1
|
Yuan Z, Huang X, Wang L, Yin Z, Fu X, Qi S, Tang D. The crystal structure of an uncharacterized domain of P113 from Plasmodium falciparum. Acta Crystallogr D Struct Biol 2025; 81:212-222. [PMID: 40192714 DOI: 10.1107/s2059798325002748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 05/07/2025] Open
Abstract
The surface protein P113 serves as a membrane-anchored protein that tethers the Plasmodium falciparum RH5 complex, including its associated partners CyRPA and RIPR, to the parasite surface. This anchoring mechanism ensures the proper localization and stabilization of RH5, facilitating its critical interaction with the host erythrocyte receptor basigin during erythrocyte invasion. Here, the helical-rich domain of P113 (residues 311-679) from a Plasmodium species was expressed, purified and crystallized to elucidate its structural and functional characteristics. The recombinant protein, with a molecular weight of approximately 44 kDa, was confirmed to be monomeric in solution. Crystallization in 0.5 mM MES pH 6.0, 22% PEG 3350 yielded high-quality crystals, enabling the determination of the structure of the apo form at 1.7 Å resolution. The structure revealed a predominant α-helical composition, with two distinct left-handed orthogonal four-helix bundles formed by helices α1-α4 and α6-α9 connected by a disordered region. Sequence analysis demonstrated high conservation of P113 across all human-infecting Plasmodium species, including P. vivax, P. malariae, P. falciparum and P. ovale, as well as in Plasmodium species infecting primates and rodents. Protein-protein interaction analysis using the STRING tool identified P113 as a hub protein that interacts with ten proteins, including small nuclear ribonucleoprotein, DNA polymerase delta small subunit and RIPR, which is part of the RH5-CyRPA-RIPR complex. AlphaFold predictions further elucidated the interaction patterns, revealing moderate to strong interaction scores (0.39-0.74) with key partners. Notably, the helical-rich domain of P113 was identified as the critical binding region for PF3D7_0308000, with key interaction sites mapped to residues Asp475, Arg381, Lys386, Asn390, Asp392 and Lys533. These findings provide critical insights into the structural and functional roles of P113 and its interaction network, advancing our understanding of its molecular mechanisms in Plasmodium biology.
Collapse
Affiliation(s)
- Zhudi Yuan
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China
| | - Xiaofang Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Laboratory of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Lianglei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Laboratory of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhijie Yin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Laboratory of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xianghui Fu
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China
| | - Shiqian Qi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Laboratory of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Dan Tang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Laboratory of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
2
|
Cowman A, Seager B, Lim P, Lai KH, Feufack-Donfack L, Dass S, Xiao X, Jung N, Abraham A, Grigg M, Anstey N, William T, Sattabongkot J, Leis A, Longley R, Duraisingh M, Popovici J, Wilson D, Scally S. PTRAMP, CSS and Ripr form a conserved complex required for merozoite invasion of Plasmodium species into erythrocytes. RESEARCH SQUARE 2025:rs.3.rs-6292540. [PMID: 40343341 PMCID: PMC12060983 DOI: 10.21203/rs.3.rs-6292540/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Invasion of erythrocytes by members of the Plasmodium genus is an essential step of the parasite lifecycle, orchestrated by numerous host-parasite interactions. In P. falciparum Rh5, with PfCyRPA, PfRipr, PfCSS, and PfPTRAMP, forms the essential PCRCR complex which binds basigin on the erythrocyte surface. Rh5 is restricted to P. falciparum and its close relatives; however, PTRAMP, CSS and Ripr orthologs are present across the Plasmodium genus. We investigated PTRAMP, CSS and Ripr orthologs from three species to elucidate common features of the complex. Like P. falciparum, PTRAMP and CSS form a disulfide-linked heterodimer in both P. vivax and P. knowlesi with all three species forming a complex (PCR) with Ripr by binding its C-terminal region. Cross-reactive antibodies targeting the PCR complex differentially inhibit merozoite invasion. Cryo-EM visualization of the P. knowlesi PCR complex confirmed predicted models and revealed a core invasion scaffold in Plasmodium spp. with implications for vaccines targeting multiple species of malaria-causing parasites.
Collapse
Affiliation(s)
- Alan Cowman
- Walter and Eliza Hall Institute of Medical Research
| | | | - Pailene Lim
- The Walter and Eliza Hall Institute of Medical Research
| | | | | | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Xiao Xiao
- The Walter and ELiza Hall Institute of Medical Research
| | | | - Anju Abraham
- The Walter and ELiza Hall Institute of Medical Research
| | | | | | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit
| | | | - Andrew Leis
- The Walter and Eliza Hall INstitute of Medical Research
| | - Rhea Longley
- The Walter and Eliza Hall INstitute of Medical Research
| | | | | | | | | |
Collapse
|
3
|
Ilani P, Nyarko PB, Camara A, Amenga-Etego LN, Aniweh Y. PfRH5 vaccine; from the bench to the vial. NPJ Vaccines 2025; 10:82. [PMID: 40274841 PMCID: PMC12022022 DOI: 10.1038/s41541-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
The search for potent malaria vaccine candidate has seen several twists and turns. Here, we provide a perspective on the current state of PfRH5-based malaria vaccine development, the progress, existing challenges, and future research directions. We discuss the clinical trials in endemic regions, immune correlates of protection, prospects of integrating PfRH5 into multi-antigen vaccine strategies and considerations on the onward development/deployment of PfRH5 vaccine from the laboratory to endemic communities.
Collapse
Affiliation(s)
- Philip Ilani
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Prince B Nyarko
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Laboratory of Pathogens and Host Immunity (LPHI), CNRS, University of Montpellier, Montpellier, France
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain
| | - Abdouramane Camara
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Lucas N Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
4
|
Seager BA, Lim PS, Lai KH, Feufack-Donfack LB, Dass S, Xiao X, Jung NC, Abraham A, Grigg MJ, Anstey NM, William T, Sattabongkot J, Leis A, Longley RJ, Duraisingh MT, Popovici J, Wilson DW, Scally SW, Cowman AF. PTRAMP, CSS and Ripr form a conserved complex required for merozoite invasion of Plasmodium species into erythrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.644866. [PMID: 40196582 PMCID: PMC11974866 DOI: 10.1101/2025.03.25.644866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Invasion of erythrocytes by members of the Plasmodium genus is an essential step of the parasite lifecycle, orchestrated by numerous host-parasite interactions. In P. falciparum Rh5, with PfCyRPA, PfRipr, PfCSS, and PfPTRAMP, forms the essential PCRCR complex which binds basigin on the erythrocyte surface. Rh5 is restricted to P. falciparum and its close relatives; however, PTRAMP, CSS and Ripr orthologs are present across the Plasmodium genus. We investigated PTRAMP, CSS and Ripr orthologs from three species to elucidate common features of the complex. Like P. falciparum, PTRAMP and CSS form a disulfide-linked heterodimer in both P. vivax and P. knowlesi with all three species forming a complex (PCR) with Ripr by binding its C-terminal region. Cross-reactive antibodies targeting the PCR complex differentially inhibit merozoite invasion. Cryo-EM visualization of the P. knowlesi PCR complex confirmed predicted models and revealed a core invasion scaffold in Plasmodium spp. with implications for vaccines targeting multiple species of malaria-causing parasites.
Collapse
Affiliation(s)
- Benjamin A. Seager
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- University of Melbourne, Melbourne 3010, Australia
| | - Pailene S. Lim
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- University of Melbourne, Melbourne 3010, Australia
| | - Keng Heng Lai
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Australia 5005
| | | | - Sheena Dass
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiao Xiao
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- University of Melbourne, Melbourne 3010, Australia
| | - Nicolai C. Jung
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- University of Melbourne, Melbourne 3010, Australia
| | - Anju Abraham
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | - Matthew J. Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Kota Kinabalu Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre-Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah, Malaysia
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Andrew Leis
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- University of Melbourne, Melbourne 3010, Australia
| | - Rhea J. Longley
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- University of Melbourne, Melbourne 3010, Australia
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Australia 5005
- Burnet Institute, 85 Commercial Road, Melbourne 3004, Victoria, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, 5005, SA, Australia
| | - Stephen W. Scally
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- University of Melbourne, Melbourne 3010, Australia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
5
|
Reiling L, Persson KEM, McCallum FJ, Gicheru N, Kinyanjui SM, Chitnis CE, Fowkes FJI, Marsh K, Beeson JG. Plasmodium falciparum reticulocyte-binding homologues are targets of human inhibitory antibodies and play a role in immune evasion. Front Immunol 2025; 16:1532451. [PMID: 40201183 PMCID: PMC11975925 DOI: 10.3389/fimmu.2025.1532451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Antibodies targeting the blood-stage of Plasmodium falciparum play a critical role in naturally acquired immunity to malaria by limiting blood-stage parasitemia. One mode of action of antibodies is the direct inhibition of merozoite invasion of erythrocytes through targeting invasion ligands. However, evasion of inhibitory antibodies may be mediated in P. falciparum by switching between various ligand-mediated merozoite invasion pathways. Here, we investigated the potential roles of invasion ligands PfRH1, PfRH2a and PfRH2b in immune evasion through phenotypic variation, and their importance as targets of human invasion-inhibitory antibodies. Methods Serum samples from malaria-exposed children and adults in Kenya were examined for their ability to inhibit P. falciparum invasion, using parasites with disrupted pfrh1, pfrh2a or pfrh2b genes. Results and Discussion The loss of PfRH1 and PfRH2b substantially impacted on susceptibility to inhibitory antibodies, suggesting that variation in the use of these ligands contributes to immune evasion. The effect was less prominent with loss of PfRH2a. Differential inhibition of the knockout and parental lines points to PfRH1 and PfRH2b as targets of acquired growth inhibitory antibodies whereas PfRH2a appeared to be a minor target. There was limited relatedness of the inhibitory responses between different isolates or compared to parasites with deletions of erythrocyte-binding antigens. This further suggests that there is a substantial amount of antigenic diversity in invasion pathways to facilitate immune evasion. These findings provide evidence that PfRH1 and PfRH2b are significant targets of inhibitory antibodies and variation in their expression may facilitate immune evasion. Targeting of multiple invasion ligands in vaccine design is likely to be required to achieve potent inhibitory antibodies and protective efficacy against malaria.
Collapse
Affiliation(s)
- Linda Reiling
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Kristina E. M. Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Skåne University Hospital, Lund, Sweden
| | - Fiona J. McCallum
- Australian Defence Force Malaria and Infectious Disease Institute, Enoggera, QLD, Australia
| | - Nimmo Gicheru
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Samson M. Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chetan E. Chitnis
- Department of Parasites and Insect Vectors, Pasteur Institute, Paris, France
| | - Freya J. I. Fowkes
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Kevin Marsh
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute - Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - James G. Beeson
- Department of Life Sciences, Burnet Institute of Medical Research and Public Health, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Melbourne, VIC, Australia
- School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Infectious Diseases, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Baruah N, Midya J, Gompper G, Dasanna AK, Auth T. Adhesion-driven vesicle translocation through membrane-covered pores. Biophys J 2025; 124:740-752. [PMID: 39863923 PMCID: PMC11897550 DOI: 10.1016/j.bpj.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/24/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii. The vesicles bind to a lipid bilayer spanning the pore, the adhesion-energy gain drives the translocation, and the vesicle deformation induces an energy barrier. In addition, the deformation-energy cost for deforming the pore-spanning membrane hinders the translocation. Increasing the bending rigidity of the pore-spanning membrane and decreasing the pore size both increase the barrier height and shift the maximum to smaller fractions of translocated vesicle membrane. We compare the translocation of initially spherical vesicles with fixed membrane area and freely adjustable volume to that of initially prolate vesicles with fixed membrane area and volume. In the latter case, translocation can be entirely suppressed. Our predictions may help rationalize the invasion of apicomplexan parasites into host cells and design measures to combat the diseases they transmit.
