1
|
Johansen ER, Schmalzriedt DL, Avila D, Sylvester PA, Rahlf CR, Bobek JM, Sahoo D, Dittel BN, Tarakanova VL. Combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression defines parameters of chronic gammaherpesvirus infection. mBio 2024; 15:e0159824. [PMID: 39440973 PMCID: PMC11559066 DOI: 10.1128/mbio.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Gammaherpesviruses are species-specific, ubiquitous pathogens that establish lifelong infection in their hosts and are associated with cancers, including B cell lymphomas. Type I and II interferons (IFNs) are critical for the control of acute and chronic gammaherpesvirus infection. However, the cell type-specific role of IFN signaling during natural infection is poorly defined and is masked by the altered viral pathogenesis observed in hosts with global IFN deficiencies. STAT1 is a constitutively expressed transcription factor that is critical for the effector function of type I and II IFNs. In this study, we defined the impact of B cell-specific STAT1 expression on gammaherpesvirus infection using murine gammaherpesvirus 68 (MHV68). While the acute stage of MHV68 infection was not affected, we found opposite, anatomic site-dependent effects of B cell-intrinsic STAT1 expression during chronic infection. Consistent with the antiviral role of STAT1, B cell-specific STAT1 expression attenuated the latent viral reservoir in peritoneal B cells of chronically infected mice. In contrast, STAT1 expression in splenic B cells supported the establishment of the latent MHV68 reservoir in germinal center B cells, revealing an unexpected proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection. These STAT1-dependent MHV68 chronic infection phenotypes were fully recapitulated in the peritoneal cavity but not the spleen of mice with B cell-specific deficiency of type I IFN receptor. In summary, our study uncovers the intriguing combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.IMPORTANCEInterferons (IFNs) execute broadly antiviral roles during acute and chronic viral infections. The constitutively expressed transcription factor STAT1 is a critical downstream effector of IFN signaling. Our studies demonstrate that B cell-intrinsic STAT1 expression has opposing and anatomic site-dependent roles during chronic gammaherpesvirus infection. Specifically, B cell-intrinsic STAT1 expression restricted gammaherpesvirus latent reservoir in the peritoneal cavity, consistent with the classical antiviral role of STAT1. In contrast, decreased STAT1 expression in splenic B cells led to the attenuated establishment of gammaherpesvirus latency and decreased latent infection of germinal center B cells, highlighting a novel proviral role of B cell-intrinsic STAT1 expression during chronic infection with a B cell-tropic gammaherpesvirus. Interestingly, B cell-specific type I IFN receptor deficiency primarily recapitulated the antiviral role of B cell-intrinsic STAT1 expression, suggesting the compensatory function of B cell-intrinsic type II IFN signaling or an IFN-independent proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Erika R. Johansen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Damon L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danilela Avila
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cade R. Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Huss NP, Majeed ST, Wills BM, Tarakanova VL, Brockman KL, Jondle CN. Nontypeable Haemophilus influenzae challenge during gammaherpesvirus infection enhances viral reactivation and latency. Virology 2024; 597:110153. [PMID: 38941745 PMCID: PMC11257779 DOI: 10.1016/j.virol.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Gammaherpesviruses are ubiquitous, lifelong pathogens associated with multiple cancers that infect over 95% of the adult population. Increases in viral reactivation, due to stress and other unknown factors impacting the immune response, frequently precedes lymphomagenesis. One potential stressor that could promote viral reactivation and increase viral latency would be the myriad of infections from bacterial and viral pathogens that we experience throughout our lives. Using murine gammaherpesvirus 68 (MHV68), a mouse model of gammaherpesvirus infection, we examined the impact of bacterial challenge on gammaherpesvirus infection. We challenged MHV68 infected mice during the establishment of latency with nontypeable Haemophilus influenzae (NTHi) to determine the impact of bacterial infection on viral reactivation and latency. Mice infected with MHV68 and then challenged with NTHi, saw increases in viral reactivation and viral latency. These data support the hypothesis that bacterial challenge can promote gammaherpesvirus reactivation and latency establishment, with possible consequences for viral lymphomagenesis.
Collapse
Affiliation(s)
- Nicholas P Huss
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Sheikh Tahir Majeed
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Brandon M Wills
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kenneth L Brockman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christopher N Jondle
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA.
| |
Collapse
|
3
|
Hogan CH, Owens SM, Reynoso GV, Liao Y, Meyer TJ, Zelazowska MA, Liu B, Li X, Grosskopf AK, Khairallah C, Kirillov V, Reich NC, Sheridan BS, McBride KM, Gewurz BE, Hickman HD, Forrest JC, Krug LT. Multifaceted roles for STAT3 in gammaherpesvirus latency revealed through in vivo B cell knockout models. mBio 2024; 15:e0299823. [PMID: 38170993 PMCID: PMC10870824 DOI: 10.1128/mbio.02998-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor signal transducer and activator of transcription 3 (STAT3). To better understand the role of STAT3 during gammaherpesvirus latency and the B cell response to infection, we used the model pathogen murine gammaherpesvirus 68 (MHV68). Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak MHV68 latency approximately sevenfold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to wild-type (WT) littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeric mice consisting of WT and STAT3 knockout B cells. We discovered a dramatic reduction in latency in STAT3 knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that MHV68 infection shifts the gene signature toward proliferation and away from type I and type II IFN responses. Loss of STAT3 largely reversed the virus-driven transcriptional shift without impacting the viral gene expression program. STAT3 promoted B cell processes of the germinal center, including IL-21-stimulated downregulation of surface CD23 on B cells infected with MHV68 or EBV. Together, our data provide mechanistic insights into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.IMPORTANCEThere are no directed therapies to the latency program of the human gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus. Activated host factor signal transducer and activator of transcription 3 (STAT3) is a hallmark of cancers caused by these viruses. We applied the murine gammaherpesvirus pathogen system to explore STAT3 function upon primary B cell infection in the host. Since STAT3 deletion in all CD19+ B cells of infected mice led to altered B and T cell responses, we generated chimeric mice with both normal and STAT3-deleted B cells. B cells lacking STAT3 failed to support virus latency compared to normal B cells from the same infected animal. Loss of STAT3 impaired B cell proliferation and differentiation and led to a striking upregulation of interferon-stimulated genes. These findings expand our understanding of STAT3-dependent processes that are key to its function as a pro-viral latency determinant for oncogenic gammaherpesviruses in B cells and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Anna K. Grosskopf
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
4
|
Holt EA, Waytashek CM, Sessions KJ, Asarian L, Lahue KG, Usherwood EJ, Teuscher C, Krementsov DN. Host Genetic Variation Has a Profound Impact on Immune Responses Mediating Control of Viral Load in Chronic Gammaherpesvirus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1526-1539. [PMID: 37819784 PMCID: PMC10841120 DOI: 10.4049/jimmunol.2300294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Chronic infection with the gammaherpesvirus EBV is a risk factor for several autoimmune diseases, and poor control of EBV viral load and enhanced anti-EBV responses elevate this risk further. However, the role of host genetic variation in the regulation of immune responses to chronic gammaherpesvirus infection and control of viral replication remains unclear. To address this question, we infected C57BL/6J (B6) and genetically divergent wild-derived inbred PWD/PhJ (PWD) mice with murine gammaherpesvirus-68 (MHV-68), a gammaherpesvirus similar to EBV, and determined the effect of latent gammaherpesvirus infection on the CD4 T cell transcriptome. Chronic MHV-68 infection of B6 mice resulted in a dramatic upregulation of genes characteristic of a cytotoxic Th cell phenotype, including Gzmb, Cx3cr1, Klrg1, and Nkg7, a response that was highly muted in PWD mice. Flow cytometric analyses revealed an expansion of CX3CR1+KLRG1+ cytotoxic Th cell-like cells in B6 but not PWD mice. Analysis of MHV-68 replication demonstrated that in spite of muted adaptive responses, PWD mice had superior control of viral load in lymphoid tissue, despite an absence of a defect in MHV-68 in vitro replication in PWD macrophages. Depletion of NK cells in PWD mice, but not B6 mice, resulted in elevated viral load, suggesting genotype-dependent NK cell involvement in MHV-68 control. Taken together, our findings demonstrate that host genetic variation can regulate control of gammaherpesvirus replication through disparate immunological mechanisms, resulting in divergent long-term immunological sequelae during chronic infection.
Collapse
Affiliation(s)
- Emily A. Holt
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Courtney M. Waytashek
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Katherine J. Sessions
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Loredana Asarian
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Edward J. Usherwood
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Cory Teuscher
- Department of Medicine, Vermont Center for Immunology and Infectious Diseases, Larner College of Medicine, The University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Hogan CH, Owens SM, Reynoso GV, Kirillov V, Meyer TJ, Zelazowska MA, Liu B, Li X, Chikhalya A, Dong Q, Khairallah C, Reich NC, Sheridan B, McBride KM, Hearing P, Hickman HD, Forrest JC, Krug LT. B cell-intrinsic STAT3-mediated support of latency and interferon suppression during murine gammaherpesvirus 68 infection revealed through an in vivo competition model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533727. [PMID: 36993230 PMCID: PMC10055336 DOI: 10.1101/2023.03.22.533727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cancers associated with the oncogenic gammaherpesviruses, Epstein-Barr virus and Kaposi sarcoma herpesvirus, are notable for their constitutive activation of the transcription factor STAT3. To better understand the role of STAT3 during gammaherpesvirus latency and immune control, we utilized murine gammaherpesvirus 68 (MHV68) infection. Genetic deletion of STAT3 in B cells of CD19cre/+Stat3f/f mice reduced peak latency approximately 7-fold. However, infected CD19cre/+Stat3f/f mice exhibited disordered germinal centers and heightened virus-specific CD8 T cell responses compared to WT littermates. To circumvent the systemic immune alterations observed in the B cell-STAT3 knockout mice and more directly evaluate intrinsic roles for STAT3, we generated mixed bone marrow chimeras consisting of WT and STAT3-knockout B cells. Using a competitive model of infection, we discovered a dramatic reduction in latency in STAT3-knockout B cells compared to their WT B cell counterparts in the same lymphoid organ. RNA sequencing of sorted germinal center B cells revealed that STAT3 promotes proliferation and B cell processes of the germinal center but does not directly regulate viral gene expression. Last, this analysis uncovered a STAT3-dependent role for dampening type I IFN responses in newly infected B cells. Together, our data provide mechanistic insight into the role of STAT3 as a latency determinant in B cells for oncogenic gammaherpesviruses.
