1
|
Zhao G, Zhang Y, Li Y, Zhang S, Jiao S, Zeng X, Ma J, Cheng Y, Wang H, Yan Y, Sun J, Tao P, Wang Z. Design of multi-epitope chimeric phage nanocarrier vaccines for porcine deltacoronavirus. Vet Microbiol 2025; 304:110487. [PMID: 40156969 DOI: 10.1016/j.vetmic.2025.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
Porcine delta coronavirus (PDCoV) poses a significant threat to the swine industry. Thus, the development of innovative vaccine candidates is critical for PDCoV prevention. This study details the creation of a PDCoV nanoparticle vaccine utilizing bacteriophage (phage) T4 as a delivery platform. B cell and T cell epitopes of the PDCoV spike (S) protein were identified through bioinformatics and assembled into a tandem construct (termed Pep) using a linker. In silico molecular docking revealed stable interactions between Pep and TLR3. Immune stimulation predictions indicated that Pep could trigger a robust immune response. The prokaryotic Pep protein was conjugated with T4 phage to generate the recombinant T4-Pep phage. Experimental data demonstrated that a single T4 phage displayed at least 830 copies of Pep. In a mouse immunoprotection assay, T4-Pep induced significantly higher levels of specific IgG antibodies and superior neutralizing antibody titers against PDCoV compared to the Pep naked peptide antigen. Moreover, T4 phage exhibited potent immunostimulatory effects, with immunized mice showing protection against PDCoV infection. Histological analysis revealed enhanced intestinal mucosal integrity post-immunization. These findings suggest that bacteriophages are promising vectors for the efficient delivery of viral epitopes, offering a potential platform for developing vaccines against porcine enteric coronaviruses.
Collapse
Affiliation(s)
- GuoQing Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - YuMin Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Yan Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - ShiDan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - ShengJing Jiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - XiaoYan Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - JingJiao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - YuQiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - HengAn Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - YaXian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - JianHe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - ZhaoFei Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai 201100, China.
| |
Collapse
|
2
|
Liu S, Lin M, Zhou X. T4 Phage Displaying Dual Antigen Clusters Against H3N2 Influenza Virus Infection. Vaccines (Basel) 2025; 13:70. [PMID: 39852849 PMCID: PMC11769387 DOI: 10.3390/vaccines13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The current H3N2 influenza subunit vaccine exhibits weak immunogenicity, which limits its effectiveness in preventing and controlling influenza virus infections. METHODS In this study, we aimed to develop a T4 phage-based nanovaccine designed to enhance the immunogenicity of two antigens by displaying the HA1 and M2e antigens of the H3N2 influenza virus on each phage nanoparticle. Specifically, we fused the Soc protein with the HA1 antigen and the Hoc protein with the M2e antigen, assembling them onto a T4 phage that lacks Soc and Hoc proteins (Soc-Hoc-T4), thereby constructing a nanovaccine that concurrently presents both HA1 and M2e antigens. RESULTS The analysis of the optical density of the target protein bands indicated that each particle could display approximately 179 HA1 and 68 M2e antigen molecules. Additionally, animal experiments demonstrated that this nanoparticle vaccine displaying dual antigen clusters induced a stronger specific immune response, higher antibody titers, a more balanced Th1/Th2 immune response, and enhanced CD4+ and CD8+ T cell effects compared to immunization with HA1 and M2e antigen molecules alone. Importantly, mice immunized with the T4 phage displaying dual antigen clusters achieved full protection (100% protection) against the H3N2 influenza virus, highlighting its robust protective efficacy. CONCLUSIONS In summary, our findings indicate that particles based on a T4 phage displaying antigen clusters exhibit ideal immunogenicity and protective effects, providing a promising strategy for the development of subunit vaccines against various viruses beyond influenza.
Collapse
Affiliation(s)
- Shenglong Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Mengzhou Lin
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China; (S.L.); (M.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou 225009, China
| |
Collapse
|
3
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Cui L, Watanabe S, Miyanaga K, Kiga K, Sasahara T, Aiba Y, Tan XE, Veeranarayanan S, Thitiananpakorn K, Nguyen HM, Wannigama DL. A Comprehensive Review on Phage Therapy and Phage-Based Drug Development. Antibiotics (Basel) 2024; 13:870. [PMID: 39335043 PMCID: PMC11428490 DOI: 10.3390/antibiotics13090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Phage therapy, the use of bacteriophages (phages) to treat bacterial infections, is regaining momentum as a promising weapon against the rising threat of multidrug-resistant (MDR) bacteria. This comprehensive review explores the historical context, the modern resurgence of phage therapy, and phage-facilitated advancements in medical and technological fields. It details the mechanisms of action and applications of phages in treating MDR bacterial infections, particularly those associated with biofilms and intracellular pathogens. The review further highlights innovative uses of phages in vaccine development, cancer therapy, and as gene delivery vectors. Despite its targeted and efficient approach, phage therapy faces challenges related to phage stability, immune response, and regulatory approval. By examining these areas in detail, this review underscores the immense potential and remaining hurdles in integrating phage-based therapies into modern medical practices.
Collapse
Affiliation(s)
- Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kazuhiko Miyanaga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Srivani Veeranarayanan
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Huong Minh Nguyen
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke City 329-0498, Japan
| | - Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata 990-2292, Japan
| |
Collapse
|
5
|
Balderas-Cisneros FDJ, León-Buitimea A, Zarate X, Morones-Ramírez JR. Expression and purification of an NP-hoc fusion protein: Utilizing influenza a nucleoprotein and phage T4 hoc protein. Protein Expr Purif 2024; 221:106506. [PMID: 38772430 DOI: 10.1016/j.pep.2024.106506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024]
Abstract
Influenza poses a substantial health risk, with infants and the elderly being particularly susceptible to its grave impacts. The primary challenge lies in its rapid genetic evolution, leading to the emergence of new Influenza A strains annually. These changes involve punctual mutations predominantly affecting the two main glycoproteins: Hemagglutinin (HA) and Neuraminidase (NA). Our existing vaccines target these proteins, providing short-term protection, but fall short when unexpected pandemics strike. Delving deeper into Influenza's genetic makeup, we spotlight the nucleoprotein (NP) - a key player in the transcription, replication, and packaging of RNA. An intriguing characteristic of the NP is that it is highly conserved across all Influenza A variants, potentially paving the way for a more versatile and broadly protective vaccine. We designed and synthesized a novel NP-Hoc fusion protein combining Influenza A nucleoprotein and T4 phage Hoc, cloned using Gibson assembly in E. coli, and purified via ion affinity chromatography. Simultaneously, we explore the T4 coat protein Hoc, typically regarded as inconsequential in controlled viral replication. Yet, it possesses a unique ability: it can link with another protein, showcasing it on the T4 phage coat. Fusing these concepts, our study designs, expresses, and purifies a novel fusion protein named NP-Hoc. We propose this protein as the basis for a new generation of vaccines, engineered to guard broadly against Influenza A. The excitement lies not just in the immediate application, but the promise this holds for future pandemic resilience, with NP-Hoc marking a significant leap in adaptive, broad-spectrum influenza prevention.