Collapse
Affiliation(s)
- Nishant Baruah
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| | - Jiarul Midya
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany; School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, India.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| | - Anil Kumar Dasanna
- Department of Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany; INM-Leibniz Institute for New Materials, Saarbrücken, Germany; Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Manauli, India.
| | - Thorsten Auth
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
7
|
Dao F, Niangaly A, Sogore F, Wague M, Dabitao D, Goita S, Hadara AS, Diakite O, Maiga M, Maiga FO, Cazevieille C, Cassan C, Talman AM, Djimde AA, Marin-Menendez A, Dembélé L. Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion. PLoS Negl Trop Dis 2025; 19:e0012790. [PMID: 39761327 PMCID: PMC11735006 DOI: 10.1371/journal.pntd.0012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/15/2025] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species. In this study, we embarked on an investigation of P. malariae, including exploring its clinical disease characteristics, molecular aspects of red blood cell (RBC) invasion, and host-cell preferences. We conducted our research using parasites collected from infected individuals in Mali. Our findings revealed anaemia in most of P. malariae infected participants presented, in both symptomatic and asymptomatic cases. Regarding RBC invasion, quantified by an adapted flow cytometry based method, our study indicated that none of the seven antibodies tested, against receptors known for their role in P. falciparum invasion, had any impact on the ability of P. malariae to penetrate the host cells. However, when RBCs were pre-treated with various enzymes (neuraminidase, trypsin, and chymotrypsin), we observed a significant reduction in P. malariae invasion, albeit not a complete blockade. Furthermore, in a subset of P. malariae samples, we observed the parasite's capability to invade reticulocytes. These results suggest that P. malariae employs alternative pathways to enter RBCs of different maturities, which may differ from those used by P. falciparum.
Collapse
Affiliation(s)
- Francois Dao
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Amadou Niangaly
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fanta Sogore
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mamadou Wague
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Siaka Goita
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Aboubacrin S. Hadara
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Ousmaila Diakite
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mohamed Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fatoumata O. Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Cecile Cassan
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Arthur M. Talman
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Laurent Dembélé
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| |
Collapse
|
8
|
Ararat-Sarria M, Curtidor H, Patarroyo MA. Characterisation of the erythrocyte invasion phenotype of FCB-2: A South American P. falciparum reference strain. Acta Trop 2024; 260:107379. [PMID: 39245156 DOI: 10.1016/j.actatropica.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The extent of parasite adaptive capability involved in erythrocyte invasion represents a significant challenge for the development of a Plasmodium falciparum vaccine. The parasite's geographical and populational origin may influence such adaptive behaviour; in vitro culture-adapted parasite strains are typically used for such studies. Previous studies have reported invasion phenotypes in strains from Africa and Asia and, to a lesser extent, from Latin America. This study was aimed at expanding the pool of characterised parasite strains from Latin America by describing the invasion phenotype of the P. falciparum Colombia Bogotá 2 (FCB2) strain. The FCB2 genome was sequenced and erythrocyte invasion ligand sequences were analysed and compared to other previously reported ones. RT-PCR was used for assessing Pfeba family erythrocyte invasion ligands and reticulocyte binding homologue (Pfrh) gene transcription. A flow cytometry-based erythrocyte invasion assay (using enzymatically-treated erythrocytes) was used for determining the FCB2 strain's invasion phenotype. The P. falciparum FCB2 genome sequence was analysed, bearing in mind that prolonged in vitro parasite culture may affect its genome sequence and, in some cases, lead to the deletion of certain genes; it was demonstrated that all erythrocyte invasion ligand gene sequences studied here were preserved. Comparative analysis showed that the target genome sequences were conserved whereas transcriptional analysis highlighted Pfebas and Pfrhs gene expression. Erythrocyte invasion analysis demonstrated that the FCB2 strain has a sialic acid-resistant invasion phenotype.
Collapse
Affiliation(s)
- Monica Ararat-Sarria
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C. 111321, Colombia; PhD programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá D.C. 111166, Colombia.
| | - Hernando Curtidor
- The Vice-rector's Office for Research, Universidad ECCI, Bogotá D.C. 111311, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C. 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia.
| |
Collapse
|
9
|
Male F, Kegawa Y, Blank PS, Jiménez-Munguía I, Sidik SM, Valleau D, Lourido S, Lebrun M, Zimmerberg J, Ward GE. Perforation of the host cell plasma membrane during Toxoplasma gondii invasion requires rhoptry exocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618018. [PMID: 39605356 PMCID: PMC11601479 DOI: 10.1101/2024.10.12.618018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Toxoplasma gondii is an obligate intracellular parasite, and the delivery of effector proteins from the parasite into the host cell during invasion is critical for invasion itself and for parasite virulence. The effector proteins are released from specialized apical secretory organelles known as rhoptries. While much has been learned recently about the structure and composition of the rhoptry exocytic machinery and the function of individual rhoptry effector proteins that are exocytosed, virtually nothing is known about how the released proteins are translocated across the host cell plasma membrane. Previous electrophysiology experiments reported an unanticipated observation that invasion by T. gondii is preceded by a transient increase in host cell plasma membrane conductance. Here, we confirm this electrophysiological observation and propose that the conductance transient represents a parasite-induced perforation in the host cell plasma membrane through which rhoptry proteins are delivered. As a first step towards testing this hypothesis, and to provide higher throughput than patch clamp electrophysiology, we developed an alternative assay to detect the perforation. This assay utilizes high-speed, multi-wavelength fluorescence imaging to enable simultaneous visualization of host cell perforation and parasite invasion. Using this assay, we interrogated a panel of mutant parasites conditionally depleted of key invasion-related proteins. Parasites lacking signaling proteins involved in triggering rhoptry secretion (e.g., CLAMP) or components of the rhoptry exocytic machinery (e.g., Nd9, RASP2) are defective in their ability to induce the perforation. These data are consistent with a model in which the perforating agents that disrupt host cell membrane integrity during invasion - and may thereby provide the conduit for delivery of rhoptry effector proteins - are stored within the rhoptries themselves and released upon contact with the host cell.
Collapse
Affiliation(s)
- Frances Male
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Yuto Kegawa
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Paul S Blank
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Irene Jiménez-Munguía
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | - Sebastian Lourido
- Whitehead Institute, Cambridge, Massachusetts, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maryse Lebrun
- LPHI, CNRS, INSERM, Université de Montpellier, 34095 Montpellier, France
| | - Joshua Zimmerberg
- Section on Integrative Biophysics; Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
10
|
Wang J, Chai Y, Yang J, Ye Y, Luo J, Yin H, Guan G. Dissecting the role of transcription factor AP2-M in Babesia asexual replication. FASEB J 2024; 38:e70119. [PMID: 39441647 DOI: 10.1096/fj.202400127rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Babesia spp. are obligate intracellular parasites that invade host cells to complete their asexual development and transmission. Here, we identified a transcription factor AP2-M (BXIN_0799) in Babesia sp. Xinjiang (Bxj), a member of the Apicomplexan AP2 family, which regulates gene expression related to red blood cell (RBC) invasion and cell cycle progression. Our genome-wide analysis of (Cut-Tag) data shows that AP2-M specifically recognized DNA motifs in the promoters of target genes. AP2-M target genes included other AP2 gene family members and epigenetic markers, which could modulate gene expression involved in RBC invasion, merozoite morphology, and cell cycle phases, as indicated by RNA sequencing, proteomics, and single-cell RNA sequencing (scRNA-seq) data from an ap2-m gene disrupted strain (AP2-M (-)). We conclude that AP2-M appeared to contribute to the process of red blood cell invasion, maintain merozoite morphology, and cell cycle progression through GS and MS phases.
Collapse
Affiliation(s)
- Jinming Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yijun Chai
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jifei Yang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Yuxin Ye
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Jianxun Luo
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| | - Hong Yin
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guiquan Guan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Yong JJM, Gao X, Prakash P, Ang JW, Lai SK, Chen MW, Neo JJL, Lescar J, Li HY, Preiser PR. Red blood cell signaling is functionally conserved in Plasmodium invasion. iScience 2024; 27:111052. [PMID: 39635131 PMCID: PMC11615254 DOI: 10.1016/j.isci.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024] Open
Abstract
It is widely recognized that Plasmodium merozoites secrete ligands that interact with RBC receptors. Meanwhile the question on whether these interactions trigger RBC signals essential for invasion remains unresolved. There is evidence that Plasmodium falciparum parasites manipulate native RBC Ca2+ signaling to facilitate invasion. Here, we demonstrate a key role of RBC Ca2+ influx that is conserved across different Plasmodium species during invasion. RH5-basigin interaction triggers RBC cAMP increase to promote Ca2+ influx. The RBC signaling pathways can be blocked by a range of inhibitors during Plasmodium invasion, providing the evidence of a functionally conserved host cAMP-Ca2+ signaling that drives invasion and junction formation. Furthermore, RH5-basigin binding induces a pre-existing multimeric RBC membrane complex to undergo increased protein association containing the cAMP-inducing β-adrenergic receptor. Our work presents evidence of a conserved host cell signaling cascade necessary for Plasmodium invasion and will create opportunities to therapeutically target merozoite invasion.
