1
|
Varadan AC, Grasis JA. Filamentous bacteriophage M13 induces proinflammatory responses in intestinal epithelial cells. Infect Immun 2025; 93:e0061824. [PMID: 40208028 PMCID: PMC12070739 DOI: 10.1128/iai.00618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
Bacteriophages are the dominant members of the human enteric virome and can shape bacterial communities in the gut; however, our understanding of how they directly impact health and disease is limited. Previous studies have shown that specific bacteriophage populations are expanded in patients with Crohn's disease (CD) and ulcerative colitis (UC), suggesting that fluctuations in the enteric virome may contribute to intestinal inflammation. Based on these studies, we hypothesized that a high bacteriophage burden directly induces intestinal epithelial responses. We found that filamentous bacteriophages M13 and Fd induced dose-dependent IL-8 expression in the human intestinal epithelial cell line HT-29 to a greater degree than their lytic counterparts, T4 and ϕX174. We also found that M13, but not Fd, reduced bacterial internalization in HT-29 cells. This led us to investigate the mechanism underlying M13-mediated inhibition of bacterial internalization by examining the antiviral and antimicrobial responses in these cells. M13 upregulated type I and III IFN expressions and augmented short-chain fatty acid (SCFA)-mediated LL-37 expression in HT-29 cells. Taken together, our data establish that filamentous bacteriophages directly affect human intestinal epithelial cells. These results provide new insights into the complex interactions between bacteriophages and the intestinal mucosa, which may underlie disease pathogenesis.
Collapse
Affiliation(s)
- Ambarish C. Varadan
- Department of Molecular and Cellular Biology, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California, USA
| | - Juris A. Grasis
- Department of Molecular and Cellular Biology, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California, USA
| |
Collapse
|
2
|
Xu S, Zhu T, Mou H, Tan S, Leong JM. Weakened Airway Epithelial Junctions and Enhanced Neutrophil Elastase Release Contribute to Age-Dependent Bacteremia Risk Following Pneumococcal Pneumonia. Aging Cell 2025; 24:e14474. [PMID: 39778043 PMCID: PMC12074028 DOI: 10.1111/acel.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection. Here, pulmonary E-cadherin staining of intratracheally (i.t.) inoculated mice revealed PLY-mediated disruption of AJC independently of PMNs. Apical infection of air-liquid interface (ALI) respiratory epithelial monolayers similarly showed that PLY disrupts AJCs. This epithelial damage promoted PMN transmigration and bacterial apical-to-basolateral translocation, and pharmacologically fortifying epithelial barrier function diminished both barrier breach in vitro and bacteremia in vivo. E-cadherin staining after Sp i.t. inoculation of > 20-month-old mice, or apical infection of ALI monolayers derived from these mice, revealed an age-associated vulnerability to PLY-mediated AJC disruption, which in turn enhanced PMN migration and bacteremia. In addition, we found that PMNs from aged mice secrete increased levels of tissue-damaging NE. Simultaneous pharmacological inhibition of tissue-destructive NE and fortification of pulmonary epithelial barrier function was required to reduce the level of Sp bacteremia in aged mice to that of young mice. This work underscores the importance of fully characterizing the multifactorial sources of age-associated susceptibility in devising adjunctive therapies to mitigate invasive pneumococcal disease in the elderly.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonMAUSA
- Graduate Program in ImmunologyTufts Graduate School of Biomedical SciencesBostonMAUSA
| | - Tianmou Zhu
- Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonMAUSA
- Graduate Program in ImmunologyTufts Graduate School of Biomedical SciencesBostonMAUSA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research CenterMassachusetts General HospitalBostonMAUSA
| | - Shumin Tan
- Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonMAUSA
| | - John M. Leong
- Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonMAUSA
- Stuart B Levy Center for the Integrated Management of Antimicrobial ResistanceTufts UniversityBostonMAUSA
| |
Collapse
|
3
|
Gates CJ, Brazel EB, Kennedy EV, Brown JS, Ercoli G, Davies J, Hirst TR, Paton JC, Alsharifi M. A gamma-irradiated pneumococcal vaccine elicits superior immunogenicity in comparison to heat or chemically inactivated whole-cell vaccines. Vaccine 2025; 54:126982. [PMID: 40048932 DOI: 10.1016/j.vaccine.2025.126982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/10/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
Streptococcus pneumoniae is one of the world's foremost bacterial pathogens, with extensive serotype diversity that impacted the efficacy of current vaccines. Our group have previously reported the generation of a whole cell serotype-independent gamma-irradiated pneumococcal vaccine (Gamma-PN). The present study sought to compare the effect of gamma-irradiation, heat, ethanol, or formalin inactivation on the antigenic structure and immunogenicity of whole-cell pneumococcal vaccines. Our data demonstrate that Gamma-PN exhibited comparable cellular morphology to live bacteria, in contrast to damage and aggregation observed for other approaches. Vaccination of mice with Gamma-PN or heat-inactivated PN (Heat-PN) induced high levels of pneumococcal-specific IgG, but with significantly different profiles of IgG subclasses. In addition, while immune sera from Heat-PN vaccinated mice had strong PspA-specific responses, sera from Gamma-PN vaccinated animals showed enhanced recognition of a wider array of pneumococcal proteins. Overall, in contrast to other methods of inactivation, the gamma-irradiated pneumococcal vaccine retained cellular structure and elicited immunity against a broad array of pneumococcal proteins, positioning this vaccine well to stimulate robust immunity to pneumococcal disease.
Collapse
Affiliation(s)
- Chloe J Gates
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, SA, Australia
| | - Erin B Brazel
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, SA, Australia; GPN Vaccines Ltd, Yarralumla, ACT, Australia
| | | | - Jeremy S Brown
- UCL Respiratory, University College London, London, United Kingdom
| | - Giuseppe Ercoli
- UCL Respiratory, University College London, London, United Kingdom
| | - Justin Davies
- Irradiations Group, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, Australia
| | | | - James C Paton
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, SA, Australia; GPN Vaccines Ltd, Yarralumla, ACT, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, SA, Australia; GPN Vaccines Ltd, Yarralumla, ACT, Australia.
| |
Collapse
|
4
|
Xia A, Li X, Zhao C, Meng X, Kari G, Wang Y. For Better or Worse: Type I Interferon Responses in Bacterial Infection. Pathogens 2025; 14:229. [PMID: 40137714 PMCID: PMC11945191 DOI: 10.3390/pathogens14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Type I interferons (IFNs) are pleiotropic cytokines, primarily comprising IFN-α and IFN-β, and their effect in host defense against viral infection has been extensively studied and well-established. However, in bacterial infection, the role of type I IFNs is more complex, exhibiting multifaceted effects that depend on several factors, such as the pathogen species, the specific cell populations, and the routes of infection. In this review, we summarize research progress on host type I interferon responses triggered by specific bacteria and their immune regulation function in order to better understand the role of type I IFNs in bacterial infection and provide insights for adjuvant therapies tailored to treat specific bacterial infections.
Collapse
Affiliation(s)
- Aihong Xia
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| | - Xin Li
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China;
| | - Changjing Zhao
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| | - Xiaojing Meng
- College of Agricultural Economics and Engineering, Kizilsu Vocational Technical College, Kizilsu Kirgiz Autonomous Prefecture 845350, China;
| | - Gulmela Kari
- College of Agricultural Economics and Engineering, Kizilsu Vocational Technical College, Kizilsu Kirgiz Autonomous Prefecture 845350, China;
| | - Yongjuan Wang
- College of Veterinary Medicine, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (A.X.); (C.Z.)
| |
Collapse
|
5
|
Boland H, Endres A, Kinscherf R, Schubert R, Wilhelm B, Schwarzbach H, Jonigk D, Braubach P, Rohde G, Bellinghausen C. Protective effect of interferon type I on barrier function of human airway epithelium during rhinovirus infections in vitro. Sci Rep 2024; 14:30510. [PMID: 39681656 DOI: 10.1038/s41598-024-82516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
The airway epithelium provides a crucial barrier against infection with respiratory pathogens. This barrier can be impaired following viral infection, paving the way for bacterial superinfections. Type I interferons (IFNs) are important antiviral mediators, and inhaled formulations of these glycoproteins are considered a potential approach for the treatment of respiratory viral infections. To investigate if type I IFNs can also protect against virus-induced epithelial barrier dysfunction, differentiated primary bronchial epithelial cells were pre-treated with IFN-β1a and subsequently infected with human rhinovirus (HRV) for 24 to 72h. Moreover, to functionally assess the effects of IFN-β1a pre-treatment on barrier integrity, we conducted co-infection experiments, in which cells were initially infected with HRV, and superinfected with Streptococcus pneumoniae 24 to 72 h later. In untreated cells, HRV infection significantly damaged ZO-1 positive tight junctions and cilia, and transiently increased permeability, whereas the barrier of cultures pre-treated with IFN-β1a remained intact. In co-infection experiments, bacteria were able to penetrate deeper into the cell layers of HRV-infected cultures than into those of uninfected cells. IFN-β1a pre-treatment abrogated virus-induced damage to the epithelial barrier. Taken together, these data demonstrate a beneficial effect of IFN-β in protecting epithelial barrier function in addition to its antiviral effects.
Collapse
Affiliation(s)
- Helena Boland
- Department of Respiratory Medicine and Allergology, Medical Clinic 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Adrian Endres
- Department of Respiratory Medicine and Allergology, Medical Clinic 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Ralf Schubert
- Division of Pediatrics, Pulmonology, Allergology, Infectious Diseases and Gastroenterology, Children's Hospital, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Beate Wilhelm
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Danny Jonigk
- Institute for Pathology, UKA University Medical Center RWTH University Aachen, Aachen, Germany
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Hanover, Germany
- German Center for Lung Research (DZL), Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine and Allergology, Medical Clinic 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Carla Bellinghausen
- Department of Respiratory Medicine and Allergology, Medical Clinic 1, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Albarracin L, Dentice Maidana S, Fukuyama K, Elean M, Argañaraz Aybar JN, Suda Y, Nishiyama K, Kitazawa H, Villena J. Orally Administered Lactobacilli Strains Modulate Alveolar Macrophages and Improve Protection Against Respiratory Superinfection. Biomolecules 2024; 14:1600. [PMID: 39766307 PMCID: PMC11674826 DOI: 10.3390/biom14121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Orally administered immunomodulatory lactobacilli can stimulate respiratory immunity and enhance the resistance to primary infections with bacterial and viral pathogens. However, the potential beneficial effects of immunomodulatory lactobacilli against respiratory superinfection have not been evaluated. In this work, we showed that the feeding of infant mice with Lacticaseibacillus rhamnosus CRL1505 or Lactiplantibacillus plantarum MPL16 strains can reduce susceptibility to the secondary pneumococcal infection produced after the activation of TLR3 in the respiratory tract or after infection with RVS. The treatment of mice with CRL1505 or MPL16 strains by the oral route improved the production of interferons in the respiratory tract, differentially modulated the balance of pro- and anti-inflammatory cytokines, reduced bacterial replication, and diminished lung damage. Additionally, we demonstrated that orally administered lactobacilli confer longstanding protection against secondary Streptococcus pneumoniae infection and that this effect would be mediated by the stimulation of trained alveolar macrophages. This work contributes to revealing the mechanisms involved in the modulation of the gut-lung axis by beneficial microbes by demonstrating that specific lactobacilli strains, through the stimulation of the common mucosal immune system, would be able to support the development of trained alveolar macrophages that would confer longstanding protection against secondary bacterial challenges produced after a primary inflammatory event in the respiratory mucosa.