Collapse
Affiliation(s)
- Chad H. Hogan
- Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shana M. Owens
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Glennys V. Reynoso
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monika A. Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofan Li
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aniska Chikhalya
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Qiwen Dong
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Graduate Program of Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Brian Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Kevin M. McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - J. Craig Forrest
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Laurie T. Krug
- HIV & AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Jondle CN, Sylvester PA, Schmalzriedt DL, Njoya K, Tarakanova VL. The Antagonism between the Murine Gammaherpesvirus Protein Kinase and Global Interferon Regulatory Factor 1 Expression Shapes the Establishment of Chronic Infection. J Virol 2022; 96:e0126022. [PMID: 36169331 PMCID: PMC9599343 DOI: 10.1128/jvi.01260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses infect most vertebrate species and are associated with B cell lymphomas. Manipulation of B cell differentiation is critical for natural infection and lymphomagenesis driven by gammaherpesviruses. Specifically, human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) drive differentiation of infected naive B cells into the germinal center to achieve exponential increase in the latent viral reservoir during the establishment of chronic infection. Infected germinal center B cells are also the target of viral lymphomagenesis, as most EBV-positive B cell lymphomas bear the signature of the germinal center response. All gammaherpesviruses encode a protein kinase, which, in the case of Kaposi's sarcoma-associated herpesvirus (KSHV) and MHV68, is sufficient and necessary, respectively, to drive B cell differentiation in vivo. In this study, we used the highly tractable MHV68 model of chronic gammaherpesvirus infection to unveil an antagonistic relationship between MHV68 protein kinase and interferon regulatory factor 1 (IRF-1). IRF-1 deficiency had minimal effect on the attenuated lytic replication of the kinase-null MHV68 in vivo. In contrast, the attenuated latent reservoir of the kinase-null MHV68 was partially to fully rescued in IRF-1-/- mice, along with complete rescue of the MHV68-driven germinal center response. Thus, the novel viral protein kinase-IRF-1 antagonism was largely limited to chronic infection dominated by viral latency and was less relevant for lytic replication during acute infection and in vitro. Given the conserved nature of the viral and host protein, the antagonism between the two, as defined in this study, may regulate gammaherpesvirus infection across species. IMPORTANCE Gammaherpesviruses are prevalent pathogens that manipulate physiological B cell differentiation to establish lifelong infection. This manipulation is also involved in gammaherpesvirus-driven B cell lymphomas, as differentiation of latently infected B cells through the germinal center response targets these for transformation. In this study, we define a novel antagonistic interaction between a conserved gammaherpesvirus protein kinase and a host antiviral and tumor suppressor transcription factor. The virus-host antagonism unveiled in this study was critically important to shape the magnitude of gammaherpesvirus-driven germinal center response. In contrast, the virus-host antagonism was far less relevant for lytic viral replication in vitro and during acute infection in vivo, highlighting the emerging concept that nonoverlapping mechanisms shape the parameters of acute and chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - K. Njoya
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Sylvester PA, Jondle CN, Schmalzriedt DL, Dittel BN, Tarakanova VL. T Cell-Specific STAT1 Expression Promotes Lytic Replication and Supports the Establishment of Gammaherpesvirus Latent Reservoir in Splenic B Cells. mBio 2022; 13:e0210722. [PMID: 35968944 PMCID: PMC9430880 DOI: 10.1128/mbio.02107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Gammaherpesviruses establish lifelong infections in most vertebrate species, including humans and rodents, and are associated with cancers, including B cell lymphomas. While type I and II interferon (IFN) systems of the host are critical for the control of acute and chronic gammaherpesvirus infection, the cell type-specific role(s) of IFN signaling during infection is poorly understood and is often masked by the profoundly altered viral pathogenesis in the hosts with global IFN deficiencies. STAT1 is a critical effector of all classical IFN responses along with its involvement in other cytokine signaling pathways. In this study, we defined the effect of T cell-specific STAT1 deficiency on the viral and host parameters of infection with murine gammaherpesvirus 68 (MHV68). MHV68 is a natural rodent pathogen that, similar to human gammaherpesviruses, manipulates and usurps B cell differentiation to establish a lifelong latent reservoir in B cells. Specifically, germinal center B cells host the majority of latent MHV68 reservoir in the lymphoid organs, particularly at the peak of viral latency. Unexpectedly, T cell-specific STAT1 expression, while limiting the overall expansion of the germinal center B cell population during chronic infection, rendered these B cells more effective at hosting the latent virus reservoir. Further, T cell-specific STAT1 expression in a wild type host limited circulating levels of IFNγ, with corresponding increases in lytic MHV68 replication and viral reactivation. Thus, our study unveils an unexpected proviral role of T cell-specific STAT1 expression during gammaherpesvirus infection of a natural intact host. IMPORTANCE Interferons (IFNs) represent a major antiviral host network vital to the control of multiple infections, including acute and chronic gammaherpesvirus infections. Ubiquitously expressed STAT1 plays a critical effector role in all classical IFN responses. This study utilized a mouse model of T cell-specific STAT1 deficiency to define cell type-intrinsic role of STAT1 during natural gammaherpesvirus infection. Unexpectedly, T cell-specific loss of STAT1 led to better control of acute and persistent gammaherpesvirus replication and decreased establishment of latent viral reservoir in B cells, revealing a surprisingly diverse proviral role of T cell-intrinsic STAT1.
Collapse
Affiliation(s)
- P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - B. N. Dittel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
T Cell-Intrinsic Interleukin 17 Receptor A Signaling Supports the Establishment of Chronic Murine Gammaherpesvirus 68 Infection. J Virol 2022; 96:e0063922. [PMID: 35758659 PMCID: PMC9327704 DOI: 10.1128/jvi.00639-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gammaherpesviruses, such as human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), are species-specific, ubiquitous pathogens that are associated with multiple cancers, including B cell lymphomas. These viruses have a natural tropism for B cells and usurp B cell differentiation to drive a unique and robust polyclonal germinal center response to establish a long-term latent reservoir in memory B cells. The robust polyclonal germinal center response driven by gammaherpesvirus infection increases the risk for B cell transformation. Unsurprisingly, many gammaherpesvirus cancers are derived from germinal center or post-germinal center B cells. The viral and host factors that influence the gammaherpesvirus-driven germinal center response are not clearly defined. We previously showed that host interleukin 17 receptor A (IL-17RA) signaling promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we found that T cell-intrinsic IL-17RA signaling recapitulates some proviral aspects of global IL-17RA signaling during MHV68 infection. Specifically, we found that T cell-intrinsic IL-17RA signaling supports the MHV68-driven germinal center response, the establishment of latency in the spleen, and viral reactivation in the spleen and peritoneal cavity. Our study unveils an unexpected finding where the T cell-specific IL-17RA signaling supports the establishment of a latent reservoir of a B cell-tropic gammaherpesvirus. IMPORTANCE Gammaherpesviruses, such as human EBV, establish lifelong infection in >95% of adults and are associated with B cell lymphomas. Gammaherpesviruses usurp the germinal center response to establish latent infection, and the germinal center B cells are thought to be the target of viral transformation. We previously found that global expression of IL-17RA promotes the establishment of chronic MHV68 infection and the MHV68-driven germinal center response. In this study, we showed that T cell-intrinsic IL-17RA signaling is necessary to promote the MHV68-driven germinal center response by supporting CD4+ T follicular helper cell expansion. We also found that T cell-intrinsic IL-17RA signaling contributes to but is not solely responsible for the systemic proviral role of IL-17RA signaling, highlighting the multifaceted function of IL-17RA signaling during MHV68 infection.
Collapse
|
9
|
Lee J, Cullum E, Stoltz K, Bachmann N, Strong Z, Millick DD, Denzin LK, Chang A, Tarakanova V, Chervonsky AV, Golovkina T. Mouse Homologue of Human HLA-DO Does Not Preempt Autoimmunity but Controls Murine Gammaherpesvirus MHV68. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2944-2951. [PMID: 34810225 PMCID: PMC9124240 DOI: 10.4049/jimmunol.2100650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 11/19/2022]
Abstract
H2-O (human HLA-DO) is a relatively conserved nonclassical MHC class II (MHCII)-like molecule. H2-O interaction with human HLA-DM edits the repertoire of peptides presented to TCRs by MHCII. It was long hypothesized that human HLA-DM inhibition by H2-O provides protection from autoimmunity by preventing binding of the high-affinity self-peptides to MHCII. The available evidence supporting this hypothesis, however, was inconclusive. A possibility still remained that the effect of H2-O deficiency on autoimmunity could be better revealed by using H2-O-deficient mice that were already genetically predisposed to autoimmunity. In this study, we generated and used autoimmunity-prone mouse models for systemic lupus erythematosus and organ-specific autoimmunity (type 1 diabetes and multiple sclerosis) to definitively test whether H2-O prevents autoimmune pathology. Whereas our data failed to support any significance of H2-O in protection from autoimmunity, we found that it was critical for controlling a γ-herpesvirus, MHV68. Thus, we propose that H2-O editing of the MHCII peptide repertoire may have evolved as a safeguard against specific highly prevalent viral pathogens.