Collapse
Affiliation(s)
- James Jia Ming Yong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiaohong Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Prem Prakash
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jing Wen Ang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jason Jun Long Neo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hoi Yeung Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
12
|
Anaguano D, Adewale-Fasoro O, Vick GW, Yanik S, Blauwkamp J, Fierro MA, Absalon S, Srinivasan P, Muralidharan V. Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion. PLoS Biol 2024; 22:e3002801. [PMID: 39292724 PMCID: PMC11441699 DOI: 10.1371/journal.pbio.3002801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/30/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024] Open
Abstract
Malaria is a global and deadly human disease caused by the apicomplexan parasites of the genus Plasmodium. Parasite proliferation within human red blood cells (RBCs) is associated with the clinical manifestations of the disease. This asexual expansion within human RBCs begins with the invasion of RBCs by P. falciparum, which is mediated by the secretion of effectors from 2 specialized club-shaped secretory organelles in merozoite-stage parasites known as rhoptries. We investigated the function of the Rhoptry Neck Protein 11 (RON11), which contains 7 transmembrane domains and calcium-binding EF-hand domains. We generated conditional mutants of the P. falciparum RON11. Knockdown of RON11 inhibits parasite growth by preventing merozoite invasion. The loss of RON11 did not lead to any defects in processing of rhoptry proteins but instead led to a decrease in the amount of rhoptry proteins. We utilized ultrastructure expansion microscopy (U-ExM) to determine the effect of RON11 knockdown on rhoptry biogenesis. Surprisingly, in the absence of RON11, fully developed merozoites had only 1 rhoptry each. The single rhoptry in RON11-deficient merozoites were morphologically typical with a bulb and a neck oriented into the apical polar ring. Moreover, rhoptry proteins are trafficked accurately to the single rhoptry in RON11-deficient parasites. These data show that in the absence of RON11, the first rhoptry is generated during schizogony but upon the start of cytokinesis, the second rhoptry never forms. Interestingly, these single-rhoptry merozoites were able to attach to host RBCs but are unable to invade RBCs. Instead, RON11-deficient merozoites continue to engage with RBC for prolonged periods eventually resulting in echinocytosis, a result of secreting the contents from the single rhoptry into the RBC. Together, our data show that RON11 triggers the de novo biogenesis of the second rhoptry and functions in RBC invasion.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Opeoluwa Adewale-Fasoro
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Grace W. Vick
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Sean Yanik
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Manuel A. Fierro
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- The Johns Hopkins Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
13
|
Kals E, Kals M, Lees RA, Introini V, Kemp A, Silvester E, Collins CR, Umrekar T, Kotar J, Cicuta P, Rayner JC. Application of optical tweezer technology reveals that PfEBA and PfRH ligands, not PfMSP1, play a central role in Plasmodium falciparum merozoite-erythrocyte attachment. PLoS Pathog 2024; 20:e1012041. [PMID: 39312588 PMCID: PMC11449297 DOI: 10.1371/journal.ppat.1012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/03/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Malaria pathogenesis and parasite multiplication depend on the ability of Plasmodium merozoites to invade human erythrocytes. Invasion is a complex multi-step process involving multiple parasite proteins which can differ between species and has been most extensively studied in P. falciparum. However, dissecting the precise role of individual proteins has to date been limited by the availability of quantifiable phenotypic assays. In this study, we apply a new approach to assigning function to invasion proteins by using optical tweezers to directly manipulate recently egressed P. falciparum merozoites and erythrocytes and quantify the strength of attachment between them, as well as the frequency with which such attachments occur. Using a range of inhibitors, antibodies, and genetically modified strains including some generated specifically for this work, we quantitated the contribution of individual P. falciparum proteins to these merozoite-erythrocyte attachment interactions. Conditional deletion of the major P. falciparum merozoite surface protein PfMSP1, long thought to play a central role in initial attachment, had no impact on the force needed to pull merozoites and erythrocytes apart, whereas interventions that disrupted the function of several members of the EBA-175 like Antigen (PfEBA) family and Reticulocyte Binding Protein Homologue (PfRH) invasion ligand families did have a significant negative impact on attachment. Deletion of individual PfEBA and PfRH ligands reinforced the known redundancy within these families, with the deletion of some ligands impacting detachment force while others did not. By comparing over 4000 individual merozoite-erythrocyte interactions in a range of conditions and strains, we establish that the PfEBA/PfRH families play a central role in P. falciparum merozoite attachment, not the major merozoite surface protein PfMSP1.
Collapse
Affiliation(s)
- Emma Kals
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Morten Kals
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca A. Lees
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Viola Introini
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
- EMBL Barcelona, Barcelona, Spain
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eleanor Silvester
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Trishant Umrekar
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Marothia M, Behl A, Maurya P, Saini M, Shoaib R, Garg S, Kumari G, Biswas S, Munjal A, Anand S, Kahlon AK, Gupta P, Biswas S, Goswami B, Abdulhameed Almuqdadi HT, Bhowmick IP, Shevtsov M, Ramalingam S, Ranganathan A, Singh S. Targeting PfProhibitin 2-Hu-Hsp70A1A complex as a unique approach towards malaria vaccine development. iScience 2024; 27:109918. [PMID: 38812541 PMCID: PMC11134565 DOI: 10.1016/j.isci.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
Malaria parasite invasion to host erythrocytes is mediated by multiple interactions between merozoite ligands and erythrocyte receptors that contribute toward the development of disease pathology. Here, we report a novel antigen Plasmodium prohibitin "PfPHB2" and identify its cognate partner "Hsp70A1A" in host erythrocyte that plays a crucial role in mediating host-parasite interaction during merozoite invasion. Using small interfering RNA (siRNA)- and glucosamine-6-phosphate riboswitch (glmS) ribozyme-mediated approach, we show that loss of Hsp70A1A in red blood cells (RBCs) or PfPHB2 in infected red blood cells (iRBCs), respectively, inhibit PfPHB2-Hsp70A1A interaction leading to invasion inhibition. Antibodies targeting PfPHB2 and monoclonal antibody therapeutics against Hsp70A1A efficiently block parasite invasion. Recombinant PfPHB2 binds to RBCs which is inhibited by anti-PfPHB2 antibody and monoclonal antibody against Hsp70A1A. The validation of PfPHB2 to serve as antigen is further supported by detection of anti-PfPHB2 antibody in patient sera. Overall, this study proposes PfPHB2 as vaccine candidate and highlights the use of monoclonal antibody therapeutics for future malaria treatment.
Collapse
Affiliation(s)
- Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Monika Saini
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Geeta Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shreeja Biswas
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Amandeep Kaur Kahlon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pragya Gupta
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Saurav Biswas
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India
| | - Bidhan Goswami
- Multidisciplinary Research Unit, Agartala Government Medical College, Agartala, Tripura (West), India
| | - Haider Thaer Abdulhameed Almuqdadi
- Department of Bioscience, Jamia Millia Islamia, New Delhi, India
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Ipsita Pal Bhowmick
- Regional Medical Research Center-Northeast Region (RMRC-NE)-ICMR, Dibrugarh 786001, India
| | - Maxim Shevtsov
- Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 St. Petersburg, Russia
| | - Sivaprakash Ramalingam
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi 110025, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Dans MG, Boulet C, Watson GM, Nguyen W, Dziekan JM, Evelyn C, Reaksudsan K, Mehra S, Razook Z, Geoghegan ND, Mlodzianoski MJ, Goodman CD, Ling DB, Jonsdottir TK, Tong J, Famodimu MT, Kristan M, Pollard H, Stewart LB, Brandner-Garrod L, Sutherland CJ, Delves MJ, McFadden GI, Barry AE, Crabb BS, de Koning-Ward TF, Rogers KL, Cowman AF, Tham WH, Sleebs BE, Gilson PR. Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1. Nat Commun 2024; 15:5219. [PMID: 38890312 PMCID: PMC11189555 DOI: 10.1038/s41467-024-49491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.
Collapse
Affiliation(s)
- Madeline G Dans
- Burnet Institute, Melbourne, VIC, 3004, Australia.
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia.
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Coralie Boulet
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, 1206, Switzerland
| | - Gabrielle M Watson
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - William Nguyen
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jerzy M Dziekan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Cindy Evelyn
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kitsanapong Reaksudsan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Somya Mehra
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Zahra Razook
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Mlodzianoski
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | - Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Joshua Tong
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
| | - Mufuliat Toyin Famodimu
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Mojca Kristan
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Harry Pollard
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Lindsay B Stewart
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Luke Brandner-Garrod
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
- Wellcome Trust Human Malaria Transmission Facility, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious Diseases, London School of Hygiene and Tropical Medicine, WC1E 7HT, London, UK
| | - Geoffrey I McFadden
- School of Biosciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alyssa E Barry
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Monash University, 3800, Melbourne, VIC, Australia
| | - Tania F de Koning-Ward
- Institute of Mental and Physical Health and Clinical Translation (IMPACT) and School of Medicine, Deakin University, Geelong, VIC, 3220, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alan F Cowman
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, VIC, 3004, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
16
|
Kanyal A, Deshmukh B, Davies H, Mamatharani DV, Farheen D, Treeck M, Karmodiya K. PfHDAC1 is an essential regulator of P. falciparum asexual proliferation and host cell invasion genes with a dynamic genomic occupancy responsive to artemisinin stress. mBio 2024; 15:e0237723. [PMID: 38709067 PMCID: PMC11237754 DOI: 10.1128/mbio.02377-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it. IMPORTANCE Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.
Collapse
Affiliation(s)
- Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Heledd Davies
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - D. V. Mamatharani
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Dilsha Farheen
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, India
| |
Collapse
|
17
|
Ngoh IA, Mane K, Manneh J, Bojang F, Jawara AS, Akenji TN, Anong DN, D’Alessandro U, Amambua-Ngwa A. Transcriptome analysis reveals molecular targets of erythrocyte invasion phenotype diversity in natural Plasmodium falciparum isolates from Cameroon. FRONTIERS IN PARASITOLOGY 2024; 3:1370615. [PMID: 39817175 PMCID: PMC11731687 DOI: 10.3389/fpara.2024.1370615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/24/2024] [Indexed: 01/18/2025]
Abstract
Further understanding of the molecular mediators of alternative RBC invasion phenotypes in endemic malaria parasites will support malaria blood-stage vaccine or drug development. This study investigated the prevalence of sialic acid (SA)-dependent and SA-independent RBC invasion pathways in endemic Plasmodium falciparum parasites from Cameroon and compared the schizont stage transcriptomes in these two groups to uncover the wider repertoire of transcriptional variation associated with the use of alternative RBC invasion pathway phenotypes. A two-color flow cytometry-based invasion-inhibition assay against RBCs treated with neuraminidase, trypsin, and chymotrypsin and deep RNA sequencing of schizont stages harvested in the first ex vivo replication cycle in culture were employed in this investigation. RBC invasion phenotypes were determined for 63 isolates from asymptomatic children with uncomplicated malaria. Approximately 80% of the isolates invaded neuraminidase-treated but not chymotrypsin-treated RBCs, representing SA-independent pathways of RBC invasion. The schizont transcriptome profiles of 16 isolates with invasion phenotypes revealed a total of 5,136 gene transcripts, with 85% of isolates predicted at schizont stages. Two distinct transcriptome profile clusters belonging to SA-dependent and SA-independent parasites were obtained by data reduction with principal component analysis. Differential analysis of gene expression between the two clusters implicated, in addition to the well-characterized adhesins, the upregulation of genes encoding proteins mediating merozoite organelle discharges as well as several conserved, virulent, merozoite-associated, and exported proteins. The latter majority have been shown to have structural and physiological relevance to RBC surface remodeling and immune evasion in malaria and thus have potential as anti-invasion targets.
