1
|
Young B, Seifert SN, Lawson C, Koehler H. Exploring the genomic basis of Mpox virus-host transmission and pathogenesis. mSphere 2024; 9:e0057624. [PMID: 39540739 DOI: 10.1128/msphere.00576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Mpox disease, caused by the monkeypox virus (MPXV), was recently classified as a public health emergency of international concern due to its high lethality and pandemic potential. MPXV is a zoonotic disease that emerged and is primarily spread by small rodents. Historically, it was considered mainly zoonotic and not likely to sustain human-to-human transmission. However, the worldwide outbreak of Clade IIb MPXV from 2020 to 2022 and ongoing Clade I MPXV epidemics in the Democratic Republic of the Congo and surrounding areas are a warning that human-adapted MPXVs will continually arise. Understanding the viral genetic determinants of host range, pathogenesis, and immune evasion is imperative for developing control strategies and predicting the future of Mpox. Here, we delve into the MPXV genome to detail genes involved in host immune evasion strategies for this zoonotic rodent-borne and human-circulating virus. We compare MPXV gene content to related Orthopoxviruses, which have narrow host ranges, to identify potential genes involved in species-specific pathogenesis and host tropism. In addition, we cover the key virulence factor differences that distinguish the MPXV clade lineages. Finally, we dissect how genomic reduction of Orthopoxviruses, through various molecular mechanisms, is contributing to the generation of novel MPXV lineages with increased human adaptation. This review aims to highlight gene content that defines the MPXV species, MPXV clades, and novel MPXV lineages that have culminated in this virus being elevated to a public health emergency of national concern.
Collapse
Affiliation(s)
- Brayden Young
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Heath, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Heather Koehler
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
- Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Yoxsimer AM, Offenberg EG, Katzer AW, Bell MA, Massengill RL, Kingsley DM. Genomic Sequence of the Threespine Stickleback Iridovirus (TSIV) from Wild Gasterosteus aculeatus in Stormy Lake, Alaska. Viruses 2024; 16:1663. [PMID: 39599778 PMCID: PMC11598847 DOI: 10.3390/v16111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
The threespine stickleback iridovirus (TSIV), a double-stranded DNA virus, was the first megalocytivirus detected in wild North American fishes. We report a second occurrence of TSIV in threespine stickleback (Gasterosteus aculeatus) from Stormy Lake, Alaska, and assemble a nearly complete genome of TSIV. The 115-kilobase TSIV genome contains 94 open reading frames (ORFs), with 91 that share homology with other known iridoviruses. We identify three ORFs that likely originate from recent lateral gene transfers from a eukaryotic host and one ORF with homology to B22 poxvirus proteins that likely originated from a lateral gene transfer between viruses. Phylogenetic analysis of 24 iridovirus core genes and pairwise sequence identity analysis support TSIV as a divergent sister taxon to other megalocytiviruses and a candidate for a novel species designation. Screening of stickleback collected from Stormy Lake before and after a 2012 rotenone treatment to eliminate invasive fish shows 100% positivity for TSIV in the two years before treatment (95% confidence interval: 89-100% prevalence) and 0% positivity for TSIV in 2024 after treatment (95% confidence interval: 0 to 3.7% prevalence), suggesting that the rotenone treatment and subsequent crash and reestablishment of the stickleback population is associated with loss of TSIV.
Collapse
Affiliation(s)
- Alyssa M. Yoxsimer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.Y.); (E.G.O.); (A.W.K.)
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emma G. Offenberg
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.Y.); (E.G.O.); (A.W.K.)
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Austin Wolfgang Katzer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.Y.); (E.G.O.); (A.W.K.)
| | - Michael A. Bell
- University of California Museum of Paleontology, Berkeley, CA 94720, USA;
| | | | - David M. Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.Y.); (E.G.O.); (A.W.K.)
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Fang D, Liu Y, Dou D, Su B. The unique immune evasion mechanisms of the mpox virus and their implication for developing new vaccines and immunotherapies. Virol Sin 2024; 39:709-718. [PMID: 39181538 PMCID: PMC11738799 DOI: 10.1016/j.virs.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Mpox is an infectious and contagious zoonotic disease caused by the mpox virus (MPXV), which belongs to the genus Orthopoxvirus. Since 2022, MPXV has posed a significant threat to global public health. The emergence of thousands of cases across the Western Hemisphere prompted the World Health Organization to declare an emergency. The extensive coevolutionary history of poxviruses with humans has enabled these viruses to develop sophisticated mechanisms to counter the human immune system. Specifically, MPXV employs unique immune evasion strategies against a wide range of immunological elements, presenting a considerable challenge for treatment, especially following the discontinuation of routine smallpox vaccination among the general population. In this review, we start by discussing the entry of the mpox virus and the onset of early infection, followed by an introduction to the mechanisms by which the mpox virus can evade the innate and adaptive immune responses. Two caspase-1 inhibitory proteins and a PKR escape-related protein have been identified as phylogenomic hubs involved in modulating the immune environment during the MPXV infection. With respect to adaptive immunity, mpox viruses exhibit unique and exceptional T-cell inhibition capabilities, thereby comprehensively remodeling the host immune environment. The viral envelope also poses challenges for the neutralizing effects of antibodies and the complement system. The unique immune evasion mechanisms employed by MPXV make novel multi-epitope and nucleic acid-based vaccines highly promising research directions worth investigating. Finally, we briefly discuss the impact of MPXV infection on immunosuppressed patients and the current status of MPXV vaccine development. This review may provide valuable information for the development of new immunological treatments for mpox.
Collapse
Affiliation(s)
- Dong Fang
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Yan Liu
- Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Dou Dou
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China
| | - Bin Su
- Department of Health Sciences, National Natural Science Foundation of China, Beijing, 100085, China; Beijing Key Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China; Central Laboratory, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Araf Y, Nipa JF, Naher S, Maliha ST, Rahman H, Arafat KI, Munif MR, Uddin MJ, Jeba N, Saha S, Zhai J, Hasan SMN, Xue M, Hossain MG, Zheng C. Insights into the Transmission, Host Range, Genomics, Vaccination, and Current Epidemiology of the Monkeypox Virus. Vet Med Int 2024; 2024:8839830. [PMID: 38836166 PMCID: PMC11150048 DOI: 10.1155/2024/8839830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
This review delves into the historical context, current epidemiological landscape, genomics, and pathobiology of monkeypox virus (MPXV). Furthermore, it elucidates the present vaccination status and strategies to curb the spread of monkeypox. Monkeypox, caused by the Orthopoxvirus known as MPXV, is a zoonotic ailment. MPXV can be transmitted from person to person through respiratory droplets during prolonged face-to-face interactions. While many cases of monkeypox are self-limiting, vulnerable groups such as young children, pregnant women, and immunocompromised individuals may experience severe manifestations. Diagnosis predominantly relies on clinical presentations, complemented by laboratory techniques like RT-PCR. Although treatment is often not required, severe cases necessitate antiviral medications like tecovirimat, cidofovir, and brincidofovir. Vaccination, particularly using the smallpox vaccine, has proven instrumental in outbreak control, exhibiting an efficacy of at least 85% against mpox as evidenced by data from Africa. Mitigating transmission requires measures like wearing surgical masks, adequately covering skin lesions, and avoiding handling wild animals.
Collapse
Affiliation(s)
- Yusha Araf
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jannatul Ferdous Nipa
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka 1212, Bangladesh
| | - Sabekun Naher
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sumaiya Tasnim Maliha
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Faculty of Life Sciences, Gopalganj, Bangladesh
| | - Kazi Ifthi Arafat
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Faculty of Life Sciences, Gopalganj, Bangladesh
| | - Mohammad Raguib Munif
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Nurejunnati Jeba
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - S M Nazmul Hasan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan 450001, China
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Chunfu Zheng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Deiana M, Lavezzari D, Mori A, Accordini S, Pomari E, Piubelli C, Malagò S, Cordioli M, Ronzoni N, Angheben A, Tacconelli E, Capobianchi MR, Gobbi FG, Castilletti C. Exploring Viral Genome Profile in Mpox Patients during the 2022 Outbreak, in a North-Eastern Centre of Italy. Viruses 2024; 16:726. [PMID: 38793608 PMCID: PMC11125733 DOI: 10.3390/v16050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
In 2022, an unprecedented outbreak of mpox raged in several nations. Sequences from the 2022 outbreak reveal a higher nucleotide substitution if compared with the estimated rate for orthopoxviruses. Recently, intra-lesion SNVs (single nucleotide variants) have been described, and these have been suggested as possible sources of genetic variation. Until now, it has not been clear if the presence of several SNVs could represents the result of local mutagenesis or a possible co-infection. We investigated the significance of SNVs through whole-genome sequencing analysis of four unrelated mpox cases. In addition to the known mutations harboured by the circulating strains of virus (MPXV), 7 novel mutations were identified, including SNVs located in genes that are involved in immune evasion mechanisms and/or viral fitness, six of these appeared to be APOBEC3-driven. Interestingly, three patients exhibited the coexistence of mutated and wild-type alleles for five non-synonymous variants. In addition, two patients, apparently unrelated, showed an analogous pattern for two novel mutations, albeit with divergent frequencies. The coexistence of mixed viral populations, harbouring non-synonymous mutations in patients, supports the hypothesis of possible co-infection. Additional investigations of larger clinical cohorts are essential to validating intra-patient viral genome heterogeneity and determining the possibility of co-presence events of slightly divergent MPXV strains.
