen an Arabidopsis thaliana Qa-SNARE protein [syntaxin of plants 23 (AtSYP23)], associated with pre-vacuolar compartment and vacuolar membrane fusion activities, interacted with Tobacco mosaic virus (TMV) 126 kDa protein, associated with virus accumulation and spread. In planta, AtSYP23 and AtSYP22 each fused with mCherry, co-localized with 126 kDa protein-GFP. Additionally, A. thaliana and Nicotiana benthamiana SYP2 proteins and 126 kDa protein interacted during bimolecular fluorescence complementation analysis. Decreased TMV accumulation in Arabidopsis plants lacking SYP23 and in N. benthamiana plants subjected to virus-induced gene silencing (VIGS) of SYP2 orthologs was observed. Diminished TMV accumulation during VIGS correlated with less intercellular virus spread. The inability to eliminate virus accumulation suggests that SYP2 proteins function redundantly for TMV accumulation, as for plant development.
Collapse
Affiliation(s)
- Amr Ibrahim
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA; Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Xiaohua Yang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Chengke Liu
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | | | | - Min Zhu
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Soonil Kwon
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | | |
Collapse
|
44
|
Yang X, Lu Y, Wang F, Chen Y, Tian Y, Jiang L, Peng J, Zheng H, Lin L, Yan C, Taliansky M, MacFarlane S, Wu Y, Chen J, Yan F. Involvement of the chloroplast gene ferredoxin 1 in multiple responses of Nicotiana benthamiana to Potato virus X infection. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2142-2156. [PMID: 31872217 PMCID: PMC7094082 DOI: 10.1093/jxb/erz565] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2023]
Abstract
The chloroplast protein ferredoxin 1 (FD1), with roles in the chloroplast electron transport chain, is known to interact with the coat proteins (CPs) of Tomato mosaic virus and Cucumber mosaic virus. However, our understanding of the roles of FD1 in virus infection remains limited. Here, we report that the Potato virus X (PVX) p25 protein interacts with FD1, whose mRNA and protein levels are reduced by PVX infection or by transient expression of p25. Silencing of FD1 by Tobacco rattle virus-based virus-induced gene silencing (VIGS) promoted the local and systemic infection of plants by PVX. Use of a drop-and-see (DANS) assay and callose staining revealed that the permeability of plasmodesmata (PDs) was increased in FD1-silenced plants together with a consistently reduced level of PD callose deposition. After FD1 silencing, quantitative reverse transcription-real-time PCR (qRT-PCR) analysis and LC-MS revealed these plants to have a low accumulation of the phytohormones abscisic acid (ABA) and salicylic acid (SA), which contributed to the decreased callose deposition at PDs. Overexpression of FD1 in transgenic plants manifested resistance to PVX infection, but the contents of ABA and SA, and the PD callose deposition were not increased in transgenic plants. Overexpression of FD1 interfered with the RNA silencing suppressor function of p25. These results demonstrate that interfering with FD1 function causes abnormal plant hormone-mediated antiviral processes and thus enhances PVX infection.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fang Wang
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Ying Chen
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Yanzhen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangliang Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chengqi Yan
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Michael Taliansky
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, Russia
| | - Stuart MacFarlane
- The James Hutton Institute, Cell and Molecular Sciences Group, Invergowrie, Dundee, UK
| | - Yuanhua Wu
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Department of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
45
|
Cheng G, Yang Z, Zhang H, Zhang J, Xu J. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. THE NEW PHYTOLOGIST 2020; 225:2122-2139. [PMID: 31657467 DOI: 10.1111/nph.16285] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Group 1 Remorins (REMs) are extensively involved in virus trafficking through plasmodesmata (PD). However, their roles in Potyvirus cell-to-cell movement are not known. The plasma membrane (PM)-associated Ca2+ binding protein 1 (PCaP1) interacts with the P3N-PIPO of Turnip mosaic virus (TuMV) and is required for TuMV cell-to-cell movement, but the underlying mechanism remains elusive. The mutant plants with overexpression or knockout of REM1.2 were used to investigate its role in TuMV cell-to-cell movement. Arabidopsis thaliana complementary mutants of pcap1 were used to investigate the role of PCaP1 in TuMV cell-to-cell movement. Yeast-two-hybrid, bimolecular fluorescence complementation, co-immunoprecipitation and RT-qPCR assays were employed to investigate the underlying molecular mechanism. The results show that TuMV-P3N-PIPO recruits PCaP1 to PD and the actin filament-severing activity of PCaP1 is required for TuMV intercellular movement. REM1.2 negatively regulates the cell-to-cell movement of TuMV via competition with PCaP1 for binding actin filaments. As a counteractive response, TuMV mediates REM1.2 degradation via both 26S ubiquitin-proteasome and autophagy pathways through the interaction of VPg with REM1.2 to establish systemic infection in Arabidopsis. This work unveils the actin cytoskeleton and PM nanodomain-associated molecular events underlying the cell-to-cell movement of potyviruses.