Collapse
Affiliation(s)
- Jean Lee
- Committee on Cancer Biology, the University of Chicago, Chicago, IL
| | - Emily Cullum
- Committee on Immunology, the University of Chicago, Chicago, IL
| | - Kyle Stoltz
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Niklas Bachmann
- Department of Microbiology, the University of Chicago, Chicago, IL
| | - Zoe Strong
- Department of Pathology, the University of Chicago, Chicago, IL
| | - Danielle D Millick
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ
| | - Lisa K Denzin
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ
- Child Health Institute of New Jersey, Department of Pediatrics and Pharmacology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ; and
| | - Anthony Chang
- Department of Pathology, the University of Chicago, Chicago, IL
| | - Vera Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Alexander V Chervonsky
- Committee on Immunology, the University of Chicago, Chicago, IL;
- Department of Pathology, the University of Chicago, Chicago, IL
- Committee on Microbiology, the University of Chicago, Chicago, IL
| | - Tatyana Golovkina
- Committee on Immunology, the University of Chicago, Chicago, IL;
- Department of Microbiology, the University of Chicago, Chicago, IL
- Committee on Microbiology, the University of Chicago, Chicago, IL
| |
Collapse
|
10
|
Conserved Gammaherpesvirus Protein Kinase Counters the Antiviral Effects of Myeloid Cell-Specific STAT1 Expression To Promote the Establishment of Splenic B Cell Latency. J Virol 2021; 95:e0085921. [PMID: 34132573 DOI: 10.1128/jvi.00859-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses establish lifelong infections and are associated with B cell lymphomas. Murine gammaherpesvirus 68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of a chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages the transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here, we demonstrate that myeloid-specific STAT1 expression attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of the kinase-null MHV68 mutant. However, despite having gained access to splenic B cells, the protein kinase-null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. IMPORTANCE IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not the spleen, of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell type-specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.
Collapse
|
11
|
T cell-intrinsic Interferon Regulatory Factor-1 expression suppresses differentiation of CD4 + T cell populations that support chronic gammaherpesvirus infection. J Virol 2021; 95:e0072621. [PMID: 34346769 DOI: 10.1128/jvi.00726-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4+ T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4+ T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4+ T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.
Collapse
|
12
|
Interferon Regulatory Factor 3 Supports the Establishment of Chronic Gammaherpesvirus Infection in a Route- and Dose-Dependent Manner. J Virol 2021; 95:JVI.02208-20. [PMID: 33597211 DOI: 10.1128/jvi.02208-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with several malignancies, including B cell lymphomas. Uniquely, these viruses manipulate B cell differentiation to establish long-term latency in memory B cells. This study focuses on the interaction between gammaherpesviruses and interferon regulatory factor 3 (IRF-3), a ubiquitously expressed transcription factor with multiple direct target genes, including beta interferon (IFN-β), a type I IFN. IRF-3 attenuates acute replication of a plethora of viruses, including gammaherpesvirus. Furthermore, IRF-3-driven IFN-β expression is antagonized by the conserved gammaherpesvirus protein kinase during lytic virus replication in vitro In this study, we have uncovered an unexpected proviral role of IRF-3 during chronic gammaherpesvirus infection. In contrast to the antiviral activity of IRF-3 during acute infection, IRF-3 facilitated establishment of latent gammaherpesvirus infection in B cells, particularly, germinal center and activated B cells, the cell types critical for both natural infection and viral lymphomagenesis. This proviral role of IRF-3 was further modified by the route of infection and viral dose. Furthermore, using a combination of viral and host genetics, we show that IRF-3 deficiency does not rescue attenuated chronic infection of a protein kinase null gammaherpesvirus mutant, highlighting the multifunctional nature of the conserved gammaherpesvirus protein kinases in vivo In summary, this study unveils an unexpected proviral nature of the classical innate immune factor, IRF-3, during chronic virus infection.IMPORTANCE Interferon regulatory factor 3 (IRF-3) is a critical component of the innate immune response, in part due to its transactivation of beta interferon (IFN-β) expression. Similar to that observed in all acute virus infections examined to date, IRF-3 suppresses lytic viral replication during acute gammaherpesvirus infection. Because gammaherpesviruses establish lifelong infection, this study aimed to define the antiviral activity of IRF-3 during chronic infection. Surprisingly, we found that, in contrast to acute infection, IRF-3 supported the establishment of gammaherpesvirus latency in splenic B cells, revealing an unexpected proviral nature of this classical innate immune host factor.
Collapse
|
13
|
Abstract
Gammaherpesviruses establish lifelong infections in a majority of humans and are associated with B cell lymphomas. IL-17A is a host cytokine that plays a well-established role in the clearance of bacterial and fungal infections; however, the role of IL-17A in viral infections is poorly understood. Gammaherpesviruses establish lifelong infection and are associated with a variety of cancers, including B cell lymphomas. These viruses manipulate the B cell differentiation process to establish lifelong infection in memory B cells. Specifically, gammaherpesviruses infect naive B cells and promote entry of both infected and uninfected naive B cells into germinal centers, where the virus usurps rapid proliferation of germinal center B cells to exponentially increase its cellular latent reservoir. In addition to facilitating the establishment of latent infection, germinal center B cells are thought to be the target of viral transformation. In this study, we have uncovered a novel proviral role of host interleukin 17A (IL-17A), a well-established antibacterial and antifungal factor. Loss of IL-17A signaling attenuated the establishment of chronic gammaherpesvirus infection and gammaherpesvirus-driven germinal center response in a route of inoculation-dependent manner. Further, IL-17A treatment directly supported gammaherpesvirus reactivation and de novo lytic infection. This study is the first demonstration of a multifaceted proviral role of IL-17 signaling.
Collapse
|
14
|
Deletion of Murine Gammaherpesvirus Gene M2 in Activation-Induced Cytidine Deaminase-Expressing B Cells Impairs Host Colonization and Viral Reactivation. J Virol 2020; 95:JVI.01933-20. [PMID: 33028711 DOI: 10.1128/jvi.01933-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Gammaherpesviruses (GHVs) are DNA tumor viruses that establish lifelong, chronic infections in lymphocytes of humans and other mammals. GHV infections are associated with numerous cancers, especially in immunocompromised hosts. While it is known that GHVs utilize host germinal center (GC) B cell responses during latency establishment, an understanding of how viral gene products function in specific B cell subsets to regulate this process is incomplete. Using murine gammaherpesvirus 68 (MHV68) as a small-animal model to define mechanisms of GHV pathogenesis in vivo, we generated a virus in which the M2 gene was flanked by loxP sites (M2.loxP), enabling the use of Cre-lox technology to define M2 function in specific cell types in infection and disease. The M2 gene encodes a protein that is highly expressed in GC B cells that promotes plasma cell differentiation and viral reactivation. M2 was efficiently deleted in Cre-expressing cells, and the presence of loxP sites flanking M2 did not alter viral replication or latency in mice that do not express Cre. In contrast, M2.loxP MHV68 exhibited a deficit in latency establishment and reactivation that resembled M2-null virus, following intranasal (IN) infection of mice that express Cre in all B cells (CD19-Cre). Nearly identical phenotypes were observed for M2.loxP MHV68 in mice that express Cre in germinal center (GC) B cells (AID-Cre). However, colonization of neither draining lymph nodes after IN infection nor the spleen after intraperitoneal (IP) infection required M2, although the reactivation defect was retained. Together, these data confirm that M2 function is B cell-specific and demonstrate that M2 primarily functions in AID-expressing cells to facilitate MHV68 dissemination to distal latency reservoirs within the host and reactivation from latency. Our study reveals that a viral latency gene functions within a distinct subset of cells to facilitate host colonization.IMPORTANCE Gammaherpesviruses establish lifelong chronic infections in cells of the immune system that can lead to lymphomas and other diseases. To facilitate colonization of a host, gammaherpesviruses encode gene products that manipulate processes involved in cellular proliferation and differentiation. Whether and how these viral gene products function in specific cells of the immune system is poorly defined. We report here the use of a viral genetic system that allows for deletion of specific viral genes in discrete populations of cells. We employ this system in an in vivo model to demonstrate cell-type-specific requirements for a particular viral gene. Our findings reveal that a viral gene product can function in distinct cellular subsets to direct gammaherpesvirus pathogenesis.