Collapse
Affiliation(s)
- Ines A. Ngoh
- Department of Microbiology and Parasitology, University of Bamenda, Bambili, Cameroon
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Karim Mane
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
- Wellcome-Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jarra Manneh
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Fatoumata Bojang
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Aminata S. Jawara
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Theresia N. Akenji
- Department of Microbiology and Parasitology, University of Bamenda, Bambili, Cameroon
| | - Damian N. Anong
- Department of Microbiology and Parasitology, University of Bamenda, Bambili, Cameroon
| | - Umberto D’Alessandro
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination (DCE), Medical Research Council The Gambia Unit at the London School of Hygiene and Tropical Medicine (LSHTM), Fajara, Gambia
| |
Collapse
|
18
|
Khan S, Patel MP, Patni AD, Cha SJ. Targeting Plasmodium Life Cycle with Novel Parasite Ligands as Vaccine Antigens. Vaccines (Basel) 2024; 12:484. [PMID: 38793735 PMCID: PMC11125637 DOI: 10.3390/vaccines12050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The WHO reported an estimated 249 million malaria cases and 608,000 malaria deaths in 85 countries in 2022. A total of 94% of malaria deaths occurred in Africa, 80% of which were children under 5. In other words, one child dies every minute from malaria. The RTS,S/AS01 malaria vaccine, which uses the Plasmodium falciparum circumsporozoite protein (CSP) to target sporozoite infection of the liver, achieved modest efficacy. The Malaria Vaccine Implementation Program (MVIP), coordinated by the WHO and completed at the end of 2023, found that immunization reduced mortality by only 13%. To further reduce malaria death, the development of a more effective malaria vaccine is a high priority. Three malaria vaccine targets being considered are the sporozoite liver infection (pre-erythrocytic stage), the merozoite red blood cell infection (asexual erythrocytic stage), and the gamete/zygote mosquito infection (sexual/transmission stage). These targets involve specific ligand-receptor interactions. However, most current malaria vaccine candidates that target two major parasite population bottlenecks, liver infection, and mosquito midgut infection, do not focus on such parasite ligands. Here, we evaluate the potential of newly identified parasite ligands with a phage peptide-display technique as novel malaria vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, 1501 Mercer University Drive, Macon, GA 31207, USA; (S.K.); (M.P.P.); (A.D.P.)
| |
Collapse
|
19
|
Anaguano D, Adewale-Fasoro O, Vick GS, Yanik S, Blauwkamp J, Fierro MA, Absalon S, Srinivasan P, Muralidharan V. Plasmodium RON11 triggers biogenesis of the merozoite rhoptry pair and is essential for erythrocyte invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577654. [PMID: 38352500 PMCID: PMC10862748 DOI: 10.1101/2024.01.29.577654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Malaria is a global and deadly human disease caused by the apicomplexan parasites of the genus Plasmodium. Parasite proliferation within human red blood cells (RBC) is associated with the clinical manifestations of the disease. This asexual expansion within human RBCs, begins with the invasion of RBCs by P. falciparum, which is mediated by the secretion of effectors from two specialized club-shaped secretory organelles in merozoite-stage parasites known as rhoptries. We investigated the function of the Rhoptry Neck Protein 11 (RON11), which contains seven transmembrane domains and calcium-binding EF-hand domains. We generated conditional mutants of the P. falciparum RON11. Knockdown of RON11 inhibits parasite growth by preventing merozoite invasion. The loss of RON11 did not lead to any defects in processing of rhoptry proteins but instead led to a decrease in the amount of rhoptry proteins. We utilized ultrastructure expansion microscopy (U-ExM) to determine the effect of RON11 knockdown on rhoptry biogenesis. Surprisingly, in the absence of RON11, fully developed merozoites had only one rhoptry each. The single rhoptry in RON11 deficient merozoites were morphologically typical with a bulb and a neck oriented into the apical polar ring. Moreover, rhoptry proteins are trafficked accurately to the single rhoptry in RON11 deficient parasites. These data show that in the absence of RON11, the first rhoptry is generated during schizogony but upon the start of cytokinesis, the second rhoptry never forms. Interestingly, these single-rhoptry merozoites were able to attach to host RBCs but are unable to invade RBCs. Instead, RON11 deficient merozoites continue to engage with RBC for prolonged periods eventually resulting in echinocytosis, a result of secreting the contents from the single rhoptry into the RBC. Together, our data show that RON11 triggers the de novo biogenesis of the second rhoptry and functions in RBC invasion.
Collapse
Affiliation(s)
- David Anaguano
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Opeoluwa Adewale-Fasoro
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Grace S. Vick
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA
| | - Sean Yanik
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN
| | - Manuel A. Fierro
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis IN
| | - Prakash Srinivasan
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Vasant Muralidharan
- Department of Cellular Biology, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA
| |
Collapse
|
20
|
King NR, Martins Freire C, Touhami J, Sitbon M, Toye AM, Satchwell TJ. Basigin mediation of Plasmodium falciparum red blood cell invasion does not require its transmembrane domain or interaction with monocarboxylate transporter 1. PLoS Pathog 2024; 20:e1011989. [PMID: 38315723 PMCID: PMC10868855 DOI: 10.1371/journal.ppat.1011989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/15/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Plasmodium falciparum invasion of the red blood cell is reliant upon the essential interaction of PfRh5 with the host receptor protein basigin. Basigin exists as part of one or more multiprotein complexes, most notably through interaction with the monocarboxylate transporter MCT1. However, the potential requirement for basigin association with MCT1 and the wider role of basigin host membrane context and lateral protein associations during merozoite invasion has not been established. Using genetically manipulated in vitro derived reticulocytes, we demonstrate the ability to uncouple basigin ectodomain presentation from its transmembrane domain-mediated interactions, including with MCT1. Merozoite invasion of reticulocytes is unaffected by disruption of basigin-MCT1 interaction and by removal or replacement of the basigin transmembrane helix. Therefore, presentation of the basigin ectodomain at the red blood cell surface, independent of its native association with MCT1 or other interactions mediated by the transmembrane domain, is sufficient to facilitate merozoite invasion.
Collapse
Affiliation(s)
- Nadine R. King
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Jawida Touhami
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Marc Sitbon
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Ashley M. Toye
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
21
|
Takashima E, Otsuki H, Morita M, Ito D, Nagaoka H, Yuguchi T, Hassan I, Tsuboi T. The Need for Novel Asexual Blood-Stage Malaria Vaccine Candidates for Plasmodium falciparum. Biomolecules 2024; 14:100. [PMID: 38254700 PMCID: PMC10813614 DOI: 10.3390/biom14010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/25/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Extensive control efforts have significantly reduced malaria cases and deaths over the past two decades, but in recent years, coupled with the COVID-19 pandemic, success has stalled. The WHO has urged the implementation of a number of interventions, including vaccines. The modestly effective RTS,S/AS01 pre-erythrocytic vaccine has been recommended by the WHO for use in sub-Saharan Africa against Plasmodium falciparum in children residing in moderate to high malaria transmission regions. A second pre-erythrocytic vaccine, R21/Matrix-M, was also recommended by the WHO on 3 October 2023. However, the paucity and limitations of pre-erythrocytic vaccines highlight the need for asexual blood-stage malaria vaccines that prevent disease caused by blood-stage parasites. Few asexual blood-stage vaccine candidates have reached phase 2 clinical development, and the challenges in terms of their efficacy include antigen polymorphisms and low immunogenicity in humans. This review summarizes the history and progress of asexual blood-stage malaria vaccine development, highlighting the need for novel candidate vaccine antigens/molecules.
Collapse
Affiliation(s)
- Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (H.O.); (D.I.)
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Ifra Hassan
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan; (M.M.); (H.N.); (T.Y.); (I.H.)
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
22
|
Farrell B, Alam N, Hart MN, Jamwal A, Ragotte RJ, Walters-Morgan H, Draper SJ, Knuepfer E, Higgins MK. The PfRCR complex bridges malaria parasite and erythrocyte during invasion. Nature 2024; 625:578-584. [PMID: 38123677 PMCID: PMC10794152 DOI: 10.1038/s41586-023-06856-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023]
Abstract
The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.
Collapse
Affiliation(s)
- Brendan Farrell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Nawsad Alam
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Abhishek Jamwal
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Robert J Ragotte
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Hannah Walters-Morgan
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Pance A, Ng BL, Mwikali K, Koutsourakis M, Agu C, Rouhani FJ, Montandon R, Law F, Ponstingl H, Rayner JC. Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria. Front Cell Infect Microbiol 2023; 13:1287355. [PMID: 38173794 PMCID: PMC10762799 DOI: 10.3389/fcimb.2023.1287355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the anuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.
Collapse
Affiliation(s)
- Alena Pance
- Wellcome Sanger Institute, Cambridge, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bee L. Ng
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Chukwuma Agu
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Ruddy Montandon
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Wellcome Centre of Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances Law
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Julian C. Rayner
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Liffner B, Cepeda Diaz AK, Blauwkamp J, Anaguano D, Frolich S, Muralidharan V, Wilson DW, Dvorin JD, Absalon S. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. eLife 2023; 12:RP88088. [PMID: 38108809 PMCID: PMC10727503 DOI: 10.7554/elife.88088] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample by ~4.5×. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have cataloged 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - Ana Karla Cepeda Diaz
- Biological and Biomedical Sciences, Harvard Medical SchoolBostonUnited States
- Division of Infectious Diseases, Boston Children’s HospitalBostonUnited States
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| | - David Anaguano
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of GeorgiaAthensUnited States
| | - Sonja Frolich
- Research Centre for Infectious Diseases, School of Biological Sciences, University of AdelaideAdelaideAustralia
- Institute for Photonics and Advanced Sensing, University of AdelaideAdelaideAustralia
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of GeorgiaAthensUnited States
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of AdelaideAdelaideAustralia
- Institute for Photonics and Advanced Sensing, University of AdelaideAdelaideAustralia
- Burnet Institute, 85 Commercial RoadMelbourneAustralia
| | - Jeffrey D Dvorin
- Division of Infectious Diseases, Boston Children’s HospitalBostonUnited States
- Department of Pediatrics, Harvard Medical SchoolBostonUnited States
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of MedicineIndianapolisUnited States
| |
Collapse
|
25
|
Andrews M, Baum J, Gilson PR, Wilson DW. Bottoms up! Malaria parasite invasion the right way around. Trends Parasitol 2023; 39:1004-1013. [PMID: 37827961 DOI: 10.1016/j.pt.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
A critical part of the malaria parasite's life cycle is invasion of red blood cells (RBCs) by merozoites. Inside RBCs, the parasite forms a schizont, which undergoes segmentation to produce daughter merozoites. These cells are released, establishing cycles of invasion. Traditionally, merozoites are represented as nonmotile, egg-shaped cells that invade RBCs 'narrower end' first and pack within schizonts with this narrower end facing outwards. Here, we discuss recent evidence and re-evaluate previous data which suggest that merozoites are capable of motility and have spherical or elongated-teardrop shapes. Furthermore, merozoites invade RBCs 'wider end' first and pack within schizonts with this wider end facing outwards. We encourage the field to review this revised model and consider its implications for future studies.
Collapse
Affiliation(s)
- Mia Andrews
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Jake Baum
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW 2052, Australia; Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Paul R Gilson
- Burnet Institute, Melbourne 3004, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Burnet Institute, Melbourne 3004, Victoria, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, 5005, SA, Australia.
| |
Collapse
|
26
|
Rawat RS, Gupta A, Antil N, Bhatnagar S, Singh M, Rawat A, Prasad TSK, Sharma P. Protein kinase PfPK2 mediated signalling is critical for host erythrocyte invasion by malaria parasite. PLoS Pathog 2023; 19:e1011770. [PMID: 37988347 PMCID: PMC10662742 DOI: 10.1371/journal.ppat.1011770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
Signalling pathways in malaria parasite remain poorly defined and major reason for this is the lack of understanding of the function of majority of parasite protein kinases and phosphatases in parasite signalling and its biology. In the present study, we have elucidated the function of Protein Kinase 2 (PfPK2), which is known to be indispensable for the survival of human malaria parasite Plasmodium falciparum. We demonstrate that it is involved in the invasion of host erythrocytes, which is critical for establishing infection. In addition, PfPK2 may also be involved in the maturation of the parasite post-invasion. PfPK2 regulates the release of microneme proteins like Apical Membrane Antigen 1 (AMA1), which facilitates the formation of Tight Junction between the merozoite and host erythrocyte- a key step in the process of invasion. Comparative phosphoproteomics studies revealed that PfPK2 may be involved in regulation of several key proteins involved in invasion and signalling. Furthermore, PfPK2 regulates the generation of cGMP and the release of calcium in the parasite, which are key second messengers for the process of invasion. These and other studies have shed light on a novel signalling pathway in which PfPK2 acts as an upstream regulator of important cGMP-calcium signalling, which plays an important role in parasite invasion.