Collapse
Affiliation(s)
- Leonardo Albarracin
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (S.D.M.); (M.E.)
| | - Stefania Dentice Maidana
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (S.D.M.); (M.E.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (K.F.); (K.N.)
| | - Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (S.D.M.); (M.E.)
| | - Julio Nicolás Argañaraz Aybar
- Cátedra de Inmunología, Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucuman 4000, Argentina;
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (K.F.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (K.F.); (K.N.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán 4000, Argentina; (L.A.); (S.D.M.); (M.E.)
| |
Collapse
|
7
|
Currie C, Myklebust TÅ, Bjerknes C, Framroze B. Assessing the Potential of an Enzymatically Liberated Salmon Oil to Support Immune Health Recovery from Acute SARS-CoV-2 Infection via Change in the Expression of Cytokine, Chemokine and Interferon-Related Genes. Int J Mol Sci 2024; 25:6917. [PMID: 39000027 PMCID: PMC11241394 DOI: 10.3390/ijms25136917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Cytokines, chemokines, and interferons are released in response to viral infection with the ultimate aim of viral clearance. However, in SARS-CoV-2 infection, there is an imbalanced immune response, with raised cytokine levels but only a limited interferon response with inefficient viral clearance. Furthermore, the inflammatory response can be exaggerated, which risks both acute and chronic sequelae. Several observational studies have suggested a reduced risk of progression to severe COVID-19 in subjects with a higher omega-3 index. However, randomized studies of omega-3 supplementation have failed to replicate this benefit. Omega-3 fats provide important anti-inflammatory effects; however, fatty fish contains many other fatty acids that provide health benefits distinct from omega-3. Therefore, the immune health benefit of whole salmon oil (SO) was assessed in adults with mild to moderate COVID-19. Eleven subjects were randomized to best supportive care (BSC) with or without a full spectrum, enzymatically liberated SO, dosed at 4g daily, for twenty-eight days. Nasal swabs were taken to measure the change in gene expression of markers of immune response and showed that the SO provided both broad inflammation-resolving effects and improved interferon response. The results also suggest improved lung barrier function and enhanced immune memory, although the clinical relevance needs to be assessed in longer-duration studies. In conclusion, the salmon oil was well tolerated and provided broad inflammation-resolving effects, indicating a potential to enhance immune health.
Collapse
Affiliation(s)
- Crawford Currie
- Hofseth BioCare, Keiser Wilhelms Gate 24, 6003 Alesund, Norway; (C.B.); (B.F.)
| | - Tor Åge Myklebust
- Department of Research and Innovation, More og Romsdal Hospital Trust, 6026 Ålesund, Norway;
- Department of Registration, Cancer Registry of Norway, 0379 Oslo, Norway
| | - Christian Bjerknes
- Hofseth BioCare, Keiser Wilhelms Gate 24, 6003 Alesund, Norway; (C.B.); (B.F.)
| | - Bomi Framroze
- Hofseth BioCare, Keiser Wilhelms Gate 24, 6003 Alesund, Norway; (C.B.); (B.F.)
| |
Collapse
|
8
|
Chan JM, Ramos-Sevillano E, Betts M, Wilson HU, Weight CM, Houhou-Ousalah A, Pollara G, Brown JS, Heyderman RS. Bacterial surface lipoproteins mediate epithelial microinvasion by Streptococcus pneumoniae. Infect Immun 2024; 92:e0044723. [PMID: 38629841 PMCID: PMC11075461 DOI: 10.1128/iai.00447-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/27/2024] [Indexed: 05/08/2024] Open
Abstract
Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.
Collapse
Affiliation(s)
- Jia Mun Chan
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Elisa Ramos-Sevillano
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Modupeh Betts
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Holly U. Wilson
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Caroline M. Weight
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Ambrine Houhou-Ousalah
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Gabriele Pollara
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Robert S. Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
9
|
Majumder S, Li P, Das S, Nafiz TN, Kumar S, Bai G, Dellario H, Sui H, Guan Z, Curtiss R, Furuya Y, Sun W. A bacterial vesicle-based pneumococcal vaccine against influenza-mediated secondary Streptococcus pneumoniae pulmonary infection. Mucosal Immunol 2024; 17:169-181. [PMID: 38215909 PMCID: PMC11033695 DOI: 10.1016/j.mucimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Streptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd+ plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant. The recombinant strain produced outer membrane vesicles (OMVs) enclosing a high amount of PspA protein (designated as OMV-PspA). A prime-boost intramuscular immunization with OMV-PspA induced both memory adaptive and innate immune responses in vaccinated mice, reduced the viral and bacterial burden, and provided complete protection against influenza-mediated secondary Spn infection. Also, the OMV-PspA immunization afforded significant cross-protection against the secondary Spn A66.1 infection and long-term protection against the secondary Spn D39 challenge. Our study implies that an OMV vaccine delivering Spn antigens can be a new promising pneumococcal vaccine candidate.
Collapse
Affiliation(s)
- Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Hazel Dellario
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
10
|
Kulkarni A, Jozefiaková J, Bhide K, Mochnaćová E, Bhide M. Differential transcriptome response of blood brain barrier spheroids to neuroinvasive Neisseria and Borrelia. Front Cell Infect Microbiol 2023; 13:1326578. [PMID: 38179419 PMCID: PMC10766361 DOI: 10.3389/fcimb.2023.1326578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Background The blood-brain barrier (BBB), a highly regulated interface between the blood and the brain, prevents blood-borne substances and pathogens from entering the CNS. Nevertheless, pathogens like Neisseria meningitidis and Borrelia bavariensis can breach the BBB and infect the brain parenchyma. The self-assembling BBB-spheroids can simulate the cross talk occurring between the cells of the barrier and neuroinvasive pathogens. Methods BBB spheroids were generated by co-culturing human brain microvascular endothelial cells (hBMECs), pericytes and astrocytes. The BBB attributes of spheroids were confirmed by mapping the localization of cells, observing permeability of angiopep2 and non-permeability of dextran. Fluorescent Neisseria, Borrelia or E. coli (non-neuroinvasive) were incubated with spheroids to observe the adherence, invasion and spheroid integrity. Transcriptome analysis with NGS was employed to investigate the response of BBB cells to infections. Results hBMECs were localized throughout the spheroids, whereas pericytes and astrocytes were concentrated around the core. Within 1 hr of exposure, Neisseria and Borrelia adhered to spheroids, and their microcolonization increased from 5 to 24 hrs. Integrity of spheroids was compromised by both Neisseria and Borrelia, but not by E. coli infection. Transcriptome analysis revealed a significant change in the expression of 781 genes (467 up and 314 down regulated) in spheroids infected with Neisseria, while Borrelia altered the expression of 621 genes (225 up and 396 down regulated). The differentially expressed genes could be clustered into various biological pathways like cell adhesion, extracellular matrix related, metallothionines, members of TGF beta, WNT signaling, and immune response. Among the differentially expressed genes, 455 (48%) genes were inversely expressed during Neisseria and Borrelia infection. Conclusion The self-assembling spheroids were used to perceive the BBB response to neuroinvasive pathogens - Neisseria and Borrelia. Compromised integrity of spheroids during Neisseria and Borrelia infection as opposed to its intactness and non-adherence of E. coli (non-neuroinvasive) denotes the pathogen dependent fate of BBB. Genes categorized into various biological functions indicated weakened barrier properties of BBB and heightened innate immune response. Inverse expression of 48% genes commonly identified during Neisseria and Borrelia infection exemplifies unique response of BBB to varying neuropathogens.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Jozefiaková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelína Mochnaćová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
11
|
Colvin KL, Elliott RJ, Goodman DM, Harral J, Barrett EG, Yeager ME. Increased lethality of respiratory infection by Streptococcus pneumoniae in the Dp16 mouse model of Down syndrome. FASEB Bioadv 2023; 5:528-540. [PMID: 38094158 PMCID: PMC10714064 DOI: 10.1096/fba.2023-00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2024] Open
Abstract
Objectives We sought to investigate whether the Dp16 mouse model of Down syndrome (DS) is more susceptible to severe and lethal respiratory tract infection by Streptococcus pneumoniae. Study Design We infected controls and Dp16 mice with Streptococcus pneumoniae and measured survival rates. We compared cytokine production by primary lung cell cultures exposed to Streptococcus pneumoniae. We examined lung protein expression for interferon signaling related pathways. We characterized the histopathology and quantified the extent of bronchus-associated lymphoid tissue. Finally, we examined mouse tissues for the presence of oligomeric tau protein. Results We found that the Dp16 mouse model of DS displayed significantly higher susceptibility to lethal respiratory infection with Streptococcus pneumoniae compared to control mice. Lung cells cultured from Dp16 mice displayed unique secreted cytokine profiles compared to control mice. The Dp16 mouse lungs were characterized by profound lobar pneumonia with massive diffuse consolidation involving nearly the entire lobe. Marked red hepatization was noted, and Dp16 mice lungs contained numerous bronchus-associated lymphoid tissues that were highly follicularized. Compared to uninfected mice, both control mice and Dp16 mice infected with Streptococcus pneumoniae showed evidence of oligomeric tau aggregates. Conclusions Increased susceptibility to severe respiratory tract infection with Streptococcus pneumoniae in Dp16 mice closely phenocopies infection in individuals with DS. The increase does not appear to be linked to overexpression of mouse interferon genes syntenic to human chromosome 21.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Bioengineering University of Colorado Aurora Colorado USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Aurora Colorado USA
- University of Colorado Denver Health Sciences Aurora Colorado USA
| | - Robert J Elliott
- Department of Bioengineering University of Colorado Aurora Colorado USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Aurora Colorado USA
- University of Colorado Denver Health Sciences Aurora Colorado USA
| | - Desiree M Goodman
- Linda Crnic Institute for Down Syndrome, University of Colorado Aurora Colorado USA
- University of Colorado Denver Health Sciences Aurora Colorado USA
| | - Julie Harral
- University of Colorado Denver Health Sciences Aurora Colorado USA
- Department of Medicine University of Colorado Aurora Colorado USA
| | - Edward G Barrett
- Lovelace Biomedical Research Institute Albuquerque New Mexico USA
| | - Michael E Yeager
- Department of Bioengineering University of Colorado Aurora Colorado USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Aurora Colorado USA
- University of Colorado Denver Health Sciences Aurora Colorado USA
| |
Collapse
|
12
|
Elean M, Raya Tonetti F, Fukuyama K, Arellano-Arriagada L, Namai F, Suda Y, Gobbato N, Nishiyama K, Villena J, Kitazawa H. Immunobiotic Ligilactobacillus salivarius FFIG58 Confers Long-Term Protection against Streptococcus pneumoniae. Int J Mol Sci 2023; 24:15773. [PMID: 37958756 PMCID: PMC10648150 DOI: 10.3390/ijms242115773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Previously, we isolated potentially probiotic Ligilactobacillus salivarius strains from the intestines of wakame-fed pigs. The strains were characterized based on their ability to modulate the innate immune responses triggered by the activation of Toll-like receptor (TLR)-3 or TLR4 signaling pathways in intestinal mucosa. In this work, we aimed to evaluate whether nasally administered L. salivarius strains are capable of modulating the innate immune response in the respiratory tract and conferring long-term protection against the respiratory pathogen Streptococcus pneumoniae. Infant mice (3-weeks-old) were nasally primed with L. salivarius strains and then stimulated with the TLR3 agonist poly(I:C). Five or thirty days after the last poly(I:C) administration mice were infected with pneumococci. Among the strains evaluated, L. salivarius FFIG58 had a remarkable ability to enhance the protection against the secondary pneumococcal infection by modulating the respiratory immune response. L. salivarius FFIG58 improved the ability of alveolar macrophages to produce interleukin (IL)-6, interferon (IFN)-γ, IFN-β, tumor necrosis factor (TNF)-α, IL-27, chemokine C-C motif ligand 2 (CCL2), chemokine C-X-C motif ligand 2 (CXCL2), and CXCL10 in response to pneumococcal challenge. Furthermore, results showed that the nasal priming of infant mice with the FFIG58 strain protected the animals against secondary infection until 30 days after stimulation with poly(I:C), raising the possibility of using nasally administered immunobiotics to stimulate trained immunity in the respiratory tract.