Collapse
|
15
|
Dangerous Liaisons: Gammaherpesvirus Subversion of the Immunoglobulin Repertoire. Viruses 2020; 12:v12080788. [PMID: 32717815 PMCID: PMC7472090 DOI: 10.3390/v12080788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
A common biologic property of the gammaherpesviruses Epstein–Barr Virus and Kaposi sarcoma herpesvirus is their use of B lymphocytes as a reservoir of latency in healthy individuals that can undergo oncogenic transformation later in life. Gammaherpesviruses (GHVs) employ an impressive arsenal of proteins and non-coding RNAs to reprogram lymphocytes for proliferative expansion. Within lymphoid tissues, the germinal center (GC) reaction is a hub of B cell proliferation and death. The goal of a GC is to generate and then select for a pool of immunoglobulin (Ig) genes that will provide a protective humoral adaptive immune response. B cells infected with GHVs are detected in GCs and bear the hallmark signatures of the mutagenic processes of somatic hypermutation and isotype class switching of the Ig genes. However, data also supports extrafollicular B cells as a reservoir engaged by GHVs. Next-generation sequencing technologies provide unprecedented detail of the Ig sequence that informs the natural history of infection at the single cell level. Here, we review recent reports from human and murine GHV systems that identify striking differences in the immunoglobulin repertoire of infected B cells compared to their uninfected counterparts. Implications for virus biology, GHV-associated cancers, and host immune dysfunction will be discussed.
Collapse
|
16
|
B Cell-Intrinsic Expression of Interferon Regulatory Factor 1 Supports Chronic Murine Gammaherpesvirus 68 Infection. J Virol 2020; 94:JVI.00399-20. [PMID: 32321819 DOI: 10.1128/jvi.00399-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that are associated with cancers, including B cell lymphomas. These viruses are unique in that they infect naive B cells and subsequently drive a robust polyclonal germinal center response in order to amplify the latent reservoir and to establish lifelong infection in memory B cells. The gammaherpesvirus-driven germinal center response in combination with robust infection of germinal center B cells is thought to precipitate lymphomagenesis. Importantly, host and viral factors that selectively affect the gammaherpesvirus-driven germinal center response remain poorly understood. Global deficiency of antiviral tumor-suppressive interferon regulatory factor 1 (IRF-1) selectively promotes the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and expansion of the viral latent reservoir. To determine the extent to which antiviral effects of IRF-1 are B cell intrinsic, we generated mice with conditional IRF-1 deficiency. Surprisingly, B cell-specific IRF-1 deficiency attenuated the establishment of chronic infection and the germinal center response, indicating that MHV68 may, in a B cell-intrinsic manner, usurp IRF-1 to promote the germinal center response and expansion of the latent reservoir. Further, we found that B cell-specific IRF-1 deficiency led to reduced levels of active tyrosine phosphatase SHP1, which plays a B cell-intrinsic proviral function during MHV68 infection. Finally, results of this study indicate that the antiviral functions of IRF-1 unveiled in MHV68-infected mice with global IRF-1 deficiency are mediated via IRF-1 expression by non-B cell populations.IMPORTANCE Gammaherpesviruses establish lifelong infection in over 95% of all adults and are associated with B cell lymphomas. The virus's manipulation of the germinal center response and B cell differentiation to establish lifelong infection is thought to also precipitate malignant transformation, through a mechanism that remains poorly understood. The host transcription factor IRF-1, a well-established tumor suppressor, selectively attenuates MHV68-driven germinal center response, a phenotype that we originally hypothesized to occur in a B cell-intrinsic manner. In contrast, in testing, B cell-intrinsic IRF-1 expression promoted the MHV68-driven germinal center response and the establishment of chronic infection. Our report highlights the underappreciated multifaceted role of IRF-1 in MHV68 infection and pathogenesis.
Collapse
|
17
|
Jiang X, Wang Y, Li X, He L, Yang Q, Wang W, Liu J, Zha B. Microarray profile of B cells from Graves' disease patients reveals biomarkers of proliferation. Endocr Connect 2020; 9:405-417. [PMID: 32432440 PMCID: PMC7274554 DOI: 10.1530/ec-20-0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes are the source of autoantibodies against the thyroid-stimulating hormone receptor (TSHR) in Graves' disease (GD). Characterization of autoimmune B-cell expression profiles might enable a better understanding of GD pathogenesis. To reveal this, the expression levels of long noncoding RNAs (lncRNAs) and mRNAs (genes) in purified B cells from patients with newly diagnosed GD and healthy individuals were compared using microarrays, which elucidated 604 differentially expressed lncRNAs (DE-lncRNAs) and 410 differentially expressed genes (DEGs). GO and pathway analyses revealed that the DEGs are mainly involved in immune response. A protein-protein interaction network presented experimentally validated interactions among the DEGs. Two independent algorithms were used to identify the DE-lncRNAs that regulate the DEGs. Functional annotation of the deregulated lncRNA-mRNA pairs identified 14 pairs with mRNAs involved in cell proliferation. The lncRNAs TCONS_00022357-XLOC_010919 and n335641 were predicted to regulate TCL1 family AKT coactivator A (TCL1A), and the lncRNA n337845 was predicted to regulate SH2 domain containing 1A (SH2D1A). TCL1A and SH2D1A are highly involved in B-cell proliferation. The differential expression of both genes was validated by qRT-PCR. In conclusion, lncRNA and mRNA expression profiles of B cells from patients with GD indicated that the lncRNA-mRNA pairs n335641-TCL1A, TCONS_00022357-XLOC_010919-TCL1A, and n337845-SH2D1A may participate in GD pathogenesis by modulating B-cell proliferation and survival. Therefore, the identified lncRNA and mRNA may represent novel biomarkers and therapeutic targets for GD.
Collapse
Affiliation(s)
- Xuechao Jiang
- Scientific Research Center, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pediatric Cardiology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghui Wang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Leqi He
- Department of Clinical Laboratory Medicine, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Qian Yang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Wei Wang
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology, Fifth People’s Hospital of Shanghai Fudan University, Shanghai, China
- Correspondence should be addressed to B Zha:
| |
Collapse
|
18
|
Collins CM, Scharer CD, Murphy TJ, Boss JM, Speck SH. Murine gammaherpesvirus infection is skewed toward Igλ+ B cells expressing a specific heavy chain V-segment. PLoS Pathog 2020; 16:e1008438. [PMID: 32353066 PMCID: PMC7217478 DOI: 10.1371/journal.ppat.1008438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/12/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022] Open
Abstract
One of the defining characteristics of the B cell receptor (BCR) is the extensive diversity in the repertoire of immunoglobulin genes that make up the BCR, resulting in broad range of specificity. Gammaherpesviruses are B lymphotropic viruses that establish life-long infection in B cells, and although the B cell receptor plays a central role in B cell biology, very little is known about the immunoglobulin repertoire of gammaherpesvirus infected cells. To begin to characterize the Ig genes expressed by murine gammaherpesvirus 68 (MHV68) infected cells, we utilized single cell sorting to sequence and clone the Ig variable regions of infected germinal center (GC) B cells and plasma cells. We show that MHV68 infection is biased towards cells that express the Igλ light chain along with a single heavy chain variable gene, IGHV10-1*01. This population arises through clonal expansion but is not viral antigen specific. Furthermore, we show that class-switching in MHV68 infected cells differs from that of uninfected cells. Fewer infected GC B cells are class-switched compared to uninfected GC B cells, while more infected plasma cells are class-switched compared to uninfected plasma cells. Additionally, although they are germinal center derived, the majority of class switched plasma cells display no somatic hypermutation regardless of infection status. Taken together, these data indicate that selection of infected B cells with a specific BCR, as well as virus mediated manipulation of class switching and somatic hypermutation, are critical aspects in establishing life-long gammaherpesvirus infection.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher D. Scharer
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Thomas J. Murphy
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeremy M. Boss
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Johnson KE, Tarakanova VL. Gammaherpesviruses and B Cells: A Relationship That Lasts a Lifetime. Viral Immunol 2020; 33:316-326. [PMID: 31913773 DOI: 10.1089/vim.2019.0126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gammaherpesviruses are highly prevalent pathogens that establish life-long infection and are associated with diverse malignancies, including lymphoproliferative diseases and B cell lymphomas. Unlike other viruses that either do not infect B cells or infect B cells transiently, gammaherpesviruses manipulate physiological B cell differentiation to establish life-long infection in memory B cells. Disruption of such viral manipulation by genetic or environmental causes is likely to seed viral lymphomagenesis. In this review, we discuss physiological and unique host and viral mechanisms usurped by gammaherpesviruses to fine tune host B cell biology for optimal infection establishment and maintenance.
Collapse
Affiliation(s)
- Kaitlin E Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
20
|
B Cell-Intrinsic SHP1 Expression Promotes the Gammaherpesvirus-Driven Germinal Center Response and the Establishment of Chronic Infection. J Virol 2019; 94:JVI.01232-19. [PMID: 31597758 DOI: 10.1128/jvi.01232-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the majority of adults worldwide. Chronic gammaherpesvirus infection has been implicated in both lymphomagenesis and, somewhat controversially, autoimmune disease development. Pathogenesis is largely associated with the unique ability of gammaherpesviruses to usurp B cell differentiation, specifically, the germinal center response, to establish long-term latency in memory B cells. The host tyrosine phosphatase SHP1 is known as a brake on immune cell activation and is downregulated in several gammaherpesvirus-driven malignancies. However, here we demonstrate that B cell- but not T cell-intrinsic SHP1 expression supports the gammaherpesvirus-driven germinal center response and the establishment of viral latency. Furthermore, B cell-intrinsic SHP1 deficiency cooperated with gammaherpesvirus infection to increase the levels of double-stranded DNA-reactive antibodies at the peak of viral latency. Thus, in spite of decreased SHP1 levels in gammaherpesvirus-driven B cell lymphomas, B cell-intrinsic SHP1 expression plays a proviral role during the establishment of chronic infection, suggesting that the gammaherpesvirus-SHP1 interaction is more nuanced and is modified by the stage of infection and pathogenesis.IMPORTANCE Gammaherpesviruses establish lifelong infection in a majority of adults worldwide and are associated with a number of malignancies, including B cell lymphomas. These viruses infect naive B cells and manipulate B cell differentiation to achieve a lifelong infection of memory B cells. The germinal center stage of B cell differentiation is important as both an amplifier of the viral latent reservoir and the target of malignant transformation. In this study, we demonstrate that expression of tyrosine phosphatase SHP1, a negative regulator that normally limits the activation and proliferation of hematopoietic cells, enhances the gammaherpesvirus-driven germinal center response and the establishment of chronic infection. The results of this study uncover an intriguing beneficial interaction between gammaherpesviruses that are presumed to profit from B cell activation and a cellular phosphatase that is traditionally perceived to be a negative regulator of the same processes.