Collapse
Affiliation(s)
- Francisco de Jesús Balderas-Cisneros
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, Mexico
| | - Angel León-Buitimea
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, Mexico
| | - Xristo Zarate
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - José Rubén Morones-Ramírez
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas, Av. Universidad s/n. Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, Mexico.
| |
Collapse
|
6
|
Zhu J, Tao P, Chopra AK, Rao VB. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu Rev Virol 2024; 11:395-420. [PMID: 38768614 PMCID: PMC11690488 DOI: 10.1146/annurev-virology-111821-111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, and Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| |
Collapse
|
7
|
Lyu D, Duan Q, Duan R, Qin S, Zheng X, Lu X, Bukai A, Zhang P, Han H, He Z, Sha H, Wu D, Xiao M, Jing H, Wang X. Symbiosis of a lytic bacteriophage and Yersinia pestis and characteristics of plague in Marmota himalayana. Appl Environ Microbiol 2024; 90:e0099524. [PMID: 39023266 PMCID: PMC11337824 DOI: 10.1128/aem.00995-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Surveillance for animal plague was conducted in the Marmota himalayana plague focus of the Qinghai-Tibet Plateau from 2020 to 2023. A 22.89% positive rate of serum F1 antibody was detected in live-caught marmots, alongside a 43.40% incidence of Yersinia pestis isolation from marmot carcasses. Marmot carcasses infected with plague exhibited a significantly higher spleen-somatic index (P < 0.05). Twenty-one Y. pestis-specific phages were isolated, among which one Y. pestis lytic phage (AKS2022HT87GU_phi) was isolated from the bone marrow of a marmot carcass (no. AKS2022HT87) and was found to be symbiotic with Y. pestis. Microscopy revealed the coexistence of lysed and non-lysed colonies of Y. pestis AKS2022HT87. Genome-wide analysis showed that certain strains of the Y. pestis AKS2022HT87 carried phage DNA fragments consistent with phage AKS2022HT87GU_phi. The rare symbiotic relationship between a lytic phage and Y. pestis observed in vitro was highlighted in this study, laying the basis for further exploring the relationship between Y. pestis and its bacteriophages.IMPORTANCEBacteriophages and host bacteria commonly coexist in vivo or in soil environments through complex and interdependent microbial interactions. However, recapitulating this symbiotic state remains challenging in vitro due to limited medium nutrients. In this work, the natural symbiosis between Yersinia pestis and specific phages has been discovered in a Marmota himalayana specimen. Epidemiological analysis presented the characteristics of the Y. pestis and specific phages in the area with a strong plague epidemic. Crucially, comparative genomics has been conducted to analyze the genetic changes in both the Y. pestis and phages over different periods, revealing the dynamic and evolving nature of their symbiosis. These are the critical steps to study the mechanism of the symbiosis.
Collapse
Affiliation(s)
- Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojin Zheng
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Xinmin Lu
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Asaiti Bukai
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Peng Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haonan Han
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaokai He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hanyu Sha
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Di Wu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Wang H, Yang Y, Xu Y, Chen Y, Zhang W, Liu T, Chen G, Wang K. Phage-based delivery systems: engineering, applications, and challenges in nanomedicines. J Nanobiotechnology 2024; 22:365. [PMID: 38918839 PMCID: PMC11197292 DOI: 10.1186/s12951-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Bacteriophages (phages) represent a unique category of viruses with a remarkable ability to selectively infect host bacteria, characterized by their assembly from proteins and nucleic acids. Leveraging their exceptional biological properties and modifiable characteristics, phages emerge as innovative, safe, and efficient delivery vectors. The potential drawbacks associated with conventional nanocarriers in the realms of drug and gene delivery include a lack of cell-specific targeting, cytotoxicity, and diminished in vivo transfection efficiency. In contrast, engineered phages, when employed as cargo delivery vectors, hold the promise to surmount these limitations and attain enhanced delivery efficacy. This review comprehensively outlines current strategies for the engineering of phages, delineates the principal types of phages utilized as nanocarriers in drug and gene delivery, and explores the application of phage-based delivery systems in disease therapy. Additionally, an incisive analysis is provided, critically examining the challenges confronted by phage-based delivery systems within the domain of nanotechnology. The primary objective of this article is to furnish a theoretical reference that contributes to the reasoned design and development of potent phage-based delivery systems.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China
| | - Ying Yang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yan Xu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Yi Chen
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Wenjie Zhang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Gang Chen
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, 266024, China.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266024, China.
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Hou X, Zhang B, Cheng K, Zhang F, Xie X, Chen W, Tan L, Fan J, Liu B, Xu Q. Engineering Phage Nanocarriers Integrated with Bio-Intelligent Plasmids for Personalized and Tunable Enzyme Delivery to Enhance Chemodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308349. [PMID: 38582522 PMCID: PMC11199971 DOI: 10.1002/advs.202308349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Customizable and number-tunable enzyme delivery nanocarriers will be useful in tumor therapy. Herein, a phage vehicle, T4-Lox-DNA-Fe (TLDF), which adeptly modulates enzyme numbers using phage display technology to remodel the tumor microenvironment (TME) is presented. Regarding the demand for lactic acid in tumors, each phage is engineered to display 720 lactate oxidase (Lox), contributing to the depletion of lactic acid to restructure the tumor's energy metabolism. The phage vehicle incorporated dextran iron (Fe) with Fenton reaction capabilities. H2O2 is generated through the Lox catalytic reaction, amplifying the H2O2 supply for dextran iron-based chemodynamic therapy (CDT). Drawing inspiration from the erythropoietin (EPO) biosynthetic process, an EPO enhancer is constructed to impart the EPO-Keap1 plasmid (DNA) with tumor hypoxia-activated functionality, disrupting the redox homeostasis of the TME. Lox consumes local oxygen, and positive feedback between the Lox and the plasmid promotes the expression of kelch ECH Associated Protein 1 (Keap1). Consequently, the downregulation of the antioxidant transcription factor Nrf2, in synergy with CDT, amplifies the oxidative killing effect, leading to tumor suppression of up to 78%. This study seamlessly integrates adaptable T4 phage vehicles with bio-intelligent plasmids, presenting a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Xiao‐Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Bin Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Xiao‐Ting Xie
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Lin‐Fang Tan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Jin‐Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key LaboratoryDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- Key Laboratory of Biomedical Photonics (HUST)Ministry of EducationHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
- NMPA Research Base of Regulatory Science for Medical Devices & Institute of Regulatory Science for Medical DevicesHuazhong University of Science and TechnologyWuhanHubei430074P. R. China
| | - Qiu‐Ran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized MedicineZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiang310014P. R. China
| |
Collapse
|
10
|
Chen C, Zhang N, Li M, Guo A, Zheng Y, Humak F, Qian P, Tao P. Recombinant bacteriophage T4 displaying key epitopes of the foot-and-mouth disease virus as a novel nanoparticle vaccine. Int J Biol Macromol 2024; 258:128837. [PMID: 38128800 DOI: 10.1016/j.ijbiomac.2023.128837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that has caused significant economic losses in the livestock industry. Peptide vaccines engineered with the protective epitopes of FMDV have provided a safer alternative for disease prevention than the traditional inactivated vaccines. However, the immunogenicity of the peptide is usually poor and therefore an adjuvant is required. Here, we showed that recombinant T4 phages displaying the B-cell epitope of the FMDV VP1 protein (VP1130-158), without additional adjuvants, induced similar levels of antigen-specific IgG1 but higher levels of IgG2a compared to the peptide vaccine. Incorporation of a CD4+ T cell epitope, either 3A21-35 of FMDV 3A protein or P2830-844 of tetanus toxoid, further enhanced the immunogenicity of VP1-T4 phage nanoparticles. Interestingly, the extrinsic adjuvant cannot enhance the immunogenicity of the nanoparticles, indicating the intrinsic adjuvant activities of T4 phage. Furthermore, the recombinant T4 phage can be produced on a large scale within a short period of time at a relatively low-cost using Escherichia coli, heralding its potential in the development of a safe and effective FMDV vaccine.
Collapse
Affiliation(s)
- Cen Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Nan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Aili Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Yifei Zheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China
| | - Farwa Humak
- Antimicrobial Resistance Research Lab, Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China.
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Lab, Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
Vernhes E, Larbi Chérif L, Ducrot N, Vanbergue C, Ouldali M, Zig L, Sidibe N, Hoos S, Ramirez-Chamorro L, Renouard M, Rossier O, England P, Schoehn G, Boulanger P, Benihoud K. Antigen self-anchoring onto bacteriophage T5 capsid-like particles for vaccine design. NPJ Vaccines 2024; 9:6. [PMID: 38177231 PMCID: PMC10766600 DOI: 10.1038/s41541-023-00798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
The promises of vaccines based on virus-like particles stimulate demand for universal non-infectious virus-like platforms that can be efficiently grafted with large antigens. Here, we harnessed the modularity and extreme affinity of the decoration protein pb10 for the capsid of bacteriophage T5. SPR experiments demonstrated that pb10 fused to mCherry or to the model antigen ovalbumin (Ova) retained picomolar affinity for DNA-free T5 capsid-like particles (T5-CLPs), while cryo-EM studies attested to the full occupancy of the 120 capsid binding sites. Mice immunization with CLP-bound pb10-Ova chimeras elicited strong long-lasting anti-Ova humoral responses involving a large panel of isotypes, as well as CD8+ T cell responses, without any extrinsic adjuvant. Therefore, T5-CLP constitutes a unique DNA-free bacteriophage capsid able to display a regular array of large antigens through highly efficient chemical-free anchoring. Its ability to elicit robust immune responses paves the way for further development of this novel vaccination platform.