Collapse
Affiliation(s)
- Michela Deiana
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Denise Lavezzari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Antonio Mori
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Silvia Accordini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Elena Pomari
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Simone Malagò
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
- PhD National Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maddalena Cordioli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37134 Verona, Italy;
| | - Niccolò Ronzoni
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Andrea Angheben
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37134 Verona, Italy;
| | - Maria Rosaria Capobianchi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| | - Federico Giovanni Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Concetta Castilletti
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy (M.R.C.); (F.G.G.); (C.C.)
| |
Collapse
|
6
|
Zawisza M, Rebl A, Teitge F, Krzystyniak B, Piackova V, Gela D, Kocour M, Chadzinska M, Adamek M, Rakus K. Stressing out-carp edema virus induces stress and modulates immune response in common carp. Front Immunol 2024; 15:1350197. [PMID: 38576605 PMCID: PMC10991768 DOI: 10.3389/fimmu.2024.1350197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. Methods In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). Results We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. Conclusion CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.
Collapse
Affiliation(s)
- Maria Zawisza
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Alexander Rebl
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Barbara Krzystyniak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Veronika Piackova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czechia
| | - David Gela
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czechia
| | - Martin Kocour
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czechia
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
Zorec TM, Alm E, Lind Karlberg M, Advani R, Hošnjak L, Poljak M. Comprehensive analysis of 66 complete molluscum contagiosum virus (MOCV) genomes: characterization and functional annotation of 47 novel complete MOCV genomes, including the first genome of MOCV genotype 3, and a proposal for harmonized MOCV genotyping indexing. mBio 2023; 14:e0222423. [PMID: 37947415 PMCID: PMC10746250 DOI: 10.1128/mbio.02224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Four molluscum contagiosum virus (MOCV) genotypes (MOCV1-4) and four subtype variants were partially characterized using restriction enzyme profiling in the 1980s/1990s, but complete genome sequences of only MOCV1 and MOCV2 are available. The evolutionary pathways whereby genotypes/subtype variants with unavailable sequences emerged and whether all MOCVs can be detected using current diagnostic approaches remain unclear. We fully characterized 47 novel complete MOCV genomes, including the first complete MOCV3 genome, expanding the number of fully characterized genomes to 66. For reliably classifying the novel non-MOCV1/2 genomes, we developed and validated a framework for matching sequence-derived restriction maps with those defining MOCV subtypes in pioneering studies. Six phylogenetic subgroups (PG1-6) were identified, PG5 representing a novel MOCV2 subtype. The phylogenetic subgroups diverged from the prototype lineages following large-scale recombination events and hinted at partial sequence content of MOCV4 and direction of recombinant transfer in the events spawning PG5 and yet undetected MOCV1vb variant.
Collapse
Affiliation(s)
- Tomaž Mark Zorec
- Laboratory for Molecular Microbiology and Slovenian HIV/AIDS Reference Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Erik Alm
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | | | - Reza Advani
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Lea Hošnjak
- Laboratory for Molecular Microbiology and Slovenian HIV/AIDS Reference Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Laboratory for Molecular Microbiology and Slovenian HIV/AIDS Reference Center, Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Yates JL, Hunt DT, Kulas KE, Chave KJ, Styer L, Chakravarthi ST, Cai GY, Bermúdez-González MC, Kleiner G, Altman D, Srivastava K, Simon V, Feihel D, McGowan J, Hogrefe W, Noone P, Egan C, Slifka MK, Lee WT. Development of a novel serological assay for the detection of mpox infection in vaccinated populations. J Med Virol 2023; 95:e29134. [PMID: 37805977 PMCID: PMC10686281 DOI: 10.1002/jmv.29134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 104 nonendemic locations worldwide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.
Collapse
Affiliation(s)
- Jennifer L Yates
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, The School of Public Heath, The University at Albany, Albany, New York, USA
| | - Danielle T Hunt
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Karen E Kulas
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Karen J Chave
- Scientific Cores, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Linda Styer
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, The School of Public Heath, The University at Albany, Albany, New York, USA
| | - Sandhya T Chakravarthi
- Scientific Cores, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Gianna Y Cai
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Maria C Bermúdez-González
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Giulio Kleiner
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deena Altman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Komal Srivastava
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Viviana Simon
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Dennis Feihel
- Department of Medicine, North Shore University Hospital, Manhasset, New York, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Joseph McGowan
- Department of Medicine, North Shore University Hospital, Manhasset, New York, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | | | | | - Christina Egan
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, The School of Public Heath, The University at Albany, Albany, New York, USA
| | - Mark K Slifka
- Najit Technologies, Inc., Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, USA
| | - William T Lee
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, The School of Public Heath, The University at Albany, Albany, New York, USA
| |
Collapse
|
9
|
Molteni C, Forni D, Cagliani R, Arrigoni F, Pozzoli U, De Gioia L, Sironi M. Selective events at individual sites underlie the evolution of monkeypox virus clades. Virus Evol 2023; 9:vead031. [PMID: 37305708 PMCID: PMC10256197 DOI: 10.1093/ve/vead031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
In endemic regions (West Africa and the Congo Basin), the genetic diversity of monkeypox virus (MPXV) is geographically structured into two major clades (Clades I and II) that differ in virulence and host associations. Clade IIb is closely related to the B.1 lineage, which is dominating a worldwide outbreak initiated in 2022. Lineage B.1 has however accumulated mutations of unknown significance that most likely result from apolipoprotein B mRNA editing catalytic polypeptide-like 3 (APOBEC3) editing. We applied a population genetics-phylogenetics approach to investigate the evolution of MPXV during historical viral spread in Africa and to infer the distribution of fitness effects. We observed a high preponderance of codons evolving under strong purifying selection, particularly in viral genes involved in morphogenesis and replication or transcription. However, signals of positive selection were also detected and were enriched in genes involved in immunomodulation and/or virulence. In particular, several genes showing evidence of positive selection were found to hijack different steps of the cellular pathway that senses cytosolic DNA. Also, a few selected sites in genes that are not directly involved in immunomodulation are suggestive of antibody escape or other immune-mediated pressures. Because orthopoxvirus host range is primarily determined by the interaction with the host immune system, we suggest that the positive selection signals represent signatures of host adaptation and contribute to the different virulence of Clade I and II MPXVs. We also used the calculated selection coefficients to infer the effects of mutations that define the predominant human MPXV1 (hMPXV1) lineage B.1, as well as the changes that have been accumulating during the worldwide outbreak. Results indicated that a proportion of deleterious mutations were purged from the predominant outbreak lineage, whose spread was not driven by the presence of beneficial changes. Polymorphic mutations with a predicted beneficial effect on fitness are few and have a low frequency. It remains to be determined whether they have any significance for ongoing virus evolution.
Collapse
Affiliation(s)
- Cristian Molteni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della scienza, Milan 20126, Italy
| | - Uberto Pozzoli
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Piazza della scienza, Milan 20126, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Via don Luigi Monza, Bosisio Parini 23842, Italy
| |
Collapse
|
10
|
Yates JL, Hunt DT, Kulas KE, Chave K, Styer L, Chakravarthi ST, Cai GY, Bermúdez-González MC, Kleiner G, Altman D, Srivastava K, Simon V, Feihel D, McGowan J, Hogrefe W, Noone P, Egan C, Slifka MK, Lee WT. Development of a Novel Serological Assay for the Detection of Mpox Infection in Vaccinated Populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.18.23288419. [PMID: 37162953 PMCID: PMC10168407 DOI: 10.1101/2023.04.18.23288419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 103 non-endemic locations world-wide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay (MIA) using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important diagnostic tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.
