1
|
Baptista SJS, Lahree A, Marques S, Bento I, Mello-Vieira J, Mendes AM, Zuzarte-Luís V, Mota MM. CSP ubiquitylation favours Plasmodium berghei survival during early liver stage infection. Sci Rep 2025; 15:14498. [PMID: 40281042 PMCID: PMC12032137 DOI: 10.1038/s41598-025-98294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
The circumsporozoite protein (CSP), an essential protein that covers the surface of the Plasmodium sporozoite, is a key player in multiple stages of the parasite development within the mosquito and during interactions between sporozoites and mammalian hepatocytes. Here, we identify a novel function of Plasmodium berghei CSP: preventing parasite elimination during the early stages of hepatic infection, through its ubiquitylation at two lysine (K) residues, K252 and K258, located in the C-terminal domain. A Plasmodium berghei transgenic line lacking these lysine residues exhibited a significant decrease in hepatic infectivity, with parasites being eliminated 4 h after infection. The reduced infectivity correlated with an increased association of host autophagy markers, LC3 and LAMP1, to the parasitophorous vacuole membrane of the liver stage parasite. Notably, inhibiting the host autophagy pathway fully rescued the mutant parasites from elimination. Collectively, we reveal a strategy employed by Plasmodium to evade early clearance during hepatic infection, which relies on the ubiquitylation of specific CSP lysine residues, that results in reduced parasite elimination via host autophagic and lysosomal activity.
Collapse
Affiliation(s)
- Sara J S Baptista
- Gulbenkian Institute for Molecular Medicine, 1649-028, Lisbon, Portugal
- Instituto de Medicina Molecular JLA, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Aparajita Lahree
- Instituto de Medicina Molecular JLA, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany
| | - Sofia Marques
- Gulbenkian Institute for Molecular Medicine, 1649-028, Lisbon, Portugal
- Instituto de Medicina Molecular JLA, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Inês Bento
- Gulbenkian Institute for Molecular Medicine, 1649-028, Lisbon, Portugal
- Instituto de Medicina Molecular JLA, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João Mello-Vieira
- Instituto de Medicina Molecular JLA, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Faculty of Medicine, Institute of Biochemistry 2 and Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - António M Mendes
- Instituto de Medicina Molecular JLA, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- SGS Portugal S.A., Polo Tecnológico de Lisboa, R. Cesina Adães Bermudes Lote 11 N° 1, 1600-604, Lisbon, Portugal
| | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular JLA, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- SGS Portugal S.A., Polo Tecnológico de Lisboa, R. Cesina Adães Bermudes Lote 11 N° 1, 1600-604, Lisbon, Portugal
| | - Maria M Mota
- Gulbenkian Institute for Molecular Medicine, 1649-028, Lisbon, Portugal.
- Instituto de Medicina Molecular JLA, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
2
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Oldenburg D, Ghosh D, Stumhofer JS, Nookaew I, Manzano M, Forrest JC. Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment. Nat Commun 2025; 16:951. [PMID: 39843898 PMCID: PMC11754798 DOI: 10.1038/s41467-025-56247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of gammaherpesvirus pathogenesis, we demonstrate in vivo that the tumor suppressor p53 is activated specifically in B cells latently infected by murine gammaherpesvirus 68. In the absence of p53, the early expansion of murine gammaherpesvirus 68 latency greatly increases, especially in germinal center B cells, a cell type whose proliferation is conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of germinal center B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that Epstein-Barr virus-encoded latent membrane protein 1 similarly triggers a p53 response in primary B cells. Our data highlight a model in which gammaherpesvirus latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53.