Collapse
Affiliation(s)
- Mariano Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
| | - Kohtaro Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Luciano Arellano-Arriagada
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Yoshihito Suda
- Department of Food, Agriculture and Environment, Miyagi University, Sendai 980-8572, Japan;
| | - Nadia Gobbato
- Laboratory of Immunology, Microbiology Institute, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Tucuman 4000, Argentina;
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina; (M.E.); (F.R.T.); (L.A.-A.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; (K.F.); (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
13
|
Xu S, Mo D, Rizvi FZ, Rosa JP, Ruiz J, Tan S, Tweten RK, Leong JM, Adams W. Pore-forming activity of S. pneumoniae pneumolysin disrupts the paracellular localization of the epithelial adherens junction protein E-cadherin. Infect Immun 2023; 91:e0021323. [PMID: 37607057 PMCID: PMC10501216 DOI: 10.1128/iai.00213-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 08/24/2023] Open
Abstract
Streptococcus pneumoniae, a common cause of community-acquired bacterial pneumonia, can cross the respiratory epithelial barrier to cause lethal septicemia and meningitis. S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers robust neutrophil (PMN) infiltration that promotes bacterial transepithelial migration in vitro and disseminated disease in mice. Apical infection of polarized respiratory epithelial monolayers by S. pneumoniae at a multiplicity of infection (MOI) of 20 resulted in recruitment of PMNs, loss of 50% of the monolayer, and PMN-dependent bacterial translocation. Reducing the MOI to 2 decreased PMN recruitment two-fold and preserved the monolayer, but apical-to-basolateral translocation of S. pneumoniae remained relatively efficient. At both MOI of 2 and 20, PLY was required for maximal PMN recruitment and bacterial translocation. Co-infection by wild-type S. pneumoniae restored translocation by a PLY-deficient mutant, indicating that PLY can act in trans. Investigating the contribution of S. pneumoniae infection on apical junction complexes in the absence of PMN transmigration, we found that S. pneumoniae infection triggered the cleavage and mislocalization of the adherens junction (AJ) protein E-cadherin. This disruption was PLY-dependent at MOI of 2 and was recapitulated by purified PLY, requiring its pore-forming activity. In contrast, at MOI of 20, E-cadherin disruption was independent of PLY, indicating that S. pneumoniae encodes multiple means to disrupt epithelial integrity. This disruption was insufficient to promote bacterial translocation in the absence of PMNs. Thus, S. pneumoniae triggers cleavage and mislocalization of E-cadherin through PLY-dependent and -independent mechanisms, but maximal bacterial translocation across epithelial monolayers requires PLY-dependent neutrophil transmigration.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Devons Mo
- Department of Biological Sciences, San Jose State University, San Jose, California, USA
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Fatima Z. Rizvi
- Department of Biological Sciences, San Jose State University, San Jose, California, USA
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Juan P. Rosa
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- University of Puerto Rico, Cayey, USA
| | - Jorge Ruiz
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Francisco de Vitoria University, Madrid, Spain
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma, Oklahoma, USA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance at Tufts (Levy CIMAR), Boston, Massachusetts, USA
| | - Walter Adams
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
- Department of Biological Sciences, San Jose State University, San Jose, California, USA
| |
Collapse
|
14
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
15
|
Bernard Q, Goumeidane M, Chaumond E, Robbe-Saule M, Boucaud Y, Esnault L, Croué A, Jullien J, Marsollier L, Marion E. Type-I interferons promote innate immune tolerance in macrophages exposed to Mycobacterium ulcerans vesicles. PLoS Pathog 2023; 19:e1011479. [PMID: 37428812 PMCID: PMC10358927 DOI: 10.1371/journal.ppat.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
Buruli ulcer is a chronic infectious disease caused by Mycobacterium ulcerans. The pathogen persistence in host skin is associated with the development of ulcerative and necrotic lesions leading to permanent disabilities in most patients. However, few of diagnosed cases are thought to resolve through an unknown self-healing process. Using in vitro and in vivo mouse models and M. ulcerans purified vesicles and mycolactone, we showed that the development of an innate immune tolerance was only specific to macrophages from mice able to heal spontaneously. This tolerance mechanism depends on a type I interferon response and can be induced by interferon beta. A type I interferon signature was further detected during in vivo infection in mice as well as in skin samples from patients under antibiotics regiment. Our results indicate that type I interferon-related genes expressed in macrophages may promote tolerance and healing during infection with skin damaging pathogen.
Collapse
Affiliation(s)
- Quentin Bernard
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | | | - Emmanuel Chaumond
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Marie Robbe-Saule
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Yan Boucaud
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Lucille Esnault
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Anne Croué
- Laboratoire d'anatomo-pathologie, CHU Angers, Angers, France
| | | | - Laurent Marsollier
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Estelle Marion
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| |
Collapse
|
16
|
Tonetti FR, Tomokiyo M, Fukuyama K, Elean M, Moyano RO, Yamamuro H, Shibata R, Quilodran-Vega S, Kurata S, Villena J, Kitazawa H. Post-immunobiotics increase resistance to primary respiratory syncytial virus infection and secondary pneumococcal pneumonia. Benef Microbes 2023; 14:209-221. [PMID: 37128181 DOI: 10.3920/bm2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
Previously, we demonstrated that post-immunobiotics derived from Lactobacillus gasseri TMT36, TMT39, and TMT40 strains (HK36, HK39 and HK40, respectively) differentially regulated Toll-like receptor 3 (TLR3)-mediated antiviral respiratory immunity in infant mice. In this work, we investigated whether the HK36, HK39 and HK40 nasal treatments were able to improve the resistance against primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. Our results demonstrated that the three treatments increased the resistance to primary viral infection by reducing variations in body weight, RSV titers and lung damage of infected infant mice. Post-immunobiotics significantly enhanced the expressions of interferon (IFN)-λ, IFN-β, IFN-γ, interleukin(IL) - 1β, IL-6, IL-27, Mx1, RNAseL and 2'-5'-oligoadenylate synthetase 1 (OAS1) genes and decreased tumour necrosis factor (TNF)-α in alveolar macrophages of RSV-challenged mice. In addition, the studies in the model of RSV-Streptococcus pneumoniae superinfection showed that the HK39 and HK40 treatments were capable of reducing lung damage, lung bacterial cell counts, and the dissemination of S. pneumoniae into the blood of infant mice. The protective effect was associated with increases in IFN-β, IFN-γ, IL-10, and IL-27 in the respiratory tract. This study demonstrates that the nasal application of the post-immunobiotics HK39 and HK40 stimulates innate respiratory immunity and enhances the defences against primary RSV infection and secondary pneumococcal pneumonia offering an alternative to combat respiratory superinfections in children, which can be fatal.
Collapse
Affiliation(s)
- F Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - M Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - K Fukuyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - M Elean
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - R Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
| | - H Yamamuro
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - R Shibata
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - S Quilodran-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Avenida Vicente Méndez 595, 3801061 Chillán, Chile
| | - S Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, 980-8578 Sendai, Japan
| | - J Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| | - H Kitazawa
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 145 Batalla de Chacabuco st., 4000 Tucuman, Argentina
- Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aobaku, 980-8572 Sendai, Japan
| |
Collapse
|
17
|
Granulocyte-macrophage colony-stimulating factor suppresses induction of type I interferon in infants with severe pneumonia. Pediatr Res 2023; 93:72-77. [PMID: 35414668 DOI: 10.1038/s41390-022-02059-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/07/2022] [Accepted: 03/26/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND The underlying mechanisms for infantile bronchopneumonia development remain unknown. METHODS Peripheral blood mononuclear cell (PBMCs) and serum derived from severe and mild infantile bronchopneumonia were obtained, and the expression of various molecules was detected with enzyme-linked immunosorbent assay and quantitative PCR. Such molecules were also detected in granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced bone marrow-derived NFκB2-/- dendritic cells (DCs) or NIK SMI1 (NF-κB-inducing kinase inhibitor) administrated DCs. RESULTS The relative mRNA expression levels of type I interferons (IFNs) (IFN-α4, IFN-β), Th17 cell-associated markers (interleukin-17A, retinoic-acid-receptor-related orphan nuclear receptor gamma, and GM-CSF), and non-canonical NF-κB member (NFκB2) were significantly up-regulated in PBMCs and DCs derived from infantile bronchopneumonia compared with healthy controls. However, compared with Th17 cell-associated markers and non-canonical NF-κB molecules, the expression of IFN-α4 and IFN-β was significantly inhibited in severe infantile bronchopneumonia compared with mild infantile bronchopneumonia. The relative protein expression of the above molecules also showed a similar expression pattern in the PBMCs or serum. NF-κB2 knockout or NIK SMI1 administration could reverse the diminished expression of IFN-β in GM-CSF-induced bone marrow-derived DCs. CONCLUSIONS GM-CSF-dependent non-canonical NF-κB pathway-mediated inhibition of type I IFNs production in DCs contributes to the development of severe bronchopneumonia in infant. IMPACT Granulocyte-macrophage colony-stimulating factor-dependent non-canonical NF-κB pathway-mediated inhibition of type I IFNs production in dendritic cells is critical for the development of infantile bronchopneumonia. Our findings reveal a possible mechanism underlying the development of severe infantile bronchopneumonia. The results could provide therapeutic molecular target for the treatment of such disease.
