1
|
Caña-Bozada VH, Dawoud AAZ, Ramos-de la Cruz I, Flores-Méndez LC, Barrera-Redondo J, Briones-Mendoza J, Yañez-Guerra LA. Global analysis of ligand-gated ion channel conservation across Platyhelminthes. Gen Comp Endocrinol 2025; 366:114718. [PMID: 40157577 DOI: 10.1016/j.ygcen.2025.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Ligand-gated ion channels (LGICs) are critical for neurotransmission, mediating responses to neurotransmitters and hormones, and influencing diverse physiological processes. This study identifies and classifies LGICs across Platyhelminthes, with a particular focus on parasitic neodermatans, which impact human and animal health. Using bioinformatics tools, we analyzed LGICs from 41 neodermatan species and expanded our investigation to encompass vertebrates, other invertebrates, and non-bilaterians to trace LGIC evolutionary pathways across Metazoa. We identified 2,269 putative LGICs within neodermatan species, which we classified into the cys-loop, ASIC/Deg/ENaC, iGluR, and P2X families. Our phylogenetic and clustering analyses reveal lineage-specific patterns with distinct evolutionary trajectories for each LGIC family in neodermatans compared to free-living platyhelminths and other taxa. Notably, the ASIC/Deg/ENaC family displayed the greatest degree of neodermatan-specific divergence, while cys-loop and P2X families were more conserved across taxa. To provide insight into their potential physiological roles, we analyzed LGIC expression patterns in Schistosoma mansoni, revealing widespread expression across neuronal and muscle cell types. The distribution of acid-sensing ion channels (ASICs) in both neurons and muscles suggests a role in neuromuscular signalling, while the P2X receptor (Smp_333600) exhibited sex-specific expression, potentially indicating distinct functional roles in males and females. Additionally, several cys-loop acetylcholine and GABA receptors showed differential neuronal and muscle expression, highlighting their likely contributions to cholinergic and inhibitory neurotransmission. These findings underscore the relevance of LGICs in parasite physiology, particularly in neuromuscular and sensory processes, and suggest potential targets for antiparasitic interventions.
Collapse
Affiliation(s)
- Víctor Hugo Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112 Sinaloa, Mexico; Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador.
| | - Ahmed A Z Dawoud
- School of biology. University of Southampton, University Road, SO17 1BJ Southampton, UK
| | - Ivana Ramos-de la Cruz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán 82112 Sinaloa, Mexico
| | - Lizeth C Flores-Méndez
- Universidad Autónoma de Occidente, Unidad Regional Mazatlán. Av. del Mar, Tellería, Mazatlán 82100 Sinaloa, Mexico
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen 72076 Tübingen, Germany
| | - Jesús Briones-Mendoza
- Carrera de Biología, Facultad de Ciencias de la Vida y Tecnologías, Universidad Laica "Eloy Alfaro" de Manabí, Ciudadela Universitaria vía San Mateo, Manta, Ecuador
| | - Luis A Yañez-Guerra
- School of biology. University of Southampton, University Road, SO17 1BJ Southampton, UK; Institute for Life Sciences. University of Southampton, University Road SO17 1BJ Southampton, UK.
| |
Collapse
|
2
|
Abou-El-Naga IF. Receptors for growth and development of Schistosoma mansoni. J Helminthol 2025; 99:e29. [PMID: 39949117 DOI: 10.1017/s0022149x24001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The growth and development of schistosomes are tightly regulated by various receptors throughout their life cycle. Each stage of the parasite inhabits a distinct habitat and responds to different factors that drive its growth and development. With two hosts involved in its life cycle (mammalian and snail), the parasite must go through additional free-living stages to transition between them. Moreover, communication between male and female worms is essential for the maturation of females. The ability of adult schistosomes to survive in human hosts for up to thirty years demonstrates their capacity to efficiently utilize host nutrients for metabolic processes and growth. In Schistosoma mansoni, receptors mediate the utilization of growth factors derived from both the parasite itself and the host. Nuclear receptors, in particular, collaborate with other proteins to regulate the expression of genes essential for various developmental functions. Receptors also play a pivotal role in RNA export, which is crucial for the parasite development. Additionally, neurotransmitter receptors are essential for the growth and development of larval stages. This review aims to elucidate the mechanisms by which these receptors regulate cell proliferation, differentiation, and maturation throughout the parasite life cycle. Understanding these processes could provide insights into the role of receptors in Schistosoma mansoni development and potentially lead to innovative therapeutic strategies to combat human schistosomiasis.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
3
|
Caña-Bozada VH, García-Gasca A, Martínez-Brown JM, Morales-Serna FN. Evaluation of bromocriptine and plumbagin against the monogenean Rhabdosynochus viridisi: Computational drug repositioning and in vitro approaches. Exp Parasitol 2024; 261:108748. [PMID: 38593863 DOI: 10.1016/j.exppara.2024.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Monogeneans are parasitic platyhelminths that can harm the health of farmed fish. Few treatments are available against monogeneans, and the incentive to develop new antiparasitic agents is similar or even lower than the incentive for neglected parasitic diseases in humans. Considering that searching for and developing new antimonogenean compounds may require enormous investments of time, money, and animal sacrifice, the use of a computer-guided drug repositioning approach is a reasonable alternative. Under this context, this study aimed to evaluate the effectiveness of plumbagin and bromocriptine against adults and eggs of the monogenean Rhabdosynochus viridisi (Diplectanidae). Plumbagin is a phytochemical compound that has recently emerged as a potent antimonogenean; however, further investigation is required to determine its effects on different monogenean species. Bromocriptine was selected through a computational approach that included molecular docking analyses of 77 receptors of monogeneans (putative drug targets) and 77 ligands (putative inhibitors). In vitro experiments showed that bromocriptine does not exhibit mortality at concentrations of 0.1, 1, and 10 mg/L whereas plumbagin at 2 and 10 mg/L caused 100% monogenean mortality after 3 h and 30 min, respectively. The most effective concentration of plumbagin (10 mg/L) did not completely inhibit egg hatching. These findings underscore plumbagin as a highly effective agent against adult monogeneans and highlight the need for research to evaluate its effect(s) on fish. Although computational drug repositioning is useful for selecting candidates for experimental testing, it does not guarantee success due to the complexity of biological interactions, as observed here with bromocriptine. Therefore, it is crucial to examine the various compounds proposed by this method.