Collapse
Affiliation(s)
- Shana M Owens
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey M Sifford
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gang Li
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Steven J Murdock
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eduardo Salinas
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Debopam Ghosh
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jason S Stumhofer
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Dept. of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark Manzano
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Craig Forrest
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
3
|
Siokatas C, Lampropoulou A, Smina A, Soupsana K, Kontostathi M, Karra AV, Karampelas T, Politou AS, Christoforidis S, Tamvakopoulos C, Sarli V. Developing MYC Degraders Bearing the Von Hippel-Lindau Ligand to Target the "Undruggable" MYC. ACS Pharmacol Transl Sci 2024; 7:3955-3968. [PMID: 39698270 PMCID: PMC11650737 DOI: 10.1021/acsptsci.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024]
Abstract
Although small-molecule inhibitors with moderate efficacy targeting MYC have been previously described, to this point, research efforts have failed to bring a suitable small-molecule MYC inhibitor to the clinic. Herein, the discovery of a series of novel MYC degraders bearing VHL to target the "undruggable" MYC is presented. The molecules are based on connecting a known MYC binder to a VHL ligand or pomalidomide to induce MYC degradation in various cancer cells known to express MYC. Representative compounds from our work induced MYC degradation in a time- and dose-dependent manner. Selected compounds, CSI86 and CSI107, displayed antiproliferative activity (IC50 values of 13-18 μM) against breast and prostate cancer cells. The lead molecules were further evaluated in terms of cell uptake, potential to degrade MYC, and pharmacokinetics in mice. Encouraging results presented herein suggest that the presented analogs may serve as prototype structures of future therapeutic agents for the treatment of MYC-dependent tumors. MYC protein degraders can well complement the more established inhibition approaches that have been presented in the past (e.g., disruption of the MYC-MAX complex formation by small-molecule inhibitors).
Collapse
Affiliation(s)
- Christos Siokatas
- Vasiliki
Sarli - Department of Chemistry, Aristotle
University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Alexandra Lampropoulou
- Constantin
Tamvakopoulos - Center of Clinical Research, Experimental Surgery
and Translational Research, Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Street 4, Athens 11527, Greece
| | - Alexandra Smina
- Constantin
Tamvakopoulos - Center of Clinical Research, Experimental Surgery
and Translational Research, Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Street 4, Athens 11527, Greece
| | - Katerina Soupsana
- Laboratory
of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
| | - Martha Kontostathi
- Laboratory
of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical
Research Institute, Foundation for Research
and Technology, Ioannina 45110, Greece
| | - Athina-Vasiliki Karra
- Laboratory
of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical
Research Institute, Foundation for Research
and Technology, Ioannina 45110, Greece
| | - Theodoros Karampelas
- Constantin
Tamvakopoulos - Center of Clinical Research, Experimental Surgery
and Translational Research, Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Street 4, Athens 11527, Greece
| | - Anastasia S. Politou
- Laboratory
of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical
Research Institute, Foundation for Research
and Technology, Ioannina 45110, Greece
| | - Savvas Christoforidis
- Laboratory
of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Biomedical
Research Institute, Foundation for Research
and Technology, Ioannina 45110, Greece
| | - Constantin Tamvakopoulos
- Constantin
Tamvakopoulos - Center of Clinical Research, Experimental Surgery
and Translational Research, Division of Pharmacology-Pharmacotechnology, Biomedical Research Foundation, Academy of Athens, Soranou Ephessiou Street 4, Athens 11527, Greece
| | - Vasiliki Sarli
- Vasiliki
Sarli - Department of Chemistry, Aristotle
University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| |
Collapse
|
4
|
Johansen ER, Schmalzriedt DL, Avila D, Sylvester PA, Rahlf CR, Bobek JM, Sahoo D, Dittel BN, Tarakanova VL. Combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression defines parameters of chronic gammaherpesvirus infection. mBio 2024; 15:e0159824. [PMID: 39440973 PMCID: PMC11559066 DOI: 10.1128/mbio.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Gammaherpesviruses are species-specific, ubiquitous pathogens that establish lifelong infection in their hosts and are associated with cancers, including B cell lymphomas. Type I and II interferons (IFNs) are critical for the control of acute and chronic gammaherpesvirus infection. However, the cell type-specific role of IFN signaling during natural infection is poorly defined and is masked by the altered viral pathogenesis observed in hosts with global IFN deficiencies. STAT1 is a constitutively expressed transcription factor that is critical for the effector function of type I and II IFNs. In this study, we defined the impact of B cell-specific STAT1 expression on gammaherpesvirus infection using murine gammaherpesvirus 68 (MHV68). While the acute stage of MHV68 infection was not affected, we found opposite, anatomic site-dependent effects of B cell-intrinsic STAT1 expression during chronic infection. Consistent with the antiviral role of STAT1, B