Collapse
|
18
|
Inhibition of p38 signaling curtails the SARS-CoV-2 induced inflammatory response but retains the IFN-dependent antiviral defense of the lung epithelial barrier. Antiviral Res 2023; 209:105475. [PMID: 36423831 PMCID: PMC9677559 DOI: 10.1016/j.antiviral.2022.105475] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
SARS-CoV-2 is the causative agent of the immune response-driven disease COVID-19 for which new antiviral and anti-inflammatory treatments are urgently needed to reduce recovery time, risk of death and long COVID development. Here, we demonstrate that the immunoregulatory kinase p38 MAPK is activated during viral entry, mediated by the viral spike protein, and drives the harmful virus-induced inflammatory responses. Using primary human lung explants and lung epithelial organoids, we demonstrate that targeting p38 signal transduction with the selective and clinically pre-evaluated inhibitors PH-797804 and VX-702 markedly reduced the expression of the pro-inflammatory cytokines IL6, CXCL8, CXCL10 and TNF-α during infection, while viral replication and the interferon-mediated antiviral response of the lung epithelial barrier were largely maintained. Furthermore, our results reveal a high level of drug synergism of both p38 inhibitors in co-treatments with the nucleoside analogs Remdesivir and Molnupiravir to suppress viral replication of the SARS-CoV-2 variants of concern, revealing an exciting and novel mode of synergistic action of p38 inhibition. These results open new avenues for the improvement of the current treatment strategies for COVID-19.
Collapse
|
19
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
20
|
Aleith J, Brendel M, Weipert E, Müller M, Schultz D, Ko-Infekt Study Group, Müller-Hilke B. Influenza A Virus Exacerbates Group A Streptococcus Infection and Thwarts Anti-Bacterial Inflammatory Responses in Murine Macrophages. Pathogens 2022; 11:1320. [PMID: 36365071 PMCID: PMC9699311 DOI: 10.3390/pathogens11111320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 09/30/2023] Open
Abstract
Seasonal influenza epidemics pose a considerable hazard for global health. In the past decades, accumulating evidence revealed that influenza A virus (IAV) renders the host vulnerable to bacterial superinfections which in turn are a major cause for morbidity and mortality. However, whether the impact of influenza on anti-bacterial innate immunity is restricted to the vicinity of the lung or systemically extends to remote sites is underexplored. We therefore sought to investigate intranasal infection of adult C57BL/6J mice with IAV H1N1 in combination with bacteremia elicited by intravenous application of Group A Streptococcus (GAS). Co-infection in vivo was supplemented in vitro by challenging murine bone marrow derived macrophages and exploring gene expression and cytokine secretion. Our results show that viral infection of mice caused mild disease and induced the depletion of CCL2 in the periphery. Influenza preceding GAS infection promoted the occurrence of paw edemas and was accompanied by exacerbated disease scores. In vitro co-infection of macrophages led to significantly elevated expression of TLR2 and CD80 compared to bacterial mono-infection, whereas CD163 and CD206 were downregulated. The GAS-inducible upregulation of inflammatory genes, such as Nos2, as well as the secretion of TNFα and IL-1β were notably reduced or even abrogated following co-infection. Our results indicate that IAV primes an innate immune layout that is inadequately equipped for bacterial clearance.
Collapse
Affiliation(s)
- Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Maria Brendel
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Erik Weipert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
| | - Ko-Infekt Study Group
- Institute of Biochemistry, University of Greifswald, 17489 Greifswald, Germany
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
21
|
Raya Tonetti F, Clua P, Fukuyama K, Marcial G, Sacur J, Marranzino G, Tomokiyo M, Vizoso-Pinto G, Garcia-Cancino A, Kurata S, Kitazawa H, Villena J. The Ability of Postimmunobiotics from L. rhamnosus CRL1505 to Protect against Respiratory Syncytial Virus and Pneumococcal Super-Infection Is a Strain-Dependent Characteristic. Microorganisms 2022; 10:2185. [PMID: 36363777 PMCID: PMC9694915 DOI: 10.3390/microorganisms10112185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2023] Open
Abstract
Previously, we demonstrated that the non-viable strain Lacticaseibacillus rhamnosus CRL1505 (NV1505) or its purified peptidoglycan (PG1505) differentially modulated the respiratory innate antiviral immune response triggered by Toll-like receptor (TLR)-3 activation in infant mice, improving the resistance to primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. In this work, we evaluated the effect of other non-viable L. rhamnosus strains and their peptidoglycans on the respiratory immune response and their impact on primary and secondary respiratory infections. In addition, the duration of the protective effect induced by NV1505 and PG1505 as well as their ability to protect against different Streptococcus pneumoniae serotypes were evaluated. Our results showed that among the five selected L. rhamnosus strains (CRL1505, CRL498, CRL576, UCO25A and IBL027), NV1505 and NVIBL027 improved the protection against viral and pneumococcal infections by modulating the respiratory immune response. Of note, only the PG1505 presented immunomodulatory activities when compared with the other purified peptidoglycans. Studies on alveolar macrophages showed that NV1505 and PG1505 differentially modulated the expression of IL-6, IFN-γ, IFN-β, TNF-α, OAS1, RNAseL and IL-27 genes in response to RSV infection, and IL-6, IFN-γ, IL-1β, TNF-α, CCL2, CXCL2, CXCL10 and IL-27 in response to pneumococcal challenge. Furthermore, we demonstrated that NV1505 and PG1505 treatments protected mice against secondary pneumococcal pneumonia produced by different serotypes of S. pneumoniae until 30 days after stimulation with poly(I:C). This work advances the characterization of the protective effect of NV1505 and PG1505 by demonstrating that they increase resistance against the pneumococcal serotypes 3, 6B, 14 and 19F, with an effect that lasts up to 30 days after the primary viral inflammation. The results also confirm that the immunomodulatory properties of NV1505 and PG1505 are unique and are not shared by other members of this species, and suggest the existence of a capacity to stimulate trained immunity in alveolar macrophages.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Patricia Clua
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Guillermo Marcial
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucuman 4000, Argentina
| | - Gabriela Marranzino
- Facultad de Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), San Miguel de Tucuman 4000, Argentina
| | - Mikado Tomokiyo
- Laboratory of Animal Food Function, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucuman 4000, Argentina
| | - Apolinaria Garcia-Cancino
- Laboratory of Bacterial Pathogenicity, Faculty of Biological Sciences, University of Concepcion, Concepcion 4030000, Chile
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
- Laboratory of Animal Food Function, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| |
Collapse
|
22
|
Mechanisms involved in controlling RNA virus-induced intestinal inflammation. Cell Mol Life Sci 2022; 79:313. [PMID: 35604464 PMCID: PMC9125963 DOI: 10.1007/s00018-022-04332-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Gastroenteritis is inflammation of the lining of stomach and intestines and causes significant morbidity and mortality worldwide. Many viruses, especially RNA viruses are the most common cause of enteritis. Innate immunity is the first line of host defense against enteric RNA viruses and virus-induced intestinal inflammation. The first layer of defense against enteric RNA viruses in the intestinal tract is intestinal epithelial cells (IECs), dendritic cells and macrophages under the intestinal epithelium. These innate immune cells express pathogen-recognition receptors (PRRs) for recognizing enteric RNA viruses through sensing viral pathogen-associated molecular patterns (PAMPs). As a result of this recognition type I interferon (IFN), type III IFN and inflammasome activation occurs, which function cooperatively to clear infection and reduce viral-induced intestinal inflammation. In this review, we summarize recent findings about mechanisms involved in enteric RNA virus-induced intestinal inflammation. We will provide an overview of the enteric RNA viruses, their RNA sensing mechanisms by host PRRs, and signaling pathways triggered by host PRRs, which shape the intestinal immune response to maintain intestinal homeostasis.
Collapse
|
23
|
Taylor BD, Criscitiello MF, Hernandez T, Norwood B, Noah A, Bazer FW. Interferon epsilon and preterm birth subtypes; a new piece of the type I interferon puzzle during pregnancy? Am J Reprod Immunol 2022; 87:e13526. [PMID: 35147251 PMCID: PMC9978937 DOI: 10.1111/aji.13526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
PROBLEM Interferon epsilon (IFNε) is a unique type I IFN that is expressed in response to sex steroids. Studies suggest that type I IFNs regulate inflammation-induced preterm birth (PTB), but no study has examined the role of IFNε in human pregnancy. METHOD OF STUDY We used stored vaginal swabs between 8 and 26 weeks of gestation from the Global Alliance to Prevent Prematurity and Stillbirth (GAPPS) biobank and measured IFNε by enzyme-linked immunosorbent assay (ELISA). A total of 29 women with spontaneous preterm births, 34 women with medically indicated preterm births, and 134 women with term births were included. Secondary outcomes included a preterm birth with chorioamnionitis and preeclampsia with a preterm birth. Logistic regression calculated odds ratios (OR) and 95% confidence intervals (CI) adjusting for maternal age, race, body mass index, prior pregnancy complications, lower genital tract infections, chronic health conditions, and gestational age at blood draw. RESULTS AND CONCLUSIONS There was no significant association between IFNε and spontaneous preterm birth (ORadj 1.0, 0.8-1.3) or chorioamnionitis (ORadj 1.6, 0.7-3.5). A trend toward increased odds of medically indicated preterm birth (ORadj . 1.3, 1.0-1.8) was observed. This was likely due to elevated IFNε among women with preterm preeclampsia (ORadj . 2.0, 95% CI 1.3-3.2). While exploratory, our novel findings suggest that larger longitudinal studies of IFNε across human pregnancy may be warranted.