Collapse
Affiliation(s)
- Guangyuan Cheng
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zongtao Yang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Hai Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jisen Zhang
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jingsheng Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| |
Collapse
|
46
|
The RNA-Dependent RNA Polymerase NIb of Potyviruses Plays Multifunctional, Contrasting Roles during Viral Infection. Viruses 2020; 12:v12010077. [PMID: 31936267 PMCID: PMC7019339 DOI: 10.3390/v12010077] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Potyviruses represent the largest group of known plant RNA viruses and include many agriculturally important viruses, such as Plum pox virus, Soybean mosaic virus, Turnip mosaic virus, and Potato virus Y. Potyviruses adopt polyprotein processing as their genome expression strategy. Among the 11 known viral proteins, the nuclear inclusion protein b (NIb) is the RNA-dependent RNA polymerase responsible for viral genome replication. Beyond its principal role as an RNA replicase, NIb has been shown to play key roles in diverse virus–host interactions. NIb recruits several host proteins into the viral replication complexes (VRCs), which are essential for the formation of functional VRCs for virus multiplication, and interacts with the sumoylation pathway proteins to suppress NPR1-mediated immunity response. On the other hand, NIb serves as a target of selective autophagy as well as an elicitor of effector-triggered immunity, resulting in attenuated virus infection. These contrasting roles of NIb provide an excellent example of the complex co-evolutionary arms race between plant hosts and potyviruses. This review highlights the current knowledge about the multifunctional roles of NIb in potyvirus infection, and discusses future research directions.
Collapse
|
47
|
Taninaka Y, Nakahara KS, Hagiwara-Komoda Y. Intracellular proliferation of clover yellow vein virus is unaffected by the recessive resistance gene cyv1 of Pisum sativum. Microbiol Immunol 2020; 64:76-82. [PMID: 31687790 DOI: 10.1111/1348-0421.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 11/30/2022]
Abstract
The pea cyv1 gene is a yet-to-be-identified recessive resistance gene that inhibits the infection of clover yellow vein virus (ClYVV). Previous studies confirmed that the cell-to-cell movement of ClYVV is inhibited in cyv1-carrying pea plants; however, the effect of cyv1 on viral replication remains unknown. In this study, we developed a new pea protoplast transfection method to investigate ClYVV propagation at the single-cell level. Using this method, we revealed that ClYVV accumulates to similar levels in both ClYVV-susceptible and cyv1-carrying pea protoplasts. Thus, the cyv1-mediated resistance would not suppress intracellular ClYVV replication.