Collapse
|
11
|
Saghazadeh A, Rezaei N. Insights on Mpox virus infection immunopathogenesis. Rev Med Virol 2023; 33:e2426. [PMID: 36738134 DOI: 10.1002/rmv.2426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
An immunocompromised status has been associated with more odds of being infected with Mpox virus (MPXV) and progressing to severe disease. This aligns with the importance of immune competence for MPXV control and clearance. We and others have previously reviewed parallels between MPXV and other viruses belonging to the Poxviridae in affecting the immune system. This article reviews studies providing direct evidence of the MPXV-immune interactions. The wide-ranging effects of MPXV on the immune system, from stimulation to modulation to memory, are broadly categorised, followed by a detailing of these effects on the immune cells and molecules, including natural killer cells, macrophages, neutrophils, lymphocytes, cytokines, interferons, chemokines, and complement.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
12
|
Kumar A, Venkatesan G, Kushwaha A, Poulinlu G, Saha T, Ramakrishnan MA, Dhar P, Kumar GS, Singh RK. Genomic characterization of Lumpy Skin Disease virus (LSDV) from India: Circulation of Kenyan-like LSDV strains with unique kelch-like proteins. Acta Trop 2023; 241:106838. [PMID: 36796571 DOI: 10.1016/j.actatropica.2023.106838] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/18/2022] [Accepted: 01/15/2023] [Indexed: 02/17/2023]
Abstract
Lumpy skin disease (LSD) is an economically important poxviral disease endemic to Asia, Europe, and Africa. Recently, LSD has spread to naïve countries, including India, China, Bangladesh, Pakistan, Myanmar, Vietnam, and Thailand. Here, we describe the complete genomic characterization of LSDV from India, LSDV-WB/IND/19 isolated from an LSD affected calf in 2019 determined by Illumina next-generation sequencing (NGS). The LSDV-WB/IND/19 has a genome size of 150,969 bp encoding 156 putative ORFs. Phylogenetic analysis based on complete genome sequence suggested that LSDV-WB/IND/19 is closely related to Kenyan LSDV strains with 10-12 variants with non-synonymous changes confined to LSD_019, LSD_049, LSD_089, LSD_094, LSD_096, LSD_140, and LSD_144 genes. In contrast to complete kelch-like proteins in Kenyan LSDV strains, LSDV-WB/IND/19 LSD_019 and LSD_144 genes were found to encode truncated versions (019a, 019b, and 144a, 144b). LSD_019a and LSD_019b proteins of LSDV-WB/IND/19 resemble that of wild-type LSDV strains based on SNPs and the C-terminal part of LSD_019b except for deletion at K229, whereas the LSD_144a and LSD_144b proteins resemble that of Kenyan LSDV strains based on SNPs, however, C-terminal part of LSD_144a resembles that of vaccine-associated LSDV strains due to premature truncation. The NGS findings were confirmed by Sanger sequencing of these genes in Vero cell isolate as well as in the original skin scab along with similar findings in another Indian LSDV from scab specimen. LSD_019 and LSD_144 genes are thought to modulate virulence and host range in capripoxviruses. This study demonstrates the circulation of unique LSDV strains in India and highlights the importance of constant monitoring of the molecular evolution of LSDV and associated factors in the region in light of the emergence of recombinant LSDV strains.
Collapse
Affiliation(s)
- Amit Kumar
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India.
| | - Gnanavel Venkatesan
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - Anand Kushwaha
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - G Poulinlu
- Pox Virus Laboratory, Division of Virology, ICAR-Indian Veterinary Research Institute (IVRI), Mukteswar, Uttarakhand, India
| | - Tapabrata Saha
- Block Animal Health Centre, Chhatna, Bankura, West Bengal, India
| | - M A Ramakrishnan
- ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru campus, Karnataka, India
| | - Pronab Dhar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| | - G Sai Kumar
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| | - R K Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
13
|
Yadav P, Devasurmutt Y, Tatu U. Phylogenomic and Structural Analysis of the Monkeypox Virus Shows Evolution towards Increased Stability. Viruses 2022; 15:127. [PMID: 36680170 PMCID: PMC9864997 DOI: 10.3390/v15010127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
Monkeypox is an infectious zoonotic disease caused by an Orthopoxvirus and results in symptoms similar to smallpox. In a recent outbreak, monkeypox virus (MPXV) cases have been reported globally since May 2022, and the numbers are increasing. Monkeypox was first diagnosed in humans in the Democratic Republic of Congo and has now spread to throughout Europe, the USA, and Africa. In this study, we analyzed the whole genome sequences of MPXV sequences from recent outbreaks in various countries and performed phylogenomic analysis. Our analysis of the available human MPXV strains showed the highest mutations per sample in 2022 with the average number of mutations per sample being the highest in South America and the European continents in 2022. We analyzed specific mutations in 11 Indian MPXV strains occurring in the variable end regions of the MPXV genome, where the mutation number was as high as 10 mutations per gene. Among these, envelope glycoproteins, the B2R protein, the Ankyrin repeat protein, DNA polymerase, and the INF alpha receptor-like secreted glycoprotein were seen to have a relatively high number of mutations. We discussed the stabilizing effects of the mutations in some of the highly mutating proteins. Our results showed that the proteins involved in binding to the host receptors were mutating at a faster rate, which empowered the virus for active selection towards increased disease transmissibility and severity.
Collapse
Affiliation(s)
| | | | - Utpal Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Grifoni A, Zhang Y, Tarke A, Sidney J, Rubiro P, Reina-Campos M, Filaci G, Dan JM, Scheuermann RH, Sette A. Defining antigen targets to dissect vaccinia virus and monkeypox virus-specific T cell responses in humans. Cell Host Microbe 2022; 30:1662-1670.e4. [PMID: 36463861 PMCID: PMC9718645 DOI: 10.1016/j.chom.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The monkeypox virus (MPXV) outbreak confirmed in May 2022 in non-endemic countries is raising concern about the pandemic potential of novel orthopoxviruses. Little is known regarding MPXV immunity in the context of MPXV infection or vaccination with vaccinia-based vaccines (VACV). As with vaccinia, T cells are likely to provide an important contribution to overall immunity to MPXV. Here, we leveraged the epitope information available in the Immune Epitope Database (IEDB) on VACV to predict potential MPXV targets recognized by CD4+ and CD8+ T cell responses. We found a high degree of conservation between VACV epitopes and MPXV and defined T cell immunodominant targets. These analyses enabled the design of peptide pools able to experimentally detect VACV-specific T cell responses and MPXV cross-reactive T cells in a cohort of vaccinated individuals. Our findings will facilitate the monitoring of cellular immunity following MPXV infection and vaccination.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Alison Tarke
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Center of Excellence for Biomedical Research, Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Maria Reina-Campos
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genoa, Genoa 16132, Italy,Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Jennifer M. Dan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Richard H. Scheuermann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA,Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA,Global Virus Network, Baltimore, MD 21201, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA,Corresponding author
| |
Collapse
|
15
|
Emergence of Salmon Gill Poxvirus. Viruses 2022; 14:v14122701. [PMID: 36560705 PMCID: PMC9783891 DOI: 10.3390/v14122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Salmon gill poxvirus (SGPV) has emerged in recent years as the cause of an acute respiratory disease that can lead to high mortality in farmed Atlantic salmon presmolts, known as Salmon gill poxvirus disease. SGPV was first identified in Norway in the 1990s, and its large DNA genome, consisting of over 206 predicted protein-coding genes, was characterized in 2015. This review summarizes current knowledge relating to disease manifestation and its effects on the host immune system and describes dissemination of the virus. It also demonstrates how newly established molecular tools can help us to understand SGPV and its pathogenesis. Finally, we conclude and ask some burning questions that should be addressed in future research.
Collapse
|
16
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Ahmad S, Hasan H, Ahmad Suhaimi NA, Albakri KA, Abedalbaset Alzyoud A, Kadir R, Mohamud R. Comprehensive literature review of monkeypox. Emerg Microbes Infect 2022; 11:2600-2631. [PMID: 36263798 PMCID: PMC9627636 DOI: 10.1080/22221751.2022.2132882] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/02/2022] [Indexed: 11/03/2022]
Abstract
The current outbreak of monkeypox (MPX) infection has emerged as a global matter of concern in the last few months. MPX is a zoonosis caused by the MPX virus (MPXV), which is one of the Orthopoxvirus species. Thus, it is similar to smallpox caused by the variola virus, and smallpox vaccines and drugs have been shown to be protective against MPX. Although MPX is not a new disease and is rarely fatal, the current multi-country MPX outbreak is unusual because it is occurring in countries that are not endemic for MPXV. In this work, we reviewed the extensive literature available on MPXV to summarize the available data on the major biological, clinical and epidemiological aspects of the virus and the important scientific findings. This review may be helpful in raising awareness of MPXV transmission, symptoms and signs, prevention and protective measures. It may also be of interest as a basis for performance of studies to further understand MPXV, with the goal of combating the current outbreak and boosting healthcare services and hygiene practices.Trial registration: ClinicalTrials.gov identifier: NCT02977715..Trial registration: ClinicalTrials.gov identifier: NCT03745131..Trial registration: ClinicalTrials.gov identifier: NCT00728689..Trial registration: ClinicalTrials.gov identifier: NCT02080767..