Collapse
Affiliation(s)
| | | | - Juan M Martínez-Brown
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán, Sinaloa, 82112, Mexico
| | - F Neptalí Morales-Serna
- Instituto de Ciencias Del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, 82040, Sinaloa, Mexico
| |
Collapse
|
4
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
5
|
Alsharedeh RH, Rezigue M, Bashatwah RM, Amawi H, Aljabali AAA, Obeid MA, Tambuwala MM. Nanomaterials as a Potential Target for Infectious Parasitic Agents. Curr Drug Deliv 2024; 21:828-851. [PMID: 36815647 DOI: 10.2174/1567201820666230223085403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023]
Abstract
Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.
Collapse
Affiliation(s)
- Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| |
Collapse
|
6
|
Tolstenkov O, Chatzigeorgiou M, Gorbushin A. Neuronal gene expression in two generations of the marine parasitic worm, Cryptocotyle lingua. Commun Biol 2023; 6:1279. [PMID: 38110640 PMCID: PMC10728431 DOI: 10.1038/s42003-023-05675-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Trematodes, or flukes, undergo intricate anatomical and behavioral transformations during their life cycle, yet the functional changes in their nervous system remain poorly understood. We investigated the molecular basis of nervous system function in Cryptocotyle lingua, a species of relevance for fisheries. Transcriptomic analysis revealed a streamlined molecular toolkit with the absence of key signaling pathways and ion channels. Notably, we observed the loss of nitric oxide synthase across the Platyhelminthes. Furthermore, we identified upregulated neuronal genes in dispersal larvae, including those involved in aminergic pathways, synaptic vesicle trafficking, TRPA channels, and surprisingly nitric oxide receptors. Using neuronal markers and in situ hybridization, we hypothesized their functional relevance to larval adaptations and host-finding strategies. Additionally, employing a behavior quantification toolkit, we assessed cercaria motility, facilitating further investigations into the behavior and physiology of parasitic flatworms. This study enhances our understanding of trematode neurobiology and provides insights for targeted antiparasitic strategies.
Collapse
Affiliation(s)
| | | | - Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, St Petersburg, Russia
| |
Collapse
|
7
|
Ryan KT, Wheeler NJ, Kamara IK, Johnson H, Humphries JE, Zamanian M, Chan JD. Phenotypic Profiling of Macrocyclic Lactones on Parasitic Schistosoma Flatworms. Antimicrob Agents Chemother 2023; 67:e0123022. [PMID: 36695583 PMCID: PMC9933704 DOI: 10.1128/aac.01230-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023] Open
Abstract
Macrocyclic lactones are front-line therapies for parasitic roundworm infections; however, there are no comprehensive studies on the activity of this drug class against parasitic flatworms. Ivermectin is well known to be inactive against flatworms. However, the structure-activity relationship of macrocyclic lactones may vary across phyla, and it is entirely possible other members of this drug class do in fact show antiparasitic activity on flatworms. For example, there are several reports hinting at the anti-schistosomal activity of doramectin and moxidectin. To explore this class further, we developed an automated imaging assay combined with measurement of lactate levels from worm media. This assay was applied to the screening of 21 macrocyclic lactones (avermectins, milbemycins, and others such as spinosyns) against adult schistosomes. These in vitro assays identified several macrocyclic lactones (emamectin, milbemycin oxime, and the moxidectin metabolite 23-ketonemadectin) that caused contractile paralysis and lack of lactate production. Several of these were also active against miracidia, which infect the snail intermediate host. Hits prioritized from these in vitro assays were administered to mice harboring patent schistosome infections. However, no reduction in worm burden was observed. Nevertheless, these data show the utility of a multiplexed in vitro screening platform to quantitatively assess drug action and exclude inactive compounds from a chemical series before proceeding to in vivo studies. While the prototypical macrocyclic lactone ivermectin displays minimal activity against adult Schistosoma mansoni, this family of compounds does contain schistocidal compounds which may serve as a starting point for development of new anti-flatworm chemotherapies.
Collapse
Affiliation(s)
- Kaetlyn T. Ryan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Biology, University of Wisconsin - Eau Claire, Eau Claire, Wisconsin, USA
| | - Isaac K. Kamara
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| | - Hailey Johnson
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| | | | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - John D. Chan
- Department of Pathobiological Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
8
|
Johnson H, VanHooreweghe M, Satori JA, Chan JD. Schistosomes contain divergent ligand-gated ion channels with an atypical Cys-loop motif. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000694. [PMID: 36713055 PMCID: PMC9874803 DOI: 10.17912/micropub.biology.000694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/01/1970] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Ligand-gated ion channels (LGICs) are important regulators of neuromuscular function, making them attractive antiparasitic drug targets. While roundworm LGICs are targeted by several anthelmintic classes, flatworm LGICs are less studied. Chromosome-level genome assemblies have recently been released for Schistosoma flatworm species that cause the disease schistosomiasis. These have allowed us to comprehensively predict schistosome LGICs, adding to prior annotations. Analysis of LGIC sequences revealed a clade of receptors lacking cysteines at the eponymous Cys-loop region of the channel. Since these atypical channels are divergent from mammalian LGICs, they may be promising targets to treat diseases caused by parasitic flatworms.