Collapse
Affiliation(s)
- Emeline Vernhes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Linda Larbi Chérif
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Nicolas Ducrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Clément Vanbergue
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Lena Zig
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - N'diaye Sidibe
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France
| | - Sylviane Hoos
- Institut Pasteur, Biophysique Moléculaire, CNRS UMR 3528, Paris, France
| | - Luis Ramirez-Chamorro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Madalena Renouard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ombeline Rossier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Patrick England
- Institut Pasteur, Biophysique Moléculaire, CNRS UMR 3528, Paris, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Pascale Boulanger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Karim Benihoud
- Université Paris-Saclay, Gustave Roussy, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches (METSY), 94805, Villejuif, France.
| |
Collapse
|
12
|
Li M, Chen C, Wang X, Guo P, Feng H, Zhang X, Zhang W, Gu C, Zhu J, Wen G, Feng Y, Xiao L, Peng G, Rao VB, Tao P. T4 bacteriophage nanoparticles engineered through CRISPR provide a versatile platform for rapid development of flu mucosal vaccines. Antiviral Res 2023; 217:105688. [PMID: 37516153 DOI: 10.1016/j.antiviral.2023.105688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Vaccines that trigger mucosal immune responses at the entry portals of pathogens are highly desired. Here, we showed that antigen-decorated nanoparticle generated through CRISPR engineering of T4 bacteriophage can serve as a universal platform for the rapid development of mucosal vaccines. Insertion of Flu viral M2e into phage T4 genome through fusion to Soc (Small Outer Capsid protein) generated a recombinant phage, and the Soc-M2e proteins self-assembled onto phage capsids to form 3M2e-T4 nanoparticles during propagation of T4 in E. coli. Intranasal administration of 3M2e-T4 nanoparticles maintains antigen persistence in the lungs, resulting in increased uptake and presentation by antigen-presenting cells. M2e-specific secretory IgA, effector (TEM), central (TCM), and tissue-resident memory CD4+ T cells (TRM) were efficiently induced in the local mucosal sites, which mediated protections against divergent influenza viruses. Our studies demonstrated the mechanisms of immune protection following 3M2e-T4 nanoparticles vaccination and provide a versatile T4 platform that can be customized to rapidly develop mucosal vaccines against future emerging epidemics.
Collapse
Affiliation(s)
- Mengling Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Cen Chen
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Xialin Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Pengju Guo
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Helong Feng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Xueqi Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Wanpo Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Changqin Gu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, 430070, China
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Lab, Wuhan, Hubei, 430070, China.
| |
Collapse
|
13
|
Mohammad Hasani S, Ghafouri E, Kouhpayeh S, Amerizadeh F, Rahimmanesh I, Amirkhani Z, Khanahmad H. Phage based vaccine: A novel strategy in prevention and treatment. Heliyon 2023; 9:e19925. [PMID: 37809683 PMCID: PMC10559356 DOI: 10.1016/j.heliyon.2023.e19925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
The vaccine was first developed in 1796 by a British physician, Edward Jenner, against the smallpox virus. This invention revolutionized medical science and saved lives around the world. The production of effective vaccines requires dominant immune epitopes to elicit a robust immune response. Thus, applying bacteriophages has attracted the attention of many researchers because of their advantages in vaccine design and development. Bacteriophages are not infectious to humans and are unlikely to bind to cellular receptors and activate signaling pathways. Phages could activate both cellular and humoral immunity, which is another goal of an effective vaccine design. Also, phages act as an effective adjuvant, along with the antigens, and induce a robust immune response. Phage-based vaccines can also be administered orally because of their stability in the gastrointestinal tract, in contrast to common vaccination routes, which are intradermal, subcutaneous, or intramuscular. This review presents the current improvements in phage-based vaccines and their applications as preventive or therapeutic vaccines.
Collapse
Affiliation(s)
- Sharareh Mohammad Hasani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Erythron Genetics and Pathobiology Laboratory, Department of Immunology, Isfahan, Iran
| | - Forouzan Amerizadeh
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Ragothaman M, Yoo SY. Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions. Vaccines (Basel) 2023; 11:vaccines11050919. [PMID: 37243023 DOI: 10.3390/vaccines11050919] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages have emerged as versatile tools in the field of bioengineering, with enormous potential in tissue engineering, vaccine development, and immunotherapy. The genetic makeup of phages can be harnessed for the development of novel DNA vaccines and antigen display systems, as they can provide a highly organized and repetitive presentation of antigens to immune cells. Bacteriophages have opened new possibilities for the targeting of specific molecular determinants of cancer cells. Phages can be used as anticancer agents and carriers of imaging molecules and therapeutics. In this review, we explored the role of bacteriophages and bacteriophage engineering in targeted cancer therapy. The question of how the engineered bacteriophages can interact with the biological and immunological systems is emphasized to comprehend the underlying mechanism of phage use in cancer immunotherapy. The effectiveness of phage display technology in identifying high-affinity ligands for substrates, such as cancer cells and tumor-associated molecules, and the emerging field of phage engineering and its potential in the development of effective cancer treatments are discussed. We also highlight phage usage in clinical trials as well as the related patents. This review provides a new insight into engineered phage-based cancer vaccines.
Collapse
Affiliation(s)
- Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Song J, Liu Z, Zhang Q, Liu Y, Chen Y. Phage Engineering for Targeted Multidrug-Resistant Escherichia coli. Int J Mol Sci 2023; 24:ijms24032459. [PMID: 36768781 PMCID: PMC10004113 DOI: 10.3390/ijms24032459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
The lytic bacteriophages have potential application value in the treatment of bacterial infections. However, the narrow host spectrum of these phages limits their range of clinical application. Here, we demonstrate the use of scarless Cas9-assisted recombination (no-SCAR) gene-editing technology to regulate phage-host range. We used phage PHB20 as the scaffold to create agents targeting different multidrug-resistant Escherichia coli by replacing its phage tail fiber gene (ORF40). The engineered phages were polyvalent and capable of infecting both the original host bacteria and new targets. Phage-tail fiber genes can be amplified by PCR to construct a recombinant phage PHB20 library that can deal with multidrug-resistant bacteria in the future. Our results provide a better understanding of phage-host interactions, and we describe new anti-bacterial editing methods.
Collapse
Affiliation(s)
| | | | | | - Yuqing Liu
- Correspondence: ; Tel./Fax: +86-531-66655093
| | | |
Collapse
|
16
|
Ul Haq I, Krukiewicz K, Yahya G, Haq MU, Maryam S, Mosbah RA, Saber S, Alrouji M. The Breadth of Bacteriophages Contributing to the Development of the Phage-Based Vaccines for COVID-19: An Ideal Platform to Design the Multiplex Vaccine. Int J Mol Sci 2023; 24:1536. [PMID: 36675046 PMCID: PMC9861788 DOI: 10.3390/ijms24021536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Phages are highly ubiquitous biological agents, which means they are ideal tools for molecular biology and recombinant DNA technology. The development of a phage display technology was a turning point in the design of phage-based vaccines. Phages are now recognized as universal adjuvant-free nanovaccine platforms. Phages are well-suited for vaccine design owing to their high stability in harsh conditions and simple and inexpensive large-scale production. The aim of this review is to summarize the overall breadth of the antiviral therapeutic perspective of phages contributing to the development of phage-based vaccines for COVID-19. We show that phage vaccines induce a strong and specific humoral response by targeted phage particles carrying the epitopes of SARS-CoV-2. Further, the engineering of the T4 bacteriophage by CRISPR (clustered regularly interspaced short palindromic repeats) presents phage vaccines as a valuable platform with potential capabilities of genetic plasticity, intrinsic immunogenicity, and stability.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt
| | - Mehboob Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Rasha A. Mosbah
- Infection Control Unit, Zagazig University Hospital, Zagazig University, El Sharkia 44519, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
17
|
Gnann AD, Xia Y, Soule J, Barthélemy C, Mawani JS, Musoke SN, Castellano BM, Brignole EJ, Frueh DP, Dowling DP. High-resolution structures of a siderophore-producing cyclization domain from Yersinia pestis offer a refined proposal of substrate binding. J Biol Chem 2022; 298:102454. [PMID: 36063993 PMCID: PMC9547227 DOI: 10.1016/j.jbc.2022.102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/01/2023] Open
Abstract
Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.