Collapse
Affiliation(s)
- Brandie DePaoli Taylor
- Department of Obstetrics and Gynecology, Division of Basic and Translational Research, University of Texas Medical Branch, Galveston, TX, 77555,Department of Preventive Medicine and Population Health, University of Texas Medical Branch-Galveston, Galveston, Texas,Correspondence: Brandie DePaoli Taylor, PhD, MPH, Department of Obstetrics and Gynecology, Division of Basic and Translational Research, University of Texas Medical Branch ; phone: 409-772-7592
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843,Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, Texas 77843
| | - Tyne Hernandez
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, 19143
| | - Brooke Norwood
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843
| | - Akawinyene Noah
- Department of Obstetrics and Gynecology, Division of Basic and Translational Research, University of Texas Medical Branch, Galveston, TX, 77555,Department of Preventive Medicine and Population Health, University of Texas Medical Branch-Galveston, Galveston, Texas
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
24
|
Sura T, Gering V, Cammann C, Hammerschmidt S, Maaß S, Seifert U, Becher D. Streptococcus pneumoniae and Influenza A Virus Co-Infection Induces Altered Polyubiquitination in A549 Cells. Front Cell Infect Microbiol 2022; 12:817532. [PMID: 35281454 PMCID: PMC8908964 DOI: 10.3389/fcimb.2022.817532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cells are an important line of defense within the lung. Disruption of the epithelial barrier by pathogens enables the systemic dissemination of bacteria or viruses within the host leading to severe diseases with fatal outcomes. Thus, the lung epithelium can be damaged by seasonal and pandemic influenza A viruses. Influenza A virus infection induced dysregulation of the immune system is beneficial for the dissemination of bacteria to the lower respiratory tract, causing bacterial and viral co-infection. Host cells regulate protein homeostasis and the response to different perturbances, for instance provoked by infections, by post translational modification of proteins. Aside from protein phosphorylation, ubiquitination of proteins is an essential regulatory tool in virtually every cellular process such as protein homeostasis, host immune response, cell morphology, and in clearing of cytosolic pathogens. Here, we analyzed the proteome and ubiquitinome of A549 alveolar lung epithelial cells in response to infection by either Streptococcus pneumoniae D39Δcps or influenza A virus H1N1 as well as bacterial and viral co-infection. Pneumococcal infection induced alterations in the ubiquitination of proteins involved in the organization of the actin cytoskeleton and Rho GTPases, but had minor effects on the abundance of host proteins. H1N1 infection results in an anti-viral state of A549 cells. Finally, co-infection resembled the imprints of both infecting pathogens with a minor increase in the observed alterations in protein and ubiquitination abundance.
Collapse
Affiliation(s)
- Thomas Sura
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Vanessa Gering
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Clemens Cammann
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Ulrike Seifert
- Friedrich Loeffler-Institute of Medical Microbiology-Virology, University Medicine Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
- *Correspondence: Dörte Becher,
| |
Collapse
|
25
|
PAF Physiology in Target Organ Systems—A Deep Dive to Understand the PAF Mystery in Pathogenesis of Disease. HEARTS 2021. [DOI: 10.3390/hearts2040042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this literature review is to gain an overview of the role of platelet-activating factor (PAF) within each of the body systems and how it contributes to normal and pathophysiological states. The review showed that there are multiple functions of PAF that are common to several body systems; however, there is little evidence to explain why PAF has this affect across multiple systems. Interestingly, there seems to be conflicting research as to whether PAF is an overall protective or pathogenic pathway. Within this research, it was found that there are different pathways depending on the specific body system, as well as between body systems. However, one universal function reported in the literature is of PAF as a pro-inflammatory molecule. Overall, this review identified five major functions of PAF: vasoconstriction, increased inflammation, vascular remodeling, increased edema, and endothelial permeability.
Collapse
|
26
|
Raya Tonetti F, Tomokiyo M, Ortiz Moyano R, Quilodrán-Vega S, Yamamuro H, Kanmani P, Melnikov V, Kurata S, Kitazawa H, Villena J. The Respiratory Commensal Bacterium Dolosigranulum pigrum 040417 Improves the Innate Immune Response to Streptococcus pneumoniae. Microorganisms 2021; 9:microorganisms9061324. [PMID: 34207076 PMCID: PMC8234606 DOI: 10.3390/microorganisms9061324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Previously, we demonstrated that the nasal administration of Dolosigranulum pigrum 040417 differentially modulated the respiratory innate immune response triggered by the activation of Toll-like receptor 2 in infant mice. In this work, we aimed to evaluate the beneficial effects of D. pigrum 040417 in the context of Streptococcus pneumoniae infection and characterize the role of alveolar macrophages (AMs) in the immunomodulatory properties of this respiratory commensal bacterium. The nasal administration of D. pigrum 040417 to infant mice significantly increased their resistance to pneumococcal infection, differentially modulated respiratory cytokines production, and reduced lung injuries. These effects were associated to the ability of the 040417 strain to modulate AMs function. Depletion of AMs significantly reduced the capacity of the 040417 strain to improve both the reduction of pathogen loads and the protection against lung tissue damage. We also demonstrated that the immunomodulatory properties of D. pigrum are strain-specific, as D. pigrum 030918 was not able to modulate respiratory immunity or to increase the resistance of mice to an S. pneumoniae infection. These findings enhanced our knowledge regarding the immunological mechanisms involved in modulation of respiratory immunity induced by beneficial respiratory commensal bacteria and suggested that particular strains could be used as next-generation probiotics.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Ramiro Ortiz Moyano
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
| | - Sandra Quilodrán-Vega
- Laboratory of Food Microbiology, Faculty of Veterinary Sciences, University of Concepción, Chillán 3780000, Chile;
| | - Hikari Yamamuro
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Paulraj Kanmani
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
| | - Vyacheslav Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia;
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (J.V.)
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina; (F.R.T.); (R.O.M.)
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (H.Y.); (P.K.)
- Correspondence: (H.K.); (J.V.)
| |
Collapse
|
27
|
Alphonse N, Dickenson RE, Odendall C. Interferons: Tug of War Between Bacteria and Their Host. Front Cell Infect Microbiol 2021; 11:624094. [PMID: 33777837 PMCID: PMC7988231 DOI: 10.3389/fcimb.2021.624094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Type I and III interferons (IFNs) are archetypally antiviral cytokines that are induced in response to recognition of foreign material by pattern recognition receptors (PRRs). Though their roles in anti-viral immunity are well established, recent evidence suggests that they are also crucial mediators of inflammatory processes during bacterial infections. Type I and III IFNs restrict bacterial infection in vitro and in some in vivo contexts. IFNs mainly function through the induction of hundreds of IFN-stimulated genes (ISGs). These include PRRs and regulators of antimicrobial signaling pathways. Other ISGs directly restrict bacterial invasion or multiplication within host cells. As they regulate a diverse range of anti-bacterial host responses, IFNs are an attractive virulence target for bacterial pathogens. This review will discuss the current understanding of the bacterial effectors that manipulate the different stages of the host IFN response: IFN induction, downstream signaling pathways, and target ISGs.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Immunoregulation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ruth E. Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
28
|
Zangari T, Ortigoza MB, Lokken-Toyli KL, Weiser JN. Type I Interferon Signaling Is a Common Factor Driving Streptococcus pneumoniae and Influenza A Virus Shedding and Transmission. mBio 2021; 12:e03589-20. [PMID: 33593970 PMCID: PMC8545127 DOI: 10.1128/mbio.03589-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/27/2023] Open
Abstract
The dynamics underlying respiratory contagion (the transmission of infectious agents from the airways) are poorly understood. We investigated host factors involved in the transmission of the leading respiratory pathogen Streptococcus pneumoniae Using an infant mouse model, we examined whether S. pneumoniae triggers inflammatory pathways shared by influenza A virus (IAV) to promote nasal secretions and shedding from the upper respiratory tract to facilitate transit to new hosts. Here, we show that amplification of the type I interferon (IFN-I) response is a critical host factor in this process, as shedding and transmission by both IAV and S. pneumoniae were decreased in pups lacking the common IFN-I receptor (Ifnar1-/- mice). Additionally, providing exogenous recombinant IFN-I to S. pneumoniae-infected pups was sufficient to increase bacterial shedding. The expression of IFN-stimulated genes (ISGs) was upregulated in S. pneumoniae-infected wild-type (WT) but not Ifnar1-/- mice, including genes involved in mucin type O-glycan biosynthesis; this correlated with an increase in secretions in S. pneumoniae- and IAV-infected WT compared to Ifnar1-/- pups. S. pneumoniae stimulation of ISGs was largely dependent on its pore-forming toxin, pneumolysin, and coinfection with IAV and S. pneumoniae resulted in synergistic increases in ISG expression. We conclude that the induction of IFN-I signaling appears to be a common factor driving viral and bacterial respiratory contagion.IMPORTANCE Respiratory tract infections are a leading cause of childhood mortality and, globally, Streptococcus pneumoniae is the leading cause of mortality due to pneumonia. Transmission of S. pneumoniae primarily occurs through direct contact with respiratory secretions, although the host and bacterial factors underlying transmission are poorly understood. We examined transmission dynamics of S. pneumoniae in an infant mouse model and here show that S. pneumoniae colonization of the upper respiratory tract stimulates host inflammatory pathways commonly associated with viral infections. Amplification of this response was shown to be a critical host factor driving shedding and transmission of both S. pneumoniae and influenza A virus, with infection stimulating expression of a wide variety of genes, including those involved in the biosynthesis of mucin, a major component of respiratory secretions. Our findings suggest a mechanism facilitating S. pneumoniae contagion that is shared by viral infection.
Collapse
Affiliation(s)
- Tonia Zangari
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Mila B Ortigoza
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, New York, USA
| | - Kristen L Lokken-Toyli
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Jeffrey N Weiser
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Peignier A, Parker D. Impact of Type I Interferons on Susceptibility to Bacterial Pathogens. Trends Microbiol 2021; 29:823-835. [PMID: 33546974 DOI: 10.1016/j.tim.2021.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022]
Abstract
Interferons (IFNs) are a broad class of cytokines that have multifaceted roles. Type I IFNs have variable effects when it comes to host susceptibility to bacterial infections, that is, the resulting outcomes can be either protective or deleterious. The mechanisms identified to date have been wide and varied between pathogens. In this review, we discuss recent literature that provides new insights into the mechanisms of how type I IFN signaling exerts its effects on the outcome of infection from the host's point of view.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dane Parker
- Department of Pathology, Immunology, and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
30
|
D'Mello A, Riegler AN, Martínez E, Beno SM, Ricketts TD, Foxman EF, Orihuela CJ, Tettelin H. An in vivo atlas of host-pathogen transcriptomes during Streptococcus pneumoniae colonization and disease. Proc Natl Acad Sci U S A 2020; 117:33507-33518. [PMID: 33318198 PMCID: PMC7777036 DOI: 10.1073/pnas.2010428117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pneumoniae (Spn) colonizes the nasopharynx and can cause pneumonia. From the lungs it spreads to the bloodstream and causes organ damage. We characterized the in vivo Spn and mouse transcriptomes within the nasopharynx, lungs, blood, heart, and kidneys using three Spn strains. We identified Spn genes highly expressed at all anatomical sites and in an organ-specific manner; highly expressed genes were shown to have vital roles with knockout mutants. The in vivo bacterial transcriptome during colonization/disease was distinct from previously reported in vitro transcriptomes. Distinct Spn and host gene-expression profiles were observed during colonization and disease states, revealing specific genes/operons whereby Spn adapts to and influences host sites in vivo. We identified and experimentally verified host-defense pathways induced by Spn during invasive disease, including proinflammatory responses and the interferon response. These results shed light on the pathogenesis of Spn and identify therapeutic targets.