cell-specific STAT1 expression attenuated the latent viral reservoir in peritoneal B cells of chronically infected mice. In contrast, STAT1 expression in splenic B cells supported the establishment of the latent MHV68 reservoir in germinal center B cells, revealing an unexpected proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection. These STAT1-dependent MHV68 chronic infection phenotypes were fully recapitulated in the peritoneal cavity but not the spleen of mice with B cell-specific deficiency of type I IFN receptor. In summary, our study uncovers the intriguing combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.IMPORTANCEInterferons (IFNs) execute broadly antiviral roles during acute and chronic viral infections. The constitutively expressed transcription factor STAT1 is a critical downstream effector of IFN signaling. Our studies demonstrate that B cell-intrinsic STAT1 expression has opposing and anatomic site-dependent roles during chronic gammaherpesvirus infection. Specifically, B cell-intrinsic STAT1 expression restricted gammaherpesvirus latent reservoir in the peritoneal cavity, consistent with the classical antiviral role of STAT1. In contrast, decreased STAT1 expression in splenic B cells led to the attenuated establishment of gammaherpesvirus latency and decreased latent infection of germinal center B cells, highlighting a novel proviral role of B cell-intrinsic STAT1 expression during chronic infection with a B cell-tropic gammaherpesvirus. Interestingly, B cell-specific type I IFN receptor deficiency primarily recapitulated the antiviral role of B cell-intrinsic STAT1 expression, suggesting the compensatory function of B cell-intrinsic type II IFN signaling or an IFN-independent proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Erika R. Johansen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Damon L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danilela Avila
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cade R. Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Manzano M, Ghosh D, Stumhofer JS, Forrest JC. Intrinsic p53 Activation Restricts Gammaherpesvirus-Driven Germinal Center B Cell Expansion during Latency Establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.563188. [PMID: 37961505 PMCID: PMC10634957 DOI: 10.1101/2023.10.31.563188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.
Collapse
|
6
|
Bialek W, Collawn JF, Bartoszewski R. Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions. Molecules 2023; 28:6740. [PMID: 37764516 PMCID: PMC10536765 DOI: 10.3390/molecules28186740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Ubiquitin, a small protein, is well known for tagging target proteins through a cascade of enzymatic reactions that lead to protein degradation. The ubiquitin tag, apart from its signaling role, is paramount in destabilizing the modified protein. Here, we explore the complex role of ubiquitin-mediated protein destabilization in the intricate proteolysis process by the 26S proteasome. In addition, the significance of the so-called ubiquitin-independent pathway and the role of the 20S proteasome are considered. Next, we discuss the ubiquitin-proteasome system's interplay with pathogenic microorganisms and how the microorganisms manipulate this system to establish infection by a range of elaborate pathways to evade or counteract host responses. Finally, we focus on the mechanisms that rely either on (i) hijacking the host and on delivering pathogenic E3 ligases and deubiquitinases that promote the degradation of host proteins, or (ii) counteracting host responses through the stabilization of pathogenic effector proteins.
Collapse
Affiliation(s)
- Wojciech Bialek
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Rafal Bartoszewski
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
7
|
Abu Ahmad Y, Oknin-Vaisman A, Bitman-Lotan E, Orian A. From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells 2021; 10:2374. [PMID: 34572023 PMCID: PMC8469536 DOI: 10.3390/cells10092374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022] Open
Abstract
A hallmark of cancer is dysregulated protein turnover (proteostasis), which involves pathologic ubiquitin-dependent degradation of tumor suppressor proteins, as well as increased oncoprotein stabilization. The latter is due, in part, to mutation within sequences, termed degrons, which are required for oncoprotein recognition by the substrate-recognition enzyme, E3 ubiquitin ligase. Stabilization may also result from the inactivation of the enzymatic machinery that mediates the degradation of oncoproteins. Importantly, inactivation in cancer of E3 enzymes that regulates the physiological degradation of oncoproteins, results in tumor cells that accumulate multiple active oncoproteins with prolonged half-lives, leading to the development of "degradation-resistant" cancer cells. In addition, specific sequences may enable ubiquitinated proteins to evade degradation at the 26S proteasome. While the ubiquitin-proteasome pathway was originally discovered as central for protein degradation, in cancer cells a ubiquitin-dependent protein stabilization pathway actively translates transient mitogenic signals into long-lasting protein stabilization and enhances the activity of key oncoproteins. A central enzyme in this pathway is the ubiquitin ligase RNF4. An intimate link connects protein stabilization with tumorigenesis in experimental models as well as in the clinic, suggesting that pharmacological inhibition of protein stabilization has potential for personalized medicine in cancer. In this review, we highlight old observations and recent advances in our knowledge regarding protein stabilization.