Collapse
Affiliation(s)
- Andrew D. Gnann
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Yuan Xia
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jess Soule
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Clara Barthélemy
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jayata S. Mawani
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Sarah Nzikoba Musoke
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian M. Castellano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Edward J. Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA,For correspondence: Daniel P. Dowling
| |
Collapse
|
18
|
Rao VB, Zhu J. Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. Curr Opin Virol 2022; 55:101255. [PMID: 35952598 PMCID: PMC11736861 DOI: 10.1016/j.coviro.2022.101255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Abstract
The ability to deliver therapeutic genes and biomolecules into a human cell and restore a defective function has been the holy grail of medicine. Adeno-associated viruses and lentiviruses have been extensively used as delivery vehicles, but their capacity is limited to one (or two) gene(s). Bacteriophages are emerging as novel vehicles for gene therapy. The large 120 × 86-nm T4 capsid allows engineering of both its surface and its interior to incorporate combinations of DNAs, RNAs, proteins, and their complexes. In vitro assembly using purified components allows customization for various applications and for individualized therapies. Its large capacity, cell-targeting capability, safety, and inexpensive manufacturing could open unprecedented new possibilities for gene, cancer, and stem cell therapies. However, efficient entry into primary human cells and intracellular trafficking are significant barriers that must be overcome by gene engineering and evolution in order to translate phage-delivery technology from bench to bedside.
Collapse
Affiliation(s)
- Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
19
|
Charles T, Moss DL, Bhat P, Moore PW, Kummer NA, Bhattacharya A, Landry SJ, Mettu RR. CD4+ T-Cell Epitope Prediction by Combined Analysis of Antigen Conformational Flexibility and Peptide-MHCII Binding Affinity. Biochemistry 2022; 61:1585-1599. [PMID: 35834502 PMCID: PMC9352311 DOI: 10.1021/acs.biochem.2c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Antigen processing in the class II MHC pathway depends
on conventional
proteolytic enzymes, potentially acting on antigens in native-like
conformational states. CD4+ epitope dominance arises from a competition
among antigen folding, proteolysis, and MHCII binding. Protease-sensitive
sites, linear antibody epitopes, and CD4+ T-cell epitopes were mapped
in plague vaccine candidate F1-V to evaluate the various contributions
to CD4+ epitope dominance. Using X-ray crystal structures, antigen
processing likelihood (APL) predicts CD4+ epitopes with significant
accuracy for F1-V without considering peptide-MHCII binding affinity.
We also show that APL achieves excellent performance over two benchmark
antigen sets. The profiles of conformational flexibility derived from
the X-ray crystal structures of the F1-V proteins, Caf1 and LcrV,
were similar to the biochemical profiles of linear antibody epitope
reactivity and protease sensitivity, suggesting that the role of structure
in proteolysis was captured by the analysis of the crystal structures.
The patterns of CD4+ T-cell epitope dominance in C57BL/6, CBA, and
BALB/c mice were compared to epitope predictions based on APL, MHCII
binding, or both. For a sample of 13 diverse antigens, the accuracy
of epitope prediction by the combination of APL and I-Ab-MHCII-peptide affinity reached 36%. When MHCII allele specificity
was also diverse, such as in human immunity, prediction of dominant
epitopes by APL alone reached 42% when using a stringent scoring threshold.
Because dominant CD4+ epitopes tend to occur in conformationally stable
antigen domains, crystal structures typically are available for analysis
by APL, and thus, the requirement for a crystal structure is not a
severe limitation.
Collapse
Affiliation(s)
- Tysheena Charles
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Daniel L Moss
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Pawan Bhat
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Peyton W Moore
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Nicholas A Kummer
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Avik Bhattacharya
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ramgopal R Mettu
- Department of Computer Science, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
20
|
Zhu J, Ananthaswamy N, Jain S, Batra H, Tang WC, Rao VB. CRISPR Engineering of Bacteriophage T4 to Design Vaccines Against SARS-CoV-2 and Emerging Pathogens. Methods Mol Biol 2022; 2410:209-228. [PMID: 34914049 DOI: 10.1007/978-1-0716-1884-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The COVID-19 pandemic brought to the fore the urgent need for vaccine design and delivery platforms that can be rapidly deployed for manufacture and distribution. Though the mRNA and adenoviral vector platforms have been enormously successful to control SARS-CoV-2 viral infections, it is unclear if this could be replicated against more complex pathogens or the emerging variants. Recently, we described a "universal" platform that can incorporate multiple vaccine targets into the same nanoparticle scaffold by CRISPR engineering of bacteriophage T4. A T4-COVID vaccine designed with this technology elicited broad immunogenicity and complete protection against virus challenge in a mouse model. Here, we describe the detailed methodology to generate recombinant bacteriophage T4 backbones using CRISPR that can also be broadly applicable to other bacteriophages that abundantly pervade the Earth.
Collapse
Affiliation(s)
- Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Swati Jain
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Wei-Chun Tang
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, USA.
| |
Collapse
|
21
|
Dong J, Chen C, Liu Y, Zhu J, Li M, Rao VB, Tao P. Engineering T4 Bacteriophage for In Vivo Display by Type V CRISPR-Cas Genome Editing. ACS Synth Biol 2021; 10:2639-2648. [PMID: 34546037 DOI: 10.1021/acssynbio.1c00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophage T4 has enormous potential for biomedical applications due to its large size, capsid architecture, and high payload capability for protein and DNA delivery. However, it is not very easy to genetically engineer its genome heavily modified by cytosine hydroxymethylation and glucosylation. The glucosyl hydroxymethyl cytosine (ghmC) genome of phage is completely resistant to most restriction endonucleases and exhibits various degrees of resistance to CRISPR-Cas systems. Here, we found that the type V CRISPR-Cas12a system, which shows efficient cleavage of ghmC-modified genome when compared to the type II CRISPR-Cas9 system, can be synergistically employed to generate recombinant T4 phages. Focused on surface display, we analyzed the ability of phage T4 outer capsid proteins Hoc (highly antigenic outer capsid protein) and Soc (small outer capsid protein) to tether, in vivo, foreign peptides and proteins to T4 capsid. Our data show that while these could be successfully expressed and displayed during the phage infection, shorter peptides are present at a much higher copy number than full-length proteins. However, the copy number of the latter could be elevated by driving the expression of the transgene using the strong T7 RNA polymerase expression system. This CRISPR-inspired approach has the potential to expand the application of phages to various basic and translational research projects.