Collapse
Affiliation(s)
| | | | | | - John D Chan
- University of Wisconsin - Oshkosh, Oshkosh, WI, USA
| |
Collapse
|
9
|
In Vivo Evaluation of an Antibody-Functionalized Lipoidal Nanosystem for Schistosomiasis Intervention. Pharmaceutics 2022; 14:pharmaceutics14081531. [PMID: 35893786 PMCID: PMC9332388 DOI: 10.3390/pharmaceutics14081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
This study employed nanotechnological techniques to design and develop a praziquantel nanoliposomal (NLP) system and surface-functionalized the NLP with anti-calpain antibody (anti-calpain-NLP) for targeted praziquantel (PZQ) delivery in the treatment of schistosomiasis. Anti-calpain-NLPs were prepared and validated for their physicochemical parameters, in vitro and in vivo toxicity, drug entrapment efficiency (DEE), drug loading capacity (DLC), drug release, and parasitological cure rate. The particle sizes for the formulated nanoliposomes ranged from 88.3 to 92.7 nm (PDI = 0.17–0.35), and zeta potential ranged from −20.2 to −31.9 mV. The DLC and DEE ranged from 9.03 to 14.16 and 92.07 to 94.63, respectively. The functionalization of the nanoliposome surface was stable, uniform, and spherical. Fourier-transform infrared (FTIR), thermal behavior and X-ray powder diffraction (XRPD) analysis confirmed that the anti-calpain antibody and PZQ were attached to the surface and the nanoliposomes inner core, respectively. The drug sustained release was shown to be 93.2 and 91.1% within 24 h for NLP and anti-calpain-NLP, respectively. In the in vitro analysis study, the nanoliposome concentrations range of 30 to 120 μg/mL employed revealed acceptable levels of cell viability, with no significant cytotoxic effects on RAW 264.7 murine macrophage as well as 3T3 human fibroblast cells. Biochemical markers and histopathological analysis showed that the formulated nanoliposomes present no or minimal oxidative stress and confer hepatoprotective effects on the animals. The cure rate of the anti-calpain-NLP and PZQ was assessed by parasitological analysis, and it was discovered that treatment with 250 mg/kg anti-calpain-NLP demonstrated greater activity on the total worm burden, and ova count for both the juvenile and adult schistosomes in the intestine and liver of infected mice. The findings so obtained supported the ability of oral anti-calpain-NLP to target young and adult schistosomes in the liver and porto-mesenteric locations, resulting in improved effectiveness of PZQ.
Collapse
|
10
|
Choudhary S, Kashyap SS, Martin RJ, Robertson AP. Advances in our understanding of nematode ion channels as potential anthelmintic targets. Int J Parasitol Drugs Drug Resist 2022; 18:52-86. [PMID: 35149380 PMCID: PMC8841521 DOI: 10.1016/j.ijpddr.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Ion channels are specialized multimeric proteins that underlie cell excitability. These channels integrate with a variety of neuromuscular and biological functions. In nematodes, the physiological behaviors including locomotion, navigation, feeding and reproduction, are regulated by these protein entities. Majority of the antinematodal chemotherapeutics target the ion channels to disrupt essential biological functions. Here, we have summarized current advances in our understanding of nematode ion channel pharmacology. We review cys-loop ligand gated ion channels (LGICs), including nicotinic acetylcholine receptors (nAChRs), acetylcholine-chloride gated ion channels (ACCs), glutamate-gated chloride channels (GluCls), and GABA (γ-aminobutyric acid) receptors, and other ionotropic receptors (transient receptor potential (TRP) channels and potassium ion channels). We have provided an update on the pharmacological properties of these channels from various nematodes. This article catalogs the differences in ion channel composition and resulting pharmacology in the phylum Nematoda. This diversity in ion channel subunit repertoire and pharmacology emphasizes the importance of pursuing species-specific drug target research. In this review, we have provided an overview of recent advances in techniques and functional assays available for screening ion channel properties and their application.
Collapse
Affiliation(s)
- Shivani Choudhary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Sudhanva S Kashyap
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
11
|
Function of lipid binding proteins of parasitic helminths: still a long road. Parasitol Res 2022; 121:1117-1129. [PMID: 35169885 DOI: 10.1007/s00436-022-07463-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Infections with parasitic helminths cause severe debilitating and sometimes lethal diseases in humans and domestic animals on a global scale. Unable to synthesize de novo their own fatty acids and sterols, helminth parasites (nematodes, trematodes, cestodes) rely on their hosts for their supply. These organisms produce and secrete a wide range of lipid binding proteins that are, in most cases, structurally different from the ones found in their hosts, placing them as possible novel therapeutic targets. In this sense, a lot of effort has been made towards the structure determination of these proteins, but their precise function is still unknown. In this review, we aim to present the current knowledge on the functions of LBPs present in parasitic helminths as well as novel members of this highly heterogeneous group of proteins.