Collapse
Affiliation(s)
| | | | | | - Amir Orian
- Rappaport Faculty of Medicine, R-TICC, Technion-IIT, Efron St. Bat-Galim, Haifa 3109610, Israel; (Y.A.A.); (A.O.-V.); (E.B.-L.)
| |
Collapse
|
8
|
KSHV LANA acetylation-selective acidic domain reader sequence mediates virus persistence. Proc Natl Acad Sci U S A 2020; 117:22443-22451. [PMID: 32820070 PMCID: PMC7486799 DOI: 10.1073/pnas.2004809117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viruses modulate biochemical cellular pathways to permit infection. A recently described mechanism mediates selective protein interactions between acidic domain readers and unacetylated, lysine-rich regions, opposite of bromodomain function. Kaposi´s sarcoma (KS)-associated herpesvirus (KSHV) is tightly linked with KS, primary effusion lymphoma, and multicentric Castleman's disease. KSHV latently infects cells, and its genome persists as a multicopy, extrachromosomal episome. During latency, KSHV expresses a small subset of genes, including the latency-associated nuclear antigen (LANA), which mediates viral episome persistence. Here we show that LANA contains two tandem, partially overlapping, acidic domain sequences homologous to the SET oncoprotein acidic domain reader. This domain selectively interacts with unacetylated p53, as evidenced by reduced LANA interaction after overexpression of CBP, which acetylates p53, or with an acetylation mimicking carboxyl-terminal domain p53 mutant. Conversely, the interaction of LANA with an acetylation-deficient p53 mutant is enhanced. Significantly, KSHV LANA mutants lacking the acidic domain reader sequence are deficient for establishment of latency and persistent infection. This deficiency was confirmed under physiological conditions, on infection of mice with a murine gammaherpesvirus 68 chimera expressing LANA, where the virus was highly deficient in establishing latent infection in germinal center B cells. Therefore, LANA's acidic domain reader is critical for viral latency. These results implicate an acetylation-dependent mechanism mediating KSHV persistence and expand the role of acidic domain readers.
Collapse
|
9
|
Westrich JA, Warren CJ, Klausner MJ, Guo K, Liu CW, Santiago ML, Pyeon D. Human Papillomavirus 16 E7 Stabilizes APOBEC3A Protein by Inhibiting Cullin 2-Dependent Protein Degradation. J Virol 2018; 92:e01318-17. [PMID: 29367246 PMCID: PMC5972886 DOI: 10.1128/jvi.01318-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022] Open
Abstract
APOBEC3 (A3) mutation signatures have been observed in a variety of human cancer genomes, including those of cervical and head and neck cancers caused by human papillomavirus (HPV) infection. However, the driving forces that promote off-target A3 activity remain mostly unclear. Here, we report a mechanism for the dramatic increase of A3A protein levels in HPV-positive keratinocytes. We show that expression of the viral protein E7 from high-risk HPVs, but not E7 from low-risk HPVs, significantly prolongs the cellular half-life of A3A protein in human keratinocytes and HPV-positive cancer cell lines. We have mapped several residues within the cullin 2 (CUL2) binding motif of HPV16 E7 as being important for mediating A3A protein stabilization. Furthermore, we provide direct evidence that both A3A and HPV16 E7 interact with CUL2, suggesting that the E7-CUL2 complex formed during HPV infection may regulate A3A protein levels in the cell. Using an in vitro cytidine deaminase assay, we show that E7-stabilized A3A remains catalytically active. Taken together, our findings suggest that the HPV oncoprotein E7 dysregulates endogenous A3A protein levels and thus provides novel mechanistic insight into cellular triggers of A3 mutations in HPV-positive cancers.IMPORTANCE Human papillomavirus (HPV) is causally associated with over 5% of all human malignancies. Several recent studies have shown that a subset of cancers, including HPV-positive head and neck and cervical cancers, have distinct mutational signatures potentially caused by members of the APOBEC3 cytidine deaminase family. However, the mechanism that induces APOBEC3 activity in cancer cells is poorly understood. Here, we report that the HPV oncoprotein E7 stabilizes the APOBEC3A (A3A) protein in human keratinocytes by inhibiting ubiquitin-dependent protein degradation in a cullin-dependent manner. Interestingly, the HPV E7-stabilized A3A protein maintains its deaminase activity. These findings provide a new insight into cancer mutagenesis enhanced by virus-induced A3A protein stabilization.