Collapse
Affiliation(s)
- Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Ankit Gupta
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Neelam Antil
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sonika Bhatnagar
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Monika Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Akanksha Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
27
|
Vallintine T, van Ooij C. Distribution of malaria parasite-derived phosphatidylcholine in the infected erythrocyte. mSphere 2023; 8:e0013123. [PMID: 37606582 PMCID: PMC10597409 DOI: 10.1128/msphere.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/05/2023] [Indexed: 08/23/2023] Open
Abstract
Malaria parasites modify their host erythrocyte in multiple ways, leading to changes in the deformability, adhesiveness, and permeability of the host erythrocyte. Most of these changes are mediated by proteins exported from the parasite to the host erythrocyte, where these proteins interact with the host cell cytoskeleton or form complexes in the plasma membrane of the infected erythrocyte. In addition, malaria parasites induce the formation of membranous compartments-the parasitophorous vacuole, the tubovesicular network (TVN), the Maurer's clefts and small vesicles-within the infected erythrocyte, a cell that is normally devoid of internal membranes. After infection, changes also occur in the composition and asymmetry of the erythrocyte plasma membrane. Although many aspects of the mechanism of export of parasite proteins have become clear, the mechanism by which these membranous compartments are formed and expanded is almost entirely unknown. To determine whether parasite-derived phospholipids play a part in these processes, we applied a metabolic labeling technique that allows phosphatidylcholine to be labeled with a fluorophore. As the host erythrocyte cannot synthesize phospholipids, within infected erythrocytes, only parasite-derived phosphatidylcholine will be labeled with this technique. The results revealed that phosphatidylcholine produced by the parasite is distributed throughout the infected erythrocyte, including the TVN and the erythrocyte plasma membrane, but not Maurer's clefts. Interestingly, labeled phospholipids were also detected in the erythrocyte plasma membrane very soon after invasion of the parasites, indicating that the parasite may add phospholipids to the host erythrocyte during invasion. IMPORTANCE Here, we describe a previously unappreciated way in which the malaria parasite interacts with the host erythrocyte, namely, by the transfer of parasite phospholipids to the erythrocyte plasma membrane. This likely has important consequences for the survival of the parasite in the host cell and the host organism. We show that parasite-derived phospholipids are transferred from the parasite to the host erythrocyte plasma membrane and that other internal membranes that are produced after the parasite has invaded the cell are produced, at least in part, using parasite-derived phospholipids. The one exception to this is the Maurer's cleft, a membranous organelle that is involved in the transport of parasite proteins to the surface of the erythrocyte. This reveals that the Maurer's cleft is produced in a different manner than the other parasite-induced membranes. Overall, these findings provide a platform for the study of a new aspect of the host-parasite interaction.
Collapse
Affiliation(s)
- Tansy Vallintine
- Department of Infection Biology, Faculty of Infectious Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Department of Infection Biology, Faculty of Infectious Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
28
|
Kioko M, Pance A, Mwangi S, Goulding D, Kemp A, Rono M, Ochola-Oyier LI, Bull PC, Bejon P, Rayner JC, Abdi AI. Extracellular vesicles could be a putative posttranscriptional regulatory mechanism that shapes intracellular RNA levels in Plasmodium falciparum. Nat Commun 2023; 14:6447. [PMID: 37833314 PMCID: PMC10575976 DOI: 10.1038/s41467-023-42103-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Plasmodium falciparum secretes extracellular vesicles (PfEVs) that contain parasite-derived RNA. However, the significance of the secreted RNA remains unexplored. Here, we compare secreted and intracellular RNA from asexual cultures of six P. falciparum lines. We find that secretion of RNA via extracellular vesicles is not only periodic throughout the asexual intraerythrocytic developmental cycle but is also highly conserved across P. falciparum isolates. We further demonstrate that the phases of RNA secreted via extracellular vesicles are discernibly shifted compared to those of the intracellular RNA within the secreting whole parasite. Finally, transcripts of genes with no known function during the asexual intraerythrocytic developmental cycle are enriched in PfEVs compared to the whole parasite. We conclude that the secretion of extracellular vesicles could be a putative posttranscriptional RNA regulation mechanism that is part of or synergise the classic RNA decay processes to maintain intracellular RNA levels in P. falciparum.
Collapse
Affiliation(s)
- Mwikali Kioko
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Open University, Milton Keynes, UK
| | - Alena Pance
- Pathogens and Microbes Programme, Wellcome Sanger Institute, Cambridge, UK
- School of Life and Medical Science, University of Hertfordshire, Hatfield, UK
| | - Shaban Mwangi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - David Goulding
- Pathogens and Microbes Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Alison Kemp
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Martin Rono
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| | | | - Pete C Bull
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Philip Bejon
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julian C Rayner
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Abdirahman I Abdi
- Bioscience Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
29
|
Liffner B, Cepeda Diaz AK, Blauwkamp J, Anaguano D, Frölich S, Muralidharan V, Wilson DW, Dvorin J, Absalon S. Atlas of Plasmodium falciparum intraerythrocytic development using expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533773. [PMID: 36993606 PMCID: PMC10055389 DOI: 10.1101/2023.03.22.533773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Apicomplexan parasites exhibit tremendous diversity in much of their fundamental cell biology, but study of these organisms using light microscopy is often hindered by their small size. Ultrastructural expansion microscopy (U-ExM) is a microscopy preparation method that physically expands the sample ~4.5x. Here, we apply U-ExM to the human malaria parasite Plasmodium falciparum during the asexual blood stage of its lifecycle to understand how this parasite is organized in three-dimensions. Using a combination of dye-conjugated reagents and immunostaining, we have catalogued 13 different P. falciparum structures or organelles across the intraerythrocytic development of this parasite and made multiple observations about fundamental parasite cell biology. We describe that the outer centriolar plaque and its associated proteins anchor the nucleus to the parasite plasma membrane during mitosis. Furthermore, the rhoptries, Golgi, basal complex, and inner membrane complex, which form around this anchoring site while nuclei are still dividing, are concurrently segregated and maintain an association to the outer centriolar plaque until the start of segmentation. We also show that the mitochondrion and apicoplast undergo sequential fission events while maintaining an association with the outer centriolar plaque during cytokinesis. Collectively, this study represents the most detailed ultrastructural analysis of P. falciparum during its intraerythrocytic development to date, and sheds light on multiple poorly understood aspects of its organelle biogenesis and fundamental cell biology.
Collapse
Affiliation(s)
- Benjamin Liffner
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ana Karla Cepeda Diaz
- Biological and Biomedical Sciences, Harvard Medical School, Boston MA, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston MA, USA
| | - James Blauwkamp
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David Anaguano
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sonja Frölich
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA, Australia
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, Australia
| | - Jeffrey Dvorin
- Division of Infectious Diseases, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sabrina Absalon
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
30
|
Jamwal A, Constantin CF, Hirschi S, Henrich S, Bildl W, Fakler B, Draper SJ, Schulte U, Higgins MK. Erythrocyte invasion-neutralising antibodies prevent Plasmodium falciparum RH5 from binding to basigin-containing membrane protein complexes. eLife 2023; 12:e83681. [PMID: 37796723 PMCID: PMC10569788 DOI: 10.7554/elife.83681] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Basigin is an essential host receptor for invasion of Plasmodium falciparum into human erythrocytes, interacting with parasite surface protein PfRH5. PfRH5 is a leading blood-stage malaria vaccine candidate and a target of growth-inhibitory antibodies. Here, we show that erythrocyte basigin is exclusively found in one of two macromolecular complexes, bound either to plasma membrane Ca2+-ATPase 1/4 (PMCA1/4) or to monocarboxylate transporter 1 (MCT1). PfRH5 binds to each of these complexes with a higher affinity than to isolated basigin ectodomain, making it likely that these are the physiological targets of PfRH5. PMCA-mediated Ca2+ export is not affected by PfRH5, making it unlikely that this is the mechanism underlying changes in calcium flux at the interface between an erythrocyte and the invading parasite. However, our studies rationalise the function of the most effective growth-inhibitory antibodies targeting PfRH5. While these antibodies do not reduce the binding of PfRH5 to monomeric basigin, they do reduce its binding to basigin-PMCA and basigin-MCT complexes. This indicates that the most effective PfRH5-targeting antibodies inhibit growth by sterically blocking the essential interaction of PfRH5 with basigin in its physiological context.
Collapse
Affiliation(s)
- Abhishek Jamwal
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | | | - Stephan Hirschi
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | - Sebastian Henrich
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSFreiburgGermany
| | - Simon J Draper
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of FreiburgFreiburgGermany
- Signalling Research Centres BIOSS and CIBSFreiburgGermany
| | - Matthew K Higgins
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
31
|
Ling DB, Nguyen W, Looker O, Razook Z, McCann K, Barry AE, Scheurer C, Wittlin S, Famodimu MT, Delves MJ, Bullen HE, Crabb BS, Sleebs BE, Gilson PR. A Pyridyl-Furan Series Developed from the Open Global Health Library Block Red Blood Cell Invasion and Protein Trafficking in Plasmodium falciparum through Potential Inhibition of the Parasite's PI4KIIIB Enzyme. ACS Infect Dis 2023; 9:1695-1710. [PMID: 37639221 PMCID: PMC10496428 DOI: 10.1021/acsinfecdis.3c00138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 08/29/2023]
Abstract
With the resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany, of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250 was prioritized for further optimization. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound, MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting that this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite's life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB that clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies that showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.
Collapse
Affiliation(s)
- Dawson B. Ling
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| | - William Nguyen
- The Walter and Eliza Hall Institute of
Medical Research, Melbourne, Victoria3052,
Australia
- Department of Medical Biology, The
University of Melbourne, Parkville, Victoria3010,
Australia
| | - Oliver Looker
- Burnet Institute,
Melbourne, Victoria3004, Australia
| | - Zahra Razook
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Kirsty McCann
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Alyssa E. Barry
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Christian Scheurer
- Swiss Tropical and Public Health
Institute, Allschwil, 4123Switzerland
- University of Basel, Basel,
4001Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health
Institute, Allschwil, 4123Switzerland
- University of Basel, Basel,
4001Switzerland
| | - Mufuliat Toyin Famodimu
- Department of Infection Biology, Faculty of Infectious
Diseases, London School of Hygiene and Tropical Medicine, Kepel
Street, London, WC1E 7HT, U.K.