Collapse
|
12
|
Cheuka PM. Drug Discovery and Target Identification against Schistosomiasis: a Reality Check on Progress and Future Prospects. Curr Top Med Chem 2021; 22:1595-1610. [PMID: 34565320 DOI: 10.2174/1568026621666210924101805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Schistosomiasis ranks among the most important infectious diseases, with over 200 million people currently being infected and > 280,000 deaths reported annually. Chemotherapeutic treatment has relied on one drug, praziquantel, for four decades, while other drugs, such as oxamniquine and metrifonate, are no longer preferred for clinical use due to their narrow spectrum of activity - these are only active against S. mansoni and S. haematobium, respectively. Despite being cheap, safe, and effective against all schistosome species, praziquantel is ineffective against immature worms, which may lead to reinfections and treatment failure in endemic areas; a situation that necessitates repeated administration besides other limitations. Therefore, novel drugs are urgently needed to overcome this situation. In this paper, an up to date review of drug targets identified and validated against schistosomiasis while also encompassing promising clinical and preclinical candidate drugs is presented. While there are considerable efforts aimed at identifying and validating drug targets, the pipeline for new antischistosomals is dry. Moreover, the majority of compounds evaluated preclinically are not really advanced because most of them were evaluated in very small preclinical species such as mice alone. Overall, it appears that although a lot of research is going on at discovery phases, unfortunately, it does not translate to advanced preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, School of Natural Sciences, University of Zambia, Lusaka. Zambia
| |
Collapse
|
13
|
Adekiya TA, Aruleba RT, Klein A, Fadaka AO. In silico inhibition of SGTP4 as a therapeutic target for the treatment of schistosomiasis. J Biomol Struct Dyn 2020; 40:3697-3705. [DOI: 10.1080/07391102.2020.1850363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tayo A. Adekiya
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Adewale O. Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
14
|
Buckingham SD, Mann HJ, Hearnden OK, Sattelle DB. Turning a Drug Target into a Drug Candidate: A New Paradigm for Neurological Drug Discovery? Bioessays 2020; 42:e2000011. [PMID: 32776366 DOI: 10.1002/bies.202000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/26/2020] [Indexed: 11/11/2022]
Abstract
The conventional paradigm for developing new treatments for disease mainly involves either the discovery of new drug targets, or finding new, improved drugs for old targets. However, an ion channel found only in invertebrates offers the potential of a completely new paradigm in which an established drug target can be re-engineered to serve as a new candidate therapeutic agent. The L-glutamate-gated chloride channels (GluCls) of invertebrates are absent from vertebrate genomes, offering the opportunity to introduce this exogenous, inhibitory, L-glutamate receptor into vertebrate neuronal circuits either as a tool with which to study neural networks, or a candidate therapy. Epileptic seizures can involve L-glutamate-induced hyper-excitation and toxicity. Variant GluCls, with their inhibitory responses to L-glutamate, when engineered into human neurons, might counter the excitotoxic effects of excess L-glutamate. In reviewing recent studies on model organisms, it appears that this approach might offer a new paradigm for the development of candidate therapeutics for epilepsy.
Collapse
Affiliation(s)
- Steven D Buckingham
- School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London, E1 4NS, UK.,UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Harry-Jack Mann
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - Olivia K Hearnden
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| | - David B Sattelle
- UCL Respiratory, University College London, 5 University Street, London, WC1E 6JF, UK
| |
Collapse
|
15
|
Duguet TB, Glebov A, Hussain A, Kulkarni S, Mochalkin I, Geary TG, Rashid M, Spangenberg T, Ribeiro P. Identification of annotated bioactive molecules that impair motility of the blood fluke Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:73-88. [PMID: 32531750 PMCID: PMC7284125 DOI: 10.1016/j.ijpddr.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
Neglected tropical diseases are of growing worldwide concern and schistosomiasis, caused by parasitic flatworms, continues to be a major threat with more than 200 million people requiring preventive treatment. As praziquantel (PZQ) remains the treatment of choice, an urgent need for alternative treatments motivates research to identify new lead compounds that would complement PZQ by filling the therapeutic gaps associated with this treatment. Because impairing parasite neurotransmission remains a core strategy for control of parasitic helminths, we screened a library of 708 compounds with validated biological activity in humans on the blood fluke Schistosoma mansoni, measuring their effect on the motility on schistosomulae and adult worms. The primary phenotypic screen performed on schistosomulae identified 70 compounds that induced changes in viability and/or motility. Screening different concentrations and incubation times identified molecules with fast onset of activity on both life stages at low concentration (1 μM). To complement this study, similar assays were performed with chemical analogs of the cholinomimetic drug arecoline and the calcilytic molecule NPS-2143, two compounds that rapidly inhibited schistosome motility; 17 arecoline and 302 NPS-2143 analogs were tested to enlarge the pool of schistosomicidal molecules. Finally, validated hit compounds were tested on three functionally-validated neuroregulatory S. mansoni G-protein coupled receptors (GPCRs): Sm5HTR (serotonin-sensitive), SmGPR2 (histamine) and SmD2 (dopamine), revealing NPS-2143 and analogs as potent inhibitors of dopamine/epinine responses on both human and S. mansoni GPCRs. This study highlights the potential for repurposing known human therapeutic agents for potential schistosomicidal effects and expands the list of hits for further progression.
Collapse
Affiliation(s)
- Thomas B Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Anastasia Glebov
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Asimah Hussain
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Igor Mochalkin
- EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Mohammed Rashid
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), Eysins, Switzerland.