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | | | | | | | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| |
Collapse
|
17
|
ORF-Interrupting Mutations in Monkeypox Virus Genomes from Washington and Ohio, 2022. Viruses 2022; 14:v14112393. [PMID: 36366490 PMCID: PMC9695478 DOI: 10.3390/v14112393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/31/2023] Open
Abstract
Monkeypox virus, the causative agent of the 2022 monkeypox outbreak, is a double-stranded DNA virus in the Orthopoxvirus genus of the Poxviridae family. Genes in terminal regions of Orthopoxvirus genomes mostly code for host-pathogen interaction proteins and are prone to selective pressure and modification events. Using viral whole genome sequencing, we identified twenty-five total clinical samples with ORF-disrupting mutations, including twenty samples encoding nonsense mutations in MPXVgp001/191 (OPG001), MPXVgp004/188 (OPG015), MPXVgp010 (OPG023), MPXVgp030 (OPG042), MPXVgp159 (OPG0178), or MPXVgp161 (OPG181). Additional mutations include a frameshift leading to an alternative C-terminus in MPXVgp010 (OPG023) and an insertion in an adenine homopolymer at the beginning of the annotated ORF for MPXVgp153 (OPG151), encoding a subunit of the RNA polymerase, suggesting the virus may instead use the start codon that encodes Met9 as annotated. Finally, we detected three samples with large (>900 bp) deletions. These included a 913 bp deletion that truncates the C-terminus of MPXVgp010 (OPG023); a 4205 bp deletion that eliminates MPXVgp012 (OPG025), MPXVgp013 (OPG027), and MPXVgp014 (OPG029) and truncates MPXVgp011 (OPG024; D8L) and MPXVgp015 (OPG030); and a 6881 bp deletion that truncates MPXVgp182 (OPG210) and eliminates putative ORFs MPXVgp184, MPXVgp185 (OPG005), and MPXVgp186, as well as MPXVgp187 (OPG016), and MPXVgp188 (OPG015) from the 3' ITR only. MPXVgp182 encodes the monkeypox-specific, highly immunogenic surface glycoprotein B21R which has been proposed as a serological target. Overall, we find greater than one-tenth of our sequenced MPXV isolates have at least one gene inactivating mutation and these genes together comprised greater than one-tenth of annotated MPXV genes. Our findings highlight non-essential genes in monkeypox virus that may be evolving as a result of selective pressure in humans, as well as the limitations of targeting them for therapeutics and diagnostic testing.
Collapse
|
18
|
Ejaz H, Junaid K, Younas S, Abdalla AE, Bukhari SNA, Abosalif KOA, Ahmad N, Ahmed Z, Hamza MA, Anwar N. Emergence and dissemination of monkeypox, an intimidating global public health problem. J Infect Public Health 2022; 15:1156-1165. [PMID: 36174285 PMCID: PMC9534090 DOI: 10.1016/j.jiph.2022.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The monkeypox virus (MPXV) is the cause of a zoonotic infection similar to smallpox. Although it is endemic to Africa, it has recently begun to circulate in other parts of the world. In July 2022, the World Health Organization declared monkeypox an international public health emergency. This review aims to provide an overview of this neglected zoonotic pathogen. MPXV circulates as two distinct clades, the Central African and West African, with case fatality rates of 10.6% and 3.6%, respectively. The risk of infection is greater for those who work with animals or infected individuals. The virus' entry into the human body provokes both natural and acquired immunity. Although natural killer cells, CD4 + T cells, and CD8 + T cells play an essential role in eradicating MPXV, there is still a gap in the understanding of the host immune response to the virus. Currently, there are no specific therapeutic guidelines for treating monkeypox; however, some antiviral drugs such as tecovirimat and cidofovir may help to abate the severity of the disease. The use of nonpharmaceutical interventions and immunization can reduce the risk of infection. Increased surveillance and identification of monkeypox cases are crucial to understand the constantly shifting epidemiology of this resurging and intimidating disease. The present review provides a detailed perspective on the emergence and circulation of MPXV in human populations, infection risks, human immune response, disease diagnosis and prevention strategies, and future implications, and highlights the importance of the research community engaging more with this disease for an effective global response.
Collapse
Affiliation(s)
- Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf 72388, Saudi Arabia.
| | - Kashaf Junaid
- School of Biological and Behavioural Sciences, Queen Mary University of London, E1 4NS London, United Kingdom
| | - Sonia Younas
- HKU-Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Abualgasim E Abdalla
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72388, Saudi Arabia
| | - Khalid O A Abosalif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72388, Saudi Arabia
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, GC University, Lahore 5400, Pakistan
| | - Manhal Ahmed Hamza
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Omdurman 14415, Sudan
| | - Naeem Anwar
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, 32038, Kingdom of Bahrain
| |
Collapse
|
19
|
Iyer RF, Edwards DM, Kolb P, Raué HP, Nelson CA, Epperson ML, Slifka MK, Nolz JC, Hengel H, Fremont DH, Früh K. The secreted protein Cowpox Virus 14 contributes to viral virulence and immune evasion by engaging Fc-gamma-receptors. PLoS Pathog 2022; 18:e1010783. [PMID: 36121874 PMCID: PMC9521928 DOI: 10.1371/journal.ppat.1010783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/29/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
The genome of cowpoxvirus (CPXV) could be considered prototypical for orthopoxviridae (OXPV) since it contains many open reading frames (ORFs) absent or lost in other OPXV, including vaccinia virus (VACV). These additional ORFs are non-essential for growth in vitro but are expected to contribute to the broad host range, virulence and immune evasion characteristics of CPXV. For instance, unlike VACV, CPXV encodes proteins that interfere with T cell stimulation, either directly or by preventing antigen presentation or co-stimulation. When studying the priming of naïve T cells, we discovered that CPXV, but not VACV, encodes a secreted factor that interferes with activation and proliferation of naïve CD8+ and CD4+ T cells, respectively, in response to anti-CD3 antibodies, but not to other stimuli. Deletion mapping revealed that the inhibitory protein is encoded by CPXV14, a small secreted glycoprotein belonging to the poxvirus immune evasion (PIE) family and containing a smallpoxvirus encoded chemokine receptor (SECRET) domain that mediates binding to chemokines. We demonstrate that CPXV14 inhibition of antibody-mediated T cell activation depends on the presence of Fc-gamma receptors (FcγRs) on bystander cells. In vitro, CPXV14 inhibits FcγR-activation by antigen/antibody complexes by binding to FcγRs with high affinity and immobilized CPXV14 can trigger signaling through FcγRs, particularly the inhibitory FcγRIIB. In vivo, CPXV14-deleted virus showed reduced viremia and virulence resulting in reduced weight loss and death compared to wildtype virus whereas both antibody and CD8+ T cell responses were increased in the absence of CPXV14. Furthermore, no impact of CPXV14-deletion on virulence was observed in mice lacking the inhibitory FcγRIIB. Taken together our results suggest that CPXV14 contributes to virulence and immune evasion by binding to host FcγRs.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Philipp Kolb
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Peter Raué
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Chris A. Nelson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Megan L. Epperson
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Mark K. Slifka
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey C. Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hartmut Hengel
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
20
|
Mavian C, López-Bueno A, Martín R, Nitsche A, Alcamí A. Comparative Pathogenesis, Genomics and Phylogeography of Mousepox. Viruses 2021; 13:v13061146. [PMID: 34203773 PMCID: PMC8232671 DOI: 10.3390/v13061146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has threatened laboratory mouse colonies worldwide for almost a century. Mousepox has been valuable for the understanding of poxvirus pathogenesis and immune evasion. Here, we have monitored in parallel the pathogenesis of nine ECTVs in BALB/cJ mice and report the full-length genome sequence of eight novel ECTV isolates or strains, including the first ECTV isolated from a field mouse, ECTV-MouKre. This approach allowed us to identify several genes, absent in strains attenuated through serial passages in culture, that may play a role in virulence and a set of putative genes that may be involved in enhancing viral growth in vitro. We identified a putative strong inhibitor of the host inflammatory response in ECTV-MouKre, an isolate that did not cause local foot swelling and developed a moderate virulence. Most of the ECTVs, except ECTV-Hampstead, encode a truncated version of the P4c protein that impairs the recruitment of virions into the A-type inclusion bodies, and our data suggest that P4c may play a role in viral dissemination and transmission. This is the first comprehensive report that sheds light into the phylogenetic and geographic relationship of the worldwide outbreak dynamics for the ECTV species.