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious
Diseases, London School of Hygiene and Tropical Medicine, Kepel
Street, London, WC1E 7HT, U.K.
| | - Hayley E. Bullen
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| | - Brendan S. Crabb
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
- Department of Immunology and Pathology,
Monash University, Melbourne, Victoria3800,
Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of
Medical Research, Melbourne, Victoria3052,
Australia
- Department of Medical Biology, The
University of Melbourne, Parkville, Victoria3010,
Australia
| | - Paul R. Gilson
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| |
Collapse
|
32
|
Weiss GE, Ragotte RJ, Quinkert D, Lias AM, Dans MG, Boulet C, Looker O, Ventura OD, Williams BG, Crabb BS, Draper SJ, Gilson PR. The dual action of human antibodies specific to Plasmodium falciparum PfRH5 and PfCyRPA: Blocking invasion and inactivating extracellular merozoites. PLoS Pathog 2023; 19:e1011182. [PMID: 37713419 PMCID: PMC10529537 DOI: 10.1371/journal.ppat.1011182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/27/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023] Open
Abstract
The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the current leading blood-stage malaria vaccine candidate. PfRH5 functions as part of the pentameric PCRCR complex containing PTRAMP, CSS, PfCyRPA and PfRIPR, all of which are essential for infection of human red blood cells (RBCs). To trigger RBC invasion, PfRH5 engages with RBC protein basigin in a step termed the RH5-basigin binding stage. Although we know increasingly more about how antibodies specific for PfRH5 can block invasion, much less is known about how antibodies recognizing other members of the PCRCR complex can inhibit invasion. To address this, we performed live cell imaging using monoclonal antibodies (mAbs) which bind PfRH5 and PfCyRPA. We measured the degree and timing of the invasion inhibition, the stage at which it occurred, as well as subsequent events. We show that parasite invasion is blocked by individual mAbs, and the degree of inhibition is enhanced when combining a mAb specific for PfRH5 with one binding PfCyRPA. In addition to directly establishing the invasion-blocking capacity of the mAbs, we identified a secondary action of certain mAbs on extracellular parasites that had not yet invaded where the mAbs appeared to inactivate the parasites by triggering a developmental pathway normally only seen after successful invasion. These findings suggest that epitopes within the PfCyRPA-PfRH5 sub-complex that elicit these dual responses may be more effective immunogens than neighboring epitopes by both blocking parasites from invading and rapidly inactivating extracellular parasites. These two protective mechanisms, prevention of invasion and inactivation of uninvaded parasites, resulting from antibody to a single epitope indicate a possible route to the development of more effective vaccines.
Collapse
Affiliation(s)
- Greta E. Weiss
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Robert J. Ragotte
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Amelia M. Lias
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Madeline G. Dans
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Coralie Boulet
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Oliver Looker
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Olivia D. Ventura
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Barnabas G. Williams
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Brendan S. Crabb
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Paul R. Gilson
- Burnet Institute, 85 Commercial Road, Melbourne, Victoria, Australia
- The University of Melbourne, Grattan Street, Parkville, Victoria, Australia
| |
Collapse
|
33
|
Collier S, Pietsch E, Dans M, Ling D, Tavella TA, Lopaticki S, Marapana DS, Shibu MA, Andrew D, Tiash S, McMillan PJ, Gilson P, Tilley L, Dixon MWA. Plasmodium falciparum formins are essential for invasion and sexual stage development. Commun Biol 2023; 6:861. [PMID: 37596377 PMCID: PMC10439200 DOI: 10.1038/s42003-023-05233-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
The malaria parasite uses actin-based mechanisms throughout its lifecycle to control a range of biological processes including intracellular trafficking, gene regulation, parasite motility and invasion. In this work we assign functions to the Plasmodium falciparum formins 1 and 2 (FRM1 and FRM2) proteins in asexual and sexual blood stage development. We show that FRM1 is essential for merozoite invasion and FRM2 is required for efficient cell division. We also observed divergent functions for FRM1 and FRM2 in gametocyte development. Conditional deletion of FRM1 leads to a delay in gametocyte stage progression. We show that FRM2 controls the actin and microtubule cytoskeletons in developing gametocytes, with premature removal of the protein resulting in a loss of transmissible stage V gametocytes. Lastly, we show that targeting formin proteins with the small molecule inhibitor of formin homology domain 2 (SMIFH2) leads to a multistage block in asexual and sexual stage parasite development.
Collapse
Affiliation(s)
- Sophie Collier
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Emma Pietsch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Madeline Dans
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Dawson Ling
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Tatyana A Tavella
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sash Lopaticki
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Danushka S Marapana
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Mohini A Shibu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Snigdha Tiash
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul J McMillan
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul Gilson
- The Macfarlane Burnet Institute for Medical Research, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Matthew W A Dixon
- Department of Infectious Diseases, Doherty Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
- Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
34
|
Gao J, Jiang N, Zhang Y, Chen R, Feng Y, Sang X, Chen Q. A heparin-binding protein of Plasmodium berghei is associated with merozoite invasion of erythrocytes. Parasit Vectors 2023; 16:277. [PMID: 37563696 PMCID: PMC10416508 DOI: 10.1186/s13071-023-05896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Malaria caused by Plasmodium species is a prominent public health concern worldwide, and the infection of a malarial parasite is transmitted to humans through the saliva of female Anopheles mosquitoes. Plasmodium invasion is a rapid and complex process. A critical step in the blood-stage infection of malarial parasites is the adhesion of merozoites to red blood cells (RBCs), which involves interactions between parasite ligands and receptors. The present study aimed to investigate a previously uncharacterized protein, PbMAP1 (encoded by PBANKA_1425900), which facilitates Plasmodium berghei ANKA (PbANKA) merozoite attachment and invasion via the heparan sulfate receptor. METHODS PbMAP1 protein expression was investigated at the asexual blood stage, and its specific binding activity to both heparan sulfate and RBCs was analyzed using western blotting, immunofluorescence, and flow cytometry. Furthermore, a PbMAP1-knockout parasitic strain was established using the double-crossover method to investigate its pathogenicity in mice. RESULTS The PbMAP1 protein, primarily localized to the P. berghei membrane at the merozoite stage, is involved in binding to heparan sulfate-like receptor on RBC surface of during merozoite invasion. Furthermore, mice immunized with the PbMAP1 protein or passively immunized with sera from PbMAP1-immunized mice exhibited increased immunity against lethal challenge. The PbMAP1-knockout parasite exhibited reduced pathogenicity. CONCLUSIONS PbMAP1 is involved in the binding of P. berghei to heparan sulfate-like receptors on RBC surface during merozoite invasion.
Collapse
Affiliation(s)
- Junying Gao
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China.
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
35
|
Núñez A, Ntumngia FB, Guerra Y, Adams JH, Sáenz FE. Genetic diversity and natural selection of Plasmodium vivax reticulocyte invasion genes in Ecuador. Malar J 2023; 22:225. [PMID: 37537581 PMCID: PMC10398936 DOI: 10.1186/s12936-023-04640-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Knowledge of the diversity of invasion ligands in malaria parasites in endemic regions is essential to understand how natural selection influences genetic diversity of these ligands and their feasibility as possible targets for future vaccine development. In this study the diversity of four genes for merozoite invasion ligands was studied in Ecuadorian isolates of Plasmodium vivax. METHODS Eighty-eight samples from P. vivax infected individuals from the Coast and Amazon region of Ecuador were obtained between 2012 and 2015. The merozoite invasion genes pvmsp-1-19, pvdbpII, pvrbp1a-2 and pvama1 were amplified, sequenced, and compared to the Sal-1 strain. Polymorphisms were mapped and genetic relationships between haplotypes were determined. RESULTS Only one nonsynonymous polymorphism was detected in pvmsp-1-19, while 44 nonsynonymous polymorphisms were detected in pvdbpII, 56 in pvrbp1a-2 and 33 in pvama1. While haplotypes appeared to be more related within each area of study and there was less relationship between parasites of the coastal and Amazon regions of the country, diversification processes were observed in the two Amazon regions. The highest haplotypic diversity for most genes occurred in the East Amazon of the country. The high diversity observed in Ecuadorian samples is closer to Brazilian and Venezuelan isolates, but lower than reported in other endemic regions. In addition, departure from neutrality was observed in Ecuadorian pvama1. Polymorphisms for pvdbpII and pvama1 were associated to B-cell epitopes. CONCLUSIONS pvdbpII and pvama1 genetic diversity found in Ecuadorian P. vivax was very similar to that encountered in other malaria endemic countries with varying transmission levels and segregated by geographic region. The highest diversity of P. vivax invasion genes in Ecuador was found in the Amazonian region. Although selection appeared to have small effect on pvdbpII and pvrbp1a-2, pvama1 was influenced by significant balancing selection.
Collapse
Affiliation(s)
- Andrés Núñez
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Francis B Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, FL, Tampa, USA
| | - Yasel Guerra
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
| | - John H Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, FL, Tampa, USA
| | - Fabián E Sáenz
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.
| |
Collapse
|
36
|
Hart MN, Mohring F, DonVito SM, Thomas JA, Muller-Sienerth N, Wright GJ, Knuepfer E, Saibil HR, Moon RW. Sequential roles for red blood cell binding proteins enable phased commitment to invasion for malaria parasites. Nat Commun 2023; 14:4619. [PMID: 37528099 PMCID: PMC10393984 DOI: 10.1038/s41467-023-40357-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Invasion of red blood cells (RBCs) by Plasmodium merozoites is critical to their continued survival within the host. Two major protein families, the Duffy binding-like proteins (DBPs/EBAs) and the reticulocyte binding like proteins (RBLs/RHs) have been studied extensively in P. falciparum and are hypothesized to have overlapping, but critical roles just prior to host cell entry. The zoonotic malaria parasite, P. knowlesi, has larger invasive merozoites and contains a smaller, less redundant, DBP and RBL repertoire than P. falciparum. One DBP (DBPα) and one RBL, normocyte binding protein Xa (NBPXa) are essential for invasion of human RBCs. Taking advantage of the unique biological features of P. knowlesi and iterative CRISPR-Cas9 genome editing, we determine the precise order of key invasion milestones and demonstrate distinct roles for each family. These distinct roles support a mechanism for phased commitment to invasion and can be targeted synergistically with invasion inhibitory antibodies.
Collapse
Affiliation(s)
- Melissa N Hart
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
| | - Franziska Mohring
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Sophia M DonVito
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - James A Thomas
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | | | - Gavin J Wright
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ellen Knuepfer
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
- Malaria Parasitology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Helen R Saibil
- ISMB, Biological Sciences, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
37
|
Triglia T, Scally SW, Seager BA, Pasternak M, Dagley LF, Cowman AF. Plasmepsin X activates the PCRCR complex of Plasmodium falciparum by processing PfRh5 for erythrocyte invasion. Nat Commun 2023; 14:2219. [PMID: 37072430 PMCID: PMC10113190 DOI: 10.1038/s41467-023-37890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023] Open
Abstract
Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology.