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
16
|
Adekiya TA, Kondiah PPD, Choonara YE, Kumar P, Pillay V. A Review of Nanotechnology for Targeted Anti-schistosomal Therapy. Front Bioeng Biotechnol 2020; 8:32. [PMID: 32083071 PMCID: PMC7005470 DOI: 10.3389/fbioe.2020.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis is one of the major parasitic diseases and second most prevalent among the group of neglected diseases. The prevalence of schistosomiasis may be due to environmental and socio-economic factors, as well as the unavailability of vaccines for schistosomiasis. To date, current treatment; mainly the drug praziquantel (PZQ), has not been effective in treating the early forms of schistosome species. The development of drug resistance has been documented in several regions globally, due to the overuse of PZQ, rate of parasitic mutation, poor treatment compliance, co-infection with different strains of schistosomes and the overall parasite load. Hence, exploring the schistosome tegument may be a potential focus for the design and development of targeted anti-schistosomal therapy, with higher bioavailability as molecular targets using nanotechnology. This review aims to provide a concise incursion on the use of various advance approaches to achieve targeted anti-schistosomal therapy, mainly through the use of nano-enabled drug delivery systems. It also assimilates the molecular structure and function of the schistosome tegument and highlights the potential molecular targets found on the tegument, for effective specific interaction with receptors for more efficacious anti-schistosomal therapy.
Collapse
Affiliation(s)
| | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
17
|
Non-sedating benzodiazepines cause paralysis and tissue damage in the parasitic blood fluke Schistosoma mansoni. PLoS Negl Trop Dis 2019; 13:e0007826. [PMID: 31730614 PMCID: PMC6881066 DOI: 10.1371/journal.pntd.0007826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/27/2019] [Accepted: 10/03/2019] [Indexed: 12/27/2022] Open
Abstract
Parasitic flatworm infections (e.g. tapeworms and fluke worms) are treated by a limited number of drugs. In most cases, control is reliant upon praziquantel (PZQ) monotherapy. However, PZQ is ineffective against sexually immature parasites, and there have also been several concerning reports on cestode and trematode infections with poor PZQ cure-rates, emphasizing the need for alternative therapies to treat these infections. We have revisited a series of benzodiazepines given the anti-schistosomal activity of meclonazepam (MCLZ). MCLZ was discovered in the 1970's but was not brought to market due to dose-limiting sedative side effects. However, in the decades since there have been advances in our understanding of the benzodiazepine GABAA receptor sub-types that drive sedation and the development of sub-type selective, non-sedating ligands. Additionally, the sequencing of flatworm genomes reveals that parasitic trematodes and cestodes have lost GABAAR-like ligand gated anion channels, indicating that MCLZ's anti-parasitic target is distinct from the human receptors that drive sedation. Therefore, we have screened a library of classical and non-sedating 1,4-benzodiazepines against Schistosoma mansoni and identified a series of imidazobenzodiazepines that immobilize worms in vitro. One of these hits, Xhe-II-048 also disrupted the parasite tegument, resulting in extensive vacuole formation beneath the apical membrane. The hit compound series identified has a dramatically lower (~1000×) affinity for the human central benzodiazepine binding site and is a promising starting point for the development of novel anti-schistosomal benzodiazepines with minimal host side-effects.
Collapse
|
18
|
Promethazine exhibits antiparasitic properties in vitro and reduces worm burden, egg production, hepato-, and splenomegaly in a schistosomiasis animal model. Antimicrob Agents Chemother 2019:AAC.01208-19. [PMID: 31527034 DOI: 10.1128/aac.01208-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The treatment and control of schistosomiasis, a neglected disease that affects more than 200 million people worldwide, rely on the use of a single drug, praziquantel. A vaccine has yet to be developed and since new drug design and development is a lengthy and costly process, drug repurposing is a promising strategy. In this study, the efficacy of promethazine, a first-generation antihistamine, was evaluated against Schistosoma mansoni ex vivo and in a murine model of schistosomiasis. In vitro assays demonstrated that promethazine affected parasite motility, viability, and it induced severe tegumental damage in schistosomes. The LC50 of the drug was 5.84 μM. Similar to promethazine, schistosomes incubated with atropine, a classical anticholinergic drug, displayed reduced motor activity. In an animal model, promethazine treatment was introduced at an oral dose of 100 mg/kg for five successive days at different intervals from the time of infection, for the evaluation of the stage-specific susceptibility (pre-patent and patent infections). Various parasitological criteria indicated the in vivo antischistosomal effects of promethazine: there were significant reductions in worm burden, egg production, and hepato- and splenomegaly. The highest worm burden reduction was achieved with promethazine in patent infections (> 90%). Taken together, considering the importance of the repositioning of drugs in infectious diseases, especially those related to poverty, our data revealed the possibility of promethazine repositioning as an antischistosomal agent.
Collapse
|
19
|
Abstract
Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms.