Collapse
Affiliation(s)
- Carla Mavian
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Alberto López-Bueno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
| | - Andreas Nitsche
- Centre for Biological Threats and Special Pathogens, Highly Pathogenic Viruses (ZBS1), Robert Koch Institute, 13353 Berlin, Germany;
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain; (C.M.); (A.L.-B.); (R.M.)
- Correspondence:
| |
Collapse
|
21
|
Amundsen MM, Tartor H, Andersen K, Sveinsson K, Thoen E, Gjessing MC, Dahle MK. Mucosal and Systemic Immune Responses to Salmon Gill Poxvirus Infection in Atlantic Salmon Are Modulated Upon Hydrocortisone Injection. Front Immunol 2021; 12:689302. [PMID: 34177946 PMCID: PMC8221106 DOI: 10.3389/fimmu.2021.689302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Salmon Gill Poxvirus Disease (SGPVD) has emerged as a cause of acute mortality in Atlantic salmon (Salmo salar L.) presmolts in Norwegian aquaculture. The clinical phase of the disease is associated with apoptotic cell death in the gill epithelium causing acute respiratory distress, followed by proliferative changes in the regenerating gill in the period after the disease outbreak. In an experimental SGPV challenge trial published in 2020, acute disease was only seen in fish injected with hydrocortisone 24 h prior to infection. SGPV-mediated mortality in the hydrocortisone-injected group was associated with more extensive gill pathology and higher SGPV levels compared to the group infected with SGPV only. In this study based on the same trial, SGPV gene expression and the innate and adaptive antiviral immune response was monitored in gills and spleen in the presence and absence of hydrocortisone. Whereas most SGPV genes were induced from day 3 along with the interferon-regulated innate immune response in gills, the putative SGPV virulence genes of the B22R family were expressed already one day after SGPV exposure, indicating a potential role as early markers of SGPV infection. In gills of the hydrocortisone-injected fish infected with SGPV, MX expression was delayed until day 10, and then expression skyrocketed along with the viral peak, gill pathology and mortality occurring from day 14. A similar expression pattern was observed for Interferon gamma (IFNγ) and granzyme A (GzmA) in the gills, indicating a role of acute cytotoxic cell activity in SGPVD. Duplex in situ hybridization demonstrated effects of hydrocortisone on the number and localization of GzmA-containing cells, and colocalization with SGPV infected cells in the gill. SGPV was generally not detected in spleen, and gill infection did not induce any corresponding systemic immune activity in the absence of stress hormone injection. However, in fish injected with hydrocortisone, IFNγ and GzmA gene expression was induced in spleen in the days prior to acute mortality. These data indicate that suppressed mucosal immune response in the gills and the late triggered systemic immune response in the spleen following hormonal stress induction may be the key to the onset of clinical SGPVD.
Collapse
Affiliation(s)
- Marit M Amundsen
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway
| | - Haitham Tartor
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway
| | - Kathrine Andersen
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway
| | | | - Even Thoen
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway.,Patogen, Ålesund, Norway
| | - Mona C Gjessing
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway
| | - Maria K Dahle
- Department of Fish Health, Norwegian Veterinary Institute, Ås, Norway.,The Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
22
|
Origgi FC, Otten P, Lohmann P, Sattler U, Wahli T, Lavazza A, Gaschen V, Stoffel MH. Herpesvirus-Associated Proliferative Skin Disease in Frogs and Toads: Proposed Pathogenesis. Vet Pathol 2021; 58:713-729. [PMID: 33813961 DOI: 10.1177/03009858211006385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A comparative study was carried out on common and agile frogs (Rana temporaria and R. dalmatina) naturally infected with ranid herpesvirus 3 (RaHV3) and common toads (Bufo bufo) naturally infected with bufonid herpesvirus 1 (BfHV1) to investigate common pathogenetic pathways and molecular mechanisms based on macroscopic, microscopic, and ultrastructural pathology as well as evaluation of gene expression. Careful examination of the tissue changes, supported by in situ hybridization, at different stages of development in 6 frogs and 14 toads revealed that the skin lesions are likely transient, and part of a tissue cycle necessary for viral replication in the infected hosts. Transcriptomic analysis, carried out on 2 naturally infected and 2 naïve common frogs (Rana temporaria) and 2 naturally infected and 2 naïve common toads (Bufo bufo), revealed altered expression of genes involved in signaling and cell remodeling in diseased animals. Finally, virus transcriptomics revealed that both RaHV3 and BfHV1 had relatively high expression of a putative immunomodulating gene predicted to encode a decoy receptor for tumor necrosis factor in the skin of the infected hosts. Thus, the comparable lesions in infected frogs and toads appear to reflect a concerted epidermal and viral cycle, with presumptive involvement of signaling and gene remodeling host and immunomodulatory viral genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonio Lavazza
- 18207Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emila Romagna, Brescia, Italy
| | | | | |
Collapse
|
23
|
Aasdev A, Mishra A, Bora DP, Kurkure NV, Barman NN, Raut AA. First complete genome characterization of swinepox virus directly from a clinical sample indicates divergence of a Eurasian-lineage virus. Arch Virol 2021; 166:1217-1225. [PMID: 33550505 DOI: 10.1007/s00705-021-04971-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
In this study, we report the complete genome sequence of swinepox virus from a clinical sample from a naturally occurring infection in India. The sequencing was done on a Nanopore MinION sequencer from Oxford Nanopore Technologies. Two new annotations were added to the genome. Three of the genes were found to have frameshifts, which might be of importance in relation to infection. When compared to the only other reported whole genome sequence of swinepox virus, which was obtained from an isolate from America in 1999, our sequence is only 98.19% identical at the nucleotide level. The average amino acid sequence identity of the viral proteins, based on the common 149 annotations, is also 98.19%, demonstrating that these viruses are distinctly divergent. Owing to the fact that swinepox virus infects only swine, it could not have entered America until the introduction of swine in the 16th century from Europe. The swinepox viruses in both continents have continued to evolve independently. The sequence divergence identified here indicates a Eurasian-lineage virus that is geographically distinct from the American-lineage swinepox virus.
Collapse
Affiliation(s)
- Ashutosh Aasdev
- Pathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Madhya Pradesh, Bhopal, 462022, India
| | - Anamika Mishra
- Pathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Madhya Pradesh, Bhopal, 462022, India
| | - Durlav P Bora
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Assam, Guwahati, 781022, India
| | - Nitin V Kurkure
- Department of Pathology, Nagpur Veterinary College, Nagpur, Maharashtra, 440006, India
| | - Nagendra N Barman
- Department of Microbiology, College of Veterinary Science, Assam Agricultural University, Assam, Guwahati, 781022, India
| | - Ashwin A Raut
- Pathogenomics Lab, ICAR-National Institute of High Security Animal Diseases, Madhya Pradesh, Bhopal, 462022, India.
| |
Collapse
|
24
|
Douglass N, Munyanduki H, Omar R, Gers S, Mutowembwa P, Heath L, Williamson AL. Influence of the Viral Superoxide Dismutase (SOD) Homologue on Lumpy Skin Disease Virus (LSDV) Growth, Histopathology and Pathogenicity. Vaccines (Basel) 2020; 8:vaccines8040664. [PMID: 33171875 PMCID: PMC7712962 DOI: 10.3390/vaccines8040664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Lumpy skin disease is an important economic disease of cattle that is controlled by vaccination. This paper presents an investigation into the role of the lumpy skin disease virus (LSDV) superoxide dismutase (SOD) homologue on growth and histopathology of the virus both in vitro and in vivo. SOD homologue knock-out and knock-in recombinants (nLSDV∆SOD-UCT and nLSDVSODis-UCT, respectively) were constructed and compared to the Neethling vaccine (nLSDV) for growth in a permissive bovine cell line as well as on fertilized chick chorioallantoic membranes (CAMs). The infected CAMs were scored for histological changes. Deletion of the SOD homologue from LSDV reduced virus growth both in Madin-Darby bovine kidney (MDBK) cells as well as on CAMs. Furthermore, the knockout virus showed reduced inflammation in CAMs and more ballooning degeneration. A pilot experiment was performed in cattle to compare the lesions produced by the different LSDV constructs in the same animal. One animal developed a larger lesion to nLSDV∆SOD-UCT compared to both nLSDVSODis-UCT and nLSDV. Histological analysis of biopsies of these lesions shows less inflammation and necrosis associated with nLSDVSODis-UCT compared to nLSDV and nLSDV∆SOD-UCT. None of the vaccinated animals showed disseminated LSDV disease, indicating that the candidate vaccines are safe for further testing. Our results suggest that the SOD homologue may improve immunogenicity and reduce virulence.