Collapse
Affiliation(s)
- Junhua Dong
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Cen Chen
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Yuepeng Liu
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, District of Columbia 20064, United States
| | - Mengling Li
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, District of Columbia 20064, United States
| | - Pan Tao
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hongshan Laboratory, Wuhan 430070, Hubei, China
| |
Collapse
|
22
|
Li M, Guo P, Chen C, Feng H, Zhang W, Gu C, Wen G, Rao VB, Tao P. Bacteriophage T4 Vaccine Platform for Next-Generation Influenza Vaccine Development. Front Immunol 2021; 12:745625. [PMID: 34712234 PMCID: PMC8546227 DOI: 10.3389/fimmu.2021.745625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Developing influenza vaccines that protect against a broad range of viruses is a global health priority. Several conserved viral proteins or domains have been identified as promising targets for such vaccine development. However, none of the targets is sufficiently immunogenic to elicit complete protection, and vaccine platforms that can enhance immunogenicity and deliver multiple antigens are desperately needed. Here, we report proof-of-concept studies for the development of next-generation influenza vaccines using the bacteriophage T4 virus-like particle (VLP) platform. Using the extracellular domain of influenza matrix protein 2 (M2e) as a readout, we demonstrate that up to ~1,281 M2e molecules can be assembled on a 120 x 86 nanometer phage capsid to generate M2e-T4 VLPs. These M2e-decorated nanoparticles, without any adjuvant, are highly immunogenic, stimulate robust humoral as well as cellular immune responses, and conferred complete protection against lethal influenza virus challenge. Potentially, additional conserved antigens could be incorporated into the M2e-T4 VLPs and mass-produced in E. coli in a short amount of time to deal with an emerging influenza pandemic.
Collapse
Affiliation(s)
- Mengling Li
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Division of Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hongshan Lab, Wuhan, China
| | - Pengju Guo
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Division of Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hongshan Lab, Wuhan, China
| | - Cen Chen
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Division of Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hongshan Lab, Wuhan, China
| | - Helong Feng
- Division of Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wanpo Zhang
- Division of Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changqin Gu
- Division of Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoyuan Wen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Pan Tao
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Division of Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hongshan Lab, Wuhan, China
| |
Collapse
|
23
|
Zhu J, Ananthaswamy N, Jain S, Batra H, Tang WC, Lewry DA, Richards ML, David SA, Kilgore PB, Sha J, Drelich A, Tseng CTK, Chopra AK, Rao VB. A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. SCIENCE ADVANCES 2021; 7:eabh1547. [PMID: 34516878 PMCID: PMC8442874 DOI: 10.1126/sciadv.abh1547] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/16/2021] [Indexed: 06/02/2023]
Abstract
A “universal” platform that can rapidly generate multiplex vaccine candidates is critically needed to control pandemics. Using the severe acute respiratory syndrome coronavirus 2 as a model, we have developed such a platform by CRISPR engineering of bacteriophage T4. A pipeline of vaccine candidates was engineered by incorporating various viral components into appropriate compartments of phage nanoparticle structure. These include expressible spike genes in genome, spike and envelope epitopes as surface decorations, and nucleocapsid proteins in packaged core. Phage decorated with spike trimers was found to be the most potent vaccine candidate in animal models. Without any adjuvant, this vaccine stimulated robust immune responses, both T helper cell 1 (TH1) and TH2 immunoglobulin G subclasses, blocked virus-receptor interactions, neutralized viral infection, and conferred complete protection against viral challenge. This new nanovaccine design framework might allow the rapid deployment of effective adjuvant-free phage-based vaccines against any emerging pathogen in the future.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Neeti Ananthaswamy
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Swati Jain
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Himanshu Batra
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Wei-Chun Tang
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | | - Paul B. Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
24
|
Abstract
Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Medeea Popescu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,Immunology Program, School of Medicine, Stanford University, Stanford, California 94305, USA.,These authors contributed equally to this article
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,These authors contributed equally to this article
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
25
|
Zhu J, Ananthaswamy N, Jain S, Batra H, Tang WC, Lewry DA, Richards ML, David SA, Kilgore PB, Sha J, Drelich A, Tseng CTK, Chopra AK, Rao VB. A Universal Bacteriophage T4 Nanoparticle Platform to Design Multiplex SARS-CoV-2 Vaccine Candidates by CRISPR Engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.19.427310. [PMID: 33501450 PMCID: PMC7836120 DOI: 10.1101/2021.01.19.427310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A "universal" vaccine design platform that can rapidly generate multiplex vaccine candidates is critically needed to control future pandemics. Here, using SARS-CoV-2 pandemic virus as a model, we have developed such a platform by CRISPR engineering of bacteriophage T4. A pipeline of vaccine candidates were engineered by incorporating various viral components into appropriate compartments of phage nanoparticle structure. These include: expressible spike genes in genome, spike and envelope epitopes as surface decorations, and nucleocapsid proteins in packaged core. Phage decorated with spike trimers is found to be the most potent vaccine candidate in mouse and rabbit models. Without any adjuvant, this vaccine stimulated robust immune responses, both T H 1 and T H 2 IgG subclasses, blocked virus-receptor interactions, neutralized viral infection, and conferred complete protection against viral challenge. This new type of nanovaccine design framework might allow rapid deployment of effective phage-based vaccines against any emerging pathogen in the future.
Collapse
|
26
|
González-Mora A, Hernández-Pérez J, Iqbal HMN, Rito-Palomares M, Benavides J. Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery. Vaccines (Basel) 2020; 8:504. [PMID: 32899720 PMCID: PMC7565293 DOI: 10.3390/vaccines8030504] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
Vaccines are considered one of the most important bioproducts in medicine. Since the development of the smallpox vaccine in 1796, several types of vaccines for many diseases have been created. However, some vaccines have shown limitations as high cost and low immune responses. In that regard, bacteriophages have been proposed as an attractive alternative for the development of more cost-effective vaccines. Phage-displayed vaccines consists in the expression of antigens on the phage surface. This approach takes advantage of inherent properties of these particles such as their adjuvant capacity, economic production and high stability, among others. To date, three types of phage-based vaccines have been developed: phage-displayed, phage DNA and hybrid phage-DNA vaccines. Typically, phage display technology has been used for the identification of new and protective epitopes, mimotopes and antigens. In this context, phage particles represent a versatile, effective and promising alternative for the development of more effective vaccine delivery systems which should be highly exploited in the future. This review describes current advances in the development of bacteriophage-based vaccines, with special attention to vaccine delivery strategies. Moreover, the immunological aspects of phage-based vaccines, as well as the applications of phage display for vaccine development, are explored. Finally, important challenges and the future of phage-bases vaccines are discussed.
Collapse
Affiliation(s)
- Alejandro González-Mora
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Jesús Hernández-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Ave. Morones Prieto 3000 Pte, Monterrey, N.L. 64710, Mexico;
| | - Jorge Benavides
- Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico; (A.G.-M.); (J.H.-P.); (H.M.N.I.)
| |
Collapse
|
27
|
Zhu J, Tao P, Mahalingam M, Sha J, Kilgore P, Chopra AK, Rao V. A prokaryotic-eukaryotic hybrid viral vector for delivery of large cargos of genes and proteins into human cells. SCIENCE ADVANCES 2019; 5:eaax0064. [PMID: 31457098 PMCID: PMC6703872 DOI: 10.1126/sciadv.aax0064] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/11/2019] [Indexed: 05/03/2023]
Abstract
Development of safe and efficient nanoscale vehicles that can deliver large molecular cargos into human cells could transform future human therapies and personalized medicine. Here, we design a hybrid viral vector composed of a prokaryotic virus (bacteriophage T4) and a eukaryotic virus [adeno-associated virus (AAV)]. The small 25-nm AAV is attached to the large 120 nm × 86 nm T4 head through avidin-biotin cross-bridges using the phage decoration proteins Soc and Hoc. AAV "piggy-backed" on T4 capsid, by virtue of its natural ability to enter human cells acted as an efficient "driver," delivering the largest payloads of foreign DNA (up to 170 kb) and protein (up to 1025 molecules) reported to date, and elicited robust immune responses in mice against flu and plague pathogens and conferred complete protection against lethal pneumonic plague challenge. The T4-AAV represents a unique platform for assembly of natural building blocks into potential therapeutics against genetic and infectious diseases.