Collapse
|
21
|
Fenninger F, Han J, Stanwood SR, Nohara LL, Arora H, Choi KB, Munro L, Pfeifer CG, Shanina I, Horwitz MS, Jefferies WA. Mutation of an L-Type Calcium Channel Gene Leads to T Lymphocyte Dysfunction. Front Immunol 2019; 10:2473. [PMID: 31736943 PMCID: PMC6833481 DOI: 10.3389/fimmu.2019.02473] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
Calcium (Ca2+) is a vital secondary messenger in T lymphocytes regulating a vast array of important events including maturation, homeostasis, activation, and apoptosis and can enter the cell through CRAC, TRP, and CaV channels. Here we describe a mutation in the L-type Ca2+ channel CaV1.4 leading to T lymphocyte dysfunction, including several hallmarks of immunological exhaustion. CaV1.4-deficient mice exhibited an expansion of central and effector memory T lymphocytes, and an upregulation of inhibitory receptors on several T cell subsets. Moreover, the sustained elevated levels of activation markers on B lymphocytes suggest that they are in a chronic state of activation. Functionally, T lymphocytes exhibited a reduced store-operated Ca2+ flux compared to wild-type controls. Finally, modifying environmental conditions by herpes virus infection exacerbated the dysfunctional immune phenotype of the CaV1.4-deficient mice. This is the first example where the mutation of a CaV channel leads to T lymphocyte dysfunction, including the upregulation of several inhibitory receptors, hallmarks of T cell exhaustion, and establishes the physiological importance of CaV channel signaling in maintaining a nimble immune system.
Collapse
Affiliation(s)
- Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey Han
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Shawna R Stanwood
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lilian L Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Hitesh Arora
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kyung Bok Choi
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol 2019; 9:713. [PMID: 31448229 PMCID: PMC6691157 DOI: 10.3389/fonc.2019.00713] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV), a gamma-1 herpesvirus, is carried as a life-long asymptomatic infection by the great majority of individuals in all human populations. Yet this seemingly innocent virus is aetiologically linked to two pre-malignant lymphoproliferative diseases (LPDs) and up to nine distinct human tumors; collectively these have a huge global impact, being responsible for some 200,000 new cases of cancer arising worldwide each year. EBV replicates in oral epithelium but persists as a latent infection within the B cell system and several of its diseases are indeed of B cell origin; these include B-LPD of the immunocompromised, Hodgkin Lymphoma (HL), Burkitt Lymphoma (BL), Diffuse Large B cell Lymphoma (DLBCL) and two rarer tumors associated with profound immune impairment, plasmablastic lymphoma (PBL) and primary effusion lymphoma (PEL). Surprisingly, the virus is also linked to tumors arising in other cellular niches which, rather than being essential reservoirs of virus persistence in vivo, appear to represent rare cul-de-sacs of latent infection. These non-B cell tumors include LPDs and malignant lymphomas of T or NK cells, nasopharyngeal carcinoma (NPC) and gastric carcinoma of epithelial origin, and leiomyosarcoma, a rare smooth muscle cell tumor of the immunocompromised. Here we describe the main characteristics of these tumors, their distinct epidemiologies, histological features and degrees of EBV association, then consider how their different patterns of EBV latency may reflect the alternative latency programmes through which the virus first colonizes and then persists in immunocompetent host. For each tumor, we discuss current understanding of EBV's role in the oncogenic process, the identity (where known) of host genetic and environmental factors predisposing tumor development, and the recent evidence from cancer genomics identifying somatic changes that either complement or in some cases replace the contribution of the virus. Thereafter we look for possible connections between the pathogenesis of these apparently different malignancies and point to new research areas where insights may be gained.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Institute for Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute for Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Crepeau R, Elengickal J, La Muraglia G, Ford M. Impact of selective CD28 blockade on virus-specific immunity to a murine Epstein-Barr virus homolog. Am J Transplant 2019; 19:2199-2209. [PMID: 30801917 PMCID: PMC6658342 DOI: 10.1111/ajt.15321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 01/25/2023]
Abstract
CTLA-4Ig (belatacept) blocks the CD80/CD86 ligands for both CD28 and CTLA-4; thus, in addition to the intended effect of blocking CD28-mediated costimulation, belatacept also has the unintended effect of blocking CTLA-4-mediated coinhibition. Recently, anti-CD28 domain antibodies (dAb) that selectively target CD28 while leaving CTLA-4 intact were shown to more effectively inhibit alloimmune responses and prolong graft survival. However, the impact of selective CD28 blockade on protective immunity has not been extensively investigated. Here, we sought to compare the impact of CTLA-4Ig vs anti-CD28dAb on CD8+ T cell immunity to a transplant-relevant pathogen, a murine homolog of Epstein-Barr virus. Mice were infected with murine gammaherpesvirus-68 (MHV) and treated with vehicle, CTLA-4Ig, or anti-CD28dAb. Although anti-CD28dAb resulted in a decrease in virus-specific CD8+ T cell numbers as compared to CTLA-4Ig, cytolytic function and the expression of markers of high-quality effectors were not different from CTLA-4Ig treated animals. Importantly, MHV-68 viral load was not different between the treatment groups. These results suggest that preserved CTLA-4 coinhibition limits MHV-specific CD8+ T cell accumulation, but the population that remains retains cytolytic function and migratory capacity and is not inferior in its ability to control viral burden relative to T cell responses in CTLA-4Ig-treated animals.
Collapse
Affiliation(s)
- R.L. Crepeau
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - J.A. Elengickal
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - G.M. La Muraglia
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - M.L. Ford
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
24
|
Conserved Gammaherpesvirus Protein Kinase Selectively Promotes Irrelevant B Cell Responses. J Virol 2019; 93:JVI.01760-18. [PMID: 30728267 DOI: 10.1128/jvi.01760-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that are associated with B cell lymphomas. In the early stages of chronic infection, these viruses infect naive B cells and subsequently usurp the B cell differentiation process through the germinal center response to ensure latent infection of long-lived memory B cells. A unique feature of early gammaherpesvirus chronic infection is a robust differentiation of irrelevant, virus-nonspecific B cells with reactivities against self-antigens and antigens of other species. In contrast, protective, virus-specific humoral responses do not reach peak levels until a much later time. While several host factors are known to either promote or selectively restrict gammaherpesvirus-driven germinal center response, viral mechanisms that contribute to the irrelevant B cell response have not been defined. In this report we show that the expression and the enzymatic activity of the gammaherpesvirus-encoded conserved protein kinase selectively facilitates the irrelevant, but not virus-specific, B cell responses. Further, we show that lack of interleukin-1 (IL-1) receptor attenuates gammaherpesvirus-driven B cell differentiation and viral reactivation. Because germinal center B cells are thought to be the target of malignant transformation during gammaherpesvirus-driven lymphomagenesis, identification of host and viral factors that promote germinal center responses during gammaherpesvirus infection may offer an insight into the mechanism of gammaherpesvirus pathogenesis.IMPORTANCE Gammaherpesviruses are ubiquitous cancer-associated pathogens that usurp the B cell differentiation process to establish life-long latent infection in memory B cells. A unique feature of early gammaherpesvirus infection is the robust increase in differentiation of B cells that are not specific for viral antigens and instead encode antibodies that react with self-antigens and antigens of other species. Viral mechanisms that are involved in driving such irrelevant B cell differentiation are not known. Here, we show that gammaherpesvirus-encoded conserved protein kinase and host IL-1 signaling promote irrelevant B cell responses and gammaherpesvirus-driven germinal center responses, with the latter thought to be the target of viral transformation.
Collapse
|
25
|
Huang Q, Hu J, Tang J, Xu L, Ye L. Molecular Basis of the Differentiation and Function of Virus Specific Follicular Helper CD4 + T Cells. Front Immunol 2019; 10:249. [PMID: 30828337 PMCID: PMC6384271 DOI: 10.3389/fimmu.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
During viral infection, virus-specific follicular helper T cells provide important help to cognate B cells for their survival, consecutive proliferation and mutation and eventual differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh cells generated in other conditions, the differentiation of virus-specific Tfh cells can also be characterized as a process involved multiple factors and stages, however, which also exhibits distinct features. Here, we mainly focus on the current understanding of Tfh fate commitment, functional maturation, lineage maintenance and memory transition and formation in the context of viral infection.