Collapse
Affiliation(s)
- Joseph A Westrich
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cody J Warren
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J Klausner
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kejun Guo
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mario L Santiago
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dohun Pyeon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
10
|
Salinas E, Gupta A, Sifford JM, Oldenburg DG, White DW, Forrest JC. Conditional mutagenesis in vivo reveals cell type- and infection stage-specific requirements for LANA in chronic MHV68 infection. PLoS Pathog 2018; 14:e1006865. [PMID: 29364981 PMCID: PMC5798852 DOI: 10.1371/journal.ppat.1006865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/05/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis. Gammaherpesviruses (GHVs), including the human pathogens Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, establish lifelong infections that can lead to cancer. Defining the functions of viral gene products in acute replication and chronic infection is important for understanding how these viruses cause disease. Infection of mice with the related GHV, murine gammaherpesvirus 68 (MHV68), provides a tractable small animal model for defining how viral gene products function in chronic infection and understanding how host factors limit disease. Here we describe the development of a new viral genetic platform that enables the targeted deletion of specific genes from the viral genome in discrete host cells or at distinct times during infection. We utilize this system to better define requirements for the conserved latency-associated nuclear antigen in MHV68 lytic replication and latency in mice. This work highlights the utility of this MHV68 genetic platform for defining mechanisms of GHV infection and disease.
Collapse
Affiliation(s)
- Eduardo Salinas
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arundhati Gupta
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | | | - Douglas W. White
- Gundersen Health System, La Crosse, Wisconsin, United States of America
| | - J. Craig Forrest
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Habison AC, de Miranda MP, Beauchemin C, Tan M, Cerqueira SA, Correia B, Ponnusamy R, Usherwood EJ, McVey CE, Simas JP, Kaye KM. Cross-species conservation of episome maintenance provides a basis for in vivo investigation of Kaposi's sarcoma herpesvirus LANA. PLoS Pathog 2017; 13:e1006555. [PMID: 28910389 PMCID: PMC5599060 DOI: 10.1371/journal.ppat.1006555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/27/2017] [Indexed: 12/26/2022] Open
Abstract
Many pathogens, including Kaposi's sarcoma herpesvirus (KSHV), lack tractable small animal models. KSHV persists as a multi-copy, nuclear episome in latently infected cells. KSHV latency-associated nuclear antigen (kLANA) binds viral terminal repeat (kTR) DNA to mediate episome persistence. Model pathogen murine gammaherpesvirus 68 (MHV68) mLANA acts analogously on mTR DNA. kLANA and mLANA differ substantially in size and kTR and mTR show little sequence conservation. Here, we find kLANA and mLANA act reciprocally to mediate episome persistence of TR DNA. Further, kLANA rescued mLANA deficient MHV68, enabling a chimeric virus to establish latent infection in vivo in germinal center B cells. The level of chimeric virus in vivo latency was moderately reduced compared to WT infection, but WT or chimeric MHV68 infected cells had similar viral genome copy numbers as assessed by immunofluorescence of LANA intranuclear dots or qPCR. Thus, despite more than 60 Ma of evolutionary divergence, mLANA and kLANA act reciprocally on TR DNA, and kLANA functionally substitutes for mLANA, allowing kLANA investigation in vivo. Analogous chimeras may allow in vivo investigation of genes of other human pathogens.