Collapse
Affiliation(s)
- Nicola Douglass
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (H.M.); (R.O.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-832310553
| | - Henry Munyanduki
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (H.M.); (R.O.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Ruzaiq Omar
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (H.M.); (R.O.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | | | | | - Livio Heath
- Onderstepoort Veterinary Institute, ARC, Gauteng 0110, South Africa; (P.M.); (L.H.)
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (H.M.); (R.O.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
25
|
Forsyth KS, Roy NH, Peauroi E, DeHaven BC, Wold ED, Hersperger AR, Burkhardt JK, Eisenlohr LC. Ectromelia-encoded virulence factor C15 specifically inhibits antigen presentation to CD4+ T cells post peptide loading. PLoS Pathog 2020; 16:e1008685. [PMID: 32745153 PMCID: PMC7425992 DOI: 10.1371/journal.ppat.1008685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/13/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains. We demonstrate that the ectromelia B22 member, C15, is necessary and sufficient for selective inhibition of CD4+ but not CD8+ T cell activation by immunogenic peptide and superantigen. Inhibition is achieved not by down-regulation of surface MHC- II or co-stimulatory protein surface expression but rather by interference with antigen presentation. The appreciable outcome is interference with CD4+ T cell synapse formation as determined by imaging studies and lipid raft disruption. Consequently, CD4+ T cell activating stimulus shifts to uninfected antigen-presenting cells that have received antigen from infected cells. This work provides insight into the immunomodulatory strategies of orthopoxviruses by elucidating a mechanism for specific targeting of CD4+ T cell activation, reflecting the importance of this cell type in control of the virus.
Collapse
Affiliation(s)
- Katherine S. Forsyth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nathan H. Roy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elise Peauroi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian C. DeHaven
- Department of Biology, La Salle University, Philadelphia, Pennsylvania, United States of America
| | - Erik D. Wold
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam R. Hersperger
- Department of Biology, Albright College, Reading, Pennsylvania, United States of America
| | - Janis K. Burkhardt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Laurence C. Eisenlohr
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
26
|
What a Difference a Gene Makes: Identification of Virulence Factors of Cowpox Virus. J Virol 2020; 94:JVI.01625-19. [PMID: 31645446 DOI: 10.1128/jvi.01625-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that causes spillover infections from its animal hosts to humans. In 2009, several human CPXV cases occurred through transmission from pet rats. An isolate from a diseased rat, RatPox09, exhibited significantly increased virulence in Wistar rats and caused high mortality compared to that caused by the mildly virulent laboratory strain Brighton Red (BR). The RatPox09 genome encodes four genes which are absent in the BR genome. We hypothesized that their gene products could be major factors influencing the high virulence of RatPox09. To address this hypothesis, we employed several BR-RatPox09 chimeric viruses. Using Red-mediated mutagenesis, we generated BR-based knock-in mutants with single or multiple insertions of the respective RatPox09 genes. High-throughput sequencing was used to verify the genomic integrity of all recombinant viruses, and transcriptomic analyses confirmed that the expression profiles of the genes that were adjacent to the modified ones were unaltered. While the in vitro growth kinetics were comparable to those of BR and RatPox09, we discovered that a knock-in BR mutant containing the four RatPox09-specific genes was as virulent as the RatPox09 isolate, causing death in over 75% of infected Wistar rats. Unexpectedly, the insertion of gCPXV0030 (g7tGP) alone into the BR genome resulted in significantly higher clinical scores and lower survival rates matching the rate for rats infected with RatPox09. The insertion of gCPXV0284, encoding the BTB (broad-complex, tramtrack, and bric-à-brac) domain protein D7L, also increased the virulence of BR, while the other two open reading frames failed to rescue virulence independently. In summary, our results confirmed our hypothesis that a relatively small set of four genes can contribute significantly to CPXV virulence in the natural rat animal model.IMPORTANCE With the cessation of vaccination against smallpox and its assumed cross-protectivity against other OPV infections, waning immunity could open up new niches for related poxviruses. Therefore, the identification of virulence mechanisms in CPXV is of general interest. Here, we aimed to identify virulence markers in an experimental rodent CPXV infection model using bacterial artificial chromosome (BAC)-based virus recombineering. We focused our work on the recent zoonotic CPXV isolate RatPox09, which is highly pathogenic in Wistar rats, unlike the avirulent BR reference strain. In several animal studies, we were able to identify a novel set of CPXV virulence genes. Two of the identified virulence genes, encoding a putative BTB/POZ protein (CPXVD7L) and a B22R-family protein (CPXV7tGP), respectively, have not yet been described to be involved in CPXV virulence. Our results also show that single genes can significantly affect virulence, thus facilitating adaptation to other hosts.
Collapse
|
27
|
Biswas S, Noyce RS, Babiuk LA, Lung O, Bulach DM, Bowden TR, Boyle DB, Babiuk S, Evans DH. Extended sequencing of vaccine and wild-type capripoxvirus isolates provides insights into genes modulating virulence and host range. Transbound Emerg Dis 2019; 67:80-97. [PMID: 31379093 DOI: 10.1111/tbed.13322] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 11/29/2022]
Abstract
The genus Capripoxvirus in the subfamily Chordopoxvirinae, family Poxviridae, comprises sheeppox virus (SPPV), goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which cause the eponymous diseases across parts of Africa, the Middle East and Asia. These diseases cause significant economic losses and can have a devastating impact on the livelihoods and food security of small farm holders. So far, only live classically attenuated SPPV, GTPV and LSDV vaccines are commercially available and the history, safety and efficacy of many have not been well established. Here, we report 13 new capripoxvirus genome sequences, including the hairpin telomeres, from both pathogenic field isolates and vaccine strains. We have also updated the genome annotations to incorporate recent advances in our understanding of poxvirus biology. These new genomes and genes grouped phenetically with other previously sequenced capripoxvirus strains, and these new alignments collectively identified several recurring alterations in genes thought to modulate virulence and host range. In particular, some of the many large capripoxvirus ankyrin and kelch-like proteins are commonly mutated in vaccine strains, while the variola virus B22R-like gene homolog has also been disrupted in many vaccine isolates. Among these vaccine isolates, frameshift mutations are especially common and clearly present a risk of reversion to wild type in vaccines bearing these mutations. A consistent pattern of gene inactivation from LSDV to GTPV and then SPPV is also observed, much like the pattern of gene loss in orthopoxviruses, but, rather surprisingly, the overall genome size of ~150 kbp remains relatively constant. These data provide new insights into the evolution of capripoxviruses and the determinants of pathogenicity and host range. They will find application in the development of new vaccines with better safety, efficacy and trade profiles.
Collapse
Affiliation(s)
- Siddhartha Biswas
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Ryan S Noyce
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Lorne A Babiuk
- Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease (NCFAD), Canadian Food Inspection Agency, Winnipeg, MB, Canada
| | - Dieter M Bulach
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - Timothy R Bowden
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - David B Boyle
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic., Australia
| | - Shawn Babiuk
- National Centre for Foreign Animal Disease (NCFAD), Canadian Food Inspection Agency, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - David H Evans
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Punctuated Evolution of Myxoma Virus: Rapid and Disjunct Evolution of a Recent Viral Lineage in Australia. J Virol 2019; 93:JVI.01994-18. [PMID: 30728252 DOI: 10.1128/jvi.01994-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Myxoma virus (MYXV) has been evolving in a novel host species-European rabbits-in Australia since 1950. Previous studies of viruses sampled from 1950 to 1999 revealed a remarkably clock-like evolutionary process across all Australian lineages of MYXV. Through an analysis of 49 newly generated MYXV genome sequences isolated in Australia between 2008 and 2017, we show that MYXV evolution in Australia can be characterized by three lineages, one of which exhibited a greatly elevated rate of evolutionary change and a dramatic breakdown of temporal structure. Phylogenetic analysis revealed that this apparently punctuated evolutionary event occurred between 1996 and 2012. The branch leading to the rapidly evolving lineage contained a relatively high number of nonsynonymous substitutions, and viruses in this lineage reversed a mutation found in the progenitor standard laboratory strain (SLS) and all previous sequences that disrupts the reading frame of the M005L/R gene. Analysis of genes encoding proteins involved in DNA synthesis or RNA transcription did not reveal any mutations likely to cause rapid evolution. Although there was some evidence for recombination across the MYXV phylogeny, this was not associated with the increase in the evolutionary rate. The period from 1996 to 2012 saw significant declines in wild rabbit numbers, due to the introduction of rabbit hemorrhagic disease and prolonged drought in southeastern Australia, followed by the partial recovery of populations. It is therefore possible that a rapidly changing environment for virus transmission changed the selection pressures faced by MYXV, altering the course and pace of virus evolution.IMPORTANCE The coevolution of myxoma virus (MYXV) and European rabbits in Australia is one of the most important natural experiments in evolutionary biology, providing insights into virus adaptation to new hosts and the evolution of virulence. Previous studies of MYXV evolution have also shown that the virus evolves both relatively rapidly and in a strongly clock-like manner. Using newly acquired MYXV genome sequences from Australia, we show that the virus has experienced a dramatic change in evolutionary behavior over the last 20 years, with a breakdown in clock-like structure, the appearance of a rapidly evolving virus lineage, and the accumulation of multiple nonsynonymous and indel mutations. We suggest that this punctuated evolutionary event may reflect a change in selection pressures as rabbit numbers declined following the introduction of rabbit hemorrhagic disease virus and drought in the geographic regions inhabited by rabbits.