Collapse
Affiliation(s)
- Tony Triglia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Stephen W Scally
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Benjamin A Seager
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Michał Pasternak
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
38
|
Lohia R, Allegrini B, Berry L, Guizouarn H, Cerdan R, Abkarian M, Douguet D, Honoré E, Wengelnik K. Pharmacological activation of PIEZO1 in human red blood cells prevents Plasmodium falciparum invasion. Cell Mol Life Sci 2023; 80:124. [PMID: 37071200 PMCID: PMC10113305 DOI: 10.1007/s00018-023-04773-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
An inherited gain-of-function variant (E756del) in the mechanosensitive cationic channel PIEZO1 was shown to confer a significant protection against severe malaria. Here, we demonstrate in vitro that human red blood cell (RBC) infection by Plasmodium falciparum is prevented by the pharmacological activation of PIEZO1. Yoda1 causes an increase in intracellular calcium associated with rapid echinocytosis that inhibits RBC invasion, without affecting parasite intraerythrocytic growth, division or egress. Notably, Yoda1 treatment significantly decreases merozoite attachment and subsequent RBC deformation. Intracellular Na+/K+ imbalance is unrelated to the mechanism of protection, although delayed RBC dehydration observed in the standard parasite culture medium RPMI/albumax further enhances the resistance to malaria conferred by Yoda1. The chemically unrelated Jedi2 PIEZO1 activator similarly causes echinocytosis and RBC dehydration associated with resistance to malaria invasion. Spiky outward membrane projections are anticipated to reduce the effective surface area required for both merozoite attachment and internalization upon pharmacological activation of PIEZO1. Globally, our findings indicate that the loss of the typical biconcave discoid shape of RBCs, together with an altered optimal surface to volume ratio, induced by PIEZO1 pharmacological activation prevent efficient P. falciparum invasion.
Collapse
Affiliation(s)
- Rakhee Lohia
- LPHI, University of Montpellier, CNRS UMR5294, Montpellier, France
| | | | - Laurence Berry
- LPHI, University of Montpellier, CNRS UMR5294, Montpellier, France
| | | | - Rachel Cerdan
- LPHI, University of Montpellier, CNRS UMR5294, Montpellier, France
| | - Manouk Abkarian
- Centre de Biologie Structurale, CNRS UMR5048, INSERM U1054, University of Montpellier, Montpellier, France
| | - Dominique Douguet
- IPMC, University Côte d'Azur, CNRS, INSERM, UMR7275, Labex ICST, Valbonne, France
| | - Eric Honoré
- IPMC, University Côte d'Azur, CNRS, INSERM, UMR7275, Labex ICST, Valbonne, France.
| | - Kai Wengelnik
- LPHI, University of Montpellier, CNRS UMR5294, INSERM, Montpellier, France.
| |
Collapse
|
39
|
Dans MG, Piirainen H, Nguyen W, Khurana S, Mehra S, Razook Z, Geoghegan ND, Dawson AT, Das S, Parkyn Schneider M, Jonsdottir TK, Gabriela M, Gancheva MR, Tonkin CJ, Mollard V, Goodman CD, McFadden GI, Wilson DW, Rogers KL, Barry AE, Crabb BS, de Koning-Ward TF, Sleebs BE, Kursula I, Gilson PR. Sulfonylpiperazine compounds prevent Plasmodium falciparum invasion of red blood cells through interference with actin-1/profilin dynamics. PLoS Biol 2023; 21:e3002066. [PMID: 37053271 PMCID: PMC10128974 DOI: 10.1371/journal.pbio.3002066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/25/2023] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
With emerging resistance to frontline treatments, it is vital that new antimalarial drugs are identified to target Plasmodium falciparum. We have recently described a compound, MMV020291, as a specific inhibitor of red blood cell (RBC) invasion, and have generated analogues with improved potency. Here, we generated resistance to MMV020291 and performed whole genome sequencing of 3 MMV020291-resistant populations. This revealed 3 nonsynonymous single nucleotide polymorphisms in 2 genes; 2 in profilin (N154Y, K124N) and a third one in actin-1 (M356L). Using CRISPR-Cas9, we engineered these mutations into wild-type parasites, which rendered them resistant to MMV020291. We demonstrate that MMV020291 reduces actin polymerisation that is required by the merozoite stage parasites to invade RBCs. Additionally, the series inhibits the actin-1-dependent process of apicoplast segregation, leading to a delayed death phenotype. In vitro cosedimentation experiments using recombinant P. falciparum proteins indicate that potent MMV020291 analogues disrupt the formation of filamentous actin in the presence of profilin. Altogether, this study identifies the first compound series interfering with the actin-1/profilin interaction in P. falciparum and paves the way for future antimalarial development against the highly dynamic process of actin polymerisation.
Collapse
Affiliation(s)
- Madeline G. Dans
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Henni Piirainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - William Nguyen
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Sachin Khurana
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Somya Mehra
- Burnet Institute, Melbourne, Victoria, Australia
| | - Zahra Razook
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | - Sujaan Das
- Ludwig Maximilian University, Faculty of Veterinary Medicine, Munich, Germany
| | | | - Thorey K. Jonsdottir
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Maria R. Gancheva
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, Australia
| | | | - Vanessa Mollard
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Danny W. Wilson
- Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Alyssa E. Barry
- Burnet Institute, Melbourne, Victoria, Australia
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tania F. de Koning-Ward
- School of Medicine and Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Victoria, Australia
| | - Brad E. Sleebs
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Inari Kursula
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
40
|
Msosa C, Abdalrahman T, Franz T. An analytical model describing the mechanics of erythrocyte membrane wrapping during active invasion of a plasmodium falciparum merozoite. J Mech Behav Biomed Mater 2023; 140:105685. [PMID: 36746046 DOI: 10.1016/j.jmbbm.2023.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
The invasion of a merozoite into an erythrocyte by membrane wrapping is a hallmark of malaria pathogenesis. The invasion involves biomechanical interactions whereby the merozoite exerts actomyosin-based forces to push itself into and through the erythrocyte membrane while concurrently inducing biochemical damage to the erythrocyte membrane. Whereas the biochemical damage process has been investigated, the detailed mechanistic understanding of the invasion mechanics remains limited. Thus, the current study aimed to develop a mathematical model describing the mechanical factors involved in the merozoite invasion into an erythrocyte and explore the invasion mechanics. A shell theory model was developed comprising constitutive, equilibrium and governing equations of the deformable erythrocyte membrane to predict membrane mechanics during the wrapping of an entire non-deformable ellipsoidal merozoite. Predicted parameters include principal erythrocyte membrane deformations and stresses, wrapping and indentation forces, and indentation work. The numerical investigations considered two limits for the erythrocyte membrane deformation during wrapping (4% and 51% areal strain) and erythrocyte membrane phosphorylation (decrease of membrane elastic modulus from 1 to 0.5 kPa). For an intact erythrocyte, the maximum indentation force was 1 and 8.5 pN, and the indentation work was 1.92 × 10-18 and 1.40 × 10-17 J for 4% and 51% areal membrane strain. Phosphorylation damage in the erythrocyte membrane reduced the required indentation work by 50% to 0.97 × 10-18 and 0.70 × 10-17 J for 4% and 51% areal strain. The current study demonstrated the developed model's feasibility to provide new knowledge on the physical mechanisms of the merozoite invasion process that contribute to the invasion efficiency towards the discovery of new invasion-blocking anti-malaria drugs.
Collapse
Affiliation(s)
- Chimwemwe Msosa
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, 7925, South Africa; Faculty of Engineering, Department of Electrical Engineering, Malawi University of Business and Applied Sciences, Blantyre, Malawi.
| | - Tamer Abdalrahman
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, 7925, South Africa; Computational Mechanobiology, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin, Berlin, 13353, Germany
| | - Thomas Franz
- Biomedical Engineering Research Centre, Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Observatory, 7925, South Africa; Bioengineering Science Research Group, Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO171BJ, UK
| |
Collapse
|
41
|
Björnsson KH, Barfod L. A complex equation - adding to Plasmodium falciparum invasion. Trends Parasitol 2023; 39:160-162. [PMID: 36682939 DOI: 10.1016/j.pt.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
The Plasmodium falciparum invasion complex - consisting of the prime blood-stage vaccine candidates PfRH5, PfCyRPA and PfRipr - is essential and conserved. New data from Scally et al. reveal that the complex consists of two additional proteins, adding important knowledge to the current understanding of the biology behind the invasion process.
Collapse
Affiliation(s)
- Kasper H Björnsson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Elsworth B, Keroack C, Rezvani Y, Paul A, Barazorda K, Tennessen J, Sack S, Moreira C, Gubbels MJ, Meyers M, Zarringhalam K, Duraisingh M. Babesia divergens egress from host cells is orchestrated by essential and druggable kinases and proteases. RESEARCH SQUARE 2023:rs.3.rs-2553721. [PMID: 36909484 PMCID: PMC10002801 DOI: 10.21203/rs.3.rs-2553721/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Apicomplexan egress from host cells is fundamental to the spread of infection and is poorly characterized in Babesia spp., parasites of veterinary importance and emerging zoonoses. Through the use of video microscopy, transcriptomics and chemical genetics, we have implicated signaling, proteases and gliding motility as key drivers of egress by Babesia divergens. We developed reverse genetics to perform a knockdown screen of putative mediators of egress, identifying kinases and proteases involved in distinct steps of egress (ASP3, PKG and CDPK4) and invasion (ASP2, ASP3 and PKG). Inhibition of egress leads to continued intracellular replication, indicating exit from the replication cycle is uncoupled from egress. Chemical genetics validated PKG, ASP2 and ASP3 as druggable targets in Babesia spp. All taken together, egress in B. divergens more closely resembles T. gondii than the more evolutionarily-related Plasmodium spp. We have established a molecular framework for biological and translational studies of B. divergens egress.
Collapse
|
43
|
Defining species-specific and conserved interactions of apical membrane protein 1 during erythrocyte invasion in malaria to inform multi-species vaccines. Cell Mol Life Sci 2023; 80:74. [PMID: 36847896 PMCID: PMC9969379 DOI: 10.1007/s00018-023-04712-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 03/01/2023]
Abstract
Plasmodium falciparum and P. vivax are the major causes of human malaria, and P. knowlesi is an important additional cause in SE Asia. Binding of apical membrane antigen 1 (AMA1) to rhoptry neck protein 2 (RON2) was thought to be essential for merozoite invasion of erythrocytes by Plasmodium spp. Our findings reveal that P. falciparum and P. vivax have diverged and show species-specific binding of AMA1 to RON2, determined by a β-hairpin loop in RON2 and specific residues in AMA1 Loop1E. In contrast, cross-species binding of AMA1 to RON2 is retained between P. vivax and P. knowlesi. Mutation of specific amino acids in AMA1 Loop1E in P. falciparum or P. vivax ablated RON2 binding without impacting erythrocyte invasion. This indicates that the AMA1-RON2-loop interaction is not essential for invasion and additional AMA1 interactions are involved. Mutations in AMA1 that disrupt RON2 binding also enable escape of invasion inhibitory antibodies. Therefore, vaccines and therapeutics will need to be broader than targeting only the AMA1-RON2 interaction. Antibodies targeting AMA1 domain 3 had greater invasion-inhibitory activity when RON2-loop binding was ablated, suggesting this domain is a promising additional target for vaccine development. Targeting multiple AMA1 interactions involved in invasion may enable vaccines that generate more potent inhibitory antibodies and address the capacity for immune evasion. Findings on specific residues for invasion function and species divergence and conservation can inform novel vaccines and therapeutics against malaria caused by three species, including the potential for cross-species vaccines.