Collapse
Affiliation(s)
- Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Paul Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
28
|
Chen Y, Batra H, Dong J, Chen C, Rao VB, Tao P. Genetic Engineering of Bacteriophages Against Infectious Diseases. Front Microbiol 2019; 10:954. [PMID: 31130936 PMCID: PMC6509161 DOI: 10.3389/fmicb.2019.00954] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and widely distributed organisms on Earth, constituting a virtually unlimited resource to explore the development of biomedical therapies. The therapeutic use of phages to treat bacterial infections (“phage therapy”) was conceived by Felix d’Herelle nearly a century ago. However, its power has been realized only recently, largely due to the emergence of multi-antibiotic resistant bacterial pathogens. Progress in technologies, such as high-throughput sequencing, genome editing, and synthetic biology, further opened doors to explore this vast treasure trove. Here, we review some of the emerging themes on the use of phages against infectious diseases. In addition to phage therapy, phages have also been developed as vaccine platforms to deliver antigens as part of virus-like nanoparticles that can stimulate immune responses and prevent pathogen infections. Phage engineering promises to generate phage variants with unique properties for prophylactic and therapeutic applications. These approaches have created momentum to accelerate basic as well as translational phage research and potential development of therapeutics in the near future.
Collapse
Affiliation(s)
- Yibao Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Junhua Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Cen Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Pan Tao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Department of Biology, The Catholic University of America, Washington, DC, United States
| |
Collapse
|
29
|
Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M. Phage-based vaccines. Adv Drug Deliv Rev 2019; 145:40-56. [PMID: 30594492 DOI: 10.1016/j.addr.2018.12.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Bacteriophages, or more colloquially as phages, are viruses that possess the ability to infect and replicate with bacterial cells. They are assembled from two major types of biomolecules, the nucleic acids and the proteins, with the latter forming a capsid and the former being encapsulated. In the eukaryotic hosts, phages are inert particulate antigens and cannot trigger pathogenesis. In recent years, many studies have been explored about using phages as nanomedicine platforms for developing vaccines due to their unique biological characteristics. The whole phage particles can be used for vaccine design in the form of phage-displayed vaccines or phage DNA vaccines. Phage-displayed vaccines are the phages with peptide or protein antigens genetically displayed on their surfaces as well as those with antigens chemically conjugated or biologically bound on their surfaces. The phages can then deliver the immunogenic peptides or proteins to the target cells or tissues. Phage DNA vaccines are the eukaryotic promoter-driven vaccine genes inserted in the phage genomes, which are carried by phages to the target cells to generate antigens. The antigens, either as the immunogenic peptides or proteins displayed on the phages, or as the products expressed from the vaccine genes, can serve as vaccines to elicit immune responses for disease prevention and treatment. Both phage-displayed vaccines and phage DNA vaccines promise a brilliant future for developing vaccines. This review presents the recent advancements in the field of phage-based vaccines and their applications in both the prevention and treatment of various diseases. It also discusses the challenges and perspectives in moving this field forwards.
Collapse
|
30
|
Tao P, Zhu J, Mahalingam M, Batra H, Rao VB. Bacteriophage T4 nanoparticles for vaccine delivery against infectious diseases. Adv Drug Deliv Rev 2019; 145:57-72. [PMID: 29981801 DOI: 10.1016/j.addr.2018.06.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/15/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022]
Abstract
Subunit vaccines containing one or more target antigens from pathogenic organisms represent safer alternatives to whole pathogen vaccines. However, the antigens by themselves are not sufficiently immunogenic and require additives known as adjuvants to enhance immunogenicity and protective efficacy. Assembly of the antigens into virus-like nanoparticles (VLPs) is a better approach as it allows presentation of the epitopes in a more native context. The repetitive, symmetrical, and high density display of antigens on the VLPs mimic pathogen-associated molecular patterns seen on bacteria and viruses. The antigens, thus, might be better presented to stimulate host's innate as well as adaptive immune systems thereby eliciting both humoral and cellular immune responses. Bacteriophages such as phage T4 provide excellent platforms to generate the nanoparticle vaccines. The T4 capsid containing two non-essential outer proteins Soc and Hoc allow high density array of antigen epitopes in the form of peptides, domains, full-length proteins, or even multi-subunit complexes. Co-delivery of DNAs, targeting molecules, and/or molecular adjuvants provides additional advantages. Recent studies demonstrate that the phage T4 VLPs are highly immunogenic, do not need an adjuvant, and provide complete protection against bacterial and viral pathogens. Thus, phage T4 could potentially be developed as a "universal" VLP platform to design future multivalent vaccines against complex and emerging pathogens.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Himanshu Batra
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| |
Collapse
|
31
|
Current State of the Problem of Vaccine Development for Specific Prophylaxis of Plague. ПРОБЛЕМЫ ОСОБО ОПАСНЫХ ИНФЕКЦИЙ 2019. [DOI: 10.21055/0370-1069-2019-1-50-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emergence of large-scale plague outbreaks in Africa and South America countries in the modern period, characterized by high frequency of pneumonic plague development (including with lethal outcome) keeps up the interest of scientists to the matters of development and testing of means for specific prophylaxis of this particularly dangerous infectious disease. WHO workshop that was held in 2018 identified the general principles of optimization of design and testing of new-generation vaccines effectively protecting the population from plague infection. Application of the achievements of biological and medical sciences for outlining rational strategy for construction of immunobiological preparations led to a certain progress in the creation of not only sub-unit vaccines based on recombinant antigens, but also live and vector preparations on the platform of safe bacterial strains and replicating and non-replicating viruses in recent years. The review comprehensively considers the relevant trends in vaccine construction for plague prevention, describes advantages of the state-of-the art methodologies for their safety and efficiency enhancement.
Collapse
|
32
|
Bacteriophage T4 capsid as a nanocarrier for Peptide-N-Glycosidase F immobilization through self-assembly. Sci Rep 2019; 9:4865. [PMID: 30890747 PMCID: PMC6424964 DOI: 10.1038/s41598-019-41378-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/13/2019] [Indexed: 11/12/2022] Open
Abstract
Enzyme immobilization is widely applied in biocatalysis to improve stability and facilitate recovery and reuse of enzymes. However, high cost of supporting materials and laborious immobilization procedures has limited its industrial application and commercialization. In this study, we report a novel self-assembly immobilization system using bacteriophage T4 capsid as a nanocarrier. The system utilizes the binding sites of the small outer capsid protein, Soc, on the T4 capsid. Enzymes as Soc fusions constructed with regular molecular cloning technology expressed at the appropriate time during phage assembly and self-assembled onto the capsids. The proof of principle experiment was carried out by immobilizing β-galactosidase, and the system was successfully applied to the immobilization of an important glycomics enzyme, Peptide-N-Glycosidase F. Production of Peptide-N-Glycosidase F and simultaneous immobilization was finished within seven hours. Characterizations of the immobilized Peptide-N-Glycosidase F indicated high retention of activity and well reserved deglycosylation capacity. The immobilized Peptide-N-Glycosidase F was easily recycled by centrifugation and exhibited good stability that sustained five repeated uses. This novel system uses the self-amplified T4 capsid as the nanoparticle-type of supporting material, and operates with a self-assembly procedure, making it a simple and low-cost enzyme immobilization technology with promising application potentials.
Collapse
|
33
|
Sun W, Singh AK. Plague vaccine: recent progress and prospects. NPJ Vaccines 2019; 4:11. [PMID: 30792905 PMCID: PMC6379378 DOI: 10.1038/s41541-019-0105-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/19/2018] [Indexed: 01/14/2023] Open
Abstract
Three great plague pandemics, resulting in nearly 200 million deaths in human history and usage as a biowarfare agent, have made Yersinia pestis as one of the most virulent human pathogens. In late 2017, a large plague outbreak raged in Madagascar attracted extensive attention and caused regional panics. The evolution of local outbreaks into a pandemic is a concern of the Centers for Disease Control and Prevention (CDC) in plague endemic regions. Until now, no licensed plague vaccine is available. Prophylactic vaccination counteracting this disease is certainly a primary choice for its long-term prevention. In this review, we summarize the latest advances in research and development of plague vaccines.