Collapse
Affiliation(s)
- Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Salinas E, Gupta A, Sifford JM, Oldenburg DG, White DW, Forrest JC. Conditional mutagenesis in vivo reveals cell type- and infection stage-specific requirements for LANA in chronic MHV68 infection. PLoS Pathog 2018; 14:e1006865. [PMID: 29364981 PMCID: PMC5798852 DOI: 10.1371/journal.ppat.1006865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/05/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis. Gammaherpesviruses (GHVs), including the human pathogens Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus, establish lifelong infections that can lead to cancer. Defining the functions of viral gene products in acute replication and chronic infection is important for understanding how these viruses cause disease. Infection of mice with the related GHV, murine gammaherpesvirus 68 (MHV68), provides a tractable small animal model for defining how viral gene products function in chronic infection and understanding how host factors limit disease. Here we describe the development of a new viral genetic platform that enables the targeted deletion of specific genes from the viral genome in discrete host cells or at distinct times during infection. We utilize this system to better define requirements for the conserved latency-associated nuclear antigen in MHV68 lytic replication and latency in mice. This work highlights the utility of this MHV68 genetic platform for defining mechanisms of GHV infection and disease.
Collapse
Affiliation(s)
- Eduardo Salinas
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arundhati Gupta
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey M. Sifford
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | | | - Douglas W. White
- Gundersen Health System, La Crosse, Wisconsin, United States of America
| | - J. Craig Forrest
- Department of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Akkaya M, Akkaya B, Sheehan PW, Miozzo P, Pena M, Qi CF, Manzella-Lapeira J, Bolland S, Pierce SK. T cell-dependent antigen adjuvanted with DOTAP-CpG-B but not DOTAP-CpG-A induces robust germinal center responses and high affinity antibodies in mice. Eur J Immunol 2017; 47:1890-1899. [PMID: 28762497 DOI: 10.1002/eji.201747113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
The development of vaccines for infectious diseases for which we currently have none, including HIV, will likely require the use of adjuvants that strongly promote germinal center responses and somatic hypermutation to produce broadly neutralizing antibodies. Here we compared the outcome of immunization with the T-cell dependent antigen, NP-conjugated to chicken gamma globulin (NP-CGG) adjuvanted with the toll-like receptor 9 (TLR9) ligands, CpG-A or CpG-B, alone or conjugated with the cationic lipid carrier, DOTAP. We provide evidence that only NP-CGG adjuvanted with DOTAP-CpG-B was an effective vaccine in mice resulting in robust germinal center responses, isotype switching and high affinity NP-specific antibodies. The effectiveness of DOTAP-CpG-B as an adjuvant was dependent on the expression of the TLR9 signaling adaptor MyD88 in immunized mice. These results indicate DOTAP-CpG-B but not DOTAP-CpG-A is an effective adjuvant for T cell-dependent protein antigen-based vaccines.
Collapse
Affiliation(s)
- Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Billur Akkaya
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patrick W Sheehan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Pietro Miozzo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Mirna Pena
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Silvia Bolland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
28
|
Murine gammaherpesvirus M2 antigen modulates splenic B cell activation and terminal differentiation in vivo. PLoS Pathog 2017; 13:e1006543. [PMID: 28767707 PMCID: PMC5555712 DOI: 10.1371/journal.ppat.1006543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/14/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) infection of laboratory strains of mice has provided a tractable small animal model for dissecting gammaherpesvirus pathogenesis. The MHV68 latency associated antigen M2 promotes viral latency establishment in germinal center (GC) B cells and plays an important role in virus infection of plasma cells (PCs), which is linked to virus reactivation. More recently, M2 has been highlighted as a potent immunomodulatory molecule capable of hindering both cell-mediated and humoral immunity to MHV68 infection and subsequent challenges. M2 expression in B cells results in activation of B cell receptor signaling pathways that promote proliferation, differentiation, and cytokine production—a hallmark of gammaherpesviruses. In this study, we utilized an adoptive transfer model to explore the biological consequence of M2 expression in activated B cells in vivo. Secondly, we engineered and validated two independent MHV68 M2 reporter viruses that track M2 protein expression in latently infected B cells during infection. Here we demonstrate that upon adoptive transfer into naive mice, M2 expression promotes activated primary B cells to competitively establish residency in the spleen as either a GC B cell or a PC, most notably in the absence of an ongoing GC reaction. Moreover, M2 antigen drives robust PC differentiation and IL10 production in vivo in the absence of other viral factors. Lastly, we confirm that M2 expression during MHV68 infection is localized to the GC compartment, which is a long term latency reservoir for gammaherpesviruses. Overall, these observations are consistent with, and extend upon previous reports of M2 function in B cells and within the context of MHV68 infection. Moreover, this work provides support for a model by which M2-driven dysregulation of B cell function compromises multiple aspects of antiviral immunity to achieve persistence within the infected host. Gammaherpesvirus (GHVs), which primarily infect B cells, are capable of exploiting B cell biology to achieve a stable and persistent infection for the lifetime of the host. GHV infections traffick to germinal center (GC) B cells and plasma cells (PCs), which are important immune effectors that promote the generation of protective antibodies in response to pathogens. The mechanism by which murine gammaherpesvirus 68 (MHV68) M2 latency protein activates B cell receptor signaling pathways to modulate the immune response to infection and further promote viral pathogenesis within the GC B cell and PC compartments is not completely understood. Here we demonstrate that M2 expression alone, in the absence of other viral factors, drives robust PC differentiation and IL10 production in vivo. Moreover, M2 promotes the accumulation of splenic GC B cells, which was subsequently verified as the site for potent M2 expression during latent MHV68 infection. Our work further substantiates a model in which a viral protein dysregulates B cell activation, differentiation, and cytokine production to create a permissive environment for viral persistence in the infected host. This work justifies further investigations addressing the impact of GHV latency antigen function within the GC reaction and overall host response to infection.
Collapse
|
29
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
30
|
MicroRNA miR-155 Is Necessary for Efficient Gammaherpesvirus Reactivation from Latency, but Not for Establishment of Latency. J Virol 2016; 90:7811-21. [PMID: 27334594 DOI: 10.1128/jvi.00521-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED MicroRNA-155 (miR-155) has been shown to play significant roles in the immune response, including in the formation of germinal centers (GC) and the development and maturation of T follicular helper (Tfh) cells. There is in vitro evidence to support a critical role for cellular miR-155 and viral miR-155 homologs in the establishment of gammaherpesvirus latency in B cells. We sought to determine the contribution of miR-155 to the establishment and maintenance of latency in vivo using murine gammaherpesvirus (MHV-68) infection. MHV-68-infected mice deficient in miR-155 exhibited decreases in GC B cells and Tfh cells. However, the frequencies of spleen cells harboring latent MHV-68 genomes were the same in both miR-155-deficient and wild-type (WT) mice. Similar latent loads were also observed in mixed bone marrow chimeric mice, where B cell-extrinsic effects of miR-155 deficiency were normalized. Interestingly, we observed markedly lower efficiency of reactivation from latency in miR-155-deficient cells, indicating an important role for miR-155 in this process. These in vivo data complement previous in vitro studies and lead to the conclusion that miR-155 is not necessary for the establishment or maintenance of gammaherpesvirus latency but that it does affect reactivation efficiency. IMPORTANCE Gammaherpesvirus infection leads to severe disease in immunosuppressed populations. miR-155 has been shown to play important roles in many pathological processes, including tumorigenesis and diseases caused by an overly aggressive immune response. Our work provides valuable in vivo data showing that miR-155 is dispensable for gammaherpesvirus latency but that it is critical for reactivation from latency, which is a crucial step in the viral life cycle.
Collapse
|
31
|
Abstract
A challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence. The insidious ability of gammaherpesviruses to establish latent infections can have detrimental consequences for the host. Identification of host factors that promote viral latency is essential for understanding latency mechanisms and for therapeutic interventions. We provide the first evidence that STAT3 expression is needed for murine gammaherpesvirus 68 to establish latency in primary B cells during an active immune response to infection. STAT3 deletion in B cells does not impair adaptive immune control of the virus, but loss of STAT3 in B cells has a long-lasting impact on viral persistence. These results indicate a potential therapeutic benefit of STAT3 inhibitors for combating gammaherpesvirus latency and, thereby, associated pathologies.
Collapse
|
32
|
Jha HC, Banerjee S, Robertson ES. The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens 2016; 5:pathogens5010018. [PMID: 26861404 PMCID: PMC4810139 DOI: 10.3390/pathogens5010018] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Worldwide, one fifth of cancers in the population are associated with viral infections. Among them, gammaherpesvirus, specifically HHV4 (EBV) and HHV8 (KSHV), are two oncogenic viral agents associated with a large number of human malignancies. In this review, we summarize the current understanding of the molecular mechanisms related to EBV and KSHV infection and their ability to induce cellular transformation. We describe their strategies for manipulating major cellular systems through the utilization of cell cycle, apoptosis, immune modulation, epigenetic modification, and altered signal transduction pathways, including NF-kB, Notch, Wnt, MAPK, TLR, etc. We also discuss the important EBV latent antigens, namely EBNA1, EBNA2, EBNA3’s and LMP’s, which are important for targeting these major cellular pathways. KSHV infection progresses through the engagement of the activities of the major latent proteins LANA, v-FLIP and v-Cyclin, and the lytic replication and transcription activator (RTA). This review is a current, comprehensive approach that describes an in-depth understanding of gammaherpes viral encoded gene manipulation of the host system through targeting important biological processes in viral-associated cancers.