Collapse
|
29
|
Zorec TM, Kutnjak D, Hošnjak L, Kušar B, Trčko K, Kocjan BJ, Li Y, Križmarić M, Miljković J, Ravnikar M, Poljak M. New Insights into the Evolutionary and Genomic Landscape of Molluscum Contagiosum Virus (MCV) based on Nine MCV1 and Six MCV2 Complete Genome Sequences. Viruses 2018; 10:v10110586. [PMID: 30373153 PMCID: PMC6266040 DOI: 10.3390/v10110586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/25/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and the causative agent of molluscum contagiosum (MC), a common skin disease. Although it is an important and frequent human pathogen, its genetic landscape and evolutionary history remain largely unknown. In this study, ten novel complete MCV genome sequences of the two most common MCV genotypes were determined (five MCV1 and five MCV2 sequences) and analyzed together with all MCV complete genomes previously deposited in freely accessible sequence repositories (four MCV1 and a single MCV2). In comparison to MCV1, a higher degree of nucleotide sequence conservation was observed among MCV2 genomes. Large-scale recombination events were identified in two newly assembled MCV1 genomes and one MCV2 genome. One recombination event was located in a newly identified recombinant region of the viral genome, and all previously described recombinant regions were re-identified in at least one novel MCV genome. MCV genes comprising the identified recombinant segments have been previously associated with viral interference with host T-cell and NK-cell immune responses. In conclusion, the two most common MCV genotypes emerged along divergent evolutionary pathways from a common ancestor, and the differences in the heterogeneity of MCV1 and MCV2 populations may be attributed to the strictness of the constraints imposed by the host immune response.
Collapse
Affiliation(s)
- Tomaž M Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Lea Hošnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Blanka Kušar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Katarina Trčko
- Department of Dermatovenereology, University Medical Centre Maribor, Ljubljanska ulica 5, SI-2000 Maribor, Slovenia.
| | - Boštjan J Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Yu Li
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | - Miljenko Križmarić
- Faculty of Medicine, University of Maribor, Taborska Ulica 6b, SI-2000 Maribor, Slovenia.
| | - Jovan Miljković
- Faculty of Medicine, University of Maribor, Taborska Ulica 6b, SI-2000 Maribor, Slovenia.
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
30
|
A Critical Analysis of the Scientific and Commercial Rationales for the De Novo Synthesis of Horsepox Virus. mSphere 2018; 3:mSphere00040-18. [PMID: 29569633 PMCID: PMC5853483 DOI: 10.1128/msphere.00040-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This article evaluates the scientific and commercial rationales for the synthesis of horsepox virus. I find that the claimed benefits of using horsepox virus as a smallpox vaccine rest on a weak scientific foundation and an even weaker business case that this project will lead to a licensed medical countermeasure. The combination of questionable benefits and known risks of this dual use research raises serious questions about the wisdom of undertaking research that could be used to recreate variola virus. This analysis also raises important questions about the propriety of a private company sponsoring such dual use research without appropriate oversight and highlights an important gap in United States dual use research regulations.
Collapse
|
31
|
Reverse Engineering Field Isolates of Myxoma Virus Demonstrates that Some Gene Disruptions or Losses of Function Do Not Explain Virulence Changes Observed in the Field. J Virol 2017; 91:JVI.01289-17. [PMID: 28768866 DOI: 10.1128/jvi.01289-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 01/16/2023] Open
Abstract
The coevolution of myxoma virus (MYXV) and wild European rabbits in Australia and Europe is a paradigm for the evolution of a pathogen in a new host species. Genomic analyses have identified the mutations that have characterized this evolutionary process, but defining causal mutations in the pathways from virulence to attenuation and back to virulence has not been possible. Using reverse genetics, we examined the roles of six selected mutations found in Australian field isolates of MYXV that fall in known or potential virulence genes. Several of these mutations occurred in genes previously identified as virulence genes in whole-gene knockout studies. Strikingly, no single or double mutation among the mutations tested had an appreciable impact on virulence. This suggests either that virulence evolution was defined by amino acid changes other than those analyzed here or that combinations of multiple mutations, possibly involving epistatic interactions or noncoding sequences, have been critical in the ongoing evolution of MYXV virulence. In sum, our results show that single-gene knockout studies of a progenitor virus can have little power to predict the impact of individual mutations seen in the field. The genetic determinants responsible for this canonical case of virulence evolution remain to be determined.IMPORTANCE The species jump of myxoma virus (MYXV) from the South American tapeti to the European rabbit populations of Australia and Europe is a canonical example of host-pathogen coevolution. Detailed molecular studies have identified multiple genes in MYXV that are critical for virulence, and genome sequencing has revealed the evolutionary history of MYXV in Australia and Europe. However, it has not been possible to categorically identify the key mutations responsible for the attenuation of or reversion to virulence during this evolutionary process. Here we use reverse genetics to examine the role of mutations in viruses isolated early and late in the Australian radiation of MYXV. Surprisingly, none of the candidate mutations that we identified as likely having roles in attenuation proved to be important for virulence. This indicates that considerable caution is warranted when interpreting the possible role of individual mutations during virulence evolution.
Collapse
|
32
|
López-Bueno A, Parras-Moltó M, López-Barrantes O, Belda S, Alejo A. Recombination events and variability among full-length genomes of co-circulating molluscum contagiosum virus subtypes 1 and 2. J Gen Virol 2017; 98:1073-1079. [PMID: 28555548 DOI: 10.1099/jgv.0.000759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid 28049, Spain
| | - Marcos Parras-Moltó
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid 28049, Spain
| | | | - Sylvia Belda
- Unidad de cuidados intensivos pediátricos, Hospital 12 de Octubre, Madrid 28041, Spain
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid 28130, Spain
| |
Collapse
|
33
|
Origgi FC, Schmidt BR, Lohmann P, Otten P, Akdesir E, Gaschen V, Aguilar-Bultet L, Wahli T, Sattler U, Stoffel MH. Ranid Herpesvirus 3 and Proliferative Dermatitis in Free-Ranging Wild Common Frogs (Rana Temporaria). Vet Pathol 2017; 54:686-694. [PMID: 28494706 DOI: 10.1177/0300985817705176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amphibian pathogens are of current interest as contributors to the global decline of amphibians. However, compared with chytrid fungi and ranaviruses, herpesviruses have received relatively little attention. Two ranid herpesviruses have been described: namely, Ranid herpesvirus 1 (RHV1) and Ranid herpesvirus 2 (RHV2). This article describes the discovery and partial characterization of a novel virus tentatively named Ranid herpesvirus 3 (RHV3), a candidate member of the genus Batrachovirus in the family Alloherpesviridae. RHV3 infection in wild common frogs (Rana temporaria) was associated with severe multifocal epidermal hyperplasia, dermal edema, a minor inflammatory response, and variable mucous gland degeneration. Intranuclear inclusions were numerous in the affected epidermis together with unique extracellular aggregates of herpesvirus-like particles. The RHV3-associated skin disease has features similar to those of a condition recognized in European frogs for the last 20 years and whose cause has remained elusive. The genome of RHV3 shares most of the features of the Alloherpesviruses. The characterization of this presumptive pathogen may be of value for amphibian conservation and for a better understanding of the biology of Alloherpesviruses.