Collapse
|
44
|
He Z, Yu C, Pan Z, Li X, Zhang X, Huang Q, Liao X, Hu J, Zeng F, Ru L, Yu W, Xu Q, Song J, Liang J. Erythrocyte membrane with CLIPPKF as biomimetic nanodecoy traps merozoites and attaches to infected red blood cells to prevent Plasmodium infection. J Nanobiotechnology 2023; 21:15. [PMID: 36647056 PMCID: PMC9841648 DOI: 10.1186/s12951-022-01709-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 11/14/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Malaria remains a serious threat to global public health. With poor efficacies of vaccines and the emergence of drug resistance, novel strategies to control malaria are urgently needed. RESULTS We developed erythrocyte membrane-camouflaged nanoparticles loaded with artemether based on the growth characteristics of Plasmodium. The nanoparticles could capture the merozoites to inhibit them from repeatedly infecting normal erythrocytes, owing to the interactions between merozoites and heparin-like molecules on the erythrocyte membrane. Modification with a phosphatidylserine-targeting peptide (CLIPPKF) improved the drug accumulation in infected red blood cells (iRBCs) from the externalized phosphatidylserine induced by Plasmodium infection. In Plasmodium berghei ANKA strain (pbANKA)-infected C57BL/6 mice, the nanoparticles significantly attenuated Plasmodium-induced inflammation, apoptosis, and anemia. We observed reduced weight variation and prolonged survival time in pbANKA-challenged mice, and the nanoparticles showed good biocompatibility and negligible cytotoxicity. CONCLUSION Erythrocyte membrane-camouflaged nanoparticles loaded with artemether were shown to provide safe and effective protection against Plasmodium infection.
Collapse
Affiliation(s)
- Zhouqing He
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Chuyi Yu
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Ziyi Pan
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Xiaobo Li
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Xiangxiang Zhang
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Qijing Huang
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Xingcheng Liao
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Jiaoting Hu
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Feng Zeng
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Li Ru
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Wanlin Yu
- grid.413402.00000 0004 6068 0570Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120 China
| | - Qin Xu
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Jianping Song
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Jianming Liang
- grid.411866.c0000 0000 8848 7685Artemisinin Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.8547.e0000 0001 0125 2443Key Laboratory of Smart Drug Delivery, School of Pharmacy, Ministry of Education, Fudan University, Shanghai, 201203 China
| |
Collapse
|
45
|
Healer J, Thompson JK, Mackwell KL, Browne CD, Seager BA, Ngo A, Lowes KN, Silk SE, Pulido D, King LDW, Christen JM, Noe AR, Kotraiah V, Masendycz PJ, Rajagopalan R, Lucas L, Stanford MM, Soisson L, Diggs C, Miller R, Youll S, Wycherley K, Draper SJ, Cowman AF. RH5.1-CyRPA-Ripr antigen combination vaccine shows little improvement over RH5.1 in a preclinical setting. Front Cell Infect Microbiol 2022; 12:1049065. [PMID: 36605129 PMCID: PMC9807911 DOI: 10.3389/fcimb.2022.1049065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background RH5 is the leading vaccine candidate for the Plasmodium falciparum blood stage and has shown impact on parasite growth in the blood in a human clinical trial. RH5 binds to Ripr and CyRPA at the apical end of the invasive merozoite form, and this complex, designated RCR, is essential for entry into human erythrocytes. RH5 has advanced to human clinical trials, and the impact on parasite growth in the blood was encouraging but modest. This study assessed the potential of a protein-in-adjuvant blood stage malaria vaccine based on a combination of RH5, Ripr and CyRPA to provide improved neutralizing activity against P. falciparum in vitro. Methods Mice were immunized with the individual RCR antigens to down select the best performing adjuvant formulation and rats were immunized with the individual RCR antigens to select the correct antigen dose. A second cohort of rats were immunized with single, double and triple antigen combinations to assess immunogenicity and parasite neutralizing activity in growth inhibition assays. Results The DPX® platform was identified as the best performing formulation in potentiating P. falciparum inhibitory antibody responses to these antigens. The three antigens derived from RH5, Ripr and CyRPA proteins formulated with DPX induced highly inhibitory parasite neutralising antibodies. Notably, RH5 either as a single antigen or in combination with Ripr and/or CyRPA, induced inhibitory antibodies that outperformed CyRPA, Ripr. Conclusion An RCR combination vaccine may not induce substantially improved protective immunity as compared with RH5 as a single immunogen in a clinical setting and leaves the development pathway open for other antigens to be combined with RH5 as a next generation malaria vaccine.
Collapse
Affiliation(s)
- Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer K. Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Karen L. Mackwell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Benjamin A. Seager
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Anna Ngo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kym N. Lowes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia
| | - Sarah E. Silk
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Pulido
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lloyd D. W. King
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - Amy R. Noe
- Leidos Life Sciences, Frederick, MD, United States
| | | | - Paul J. Masendycz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | | | | | - Lorraine Soisson
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Carter Diggs
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Robin Miller
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Susan Youll
- Malaria Vaccine Development Program, United States Agency for International Development (USAID), Washington, DC, United States
| | - Kaye Wycherley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Simon J. Draper
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,University of Melbourne, Melbourne, VIC, Australia,*Correspondence: Alan F. Cowman,
| |
Collapse
|
46
|
Barnes CBG, Dans MG, Jonsdottir TK, Crabb BS, Gilson PR. PfATP4 inhibitors in the Medicines for Malaria Venture Malaria Box and Pathogen Box block the schizont-to-ring transition by inhibiting egress rather than invasion. Front Cell Infect Microbiol 2022; 12:1060202. [PMID: 36530423 PMCID: PMC9747762 DOI: 10.3389/fcimb.2022.1060202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
The cation efflux pump Plasmodium falciparum ATPase 4 (PfATP4) maintains Na+ homeostasis in malaria parasites and has been implicated in the mechanism of action of many structurally diverse antimalarial agents, including >7% of the antimalarial compounds in the Medicines for Malaria Venture's 'Malaria Box' and 'Pathogen Box'. Recent screens of the 'Malaria Box' and 'Pathogen Box' revealed that many PfATP4 inhibitors prevent parasites from exiting their host red blood cell (egress) or entering new host cells (invasion), suggesting that these compounds may have additional molecular targets involved in egress or invasion. Here, we demonstrate that five PfATP4 inhibitors reduce egress but not invasion. These compounds appear to inhibit egress by blocking the activation of protein kinase G, an enzyme that, once stimulated, rapidly activates parasite egress. We establish a direct link between egress and PfATP4 function by showing that the inhibition of egress is attenuated in a Na+-depleted environment and in parasites with a mutation in pfatp4. Finally, we show that PfATP4 inhibitors induce host cell lysis when administered prior to the completion of parasite replication. Since host cell lysis mimics egress but is not followed by invasion, this phenomenon likely explains why several PfATP4 inhibitors were previously classified as invasion inhibitors. Collectively, our results confirm that PfATP4-mediated Na+ efflux is critical to the regulation of parasite egress.
Collapse
Affiliation(s)
- Claudia B. G. Barnes
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Madeline G. Dans
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Thorey K. Jonsdottir
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Brendan S. Crabb
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Paul R. Gilson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, Australia,*Correspondence: Paul R. Gilson,
| |
Collapse
|
47
|
Cherkaoui‐Rbati MH, Andenmatten N, Burgert L, Egbelowo OF, Fendel R, Fornari C, Gabel M, Ward J, Möhrle JJ, Gobeau N. A pharmacokinetic-pharmacodynamic model for chemoprotective agents against malaria. CPT Pharmacometrics Syst Pharmacol 2022; 12:50-61. [PMID: 36412499 PMCID: PMC9835136 DOI: 10.1002/psp4.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/28/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Chemoprophylactics are a vital tool in the fight against malaria. They can be used to protect populations at risk, such as children younger than the age of 5 in areas of seasonal malaria transmission or pregnant women. Currently approved chemoprophylactics all present challenges. There are either concerns about unacceptable adverse effects such as neuropsychiatric sequalae (mefloquine), risks of hemolysis in patients with G6PD deficiency (8-aminoquinolines such as tafenoquine), or cost and daily dosing (atovaquone-proguanil). Therefore, there is a need to develop new chemoprophylactic agents to provide more affordable therapies with better compliance through improving properties such as pharmacokinetics to allow weekly, preferably monthly, dosing. Here we present a pharmacokinetic-pharmacodynamic (PKPD) model constructed using DSM265 (a dihydroorotate dehydrogenase inhibitor with activity against the liver schizonts of malaria, therefore, a prophylaxis candidate). The PKPD model mimics the parasite lifecycle by describing parasite dynamics and drug activity during the liver and blood stages. A major challenge is the estimation of model parameters, as only blood-stage parasites can be observed once they have reached a threshold. By combining qualitative and quantitative knowledge about the parasite from various sources, it has been shown that it is possible to infer information about liver-stage growth and its initial infection level. Furthermore, by integrating clinical data, the killing effect of the drug on liver- and blood-stage parasites can be included in the PKPD model, and a clinical outcome can be predicted. Despite multiple challenges, the presented model has the potential to help translation from preclinical to late development for new chemoprophylactic candidates.
Collapse
Affiliation(s)
- Mohammed H. Cherkaoui‐Rbati
- Medicines for Malaria VentureGenevaSwitzerland,Present address:
Pharmaceutical Sciences, Pharma Research and Early DevelopmentHoffmann‐La RocheBaselSwitzerland
| | - Nicole Andenmatten
- Medicines for Malaria VentureGenevaSwitzerland,Present address:
Lonza AGVispSwitzerland
| | | | - Oluwaseun F. Egbelowo
- Division of Clinical Pharmacology, Department of MedicineThe University of Texas at AustinTexasAustinUSA
| | - Rolf Fendel
- Institute for Tropical MedicineUniversity of TübingenTübingenGermany
| | | | - Michael Gabel
- Center for Modelling and Simulation in the Biosciences, BioQuant‐CenterUniversity of HeidelbergHeidelbergGermany
| | - John Ward
- Department of Mathematical SciencesUniversity of LoughboroughLoughboroughUK
| | | | | |
Collapse
|
48
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
49
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
50
|
A Role for Basigin in Toxoplasma gondii Infection. Infect Immun 2022; 90:e0020522. [PMID: 35913173 PMCID: PMC9387297 DOI: 10.1128/iai.00205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes. We found that primary astrocytes express two members of the BASIGIN (BSG) immunoglobulin family, basigin and embigin, but did not express neuroplastin. Antibody blockade of either basigin or embigin caused a significant reduction of parasite infectivity in astrocytes. The specific role of basigin during T. gondii invasion was further examined using a mouse astrocytic cell line (C8-D30), which exclusively expresses basigin. CRISPR-mediated deletion of basigin in C8-D30 cells resulted in decreased T. gondii infectivity. T. gondii replication and invasion efficiency were not altered by basigin deficiency, but parasite attachment to astrocytes was markedly reduced. We also conducted a proteomic screen to identify T. gondii proteins that interact with basigin. Toxoplasma-encoded cyclophilins, the protein 14-3-3, and protein disulfide isomerase (TgPDI) were among the putative basigin-ligands identified. Recombinant TgPDI produced in E. coli bound to basigin and pretreatment of tachyzoites with a PDI inhibitor decreased parasite attachment to host cells. Finally, mutagenesis of the active site cysteines of TgPDI abolished enzyme binding to basigin. Thus, basigin and its related immunoglobulin family members may represent host receptors that mediate attachment of T. gondii to diverse cell types.
Collapse
|