Collapse
Affiliation(s)
- Hem Chandra Jha
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Shuvomoy Banerjee
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Erle S Robertson
- Department of Microbiology and Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610, Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Tumor Suppressor Interferon-Regulatory Factor 1 Counteracts the Germinal Center Reaction Driven by a Cancer-Associated Gammaherpesvirus. J Virol 2015; 90:2818-29. [PMID: 26719266 DOI: 10.1128/jvi.02774-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gammaherpesviruses are ubiquitous pathogens that are associated with the development of B cell lymphomas. Gammaherpesviruses employ multiple mechanisms to transiently stimulate a broad, polyclonal germinal center reaction, an inherently mutagenic stage of B cell differentiation that is thought to be the primary target of malignant transformation in virus-driven lymphomagenesis. We found that this gammaherpesvirus-driven germinal center expansion was exaggerated and lost its transient nature in the absence of interferon-regulatory factor 1 (IRF-1), a transcription factor with antiviral and tumor suppressor functions. Uncontrolled and persistent expansion of germinal center B cells led to pathological changes in the spleens of chronically infected IRF-1-deficient animals. Additionally, we found decreased IRF-1 expression in cases of human posttransplant lymphoproliferative disorder, a malignant condition associated with gammaherpesvirus infection. The results of our study define an unappreciated role for IRF-1 in B cell biology and provide insight into the potential mechanism of gammaherpesvirus-driven lymphomagenesis. IMPORTANCE Gammaherpesviruses establish lifelong infection in most adults and are associated with B cell lymphomas. While the infection is asymptomatic in many hosts, it is critical to identify individuals who may be at an increased risk of virus-induced cancer. Such identification is currently impossible, as the host risk factors that predispose individuals toward viral lymphomagenesis are poorly understood. The current study identifies interferon-regulatory factor 1 (IRF-1) to be one of such candidate host factors. Specifically, we found that IRF-1 enforces long-term suppression of an inherently mutagenic stage of B cell differentiation that gammaherpesviruses are thought to target for transformation. Correspondingly, in the absence of IRF-1, chronic gammaherpesvirus infection induced pathological changes in the spleens of infected animals. Further, we found decreased IRF-1 expression in human gammaherpesvirus-induced B cell malignancies.
Collapse
|
34
|
Murid Gammaherpesvirus Latency-Associated Protein M2 Promotes the Formation of Conjugates between Transformed B Lymphoma Cells and T Helper Cells. PLoS One 2015; 10:e0142540. [PMID: 26544979 PMCID: PMC4636232 DOI: 10.1371/journal.pone.0142540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022] Open
Abstract
Establishment of persistent infection in memory B cells by murid herpesvirus-4 (MuHV-4) depends on the proliferation of latently infected germinal center B cells, for which T cell help is essential. Whether the virus is capable of modulating B-T helper cell interaction for its own benefit is still unknown. Here, we investigate if the MuHV-4 latency associated M2 protein, which assembles multiprotein complexes with B cell signaling proteins, plays a role. We observed that M2 led to the upregulation of adhesion and co-stimulatory molecules in transduced B cell lines. In an MHC-II restricted OVA peptide-specific system, M2 polarized to the B-T helper contact zone. Furthermore, it promoted B cell polarization, as demonstrated by the increased proximity of the B cell microtubule organizing center to the interface. Consistent with these data, M2 promoted the formation of B-T helper cell conjugates. In an in vitro competition assay, this translated into a competitive advantage, as T cells preferentially conjugated with M2-expressing B cells. However, expression of M2 alone in B cells was not sufficient to lead to T cell activation, as it only occurred in the presence of specific peptide. Taken together, these findings support that M2 promotes the formation of B-T helper cell conjugates. In an in vivo context this may confer a competitive advantage to the infected B cell in acquisition of T cell help and initiation of a germinal center reaction, hence host colonization.
Collapse
|
35
|
Liu J, Zhou Y, Yu Q, Zhao Z, Wang H, Luo X, Chen Y, Zhu Z, Chen G, Wu M, Qiu L. Higher Frequency of CD4+CXCR5+ICOS+PD1+ T Follicular Helper Cells in Patients With Infectious Mononucleosis. Medicine (Baltimore) 2015; 94:e2061. [PMID: 26559315 PMCID: PMC4912309 DOI: 10.1097/md.0000000000002061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Follicular helper T (Tfh) cells are recognized as a distinct CD4helper T cell subset, and mainly dysregulated in the autoimmune disease, whether it plays a role in the infectious mononucleosis (IM) diseases is unknown. In this study, we found that the CD4CXCR5 Tfh cells were not significantly changed, but the CD4CXCR5ICOS and CD4CXCR5ICOSPD1 Tfh subsets were significantly increased in the IM patients, and all these cells were significantly changed after antiviral therapy. Second, only the numbers of CD4CXCR5ICOSPD1 Tfh cells correlated with the Epstein-Barr virus (EBV) DNA load, negatively correlated with the numbers of naive B cells and amount of IL-21, and positively correlated with the numbers of plasma cells, memory B cells, and atypical lymphocytes. Third, the frequency of CD4CXCR5ICOSPD1 Tfh subset was significantly higher in lymphadenectasis or hepatosplenomegaly patients, and associated with the level of alanine aminotransferase (ALT). All together, our findings discovered this CD4CXCR5ICOSPD1 Tfh cell subset might play an important role in the pathogenesis of IM.
Collapse
Affiliation(s)
- Jinlin Liu
- From the Department of Clinical Laboratory (JL, YZ, QY, ZZ, HW, ZZ, MW, LQ); Department of Pediatrics (XL, GC); and Department of Rheumatology (YC), Zhejiang Provincial People's Hospital, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Collins CM, Speck SH. Interleukin 21 signaling in B cells is required for efficient establishment of murine gammaherpesvirus latency. PLoS Pathog 2015; 11:e1004831. [PMID: 25875847 PMCID: PMC4395336 DOI: 10.1371/journal.ppat.1004831] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 11/19/2022] Open
Abstract
The human gammaherpesviruses take advantage of normal B cell differentiation pathways to establish life-long infection in memory B cells. Murine gammaherpesvirus 68 (MHV68) infection of laboratory strains of mice also leads to life-long infection in memory B cells. To gain access to the memory B cell population, MHV68 infected B cells pass through the germinal center reaction during the onset of latency and require signals from T follicular helper (TFH) cells for proliferation. Interleukin 21 (IL-21), one of the secreted factors produced by TFH cells, plays an important role in both the maintenance of the germinal center response as well as in the generation of long-lived plasma cells. Using IL-21R deficient mice, we show that IL-21 signaling is required for efficient establishment of MHV68 infection. In the absence of IL-21 signaling, fewer infected splenocytes are able to gain access to either the germinal center B cell population or the plasma cell population – the latter being a major site of MHV68 reactivation. Furthermore, the germinal center B cell population in IL-21R-/- mice is skewed towards the non-proliferating centrocyte phenotype, resulting in reduced expansion of infected B cells. Additionally, the reduced frequency of infected plasma cells results in a significant reduction in the frequency of splenocytes capable of reactivating virus. This defect in establishment of MHV68 infection is intrinsic to B cells, as MHV68 preferentially establishes infection in IL-21R sufficient B cells in mixed bone marrow chimeric mice. Taken together, these data indicate that IL-21 signaling plays multiple roles during establishment of MHV68 infection, and identify IL-21 as a critical TFH cell-derived factor for efficient establishment of gammaherpesvirus B cell latency. Gammaherpesviruses establish life-long infection in B cells by taking advantage of the host immune response that is generated during primary infection. During initial infection, the immune system responds by inducing rapid proliferation of responding B cells during the germinal center reaction. This response is highly coordinated and relies on the interplay of multiple cell types. CD4 T helper cells are an important component of the germinal center reaction in that they communicate with B cells by providing both proliferation and survival signals. Gammaherpesviruses infect B cells that receive these signals, resulting in proliferation and survival of infected cells, allowing the virus to establish life-long infection. Here we show that interleukin 21 (IL-21), one of the signaling factors produced by CD4 T cells, is required for efficient establishment of infection in a mouse model of gammaherpesvirus infection. In the absence of IL-21 signaling, the viral load is markedly reduced and the composition of the infected cell population is altered to cell types that are less proliferative and produce less virus. These results demonstrate how gammaherpesviruses are able to take advantage of the immune response being generated against it to establish lifelong infection.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Hu Z, Blackman MA, Kaye KM, Usherwood EJ. Functional heterogeneity in the CD4+ T cell response to murine γ-herpesvirus 68. THE JOURNAL OF IMMUNOLOGY 2015; 194:2746-56. [PMID: 25662997 DOI: 10.4049/jimmunol.1401928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CD4(+) T cells are critical for the control of virus infections, T cell memory, and immune surveillance. We studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4(+) T cells using gp150-specific TCR-transgenic mice. This allowed a more detailed study of the characteristics of the CD4(+) T cell response than did previously available approaches for this virus. Most gp150-specific CD4(+) T cells expressed T-bet and produced IFN-γ, indicating that MHV-68 infection triggered differentiation of CD4(+) T cells largely into the Th1 subset, whereas some became follicular Th cells and Foxp3(+) regulatory T cells. These CD4(+) T cells were protective against MHV-68 infection in the absence of CD8(+) T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4(+) T cells, based on lymphocyte Ag 6C (Ly6C) expression. Ly6C expression positively correlated with IFN-γ, TNF-α, and granzyme B production; T-bet and KLRG1 expression; proliferation; and CD4(+) T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression, and secondary expansion potential. Ly6C(+) and Ly6C(-) gp150-specific CD4(+) T cells were able to interconvert in a bidirectional manner upon secondary Ag exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4(+) T cells but is inversely correlated with memory potential. Interconversion between Ly6C(+) and Ly6C(-) cells may maintain a balance between the two Ag-specific CD4(+) T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4(+) T cells during persistent virus infection.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | | | - Kenneth M Kaye
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
38
|
Abstract
Persistent infection by EBV is explained by the germinal center model (GCM) which provides a satisfying and currently the only explanation for EBVs disparate biology. Since the GCM touches on every aspect of the virus, this chapter will serve as an introduction to the subsequent chapters. EBV is B lymphotropic, and its biology closely follows that of normal mature B lymphocytes. The virus persists quiescently in resting memory B cells for the lifetime of the host in a non-pathogenic state that is also invisible to the immune response. To access this compartment, the virus infects naïve B cells in the lymphoepithelium of the tonsils and activates these cells using the growth transcription program. These cells migrate to the GC where they switch to a more limited transcription program, the default program, which helps rescue them into the memory compartment where the virus persists. For egress, the infected memory cells return to the lymphoepithelium where they occasionally differentiate into plasma cells activating viral replication. The released virus can either infect more naïve B cells or be amplified in the epithelium for shedding. This cycle of infection and the quiescent state in memory B cells allow for lifetime persistence at a very low level that is remarkably stable over time. Mathematically, this is a stable fixed point where the mechanisms regulating persistence drive the state back to equilibrium when perturbed. This is the GCM of EBV persistence. Other possible sites and mechanisms of persistence will also be discussed.