Collapse
|
20
|
Form and Function in the Digenea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:3-20. [DOI: 10.1007/978-3-030-18616-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Preza M, Montagne J, Costábile A, Iriarte A, Castillo E, Koziol U. Analysis of classical neurotransmitter markers in tapeworms: Evidence for extensive loss of neurotransmitter pathways. Int J Parasitol 2018; 48:979-992. [DOI: 10.1016/j.ijpara.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
|
22
|
El-Sakkary N, Chen S, Arkin MR, Caffrey CR, Ribeiro P. Octopamine signaling in the metazoan pathogen Schistosoma mansoni: localization, small-molecule screening and opportunities for drug development. Dis Model Mech 2018; 11:dmm033563. [PMID: 29925529 PMCID: PMC6078403 DOI: 10.1242/dmm.033563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis is a tropical disease caused by a flatworm trematode parasite that infects over 200 million people worldwide. Treatment and control of the disease rely on just one drug, praziquantel. The possibility of drug resistance coupled with praziquantel's variable efficacy encourages the identification of new drugs and drug targets. Disruption of neuromuscular homeostasis in parasitic worms is a validated strategy for drug development. In schistosomes, however, much remains to be understood about the organization of the nervous system, its component neurotransmitters and potential for drug discovery. Using synapsin as a neuronal marker, we map the central and peripheral nervous systems in the Schistosoma mansoni adult and schistosomulum (post-infective larva). We discover the widespread presence of octopamine (OA), a tyrosine-derived and invertebrate-specific neurotransmitter involved in neuromuscular coordination. OA labeling facilitated the discovery of two pairs of ganglia in the brain of the adult schistosome, rather than the one pair thus far reported for this and other trematodes. In quantitative phenotypic assays, OA and the structurally related tyrosine-derived phenolamine and catecholamine neurotransmitters differentially modulated schistosomulum motility and length. Similarly, from a screen of 28 drug agonists and antagonists of tyrosine-derivative signaling, certain drugs that act on OA and dopamine receptors induced robust and sometimes complex concentration-dependent effects on schistosome motility and length; in some cases, these effects occurred at concentrations achievable in vivo The present data advance our knowledge of the organization of the nervous system in this globally important pathogen and identify a number of drugs that interfere with tyrosine-derivative signaling, one or more of which might provide the basis for a new chemotherapeutic approach to treat schistosomiasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nelly El-Sakkary
- Institute of Parasitology, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste Anne de Bellevue, Quebec, Canada H9X-3V9
| | - Steven Chen
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Department of Pathology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21, 111 Lakeshore Road, Ste Anne de Bellevue, Quebec, Canada H9X-3V9
| |
Collapse
|
23
|
Reasons to Be Nervous about Flukicide Discovery. Trends Parasitol 2017; 34:184-196. [PMID: 29269027 DOI: 10.1016/j.pt.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 01/21/2023]
Abstract
The majority of anthelmintics dysregulate neuromuscular function, a fact most prominent for drugs against nematode parasites. In contrast to the strong knowledge base for nematode neurobiology, resource and tool deficits have prevented similar advances in flatworm parasites since those driven by bioimaging, immunocytochemistry, and neuropeptide biochemistry 20-30 years ago. However, recent developments are encouraging a renaissance in liver fluke neurobiology that can now support flukicide discovery. Emerging data promote neuromuscular signalling components, and especially G protein-coupled receptors (GPCRs), as next-generation targets. Here, we summarise these data and expose some of the new opportunities to accelerate progress towards GPCR-targeted flukicides for Fasciola hepatica.
Collapse
|
24
|
You H, Liu C, Du X, McManus DP. Acetylcholinesterase and Nicotinic Acetylcholine Receptors in Schistosomes and Other Parasitic Helminths. Molecules 2017; 22:molecules22091550. [PMID: 28906438 PMCID: PMC6151654 DOI: 10.3390/molecules22091550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022] Open
Abstract
Schistosomiasis, which is caused by helminth trematode blood flukes of the genus Schistosoma, is a serious health and economic problem in tropical areas, and the second most prevalent parasitic disease after malaria. Currently, there is no effective vaccine available and treatment is entirely dependent on a single drug, praziquantel (PZQ), raising a significant potential public health threat due to the emergence of PZQ drug resistance. It is thus urgent and necessary to explore novel therapeutic targets for the treatment of schistosomiasis. Previous studies demonstrated that acetylcholinesterase (AChE) and nicotinic acetylcholine receptors (nAChRs) play important roles in the schistosome nervous system and ion channels, both of which are targeted by a number of currently approved and marketed anthelminthic drugs. To improve understanding of the functions of the cholinergic system in schistosomes, this article reviews previous studies on AChE and nAChRs in schistosomes and other helminths and discusses their potential as suitable targets for vaccine development and drug design against schistosomiasis.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.
| | - Chang Liu
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.
- Parasitology Laboratory, School of Animal Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaofeng Du
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.
| |
Collapse
|
25
|
Polymorphism in ion channel genes of Dirofilaria immitis: Relevant knowledge for future anthelmintic drug design. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:343-355. [PMID: 27682347 PMCID: PMC5196487 DOI: 10.1016/j.ijpddr.2016.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/22/2016] [Indexed: 11/24/2022]
Abstract
Dirofilaria immitis, a filarial parasite, causes cardiopulmonary dirofilariasis in dogs, cats and wild canids. The macrocyclic lactone (ML) class of drugs has been used to prevent heartworm infection. There is confirmed ML resistance in D. immitis and thus there is an urgent need to find new anthelmintics that could prevent and/or control the disease. Targeting ion channels of D. immitis for drug design has obvious advantages. These channels, present in the nematode nervous system, control movement, feeding, mating and respond to environmental cues which are necessary for survival of the parasite. Any new drug that targets these ion channels is likely to have a motility phenotype and should act to clear the worms from the host. Many of the successful anthelmintics in the past have targeted these ion channels and receptors. Knowledge about genetic variability of the ion channel and receptor genes should be useful information for drug design as receptor polymorphism may affect responses to a drug. Such information may also be useful for anticipation of possible resistance development. A total of 224 ion channel genes/subunits have been identified in the genome of D. immitis. Whole genome sequencing data of parasites from eight different geographical locations, four from ML-susceptible populations and the other four from ML-loss of efficacy (LOE) populations, were used for polymorphism analysis. We identified 1762 single nucleotide polymorphic (SNP) sites (1508 intronic and 126 exonic) in these 224 ion channel genes/subunits with an overall polymorphic rate of 0.18%. Of the SNPs found in the exon regions, 129 of them caused a non-synonymous type of polymorphism. Fourteen of the exonic SNPs caused a change in predicted secondary structure. A few of the SNPs identified may have an effect on gene expression, function of the protein and resistance selection processes. In the Dirofilaria immitis genome, 126 ion channel genes were identified. Within 126 ion channel genes, 1762 polymorphic loci were identified. Fourteen exonic SNPs caused a change in predicted secondary structure. SNPs may effect gene expression, protein function or resistance selection. D. immitis populations have low genetic variability among ion channel genes.