Collapse
Affiliation(s)
- Adonis D'Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Ashleigh N Riegler
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Eriel Martínez
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sarah M Beno
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tiffany D Ricketts
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ellen F Foxman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
31
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
32
|
Stanifer ML, Guo C, Doldan P, Boulant S. Importance of Type I and III Interferons at Respiratory and Intestinal Barrier Surfaces. Front Immunol 2020; 11:608645. [PMID: 33362795 PMCID: PMC7759678 DOI: 10.3389/fimmu.2020.608645] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Interferons (IFNs) constitute the first line of defense against microbial infections particularly against viruses. They provide antiviral properties to cells by inducing the expression of hundreds of genes known as interferon-stimulated genes (ISGs). The two most important IFNs that can be produced by virtually all cells in the body during intrinsic innate immune response belong to two distinct families: the type I and type III IFNs. The type I IFN receptor is ubiquitously expressed whereas the type III IFN receptor's expression is limited to epithelial cells and a subset of immune cells. While originally considered to be redundant, type III IFNs have now been shown to play a unique role in protecting mucosal surfaces against pathogen challenges. The mucosal specific functions of type III IFN do not solely rely on the restricted epithelial expression of its receptor but also on the distinct means by which type III IFN mediates its anti-pathogen functions compared to the type I IFN. In this review we first provide a general overview on IFNs and present the similarities and differences in the signal transduction pathways leading to the expression of either type I or type III IFNs. By highlighting the current state-of-knowledge of the two archetypical mucosal surfaces (e.g. the respiratory and intestinal epitheliums), we present the differences in the signaling cascades used by type I and type III IFNs to uniquely induce the expression of ISGs. We then discuss in detail the role of each IFN in controlling pathogen infections in intestinal and respiratory epithelial cells. Finally, we provide our perspective on novel concepts in the field of IFN (stochasticity, response heterogeneity, cellular polarization/differentiation and tissue microenvironment) that we believe have implications in driving the differences between type I and III IFNs and could explain the preferences for type III IFNs at mucosal surfaces.
Collapse
Affiliation(s)
- Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricio Doldan
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Research Group “Cellular polarity and viral infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
33
|
Rippee-Brooks MD, Marcinczyk RN, Lupfer CR. What came first, the virus or the egg: Innate immunity during viral coinfections. Immunol Rev 2020; 297:194-206. [PMID: 32761626 DOI: 10.1111/imr.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Infections with any pathogen can be severe and present with numerous complications caused by the pathogen or the host immune response to the invading microbe. However, coinfections, also called polymicrobial infections or secondary infections, can further exacerbate disease. Coinfections are more common than is often appreciated. In this review, we focus specifically on coinfections between viruses and other viruses, bacteria, parasites, or fungi. Importantly, innate immune signaling and innate immune cells that facilitate clearance of the initial viral infection can affect host susceptibility to coinfections. Understanding these immune imbalances may facilitate better diagnosis, prevention, and treatment of such coinfections.
Collapse
|
34
|
Clua P, Tomokiyo M, Raya Tonetti F, Islam MA, García Castillo V, Marcial G, Salva S, Alvarez S, Takahashi H, Kurata S, Kitazawa H, Villena J. The Role of Alveolar Macrophages in the Improved Protection against Respiratory Syncytial Virus and Pneumococcal Superinfection Induced by the Peptidoglycan of Lactobacillus rhamnosus CRL1505. Cells 2020; 9:cells9071653. [PMID: 32660087 PMCID: PMC7408600 DOI: 10.3390/cells9071653] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023] Open
Abstract
The nasal priming with nonviable Lactobacillus rhamnosus CRL1505 (NV1505) or its purified peptidoglycan (PG1505) differentially modulates the respiratory innate immune response in infant mice, improving their resistance to primary respiratory syncytial virus (RSV) infection and secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal superinfection, it was found that NV1505 or PG1505 significantly enhance the numbers of CD11c+SiglecF+ alveolar macrophages (AMs) producing interferon (IFN)-β. In this work, we aimed to further advance in the characterization of the beneficial effects of NV1505 and PG1505 in the context of a respiratory superinfection by evaluating whether their immunomodulatory properties are dependent on AM functions. Macrophage depletion experiments and a detailed study of their production of cytokines and antiviral factors clearly demonstrated the key role of this immune cell population in the improvement of both the reduction of pathogens loads and the protection against lung tissue damage induced by the immunobiotic CRL1505 strain. Studies at basal conditions during primary RSV or S. pneumoniae infections, as well as during secondary pneumococcal pneumonia, brought the following five notable findings regarding the immunomodulatory effects of NV1505 and PG1505: (a) AMs play a key role in the beneficial modulation of the respiratory innate immune response and protection against RSV infection, (b) AMs are necessary for improved protection against primary and secondary pneumococcal pneumonia, (c) the generation of activated/trained AMs would be essential for the enhanced protection against respiratory pathogens, (d) other immune and nonimmune cell populations in the respiratory tract may contribute to the protection against bacterial and viral infections, and (e) the immunomodulatory properties of NV1505 and PG1505 are strain-specific. These findings significantly improve our knowledge about the immunological mechanisms involved in the modulation of respiratory immunity induced by beneficial microbes.
Collapse
Affiliation(s)
- Patricia Clua
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 4000, Argentina; (P.C.); (F.R.T.); (V.G.C.); (G.M.); (S.S.); (S.A.)
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (M.A.I.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 4000, Argentina; (P.C.); (F.R.T.); (V.G.C.); (G.M.); (S.S.); (S.A.)
| | - Md. Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (M.A.I.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Valeria García Castillo
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 4000, Argentina; (P.C.); (F.R.T.); (V.G.C.); (G.M.); (S.S.); (S.A.)
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (M.A.I.)
| | - Guillermo Marcial
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 4000, Argentina; (P.C.); (F.R.T.); (V.G.C.); (G.M.); (S.S.); (S.A.)
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 4000, Argentina; (P.C.); (F.R.T.); (V.G.C.); (G.M.); (S.S.); (S.A.)
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 4000, Argentina; (P.C.); (F.R.T.); (V.G.C.); (G.M.); (S.S.); (S.A.)
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8572, Japan;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (M.A.I.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: (H.K.); (J.V.); Tel.: +81-22-757-4372 (H.K.); +54-381-4310465 (J.V.)
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA-CONICET), Tucuman 4000, Argentina; (P.C.); (F.R.T.); (V.G.C.); (G.M.); (S.S.); (S.A.)
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.T.); (M.A.I.)
- Correspondence: (H.K.); (J.V.); Tel.: +81-22-757-4372 (H.K.); +54-381-4310465 (J.V.)
| |
Collapse
|
35
|
The Ability of Respiratory Commensal Bacteria to Beneficially Modulate the Lung Innate Immune Response Is a Strain Dependent Characteristic. Microorganisms 2020; 8:microorganisms8050727. [PMID: 32414154 PMCID: PMC7285514 DOI: 10.3390/microorganisms8050727] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
We investigated whether the ability of commensal respiratory bacteria to modulate the innate immune response against bacterial and viral pathogens was a shared or strain-specific characteristic. Bacterial strains belonging to the Corynebacterium pseudodiphtheriticum and Dolosigranulum pigrum species were compared by studying their influence in the Toll-like receptor (TLR)-2- and TLR3-triggered immune responses in the respiratory tract, as well as in the resistance to Respiratory Syncytial Virus (RSV) and Streptococcus pneumoniae infections. We demonstrated that nasally administered C. pseudodiphteriticum 090104 or D. pigrum 040417 were able to modulate respiratory immunity and increase the resistance against pathogens, while other strains of the same species did not influence the respiratory immune responses, demonstrating a clear strain-dependent immunomodulatory effect of respiratory commensal bacteria. We also reported here that bacterium-like particles (BLP) and cell walls derived from immunomodulatory respiratory commensal bacteria are an interesting alternative for the modulation of the respiratory immune system. Our study is a step forward in the positioning of certain strains of respiratory commensal bacteria as next-generation probiotics for the respiratory tract.
Collapse
|
36
|
Microbiome in Multiple Sclerosis; Where Are We, What We Know and Do Not Know. Brain Sci 2020; 10:brainsci10040234. [PMID: 32295236 PMCID: PMC7226078 DOI: 10.3390/brainsci10040234] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
An increase of multiple sclerosis (MS) incidence has been reported during the last decade, and this may be connected to environmental factors. This review article aims to encapsulate the current advances targeting the study of the gut-brain axis, which mediates the communication between the central nervous system and the gut microbiome. Clinical data arising from many research studies, which have assessed the effects of administered disease-modifying treatments in MS patients to the gut microbiome, are also recapitulated.
Collapse
|
37
|
Wooten AK, Shenoy AT, Arafa EI, Akiyama H, Martin IMC, Jones MR, Quinton LJ, Gummuluru S, Bai G, Mizgerd JP. Unique Roles for Streptococcus pneumoniae Phosphodiesterase 2 in Cyclic di-AMP Catabolism and Macrophage Responses. Front Immunol 2020; 11:554. [PMID: 32300347 PMCID: PMC7145409 DOI: 10.3389/fimmu.2020.00554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is an important signaling molecule for pneumococci, and as a uniquely prokaryotic product it can be recognized by mammalian cells as a danger signal that triggers innate immunity. Roles of c-di-AMP in directing host responses during pneumococcal infection are only beginning to be defined. We hypothesized that pneumococci with defective c-di-AMP catabolism due to phosphodiesterase deletions could illuminate roles of c-di-AMP in mediating host responses to pneumococcal infection. Pneumococci deficient in phosphodiesterase 2 (Pde2) stimulated a rapid induction of interferon β (IFNβ) expression that was exaggerated in comparison to that induced by wild type (WT) bacteria or bacteria deficient in phosphodiesterase 1. This IFNβ burst was elicited in mouse and human macrophage-like cell lines as well as in primary alveolar macrophages collected from mice with pneumococcal pneumonia. Macrophage hyperactivation by Pde2-deficient pneumococci led to rapid cell death. STING and cGAS were essential for the excessive IFNβ induction, which also required phagocytosis of bacteria and triggered the phosphorylation of IRF3 and IRF7 transcription factors. The select effects of Pde2 deletion were products of a unique role of this enzyme in c-di-AMP catabolism when pneumococci were grown on solid substrate conditions designed to enhance virulence. Because pneumococci with elevated c-di-AMP drive aberrant innate immune responses from macrophages involving hyperactivation of STING, excessive IFNβ expression, and rapid cytotoxicity, we surmise that c-di-AMP is pivotal for directing innate immunity and host-pathogen interactions during pneumococcal pneumonia.