Collapse
|
39
|
The murine gammaherpesvirus immediate-early Rta synergizes with IRF4, targeting expression of the viral M1 superantigen to plasma cells. PLoS Pathog 2014; 10:e1004302. [PMID: 25101696 PMCID: PMC4125235 DOI: 10.1371/journal.ppat.1004302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/29/2014] [Indexed: 11/19/2022] Open
Abstract
MHV68 is a murine gammaherpesvirus that infects laboratory mice and thus provides a tractable small animal model for characterizing critical aspects of gammaherpesvirus pathogenesis. Having evolved with their natural host, herpesviruses encode numerous gene products that are involved in modulating host immune responses to facilitate the establishment and maintenance of lifelong chronic infection. One such protein, MHV68 M1, is a secreted protein that has no known homologs, but has been shown to play a critical role in controlling virus reactivation from latently infected macrophages. We have previous demonstrated that M1 drives the activation and expansion of Vβ4+ CD8+ T cells, which are thought to be involved in controlling MHV68 reactivation through the secretion of interferon gamma. The mechanism of action and regulation of M1 expression are poorly understood. To gain insights into the function of M1, we set out to evaluate the site of expression and transcriptional regulation of the M1 gene. Here, using a recombinant virus expressing a fluorescent protein driven by the M1 gene promoter, we identify plasma cells as the major cell type expressing M1 at the peak of infection in the spleen. In addition, we show that M1 gene transcription is regulated by both the essential viral immediate-early transcriptional activator Rta and cellular interferon regulatory factor 4 (IRF4), which together potently synergize to drive M1 gene expression. Finally, we show that IRF4, a cellular transcription factor essential for plasma cell differentiation, can directly interact with Rta. The latter observation raises the possibility that the interaction of Rta and IRF4 may be involved in regulating a number of viral and cellular genes during MHV68 reactivation linked to plasma cell differentiation. Through coevolution with their hosts, gammaherpesviruses have acquired unique genes that aid in infection of a particular host. Here we study the regulation of the MHV68 M1 gene, which encodes a protein that modulates the host immune response. Using a strategy that allowed us to identify MHV68 infected cells in mice, we have determined that M1 expression is largely limited to the antibody producing plasma cells. In addition, we show that M1 gene expression is regulated by both cellular and viral factors, which allow the virus to fine-tune gene expression in response to environmental signals. These findings provide insights into M1 function through a better understanding of how M1 expression is regulated.
Collapse
|
40
|
Decalf J, Godinho-Silva C, Fontinha D, Marques S, Simas JP. Establishment of murine gammaherpesvirus latency in B cells is not a stochastic event. PLoS Pathog 2014; 10:e1004269. [PMID: 25079788 PMCID: PMC4117635 DOI: 10.1371/journal.ppat.1004269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/10/2014] [Indexed: 12/21/2022] Open
Abstract
Murid γ-herpesvirus-4 (MuHV-4) promotes polyclonal B cell activation and establishes latency in memory B cells via unclear mechanisms. We aimed at exploring whether B cell receptor specificity plays a role in B cell susceptibility to viral latency and how this is related to B cell activation. We first observed that MuHV-4-specific B cells represent a minority of the latent population, and to better understand the influence of the virus on non-MuHV-4 specific B cells we used the SWHEL mouse model, which produce hen egg lysozyme (HEL)-specific B cells. By tracking HEL+ and HEL− B cells, we showed that in vivo latency was restricted to HEL− B cells while the two populations were equally sensitive to the virus in vitro. Moreover, MuHV-4 induced two waves of B cell activation. While the first wave was characterized by a general B cell activation, as shown by HEL+ and HEL− B cells expansion and upregulation of CD69 expression, the second wave was restricted to the HEL− population, which acquired germinal center (GC) and plasma cell phenotypes. Antigenic stimulation of HEL+ B cells led to the development of HEL+ GC B cells where latent infection remained undetectable, indicating that MuHV-4 does not benefit from acute B cell responses to establish latency in non-virus specific B cells but relies on other mechanisms of the humoral response. These data support a model in which the establishment of latency in B cells by γ-herpesviruses is not stochastic in terms of BCR specificity and is tightly linked to the formation of GCs. Murid γ-herpesvirus-4 (MuHV-4) is a good model to study infectious mononucleosis in mice, in which the virus ultimately establishes life-long latency in B cells. Whereas several viral proteins have been shown to modulate B cell behavior, in the present study we aimed at clarifying the parameters that dictate the establishment of viral latency from the B cell perspective. Indeed, the B cell repertoire is highly diverse and it remains unknown whether latency takes place randomly in B cells. To study this question, we isolated latently infected B cells in which we observed a low frequency of virus-specific B cells, suggesting that viral latency is not restricted to this population. To better understand MuHV-4 influence on non-virus specific B cells, we then followed the fate of B cells specific for a foreign antigen, hen egg lysozyme (HEL). While in vitro experiments showed that HEL-specific B cells could be acutely infected by MuHV-4, these cells were resistant to MuHV-4 latent infection in vivo. These results suggest that while establishment of γ-herpesvirus latency is not restricted to virus-specific B cells, it does not take place randomly in B cells and relies on mechanisms that remain to be identified.
Collapse
Affiliation(s)
- Jérémie Decalf
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cristina Godinho-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Marques
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
41
|
Murine gammaherpesvirus 68 reactivation from B cells requires IRF4 but not XBP-1. J Virol 2014; 88:11600-10. [PMID: 25078688 DOI: 10.1128/jvi.01876-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Gammaherpesviruses display tropism for B cells and, like all known herpesviruses, exhibit distinct lytic and latent life cycles. One well-established observation among members of the gammaherpesvirus family is the link between viral reactivation from latently infected B cells and plasma cell differentiation. Importantly, a number of studies have identified a potential role for a CREB/ATF family member, X-box binding protein 1 (XBP-1), in trans-activating the immediate early BZLF-1 or BRLF1/gene 50 promoters of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), respectively. XBP-1 is required for the unfolded protein response and has been identified as a critical transcription factor in plasma cells. Here, we demonstrate that XBP-1 is capable of trans-activating the murine gammaherpesvirus 68 (MHV68) RTA promoter in vitro, consistent with previous observations for EBV and KSHV. However, we show that in vivo there does not appear to be a requirement for XBP-1 expression in B cells for virus reactivation. The MHV68 M2 gene product under some experimental conditions plays an important role in virus reactivation from B cells. M2 has been shown to drive B cell differentiation to plasma cells, as well as interleukin-10 (IL-10) production, both of which are dependent on M2 induction of interferon regulatory factor 4 (IRF4) expression. IRF4 is required for plasma cell differentiation, and consistent with a role for plasma cells in MHV68 reactivation from B cells, we show that IRF4 expression in B cells is required for efficient reactivation of MHV68 from splenocytes. Thus, the latter analyses are consistent with previous studies linking plasma cell differentiation to MHV68 reactivation from B cells. The apparent independence of MHV68 reactivation from XBP-1 expression in plasma cells may reflect redundancy among CREB/ATF family members or the involvement of other plasma cell-specific transcription factors. Regardless, these findings underscore the importance of in vivo studies in assessing the relevance of observations made in tissue culture models. IMPORTANCE All known herpesviruses establish a chronic infection of their respective host, persisting for the life of the individual. A critical feature of these viruses is their ability to reactivate from a quiescent form of infection (latency) and generate progeny virus. In the case of gammaherpesviruses, which are associated with the development of lymphoproliferative disorders, including lymphomas, reactivation from latently infected B lymphocytes occurs upon terminal differentiation of these cells to plasma cells-the cell type that produces antibodies. A number of studies have linked a plasma cell transcription factor, XBP-1, to the induction of gammaherpesvirus reactivation, and we show here that indeed in tissue culture models this cellular transcription factor can trigger expression of the murine gammaherpesvirus gene involved in driving virus reactivation. However, surprisingly, when we examined the role of XBP-1 in the setting of infection of mice-using mice that lack a functional XBP-1 gene in B cells-we failed to observe a role for XBP-1 in virus reactivation. However, we show that another cellular factor essential for plasma cell differentiation, IRF4, is critical for virus reactivation. Thus, these studies point out the importance of studies in animal models to validate findings from studies carried out in cell lines passaged in vitro.
Collapse
|