Collapse
Affiliation(s)
- F C Origgi
- 1 Department of Infectious Diseases and Pathobiology (DIP), Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland.,2 Institute of Veterinary Bacteriology, DIP, Bern, Switzerland
| | - B R Schmidt
- 3 KARCH, Neuchâtel, Switzerland, and Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - P Otten
- 5 Fasteris SA, Geneva, Switzerland
| | - E Akdesir
- 1 Department of Infectious Diseases and Pathobiology (DIP), Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - V Gaschen
- 6 Division of Veterinary Anatomy, University of Bern, Bern, Switzerland
| | | | - T Wahli
- 1 Department of Infectious Diseases and Pathobiology (DIP), Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - U Sattler
- 1 Department of Infectious Diseases and Pathobiology (DIP), Centre for Fish and Wildlife Health (FIWI), University of Bern, Bern, Switzerland
| | - M H Stoffel
- 6 Division of Veterinary Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
34
|
A homolog of the variola virus B22 membrane protein contributes to ectromelia virus pathogenicity in the mouse footpad model. Virology 2016; 501:107-114. [PMID: 27898336 DOI: 10.1016/j.virol.2016.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022]
Abstract
Most poxviruses encode a homolog of a ~200,000-kDa membrane protein originally identified in variola virus. We investigated the importance of the ectromelia virus (ECTV) homolog C15 in a natural infection model. In cultured mouse cells, the replication of a mutant virus with stop codons near the N-terminus (ECTV-C15Stop) was indistinguishable from a control virus (ECTV-C15Rev). However, for a range of doses injected into the footpads of BALB/c mice there was less mortality with the mutant. Similar virus loads were present at the site of infection with mutant or control virus whereas there was less ECTV-C15Stop in popliteal and inguinal lymph nodes, spleen and liver indicating decreased virus spread and replication. The latter results were supported by immunohistochemical analyses. Decreased spread was evidently due to immune modulatory activity of C15, rather than to an intrinsic viral function, as the survival of infected mice depended on CD4+ and CD8+ T cells.
Collapse
|
35
|
Forsyth KS, Eisenlohr LC. Giving CD4+ T cells the slip: viral interference with MHC class II-restricted antigen processing and presentation. Curr Opin Immunol 2016; 40:123-9. [PMID: 27115617 PMCID: PMC4894315 DOI: 10.1016/j.coi.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
Abstract
Activation of CD4+ T cells through interactions with peptides bound to Major Histocompatibility Complex Class II (MHC-II) molecules is a crucial step in clearance of most pathogens. Consequently, many viruses have evolved ways of blocking this aspect of adaptive immunity, from specific targeting of processing and presentation components to modulation of signaling pathways that regulate peptide presentation in addition to many other host defense mechanisms. Such cases of interference are far less common compared to what has been elucidated in MHC-I processing and presentation. This may be attributable in part to the complexity of MHC-II antigen processing, the scope of which is only now coming to light.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laurence C Eisenlohr
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine at the Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Schuren AB, Costa AI, Wiertz EJ. Recent advances in viral evasion of the MHC Class I processing pathway. Curr Opin Immunol 2016; 40:43-50. [PMID: 27065088 DOI: 10.1016/j.coi.2016.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
T-cell mediated adaptive immunity against viruses relies on recognition of virus-derived peptides by CD4(+) and CD8(+) T cells. Detection of pathogen-derived peptide-MHC-I complexes triggers CD8(+) T cells to eliminate the infected cells. Viruses have evolved several mechanisms to avoid recognition, many of which target the MHC-I antigen-processing pathway. While many immune evasion strategies have been described in the context of herpesvirus infections, it is becoming clear that this 'disguise' ability is more widespread. Here, we address recent findings in viral evasion of the MHC-I antigen presentation pathway and the impact on CD8(+) T cell responses.
Collapse
Affiliation(s)
- Anouk Bc Schuren
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana I Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Salmon Gill Poxvirus, the Deepest Representative of the Chordopoxvirinae. J Virol 2015; 89:9348-67. [PMID: 26136578 PMCID: PMC4542343 DOI: 10.1128/jvi.01174-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are large DNA viruses of vertebrates and insects causing disease in many animal species, including reptiles, birds, and mammals. Although poxvirus-like particles were detected in diseased farmed koi carp, ayu, and Atlantic salmon, their genetic relationships to poxviruses were not established. Here, we provide the first genome sequence of a fish poxvirus, which was isolated from farmed Atlantic salmon. In the present study, we used quantitative PCR and immunohistochemistry to determine aspects of salmon gill poxvirus disease, which are described here. The gill was the main target organ where immature and mature poxvirus particles were detected. The particles were detected in detaching, apoptotic respiratory epithelial cells preceding clinical disease in the form of lethargy, respiratory distress, and mortality. In moribund salmon, blocking of gas exchange would likely be caused by the adherence of respiratory lamellae and epithelial proliferation obstructing respiratory surfaces. The virus was not found in healthy salmon or in control fish with gill disease without apoptotic cells, although transmission remains to be demonstrated. PCR of archival tissue confirmed virus infection in 14 cases with gill apoptosis in Norway starting from 1995. Phylogenomic analyses showed that the fish poxvirus is the deepest available branch of chordopoxviruses. The virus genome encompasses most key chordopoxvirus genes that are required for genome replication and expression, although the gene order is substantially different from that in other chordopoxviruses. Nevertheless, many highly conserved chordopoxvirus genes involved in viral membrane biogenesis or virus-host interactions are missing. Instead, the salmon poxvirus carries numerous genes encoding unknown proteins, many of which have low sequence complexity and contain simple repeats suggestive of intrinsic disorder or distinct protein structures. IMPORTANCE Aquaculture is an increasingly important global source of high-quality food. To sustain the growth in aquaculture, disease control in fish farming is essential. Moreover, the spread of disease from farmed fish to wildlife is a concern. Serious poxviral diseases are emerging in aquaculture, but very little is known about the viruses and the diseases that they cause. There is a possibility that viruses with enhanced virulence may spread to new species, as has occurred with the myxoma poxvirus in rabbits. Provision of the first fish poxvirus genome sequence and specific diagnostics for the salmon gill poxvirus in Atlantic salmon may help curb this disease and provide comparative knowledge. Furthermore, because salmon gill poxvirus represents the deepest branch of chordopoxvirus so far discovered, the genome analysis provided substantial insight into the evolution of different functional modules in this important group of viruses.
Collapse
|
38
|
Reynolds SE, Moss B. Characterization of a large, proteolytically processed cowpox virus membrane glycoprotein conserved in most chordopoxviruses. Virology 2015; 483:209-17. [PMID: 25980741 DOI: 10.1016/j.virol.2015.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 11/17/2022]
Abstract
Most poxvirus proteins are either highly conserved and essential for basic steps in replication or less conserved and involved in host interactions. Homologs of the CPXV219 protein, encoded by cowpox virus, are present in nearly all chordopoxvirus genera and some species have multiple copies. The CPXV219 homologs have estimated masses of greater than 200 kDa, making them the largest known poxvirus proteins. We showed that CPXV219 was expressed early in infection and cleaved into N- and C-terminal fragments that remained associated. The protein has a signal peptide and transited the secretory pathway where extensive glycosylation and proteolytic cleavage occurred. CPXV219 was located by immunofluorescence microscopy in association with the endoplasmic reticulum, Golgi apparatus and plasma membrane. In non-permeabilized cells, CPXV219 was accessible to external antibody and biotinylation. Mutants that did not express CPXV219 replicated normally in cell culture and retained virulence in a mouse respiratory infection model.
Collapse
Affiliation(s)
- Sara E Reynolds
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Tree JA, Hall G, Pearson G, Rayner E, Graham VA, Steeds K, Bewley KR, Hatch GJ, Dennis M, Taylor I, Roberts AD, Funnell SGP, Vipond J. Sequence of pathogenic events in cynomolgus macaques infected with aerosolized monkeypox virus. J Virol 2015; 89:4335-44. [PMID: 25653439 PMCID: PMC4442344 DOI: 10.1128/jvi.03029-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/26/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED To evaluate new vaccines when human efficacy studies are not possible, the FDA's "Animal Rule" requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (10(5) PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. IMPORTANCE Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it would be unethical and field trials are not feasible. To overcome this, the FDA may grant marketing approval of a new product based upon the "Animal Rule," in which interventions are tested for efficacy in well-characterized animal models. Monkeypox virus infection of nonhuman primates (NHPs) presents a potential surrogate disease model for smallpox. Previously, the later stages of monkeypox infection were defined, but the early course of infection remains unstudied. Here, the early pathogenic events of inhalational monkeypox infection in NHPs were characterized, and the results support the use of this surrogate model for testing human smallpox interventions.
Collapse
Affiliation(s)
- J A Tree
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - G Hall
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - G Pearson
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - E Rayner
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - V A Graham
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - K Steeds
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - K R Bewley
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - G J Hatch
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - M Dennis
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - I Taylor
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - A D Roberts
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - S G P Funnell
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - J Vipond
- Microbiological Services, Public Health England, Porton Down, Salisbury, Wiltshire, United Kingdom
| |
Collapse
|