Collapse
Affiliation(s)
- Alicia K Wooten
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Anukul T Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Emad I Arafa
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Hisashi Akiyama
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Ian M C Martin
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Suryaram Gummuluru
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States.,Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
38
|
Aguilera ER, Lenz LL. Inflammation as a Modulator of Host Susceptibility to Pulmonary Influenza, Pneumococcal, and Co-Infections. Front Immunol 2020; 11:105. [PMID: 32117259 PMCID: PMC7026256 DOI: 10.3389/fimmu.2020.00105] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Bacterial and viral pathogens are predominant causes of pulmonary infections and complications. Morbidity and mortality from these infections is increased in populations that include the elderly, infants, and individuals with genetic disorders such as Down syndrome. Immune senescence, concurrent infections, and other immune alterations occur in these susceptible populations, but the underlying mechanisms that dictate increased susceptibility to lung infections are not fully defined. Here, we review unique features of the lung as a mucosal epithelial tissue and aspects of inflammatory and immune responses in model pulmonary infections and co-infections by influenza virus and Streptococcus pneumoniae. In these models, lung inflammatory responses are a double-edged sword: recruitment of immune effectors is essential to eliminate bacteria and virus-infected cells, but inflammatory cytokines drive changes in the lung conducive to increased pathogen replication. Excessive accumulation of inflammatory cells also hinders lung function, possibly causing death of the host. Some animal studies have found that targeting host modulators of lung inflammatory responses has therapeutic or prophylactic effects in these infection and co-infection models. However, conflicting results from other studies suggest microbiota, sequence of colonization, or other unappreciated aspects of lung biology also play important roles in the outcome of infections. Regardless, a predisposition to excessive or aberrant inflammatory responses occurs in susceptible human populations. Hence, in appropriate contexts, modulation of inflammatory responses may prove effective for reducing the frequency or severity of pulmonary infections. However, there remain limitations in our understanding of how this might best be achieved—particularly in diverse human populations.
Collapse
Affiliation(s)
- Elizabeth R Aguilera
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
39
|
LeMessurier KS, Tiwary M, Morin NP, Samarasinghe AE. Respiratory Barrier as a Safeguard and Regulator of Defense Against Influenza A Virus and Streptococcus pneumoniae. Front Immunol 2020; 11:3. [PMID: 32117216 PMCID: PMC7011736 DOI: 10.3389/fimmu.2020.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
The primary function of the respiratory system of gas exchange renders it vulnerable to environmental pathogens that circulate in the air. Physical and cellular barriers of the respiratory tract mucosal surface utilize a variety of strategies to obstruct microbe entry. Physical barrier defenses including the surface fluid replete with antimicrobials, neutralizing immunoglobulins, mucus, and the epithelial cell layer with rapidly beating cilia form a near impenetrable wall that separates the external environment from the internal soft tissue of the host. Resident leukocytes, primarily of the innate immune branch, also maintain airway integrity by constant surveillance and the maintenance of homeostasis through the release of cytokines and growth factors. Unfortunately, pathogens such as influenza virus and Streptococcus pneumoniae require hosts for their replication and dissemination, and prey on the respiratory tract as an ideal environment causing severe damage to the host during their invasion. In this review, we outline the host-pathogen interactions during influenza and post-influenza bacterial pneumonia with a focus on inter- and intra-cellular crosstalk important in pulmonary immune responses.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| | - Meenakshi Tiwary
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| | - Nicholas P Morin
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Critical Care Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Pulmonology, Allergy-Immunology, and Sleep, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, United States
| |
Collapse
|
40
|
Helbig KJ, Teh MY, Crosse KM, Monson EA, Smith M, Tran EN, Standish AJ, Morona R, Beard MR. The interferon stimulated gene viperin, restricts Shigella. flexneri in vitro. Sci Rep 2019; 9:15598. [PMID: 31666594 PMCID: PMC6821890 DOI: 10.1038/s41598-019-52130-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
The role of interferon and interferon stimulated genes (ISG) in limiting bacterial infection is controversial, and the role of individual ISGs in the control of the bacterial life-cycle is limited. Viperin, is a broad acting anti-viral ISGs, which restricts multiple viral pathogens with diverse mechanisms. Viperin is upregulated early in some bacterial infections, and using the intracellular bacterial pathogen, S. flexneri, we have shown for the first time that viperin inhibits the intracellular bacterial life cycle. S. flexneri replication in cultured cells induced a predominantly type I interferon response, with an early increase in viperin expression. Ectopic expression of viperin limited S. flexneri cellular numbers by as much as 80% at 5hrs post invasion, with similar results also obtained for the intracellular pathogen, Listeria monocytogenes. Analysis of viperins functional domains required for anti-bacterial activity revealed the importance of both viperin's N-terminal, and its radical SAM enzymatic function. Live imaging of S. flexneri revealed impeded entry into viperin expressing cells, which corresponded to a loss of cellular cholesterol. This data further defines viperin's multi-functional role, to include the ability to limit intracellular bacteria; and highlights the role of ISGs and the type I IFN response in the control of bacterial pathogens.
Collapse
Affiliation(s)
- K J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - M Y Teh
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - K M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - E A Monson
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - M Smith
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - E N Tran
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - A J Standish
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - R Morona
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - M R Beard
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
41
|
Nold C, Jensen T, O'Hara K, Stone J, Yellon SM, Vella AT. Replens prevents preterm birth by decreasing type I interferon strengthening the cervical epithelial barrier. Am J Reprod Immunol 2019; 83:e13192. [DOI: 10.1111/aji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Christopher Nold
- Department of Women's Health Hartford Hospital Hartford CT USA
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
| | - Todd Jensen
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
| | - Kathleen O'Hara
- Department of Pediatrics University of Connecticut School of Medicine Farmington CT USA
| | - Julie Stone
- Department of Obstetrics and Gynecology Tufts Medical Center Boston MA USA
| | - Steven M. Yellon
- Longo Center for Perinatal Biology Loma Linda University School of Medicine Loma Linda CA USA
| | - Anthony T. Vella
- Department of Immunology University of Connecticut School of Medicine Farmington CT USA
| |
Collapse
|
42
|
Dual RNA-seq in Streptococcus pneumoniae Infection Reveals Compartmentalized Neutrophil Responses in Lung and Pleural Space. mSystems 2019; 4:4/4/e00216-19. [PMID: 31409659 PMCID: PMC6697439 DOI: 10.1128/msystems.00216-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space. Streptococcus pneumoniae is the dominant cause of community-acquired pneumonia worldwide. Invasion of the pleural space is common and results in increased mortality. We set out to determine the bacterial and host factors that influence invasion of the pleural space. In a murine model of pneumococcal infection, we isolated neutrophil-dominated samples of bronchoalveolar and pleural fluid containing bacteria 48 hours after infection. Using dual RNA sequencing (RNA-seq), we characterized bacterial and host transcripts that were differentially regulated between these compartments and bacteria in broth and resting neutrophils, respectively. Pleural and lung samples showed upregulation of genes involved in the positive regulation of neutrophil extravasation but downregulation of genes mediating bacterial killing. Compared to the lung samples, cells within the pleural space showed marked upregulation of many genes induced by type I interferons, which are cytokines implicated in preventing bacterial transmigration across epithelial barriers. Differences in the bacterial transcripts between the infected samples and bacteria grown in broth showed the upregulation of genes in the bacteriocin locus, the pneumococcal surface adhesin PsaA, and the glycopeptide resistance gene vanZ; the gene encoding the ClpP protease was downregulated in infection. One hundred sixty-nine intergenic putative small bacterial RNAs were also identified, of which 43 (25.4%) small RNAs had been previously described. Forty-two of the small RNAs were upregulated in pleura compared to broth, including many previously identified as being important in virulence. Our results have identified key host and bacterial responses to invasion of the pleural space that can be potentially exploited to develop alternative antimicrobial strategies for the prevention and treatment of pneumococcal pleural disease. IMPORTANCE The factors that regulate the passage of bacteria between different anatomical compartments are unclear. We have used an experimental model of infection with Streptococcus pneumoniae to examine the host and bacterial factors involved in the passage of bacteria from the lung to the pleural space. The transcriptional profile of host and bacterial cells within the pleural space and lung was analyzed using deep sequencing of the entire transcriptome using the technique of dual RNA-seq. We found significant differences in the host and bacterial RNA profiles in infection, which shed light on the key factors that allow passage of this bacterium into the pleural space.
Collapse
|
43
|
Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee Yong V. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 2019; 141:1900-1916. [PMID: 29860380 DOI: 10.1093/brain/awy131] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Biological barriers are essential for the maintenance of homeostasis in health and disease. Breakdown of the intestinal barrier is an essential aspect of the pathophysiology of gastrointestinal inflammatory diseases, such as inflammatory bowel disease. A wealth of recent studies has shown that the intestinal microbiome, part of the brain-gut axis, could play a role in the pathophysiology of multiple sclerosis. However, an essential component of this axis, the intestinal barrier, has received much less attention. In this review, we describe the intestinal barrier as the physical and functional zone of interaction between the luminal microbiome and the host. Besides its essential role in the regulation of homeostatic processes, the intestinal barrier contains the gut mucosal immune system, a guardian of the integrity of the intestinal tract and the whole organism. Gastrointestinal disorders with intestinal barrier breakdown show evidence of CNS demyelination, and content of the intestinal microbiome entering into the circulation can impact the functions of CNS microglia. We highlight currently available studies suggesting that there is intestinal barrier dysfunction in multiple sclerosis. Finally, we address the mechanisms by which commonly used disease-modifying drugs in multiple sclerosis could alter the intestinal barrier and the microbiome, and we discuss the potential of barrier-stabilizing strategies, including probiotics and stabilization of tight junctions, as novel therapeutic avenues in multiple sclerosis.
Collapse
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Luanne Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan B Meddings
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
44
|
Yang S, Yin Y, Xu W, Zhang X, Gao Y, Liao H, Hu X, Wang J, Wang H. Type I interferon induced by DNA of nontypeable Haemophilus influenza modulates inflammatory cytokine profile to promote susceptibility to this bacterium. Int Immunopharmacol 2019; 74:105710. [PMID: 31255879 DOI: 10.1016/j.intimp.2019.105710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Type I interferon (IFN) is indispensable for antiviral immunity, but its role in bacterial infections is controversial and not fully described. Nontypeable Haemophilus influenzae (NTHi) is one of the most common bacterial pathogens in patients with chronic obstructive pulmonary disease (COPD). NTHi-DNA activates type I IFN production in macrophages, but the function of type I IFN in host-pathogen interactions, in the context of NTHi infection, is still unclear. Here, we showed that type I IFN, induced by NTHi-DNA, restrained bacterial killing in vitro and promoted COPD development in vivo in response to NTHi. Mice deficient for type I IFN receptor (IFNAR) exhibited improved resistance to NTHi infection. Moreover, similar to exogenous IFN-β, NTHi-DNA-induced type I IFN increased the production of IL-6, IL-1β, IL-12 and CXCL10 via p38 MAPK activation. Our findings demonstrated that NTHi-DNA-induced type I IFN signaling played a negative role in host defense against NTHi infection and identified potential targets for future therapeutic management of COPD.
Collapse
Affiliation(s)
- Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
45
|
Boutaoui N, Puranik S, Zhang R, Wang T, Hui DH, Brehm J, Forno E, Chen W, Celedón JC. Epigenome-wide effects of vitamin D on asthma bronchial epithelial cells. Epigenetics 2019; 14:844-849. [PMID: 31122150 DOI: 10.1080/15592294.2019.1622993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vitamin D is a nutrient and a hormone with multiple effects on immune regulation and respiratory viral infections, which can worsen asthma and lead to severe asthma exacerbations. We set up a complete experimental and analytical pipeline for ATAC-Seq and RNA-Seq to study genome-wide epigenetic changes in human bronchial epithelial cells of asthmatic subjects, following treatment of these cells with calcitriol (vitamin D3) and Poly (I:C)(a viral analogue). This approach led to the identification of biologically plausible candidate genes for viral infections and asthma, such as DUSP10 and SLC44A1.