Collapse
Affiliation(s)
- Aline C. Habison
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marta Pires de Miranda
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Chantal Beauchemin
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Tan
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sofia A. Cerqueira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Correia
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Rajesh Ponnusamy
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Colin E. McVey
- Instituto de Tecnologia Quimica e Bioliogica Antonio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (KMK); (JPS)
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (KMK); (JPS)
| |
Collapse
|
12
|
Latency-Associated Nuclear Antigen E3 Ubiquitin Ligase Activity Impacts Gammaherpesvirus-Driven Germinal Center B Cell Proliferation. J Virol 2016; 90:7667-83. [PMID: 27307564 DOI: 10.1128/jvi.00813-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Viruses have evolved mechanisms to hijack components of cellular E3 ubiquitin ligases, thus modulating the ubiquitination pathway. However, the biological relevance of such mechanisms for viral pathogenesis in vivo remains largely unknown. Here, we utilized murid herpesvirus 4 (MuHV-4) infection of mice as a model system to address the role of MuHV-4 latency-associated nuclear antigen (mLANA) E3 ligase activity in gammaherpesvirus latent infection. We show that specific mutations in the mLANA SOCS box (V199A, V199A/L202A, or P203A/P206A) disrupted mLANA's ability to recruit Elongin C and Cullin 5, thereby impairing the formation of the Elongin BC/Cullin 5/SOCS (EC5S(mLANA)) complex and mLANA's E3 ligase activity on host NF-κB and Myc. Although these mutations resulted in considerably reduced mLANA binding to viral terminal repeat DNA as assessed by electrophoretic mobility shift assay (EMSA), the mutations did not disrupt mLANA's ability to mediate episome persistence. In vivo, MuHV-4 recombinant viruses bearing these mLANA SOCS box mutations exhibited a deficit in latency amplification in germinal center (GC) B cells. These findings demonstrate that the E3 ligase activity of mLANA contributes to gammaherpesvirus-driven GC B cell proliferation. Hence, pharmacological inhibition of viral E3 ligase activity through targeting SOCS box motifs is a putative strategy to control gammaherpesvirus-driven lymphoproliferation and associated disease. IMPORTANCE The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause lifelong persistent infection and play causative roles in several human malignancies. Colonization of B cells is crucial for virus persistence, and access to the B cell compartment is gained by virus-driven proliferation in germinal center (GC) B cells. Infection of B cells is predominantly latent, with the viral genome persisting as a multicopy episome and expressing only a small subset of viral genes. Here, we focused on latency-associated nuclear antigen (mLANA) encoded by murid herpesvirus-4 (MuHV-4), which exhibits homology in sequence, structure, and function to KSHV LANA (kLANA), thereby allowing the study of LANA-mediated pathogenesis in mice. Our experiments show that mLANA's E3 ubiquitin ligase activity is necessary for efficient expansion of latency in GC B cells, suggesting that the development of pharmacological inhibitors of LANA E3 ubiquitin ligase activity may allow strategies to interfere with gammaherpesvirus-driven lymphoproliferation and associated disease.