Collapse
|
26
|
Britton C, Roberts B, Marks ND. Functional Genomics Tools for Haemonchus contortus and Lessons From Other Helminths. ADVANCES IN PARASITOLOGY 2016; 93:599-623. [PMID: 27238014 DOI: 10.1016/bs.apar.2016.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The availability of genome and transcriptome data for parasitic nematodes, including Haemonchus contortus, has highlighted the need to develop functional genomics tools. Comparative genomic analysis, particularly using data from the free-living nematode Caenorhabditis elegans, can help predict gene function. Reliable approaches to study function directly in parasitic nematodes are currently lacking. However, gene knockdown by RNA interference (RNAi) is being successfully used in schistosome and planarian species to define gene functions. Lessons from these systems may be applied to improve RNAi in H. contortus. Previous studies in H. contortus and related nematodes demonstrated reliable RNAi-mediated silencing of some genes, but not others. Current data suggest that susceptibility to RNAi in these nematodes is limited to genes expressed in sites accessible to the environment, such as the gut, amphids and excretory cell. Therefore, RNAi is functional in H. contortus, but improvements are needed to develop this system as a functional genomics platform. Here, we summarize RNAi studies on H. contortus and discuss the optimization of RNA delivery and improvements to culture methods to enhance larval development, protein turnover and the induction of phenotypic effects in vitro. The transgenic delivery of RNA or dominant-negative gene constructs and the recently developed CRISPR/Cas genome-editing technique are considered as potential alternative approaches for gene knockout. This is a key time to devote greater effort in progressing from genome to function, to improve our understanding of the biology of Haemonchus and identify novel targets for parasite control.
Collapse
Affiliation(s)
- C Britton
- University of Glasgow, Glasgow, United Kingdom
| | - B Roberts
- University of Glasgow, Glasgow, United Kingdom
| | - N D Marks
- University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
Nor B, Young ND, Korhonen PK, Hall RS, Tan P, Lonie A, Gasser RB. Pipeline for the identification and classification of ion channels in parasitic flatworms. Parasit Vectors 2016; 9:155. [PMID: 26983991 PMCID: PMC4794918 DOI: 10.1186/s13071-016-1428-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/05/2016] [Indexed: 01/05/2023] Open
Abstract
Background Ion channels are well characterised in model organisms, principally because of the availability of functional genomic tools and datasets for these species. This contrasts the situation, for example, for parasites of humans and animals, whose genomic and biological uniqueness means that many genes and their products cannot be annotated. As ion channels are recognised as important drug targets in mammals, the accurate identification and classification of parasite channels could provide major prospects for defining unique targets for designing novel and specific anti-parasite therapies. Here, we established a reliable bioinformatic pipeline for the identification and classification of ion channels encoded in the genome of the cancer-causing liver fluke Opisthorchis viverrini, and extended its application to related flatworms affecting humans. Methods We built an ion channel identification + classification pipeline (called MuSICC), employing an optimised support vector machine (SVM) model and using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) classification system. Ion channel proteins were first identified and grouped according to amino acid sequence similarity to classified ion channels and the presence and number of ion channel-like conserved and transmembrane domains. Predicted ion channels were then classified to sub-family using a SVM model, trained using ion channel features. Results Following an evaluation of this pipeline (MuSICC), which demonstrated a classification sensitivity of 95.2 % and accuracy of 70.5 % for known ion channels, we applied it to effectively identify and classify ion channels in selected parasitic flatworms. Conclusions MuSICC provides a practical and effective tool for the identification and classification of ion channels of parasitic flatworms, and should be applicable to a broad range of organisms that are evolutionarily distant from taxa whose ion channels are functionally characterised. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1428-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bahiyah Nor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, 138672, Republic of Singapore
| | - Andrew Lonie
- Victorian Life Sciences Computation Initiative (VLSCI), The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
28
|
Cai P, Gobert GN, You H, McManus DP. The Tao survivorship of schistosomes: implications for schistosomiasis control. Int J Parasitol 2016; 46:453-63. [PMID: 26873753 DOI: 10.1016/j.ijpara.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Schistosomiasis, caused by blood flukes of the genus Schistosoma, is a major public health problem which contributes substantially to the economic and financial burdens of many nations in the developing world. An array of survival strategies, such as the unique structure of the tegument which acts as a major host-parasite interface, immune modulation mechanisms, gene regulation, and apoptosis and self-renewal have been adopted by schistosome parasites over the course of long-term evolution with their mammalian definitive hosts. Recent generation of complete schistosome genomes together with numerous biological, immunological, high-throughput "-omics" and gene function studies have revealed the Tao or strategies that schistosomes employ not only to promote long-term survival, but also to ensure effective life cycle transmission. New scenarios for the future control of this important neglected tropical disease will present themselves as our understanding of these Tao increases.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| |
Collapse
|
29
|
Parker-Manuel SJ, Hahnel S, Grevelding CG. Inhibition of Schistosoma mansoni ether-a-go-go related gene-encoded potassium channels leads to hypermotility and impaired egg production. Exp Parasitol 2015; 158:48-54. [PMID: 26188142 DOI: 10.1016/j.exppara.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 11/19/2022]
Abstract
The purpose of this work was to investigate the effect of ether-a-go-go related gene (ERG) potassium channel inhibition on Schistosoma mansoni. Use of dofetilide to block the schistosome ERGs resulted in a striking 'corkscrew' effect. The worms were unable to control their motility; they were hypermotile. The treated worms produced abnormal eggs, some of which consisted of little more than a spine. One of the S. mansoni ERGs (SmERGs), Smp_161140, was chosen for further study by RNAi. The transcript was knocked down to 50% compared to the controls. These RNAi-treated worms demonstrated seizure-like movements. In S. mansoni, as in other organisms, ERG channels seem to play a role in regulating muscle excitability. This work shows that egg production can be greatly reduced by effectively targeting muscle coordination in these important parasites.