Collapse
Affiliation(s)
- Nadia Boutaoui
- a Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh , Pittsburgh , PA , USA
| | - Sandeep Puranik
- a Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh , Pittsburgh , PA , USA
| | - Rong Zhang
- a Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh , Pittsburgh , PA , USA.,b Department of Statistics, University of Pittsburgh , Pittsburgh , PA , USA
| | - Ting Wang
- c Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Daniel H Hui
- d Brigham and Women's Hospital, Harvard Medical School, Broad Institute , Boston , MA , USA
| | - John Brehm
- e Division of Pulmonary and Critical Care Medicine, University of Pittsburgh Medical Center- St. Margret's Hospital, University of Pittsburgh , Pittsburgh , PA , USA
| | - Erick Forno
- a Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh , Pittsburgh , PA , USA
| | - Wei Chen
- a Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh , Pittsburgh , PA , USA
| | - Juan C Celedón
- a Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
46
|
STAT2 dependent Type I Interferon response promotes dysbiosis and luminal expansion of the enteric pathogen Salmonella Typhimurium. PLoS Pathog 2019; 15:e1007745. [PMID: 31009517 PMCID: PMC6513112 DOI: 10.1371/journal.ppat.1007745] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/13/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms by which the gut luminal environment is disturbed by the immune system to foster pathogenic bacterial growth and survival remain incompletely understood. Here, we show that STAT2 dependent type I IFN signaling contributes to the inflammatory environment by disrupting hypoxia enabling the pathogenic S. Typhimurium to outgrow the microbiota. Stat2-/- mice infected with S. Typhimurium exhibited impaired type I IFN induced transcriptional responses in cecal tissue and reduced bacterial burden in the intestinal lumen compared to infected wild-type mice. Although inflammatory pathology was similar between wild-type and Stat2-/- mice, we observed decreased hypoxia in the gut tissue of Stat2-/- mice. Neutrophil numbers were similar in wild-type and Stat2-/- mice, yet Stat2-/- mice showed reduced levels of myeloperoxidase activity. In vitro, the neutrophils from Stat2-/- mice produced lower levels of superoxide anion upon stimulation with the bacterial ligand N-formylmethionyl-leucyl-phenylalanine (fMLP) in the presence of IFNα compared to neutrophils from wild-type mice, indicating that the neutrophils were less functional in Stat2-/- mice. Cytochrome bd-II oxidase-mediated respiration enhances S. Typhimurium fitness in wild-type mice, while in Stat2-/- deficiency, this respiratory pathway did not provide a fitness advantage. Furthermore, luminal expansion of S. Typhimurium in wild-type mice was blunted in Stat2-/- mice. Compared to wild-type mice which exhibited a significant perturbation in Bacteroidetes abundance, Stat2-/- mice exhibited significantly less perturbation and higher levels of Bacteroidetes upon S. Typhimurium infection. Our results highlight STAT2 dependent type I IFN mediated inflammation in the gut as a novel mechanism promoting luminal expansion of S. Typhimurium. The spread of invading microbes is frequently contained by an inflammatory response. Yet, some pathogenic microbes have evolved to utilize inflammation for niche generation and to support their metabolism. Here, we demonstrate that S. Typhimurium exploits type I IFN signaling, a prototypical anti-viral response, to foster its own growth in the inflamed gut. In the absence of STAT2-dependent type I IFN, production of neutrophil reactive oxygen species was impaired, and epithelial metabolism returned to homeostatic hypoxia. Consequently, S. Typhimurium was unable to respire in the absence of type I IFN, and failed to expand in the gut lumen. Furthermore, perturbation of the gut microbiota was dependent on type I IFN signaling. Taken together, our work suggests that S. Typhimurium utilizes STAT2-dependent type I IFN signaling to generate a niche in the inflamed intestinal tract and outcompete the gut microbiota.
Collapse
|
47
|
Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019; 50:907-923. [PMID: 30995506 PMCID: PMC6839410 DOI: 10.1016/j.immuni.2019.03.025] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) (IFN-α, IFN-β) and type III IFNs (IFN-λ) share many properties, including induction by viral infection, activation of shared signaling pathways, and transcriptional programs. However, recent discoveries have revealed context-specific functional differences. Here, we provide a comprehensive review of type I and type III IFN activities, highlighting shared and distinct features from molecular mechanisms through physiological responses. Beyond discussing canonical antiviral functions, we consider the adaptive immune priming, anti-tumor, and autoimmune functions of IFNs. We discuss a model wherein type III IFNs serve as a front-line defense that controls infection at epithelial barriers while minimizing damaging inflammatory responses, reserving the more potent type I IFN response for when local responses are insufficient. In this context, we discuss current therapeutic applications targeting these cytokine pathways and highlight gaps in understanding of the biology of type I and type III IFNs in health and disease.
Collapse
Affiliation(s)
- Helen M Lazear
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael S Diamond
- Departments of Medicine, Pathology & Immunology, and Molecular Microbiology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
48
|
Gao Y, Xu W, Dou X, Wang H, Zhang X, Yang S, Liao H, Hu X, Wang H. Mitochondrial DNA Leakage Caused by Streptococcus pneumoniae Hydrogen Peroxide Promotes Type I IFN Expression in Lung Cells. Front Microbiol 2019; 10:630. [PMID: 30984149 PMCID: PMC6447684 DOI: 10.3389/fmicb.2019.00630] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae (S. pn), the bacterial pathogen responsible for invasive pneumococcal diseases, is capable of producing substantial amounts of hydrogen peroxide. However, the impact of S. pn-secreted hydrogen peroxide (H2O2) on the host immune processes is not completely understood. Here, we demonstrated that S. pn-secreted H2O2 caused mitochondrial damage and severe histopathological damage in mouse lung tissue. Additionally, S. pn-secreted H2O2 caused not only oxidative damage to mitochondrial deoxyribonucleic acid (mtDNA), but also a reduction in the mtDNA content in alveolar epithelia cells. This resulted in the release of mtDNA into the cytoplasm, which subsequently induced type I interferons (IFN-I) expression. We also determined that stimulator of interferon genes (STING) signaling was probably involved in S. pn H2O2-inducing IFN-I expression in response to mtDNA damaged by S. pn-secreted H2O2. In conclusion, our study demonstrated that H2O2 produced by S. pn resulted in mtDNA leakage from damaged mitochondria and IFN-I production in alveolar epithelia cells, and STING may be required in this process, and this is a novel mitochondrial damage mechanism by which S. pn potentiates the IFN-I cascade in S. pn infection.
Collapse
Affiliation(s)
- Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xiaoyun Dou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.,School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
49
|
Shepardson K, Larson K, Cho H, Johns LL, Malkoc Z, Stanek K, Wellhman J, Zaiser S, Daggs-Olson J, Moodie T, Klonoski JM, Huber VC, Rynda-Apple A. A Novel Role for PDZ-Binding Motif of Influenza A Virus Nonstructural Protein 1 in Regulation of Host Susceptibility to Postinfluenza Bacterial Superinfections. Viral Immunol 2019; 32:131-143. [PMID: 30822217 DOI: 10.1089/vim.2018.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza A viruses (IAVs) have multiple mechanisms for altering the host immune response to aid in virus survival and propagation. While both type I and II interferons (IFNs) have been associated with increased bacterial superinfection (BSI) susceptibility, we found that in some cases type I IFNs can be beneficial for BSI outcome. Specifically, we have shown that antagonism of the type I IFN response during infection by some IAVs can lead to the development of deadly BSI. The nonstructural protein 1 (NS1) from IAV is well known for manipulating host type I IFN responses, but the viral proteins mediating BSI severity remain unknown. In this study, we demonstrate that the PDZ-binding motif (PDZ-bm) of the NS1 C-terminal region from mouse-adapted A/Puerto Rico/8/34-H1N1 (PR8) IAV dictates BSI susceptibility through regulation of IFN-α/β production. Deletion of the NS1 PDZ-bm from PR8 IAV (PR8-TRUNC) resulted in 100% survival and decreased bacterial burden in superinfected mice compared with 0% survival in mice superinfected after PR8 infection. This reduction in BSI susceptibility after infection with PR8-TRUNC was due to the presence of IFN-β, as protection from BSI was lost in Ifn-β-/- mice, resembling BSI during PR8 infection. PDZ-bm in PR8-infected mice inhibited the production of IFN-β posttranscriptionally, and both delayed and reduced expression of the tunable interferon-stimulated genes. Finally, a similar lack of BSI susceptibility, due to the presence of IFN-β on day 7 post-IAV infection, was also observed after infection of mice with A/TX98-H3N2 virus that naturally lacks a PDZ-bm in NS1, indicating that this mechanism of BSI regulation by NS1 PDZ-bm may not be restricted to PR8 IAV. These results demonstrate that the NS1 C-terminal PDZ-bm, like the one present in PR8 IAV, is involved in controlling susceptibility to BSI through the regulation of IFN-β, providing new mechanisms for NS1-mediated manipulation of host immunity and BSI severity.
Collapse
Affiliation(s)
- Kelly Shepardson
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Kyle Larson
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Hanbyul Cho
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Laura Logan Johns
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Zeynep Malkoc
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Kayla Stanek
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Julia Wellhman
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Sarah Zaiser
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Jaelyn Daggs-Olson
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Travis Moodie
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Joshua M Klonoski
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Victor C Huber
- 2 Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| | - Agnieszka Rynda-Apple
- 1 Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
50
|
Bertuzzi M, Hayes GE, Bignell EM. Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev 2019; 43:145-161. [PMID: 30657899 PMCID: PMC6435450 DOI: 10.1093/femsre/fuy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Intracellular occupancy of the respiratory epithelium is a useful pathogenic strategy facilitating microbial replication and evasion of professional phagocytes or circulating antimicrobial drugs. A less appreciated but growing body of evidence indicates that the airway epithelium also plays a crucial role in host defence against inhaled pathogens, by promoting ingestion and quelling of microorganisms, processes that become subverted to favour pathogen activities and promote respiratory disease. To achieve a deeper understanding of beneficial and deleterious activities of respiratory epithelia during antimicrobial defence, we have comprehensively surveyed all current knowledge on airway epithelial uptake of bacterial and fungal pathogens. We find that microbial uptake by airway epithelial cells (AECs) is a common feature of respiratory host-microbe interactions whose stepwise execution, and impacts upon the host, vary by pathogen. Amidst the diversity of underlying mechanisms and disease outcomes, we identify four key infection scenarios and use best-characterised host-pathogen interactions as prototypical examples of each. The emergent view is one in which effi-ciency of AEC-mediated pathogen clearance correlates directly with severity of disease outcome, therefore highlighting an important unmet need to broaden our understanding of the antimicrobial properties of respiratory epithelia and associated drivers of pathogen entry and intracellular fate.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| |
Collapse
|