Collapse
Affiliation(s)
- Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208 USA
| | - Amit K. Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208 USA
| |
Collapse
|
34
|
Abstract
Following the deadly anthrax attacks of 2001, the Centers for Disease Control and Prevention (CDC) determined that Bacillus anthracis and Yersinia pestis that cause anthrax and plague, respectively, are two Tier 1 select agents that pose the greatest threat to the national security of the United States. Both cause rapid death, in 3 to 6 days, of exposed individuals. We engineered a virus nanoparticle vaccine using bacteriophage T4 by incorporating key antigens of both B. anthracis and Y. pestis into one formulation. Two doses of this vaccine provided complete protection against both inhalational anthrax and pneumonic plague in animal models. This dual anthrax-plague vaccine is a strong candidate for stockpiling against a potential bioterror attack involving either one or both of these biothreat agents. Further, our results establish the T4 nanoparticle as a novel platform to develop multivalent vaccines against pathogens of high public health significance. Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, are two of the deadliest pathogenic bacteria that have been used as biological warfare agents. Although Biothrax is a licensed vaccine against anthrax, no Food and Drug Administration-approved vaccine exists for plague. Here, we report the development of a dual anthrax-plague nanoparticle vaccine employing bacteriophage (phage) T4 as a platform. Using an in vitro assembly system, the 120- by 86-nm heads (capsids) of phage T4 were arrayed with anthrax and plague antigens fused to the small outer capsid protein Soc (9 kDa). The antigens included the anthrax protective antigen (PA) (83 kDa) and the mutated (mut) capsular antigen F1 and the low-calcium-response V antigen of the type 3 secretion system from Y. pestis (F1mutV) (56 kDa). These viral nanoparticles elicited robust anthrax- and plague-specific immune responses and provided complete protection against inhalational anthrax and/or pneumonic plague in three animal challenge models, namely, mice, rats, and rabbits. Protection was demonstrated even when the animals were simultaneously challenged with lethal doses of both anthrax lethal toxin and Y. pestis CO92 bacteria. Unlike the traditional subunit vaccines, the phage T4 vaccine uses a highly stable nanoparticle scaffold, provides multivalency, requires no adjuvant, and elicits broad T-helper 1 and 2 immune responses that are essential for complete clearance of bacteria during infection. Therefore, phage T4 is a unique nanoparticle platform to formulate multivalent vaccines against high-risk pathogens for national preparedness against potential bioterror attacks and emerging infections.
Collapse
|
35
|
Single vector platform vaccine protects against lethal respiratory challenge with Tier 1 select agents of anthrax, plague, and tularemia. Sci Rep 2018; 8:7009. [PMID: 29725025 PMCID: PMC5934503 DOI: 10.1038/s41598-018-24581-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/04/2018] [Indexed: 01/26/2023] Open
Abstract
Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.
Collapse
|
36
|
Catalano CE. Bacteriophage lambda: The path from biology to theranostic agent. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [DOI: 10.1002/wnan.1517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Carlos E. Catalano
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of ColoradoAuroraColorado
| |
Collapse
|
37
|
Tao P, Wu X, Rao V. Unexpected evolutionary benefit to phages imparted by bacterial CRISPR-Cas9. SCIENCE ADVANCES 2018; 4:eaar4134. [PMID: 29457136 PMCID: PMC5812732 DOI: 10.1126/sciadv.aar4134] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/12/2018] [Indexed: 05/12/2023]
Abstract
Bacteria and bacteriophages arm themselves with various defensive and counterdefensive mechanisms to protect their own genome and degrade the other's. CRISPR (clustered regularly interspaced short palindromic repeat)-Cas (CRISPR-associated) is an adaptive bacterial defense mechanism that recognizes short stretches of invading phage genome and destroys it by nuclease attack. Unexpectedly, we discovered that the CRISPR-Cas system might also accelerate phage evolution. When Escherichia coli bacteria containing CRISPR-Cas9 were infected with phage T4, its cytosine hydroxymethylated and glucosylated genome was cleaved poorly by Cas9 nuclease, but the continuing CRISPR-Cas9 pressure led to rapid evolution of mutants that accumulated even by the time a single plaque was formed. The mutation frequencies are, remarkably, approximately six orders of magnitude higher than the spontaneous mutation frequency in the absence of CRISPR pressure. Our findings lead to the hypothesis that the CRISPR-Cas might be a double-edged sword, providing survival advantages to both bacteria and phages, leading to their coevolution and abundance on Earth.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaorong Wu
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
- Corresponding author.
| |
Collapse
|
38
|
Tao P, Wu X, Tang WC, Zhu J, Rao V. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth Biol 2017; 6:1952-1961. [PMID: 28657724 DOI: 10.1021/acssynbio.7b00179] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteriophages likely constitute the largest biomass on Earth. However, very few phage genomes have been well-characterized, the tailed phage T4 genome being one of them. Even in T4, much of the genome remained uncharacterized. The classical genetic strategies are tedious, compounded by genome modifications such as cytosine hydroxylmethylation and glucosylation which makes T4 DNA resistant to most restriction endonucleases. Here, using the type-II CRISPR-Cas9 system, we report the editing of both modified (ghm-Cytosine) and unmodified (Cytosine) T4 genomes. The modified genome, however, is less susceptible to Cas9 nuclease attack when compared to the unmodified genome. The efficiency of restriction of modified phage infection varied greatly in a spacer-dependent manner, which explains some of the previous contradictory results. We developed a genome editing strategy by codelivering into E. coli a CRISPR-Cas9 plasmid and a donor plasmid containing the desired mutation(s). Single and multiple point mutations, insertions and deletions were introduced into both modified and unmodified genomes. As short as 50-bp homologous flanking arms were sufficient to generate recombinants that can be selected under the pressure of CRISPR-Cas9 nuclease. A 294-bp deletion in RNA ligase gene rnlB produced viable plaques, demonstrating the usefulness of this editing strategy to determine the essentiality of a given gene. These results provide the first demonstration of phage T4 genome editing that might be extended to other phage genomes in nature to create useful recombinants for phage therapy applications.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| | - Xiaorong Wu
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| | - Wei-Chun Tang
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| |
Collapse
|
39
|
Tao P, Mahalingam M, Zhu J, Moayeri M, Kirtley ML, Fitts EC, Andersson JA, Lawrence WS, Leppla SH, Chopra AK, Rao VB. A Bivalent Anthrax-Plague Vaccine That Can Protect against Two Tier-1 Bioterror Pathogens, Bacillus anthracis and Yersinia pestis. Front Immunol 2017; 8:687. [PMID: 28694806 PMCID: PMC5483451 DOI: 10.3389/fimmu.2017.00687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/26/2017] [Indexed: 01/14/2023] Open
Abstract
Bioterrorism remains as one of the biggest challenges to global security and public health. Since the deadly anthrax attacks of 2001 in the United States, Bacillus anthracis and Yersinia pestis, the causative agents of anthrax and plague, respectively, gained notoriety and were listed by the CDC as Tier-1 biothreat agents. Currently, there is no Food and Drug Administration-approved vaccine against either of these threats for mass vaccination to protect general public, let alone a bivalent vaccine. Here, we report the development of a single recombinant vaccine, a triple antigen consisting of all three target antigens, F1 and V from Y. pestis and PA from B. anthracis, in a structurally stable context. Properly folded and soluble, the triple antigen retained the functional and immunogenicity properties of all three antigens. Remarkably, two doses of this immunogen adjuvanted with Alhydrogel® elicited robust antibody responses in mice, rats, and rabbits and conferred complete protection against inhalational anthrax and pneumonic plague. No significant antigenic interference was observed. Furthermore, we report, for the first time, complete protection of animals against simultaneous challenge with Y. pestis and the lethal toxin of B. anthracis, demonstrating that a single biodefense vaccine can protect against a bioterror attack with weaponized B. anthracis and/or Y. pestis. This bivalent anthrax–plague vaccine is, therefore, a strong candidate for stockpiling, after demonstration of its safety and immunogenicity in human clinical trials, as part of national preparedness against two of the deadliest bioterror threats.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, DC, United States
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jourdan A Andersson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - William S Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, United States
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, United States
| |
Collapse
|
40
|
Bacteriophages and Their Immunological Applications against Infectious Threats. J Immunol Res 2017; 2017:3780697. [PMID: 28484722 PMCID: PMC5412166 DOI: 10.1155/2017/3780697] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/19/2017] [Indexed: 01/06/2023] Open
Abstract
Bacteriophage therapy dates back almost a century, but the discovery of antibiotics led to a rapid decline in the interests and investments within this field of research. Recently, the novel threat of multidrug-resistant bacteria highlighted the alarming drop in research and development of new antibiotics: 16 molecules were discovered during 1983–87, 10 new therapeutics during the nineties, and only 5 between 2003 and 2007. Phages are therefore being reconsidered as alternative therapeutics. Phage display technique has proved to be extremely promising for the identification of effective antibodies directed against pathogens, as well as for vaccine development. At the same time, conventional phage therapy uses lytic bacteriophages for treatment of infections and recent clinical trials have shown great potential. Moreover, several other approaches have been developed in vitro and in vivo using phage-derived proteins as antibacterial agents. Finally, their use has also been widely considered for public health surveillance, as biosensor phages can be used to detect food and water contaminations and prevent bacterial epidemics. These novel approaches strongly promote the idea that phages and their proteins can be exploited as an effective weapon in the near future, especially in a world which is on the brink of a “postantibiotic era.”