Collapse
Affiliation(s)
- Yosuke Taninaka
- Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuka Hagiwara-Komoda
- Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
48
|
Wu G, Cui X, Dai Z, He R, Li Y, Yu K, Bernards M, Chen X, Wang A. A plant RNA virus hijacks endocytic proteins to establish its infection in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:384-400. [PMID: 31562664 DOI: 10.1111/tpj.14549] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Endocytosis and endosomal trafficking play essential roles in diverse biological processes including responses to pathogen attack. It is well established that animal viruses enter host cells through receptor-mediated endocytosis for infection. However, the role of endocytosis in plant virus infection still largely remains unknown. Plant dynamin-related proteins 1 (DRP1) and 2 (DRP2) are the large, multidomain GTPases that participate together in endocytosis. Recently, we have discovered that DRP2 is co-opted by Turnip mosaic virus (TuMV) for infection in plants. We report here that DRP1 is also required for TuMV infection. We show that overexpression of DRP1 from Arabidopsis thaliana (AtDRP1A) promotes TuMV infection, and AtDRP1A interacts with several viral proteins including VPg and cylindrical inclusion (CI), which are the essential components of the virus replication complex (VRC). AtDRP1A colocalizes with the VRC in TuMV-infected cells. Transient expression of a dominant negative (DN) mutant of DRP1A disrupts DRP1-dependent endocytosis and supresses TuMV replication. As adaptor protein (AP) complexes mediate cargo selection for endocytosis, we further investigated the requirement of AP in TuMV infection. Our data suggest that the medium unit of the AP2 complex (AP2β) is responsible for recognizing the viral proteins as cargoes for endocytosis, and knockout of AP2β impairs intracellular endosomal trafficking of VPg and CI and inhibits TuMV replication. Collectively, our results demonstrate that DRP1 and AP2β are two proviral host factors of TuMV and shed light into the involvement of endocytosis and endosomal trafficking in plant virus infection.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
| | - Zhaoji Dai
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
| | - Kangfu Yu
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario, N0R 1G0, Canada
| | - Mark Bernards
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, People's Republic of China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford St, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond ST, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
49
|
Rodamilans B, Valli A, García JA. Molecular Plant-Plum Pox Virus Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:6-17. [PMID: 31454296 DOI: 10.1094/mpmi-07-19-0189-fi] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plum pox virus, the agent that causes sharka disease, is among the most important plant viral pathogens, affecting Prunus trees across the globe. The fabric of interactions that the virus is able to establish with the plant regulates its life cycle, including RNA uncoating, translation, replication, virion assembly, and movement. In addition, plant-virus interactions are strongly conditioned by host specificities, which determine infection outcomes, including resistance. This review attempts to summarize the latest knowledge regarding Plum pox virus-host interactions, giving a comprehensive overview of their relevance for viral infection and plant survival, including the latest advances in genetic engineering of resistant species.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Adrián Valli
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Antonio García
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
50
|
Niehl A, Heinlein M. Perception of double-stranded RNA in plant antiviral immunity. MOLECULAR PLANT PATHOLOGY 2019; 20:1203-1210. [PMID: 30942534 PMCID: PMC6715784 DOI: 10.1111/mpp.12798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA silencing and antiviral pattern-triggered immunity (PTI) both rely on recognition of double-stranded (ds)RNAs as defence-inducing signals. While dsRNA recognition by dicer-like proteins during antiviral RNA silencing is thoroughly investigated, the molecular mechanisms involved in dsRNA perception leading to antiviral PTI are just about to be untangled. Parallels to antimicrobial PTI thereby only partially facilitate our view on antiviral PTI. PTI against microbial pathogens involves plasma membrane bound receptors; however, dsRNAs produced during virus infection occur intracellularly. Hence, how dsRNA may be perceived during this immune response is still an open question. In this short review, we describe recent discoveries in PTI signalling upon sensing of microbial patterns and endogenous 'danger' molecules with emphasis on immune signalling-associated subcellular trafficking processes in plants. Based on these studies, we develop different scenarios how dsRNAs could be sensed during antiviral PTI.
Collapse
Affiliation(s)
- Annette Niehl
- Julius Kühn‐Institute, Institute for Epidemiology and Pathogen DiagnosticsMesseweg 11‐12D‐38104BraunschweigGermany
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR235712 rue du Général ZimmerF‐67000StrasbourgFrance
| |
Collapse
|