Collapse
|
13
|
Sin SH, Kim Y, Eason A, Dittmer DP. KSHV Latency Locus Cooperates with Myc to Drive Lymphoma in Mice. PLoS Pathog 2015; 11:e1005135. [PMID: 26327622 PMCID: PMC4556645 DOI: 10.1371/journal.ppat.1005135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/07/2015] [Indexed: 11/18/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi sarcoma and B-cell malignancies. Mechanisms of KSHV-induced oncogenesis remain elusive, however, in part due to lack of reliable in vivo models. Recently, we showed that transgenic mice expressing the KSHV latent genes, including all viral microRNAs, developed splenic B cell hyperplasia with 100% penetrance, but only a fraction converted to B cell lymphomas, suggesting that cooperative oncogenic events were missing. Myc was chosen as a possible candidate, because Myc is deregulated in many B cell lymphomas. We crossed KSHV latency locus transgenic (latency) mice to Cα Myc transgenic (Myc) mice. By itself these Myc transgenic mice develop lymphomas only rarely. In the double transgenic mice (Myc/latency) we observed plasmacytosis, severe extramedullary hematopoiesis in spleen and liver, and increased proliferation of splenocytes. Myc/latency mice developed frank lymphoma at a higher rate than single transgenic latency or Myc mice. These data indicate that the KSHV latency locus cooperates with the deregulated Myc pathways to further lymphoma progression. Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with Kaposi sarcoma as well as the B-cell malignancies primary effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD). Only a few KSHV genes, including all micro RNAs, are expressed in latent infection of B cells. We already showed that KSHV latency locus transgenic mice consistently develop B cell hyperplasia. To find out possible host contributions to lymphomagenesis we evaluated the Myc oncogene. Compound KSHV latency locus and Myc mice developed plasmacytosis exemplified by increased frequency of plasma cells in the spleen, a high accelerated lymphoma development, and severe extramedullary hematopoiesis. These data show that the KSHV latency locus can cooperate with Myc activation in viral lymphomagenesis.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yongbaek Kim
- Department of Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Anthony Eason
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, Program in Global Oncology, Lineberger Comprehensive Cancer Center, and Center for AIDS Research, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Decalf J, Godinho-Silva C, Fontinha D, Marques S, Simas JP. Establishment of murine gammaherpesvirus latency in B cells is not a stochastic event. PLoS Pathog 2014; 10:e1004269. [PMID: 25079788 PMCID: PMC4117635 DOI: 10.1371/journal.ppat.1004269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/10/2014] [Indexed: 12/21/2022] Open
Abstract
Murid γ-herpesvirus-4 (MuHV-4) promotes polyclonal B cell activation and establishes latency in memory B cells via unclear mechanisms. We aimed at exploring whether B cell receptor specificity plays a role in B cell susceptibility to viral latency and how this is related to B cell activation. We first observed that MuHV-4-specific B cells represent a minority of the latent population, and to better understand the influence of the virus on non-MuHV-4 specific B cells we used the SWHEL mouse model, which produce hen egg lysozyme (HEL)-specific B cells. By tracking HEL+ and HEL− B cells, we showed that in vivo latency was restricted to HEL− B cells while the two populations were equally sensitive to the virus in vitro. Moreover, MuHV-4 induced two waves of B cell activation. While the first wave was characterized by a general B cell activation, as shown by HEL+ and HEL− B cells expansion and upregulation of CD69 expression, the second wave was restricted to the HEL− population, which acquired germinal center (GC) and plasma cell phenotypes. Antigenic stimulation of HEL+ B cells led to the development of HEL+ GC B cells where latent infection remained undetectable, indicating that MuHV-4 does not benefit from acute B cell responses to establish latency in non-virus specific B cells but relies on other mechanisms of the humoral response. These data support a model in which the establishment of latency in B cells by γ-herpesviruses is not stochastic in terms of BCR specificity and is tightly linked to the formation of GCs. Murid γ-herpesvirus-4 (MuHV-4) is a good model to study infectious mononucleosis in mice, in which the virus ultimately establishes life-long latency in B cells. Whereas several viral proteins have been shown to modulate B cell behavior, in the present study we aimed at clarifying the parameters that dictate the establishment of viral latency from the B cell perspective. Indeed, the B cell repertoire is highly diverse and it remains unknown whether latency takes place randomly in B cells. To study this question, we isolated latently infected B cells in which we observed a low frequency of virus-specific B cells, suggesting that viral latency is not restricted to this population. To better understand MuHV-4 influence on non-virus specific B cells, we then followed the fate of B cells specific for a foreign antigen, hen egg lysozyme (HEL). While in vitro experiments showed that HEL-specific B cells could be acutely infected by MuHV-4, these cells were resistant to MuHV-4 latent infection in vivo. These results suggest that while establishment of γ-herpesvirus latency is not restricted to virus-specific B cells, it does not take place randomly in B cells and relies on mechanisms that remain to be identified.
Collapse
Affiliation(s)
- Jérémie Decalf
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cristina Godinho-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|