Collapse
|
41
|
Sunderland KS, Yang M, Mao C. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine. Angew Chem Int Ed Engl 2017; 56:1964-1992. [PMID: 27491926 PMCID: PMC5311110 DOI: 10.1002/anie.201606181] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Indexed: 01/08/2023]
Abstract
Both lytic and temperate bacteriophages (phages) can be applied in nanomedicine, in particular, as nanoprobes for precise disease diagnosis and nanotherapeutics for targeted disease treatment. Since phages are bacteria-specific viruses, they do not naturally infect eukaryotic cells and are not toxic to them. They can be genetically engineered to target nanoparticles, cells, tissues, and organs, and can also be modified with functional abiotic nanomaterials for disease diagnosis and treatment. This Review will summarize the current use of phage structures in many aspects of precision nanomedicine, including ultrasensitive biomarker detection, enhanced bioimaging for disease diagnosis, targeted drug and gene delivery, directed stem cell differentiation, accelerated tissue formation, effective vaccination, and nanotherapeutics for targeted disease treatment. We will also propose future directions in the area of phage-based nanomedicines, and discuss the state of phage-based clinical trials.
Collapse
Affiliation(s)
- Kegan S Sunderland
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, USA
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma, 73019, USA
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
42
|
Sunderland KS, Yang M, Mao C. Nanomedizin auf Phagenbasis: von Sonden zu Therapeutika für eine Präzisionsmedizin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201606181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kegan S. Sunderland
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Yuhangtang Road 866 Hangzhou Zhejiang 310058 China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry Stephenson Life Sciences Research Center University of Oklahoma 101 Stephenson Parkway Norman Oklahoma 73019 USA
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| |
Collapse
|
43
|
Tao P, Li Q, Shivachandra SB, Rao VB. Bacteriophage T4 as a Nanoparticle Platform to Display and Deliver Pathogen Antigens: Construction of an Effective Anthrax Vaccine. Methods Mol Biol 2017; 1581:255-267. [PMID: 28374254 DOI: 10.1007/978-1-4939-6869-5_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-based subunit vaccines represent a safer alternative to the whole pathogen in vaccine development. However, limitations of physiological instability and low immunogenicity of such vaccines demand an efficient delivery system to stimulate robust immune responses. The bacteriophage T4 capsid-based antigen delivery system can robustly elicit both humoral and cellular immune responses without any adjuvant. Therefore, it offers a strong promise as a novel antigen delivery system. Currently Bacillus anthracis, the causative agent of anthrax, is a serious biothreat agent and no FDA-approved anthrax vaccine is available for mass vaccination. Here, we describe a potential anthrax vaccine using a T4 capsid platform to display and deliver the 83 kDa protective antigen, PA, a key component of the anthrax toxin. This T4 vaccine platform might serve as a universal antigen delivery system that can be adapted to develop vaccines against any infectious disease.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Qin Li
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | | | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, USA.
| |
Collapse
|
44
|
Verma SK, Tuteja U. Plague Vaccine Development: Current Research and Future Trends. Front Immunol 2016; 7:602. [PMID: 28018363 PMCID: PMC5155008 DOI: 10.3389/fimmu.2016.00602] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/30/2016] [Indexed: 02/05/2023] Open
Abstract
Plague is one of the world’s most lethal human diseases caused by Yersinia pestis, a Gram-negative bacterium. Despite overwhelming studies for many years worldwide, there is no safe and effective vaccine against this fatal disease. Inhalation of Y. pestis bacilli causes pneumonic plague, a fast growing and deadly dangerous disease. F1/LcrV-based vaccines failed to provide adequate protection in African green monkey model in spite of providing protection in mice and cynomolgus macaques. There is still no explanation for this inconsistent efficacy, and scientists leg behind to search reliable correlate assays for immune protection. These paucities are the main barriers to improve the effectiveness of plague vaccine. In the present scenario, one has to pay special attention to elicit strong cellular immune response in developing a next-generation vaccine against plague. Here, we review the scientific contributions and existing progress in developing subunit vaccines, the role of molecular adjuvants; DNA vaccines; live delivery platforms; and attenuated vaccines developed to counteract virulent strains of Y. pestis.
Collapse
Affiliation(s)
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment , Gwalior , India
| |
Collapse
|
45
|
Bárdy P, Pantůček R, Benešík M, Doškař J. Genetically modified bacteriophages in applied microbiology. J Appl Microbiol 2016; 121:618-33. [PMID: 27321680 DOI: 10.1111/jam.13207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 01/18/2023]
Abstract
Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents.
Collapse
Affiliation(s)
- P Bárdy
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - R Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - M Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - J Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
46
|
A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:586-600. [PMID: 27170642 DOI: 10.1128/cvi.00150-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022]
Abstract
Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.
Collapse
|
47
|
Highly Effective Soluble and Bacteriophage T4 Nanoparticle Plague Vaccines Against Yersinia pestis. Methods Mol Biol 2016; 1403:499-518. [PMID: 27076150 DOI: 10.1007/978-1-4939-3387-7_28] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plague caused by Yersinia pestis is an ancient disease, responsible for millions of deaths in human history. Unfortunately, there is no FDA-approved vaccine available. Recombinant subunit vaccines based on two major antigens, Caf 1 (F1) and LcrV (V), have been under investigation and showed promise. However, there are two main problems associated with these vaccines. First, the Yersinia capsular protein F1 has high propensity to aggregate, particularly when expressed in heterologous systems such as Escherichia coli, thus affecting vaccine quality and efficacy. Second, the subunit vaccines do not induce adequate cell-mediated immune responses that also appear to be essential for optimal protection against plague. We have developed two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that may overcome these problems. First, by engineering F1 protein, we generated a monomeric and soluble F1V mutant (F1mutV) which has similar immunogenicity as wild-type F1V. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to retain a key CD4(+) T cell epitope. Second, we generated a nanoparticle plague vaccine that can induce balanced antibody- and cell-mediated immune responses. This was done by arraying the F1mutV on phage T4 via the small outer capsid (Soc) protein which binds to T4 capsid at nanomolar affinity. Preparation of these vaccines is described in detail and we hope that these would be considered as candidates for licensing a next-generation plague vaccine.
Collapse
|
48
|
Abstract
Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.
Collapse
|
49
|
Abstract
Three major plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people in human history. Due to its extreme virulence and the ease of its transmission, Y. pestis has been used purposefully for biowarfare in the past. Currently, plague epidemics are still breaking out sporadically in most of parts of the world, including the United States. Approximately 2000 cases of plague are reported each year to the World Health Organization. However, the potential use of the bacteria in modern times as an agent of bioterrorism and the emergence of a Y. pestis strain resistant to eight antibiotics bring out severe public health concerns. Therefore, prophylactic vaccination against this disease holds the brightest prospect for its long-term prevention. Here, we summarize the progress of the current vaccine development for counteracting plague.
Collapse
Affiliation(s)
- Wei Sun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, 110880, Gainesville, FL, 32611-0880, USA.
| |
Collapse
|
50
|
Storms ZJ, Sauvageau D. Modeling tailed bacteriophage adsorption: Insight into mechanisms. Virology 2015; 485:355-62. [DOI: 10.1016/j.virol.2015.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
|