Collapse
Affiliation(s)
- S J Parker-Manuel
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany.
| | - S Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - C G Grevelding
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
30
|
MacDonald K, Kimber MJ, Day TA, Ribeiro P. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni. Mol Biochem Parasitol 2015; 202:29-37. [PMID: 26365538 PMCID: PMC4607267 DOI: 10.1016/j.molbiopara.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022]
Abstract
The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting.
Collapse
Affiliation(s)
- Kevin MacDonald
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue Quebec, H9X 3V9, Canada
| | - Michael J Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Tim A Day
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue Quebec, H9X 3V9, Canada.
| |
Collapse
|
31
|
Britton C, Winter AD, Marks ND, Gu H, McNeilly TN, Gillan V, Devaney E. Application of small RNA technology for improved control of parasitic helminths. Vet Parasitol 2015; 212:47-53. [PMID: 26095949 PMCID: PMC4535316 DOI: 10.1016/j.vetpar.2015.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/26/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
MicroRNAs and siRNAs in helminth post-transcriptional gene regulation are reviewed. Many parasitic helminth miRNAs are unique and developmentally expressed. miRNAs released by parasites have diagnostic potential, particularly for filarial and schistosome spp. Parasite and host miRNAs may regulate immune responses. Improvements to siRNA-mediated gene silencing are important for functional genomics.
Over the last decade microRNAs (miRNAs) and small interfering RNAs (siRNAs) have emerged as important regulators of post-transcriptional gene expression. miRNAs are short, non-coding RNAs that regulate a variety of processes including cancer, organ development and immune function. This class of small RNAs bind with partial complementarity to their target mRNA sequences, most often in the 3′UTR, to negatively regulate gene expression. In parasitic helminths, miRNAs are being increasingly studied for their potential roles in development and host-parasite interactions. The availability of genome data, combined with small RNA sequencing, has paved the way to profile miRNAs expressed at particular developmental stages for many parasitic helminths. While some miRNAs are conserved across species, others appear to be unique to specific parasites, suggesting important roles in adaptation and survival in the host environment. Some miRNAs are released from parasites, in exosomes or in protein complexes, and the potential effects of these on host immune function are being increasingly studied. In addition, release of miRNAs from schistosome and filarial parasites into host plasma can be exploited for the development of specific and sensitive diagnostic biomarkers of infection. Interfering with miRNA function, as well as silencing key components of the pathways they regulate, will progress our understanding of parasite development and provide a novel approach to therapeutic control. RNA interference (RNAi) by siRNAs has proven to be inconsistent in parasitic nematodes. However, the recent successes reported for schistosome and liver fluke RNAi, encourage further efforts to enhance delivery of RNA and improve in vitro culture systems and assays to monitor phenotypic effects in nematodes. These improvements are important for the establishment of reliable functional genomic platforms for novel drug and vaccine development. In this review we focus on the important roles of miRNAs and siRNAs in post-transcriptional gene regulation in veterinary parasitic helminths and the potential value of these in parasite diagnosis and control.
Collapse
Affiliation(s)
- Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Neil D Marks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Henry Gu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
32
|
Transfection of Platyhelminthes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:206161. [PMID: 26090388 PMCID: PMC4450235 DOI: 10.1155/2015/206161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/15/2014] [Indexed: 01/22/2023]
Abstract
Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.
Collapse
|
33
|
Greenberg RM. Ion channels and drug transporters as targets for anthelmintics. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014; 1:51-60. [PMID: 25554739 PMCID: PMC4278637 DOI: 10.1007/s40588-014-0007-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infections with parasitic helminths such as schistosomes and soil-transmitted nematodes are hugely prevalent and responsible for a major portion of the global health and economic burdens associated with neglected tropical diseases. In addition, many of these parasites infect livestock and plants used in agriculture, resulting in further impoverishment. Treatment and control of these pathogens rely on anthelmintic drugs, which are few in number, and against which drug resistance can develop rapidly. The neuromuscular system of the parasite, and in particular, the ion channels and associated receptors underlying excitation and signaling, have proven to be outstanding targets for anthelmintics. This review will survey the different ion channels found in helminths, focusing on their unique characteristics and pharmacological sensitivities. It will also briefly review the literature on helminth multidrug efflux that may modulate parasite susceptibility to anthelmintics and may prove useful targets for new or repurposed agents that can enhance parasite drug susceptibility and perhaps overcome drug resistance.
Collapse
Affiliation(s)
- Robert M Greenberg
- Department of Pathobiology School of Veterinary Medicine University of Pennsylvania 3800 Spruce Street Philadelphia PA 19104 Tel: 215-898-5678
| |
Collapse
|