1
|
Corcionivoschi N, Balta I, McCleery D, Bundurus I, Pet I, Calaway T, Nichita I, Stef L, Morariu S. Mechanisms of Pathogenic Escherichia coli Attachment to Meat. Foodborne Pathog Dis 2025; 22:339-349. [PMID: 38593459 DOI: 10.1089/fpd.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Escherichia coli are present in the human and animal microbiome as facultative anaerobes and are viewed as an integral part of the whole gastrointestinal environment. In certain circumstances, some species can also become opportunistic pathogens responsible for severe infections in humans. These infections are caused by the enterotoxinogenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli and the enterohemorrhagic E. coli species, frequently present in food products and on food matrices. Severe human infections can be caused by consumption of meat contaminated upon exposure to animal feces, and as such, farm animals are considered to be a natural reservoir. The mechanisms by which these four major species of E. coli adhere and persist in meat postslaughter are of major interest to public health and food processors given their frequent involvement in foodborne outbreaks. This review aims to structure and provide an update on the mechanistic roles of environmental factors, curli, type I and type IV pili on E. coli adherence/interaction with meat postslaughter. Furthermore, we emphasize on the importance of bacterial surface structures, which can be used in designing interventions to enhance food safety and protect public health by reducing the burden of foodborne illnesses.
Collapse
Affiliation(s)
- Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Iulia Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Todd Calaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Ileana Nichita
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| | - Sorin Morariu
- Faculty of Veterinary Medicine, University of Life Sciences King Mihai I from Timisoara, Timisoara, Romania
| |
Collapse
|
2
|
Miao B, Wang D, Yu L, Meng X, Liu S, Gao M, Han J, Chen Z, Li P, Liu S. Mechanism and nanotechnological-based therapeutics for tolerance and resistance of bacterial biofilms. Microbiol Res 2025; 292:127987. [PMID: 39642765 DOI: 10.1016/j.micres.2024.127987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Bacterial biofilms are one of the most relevant drivers of chronic and recurrent infections and a significant healthcare problem. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure and low drug permeability, leading to tolerance and resistance of biofilms to antibiotics and to host responses. Within a biofilm, microbial cells show increased tolerance to both immune system defense mechanisms and antimicrobials than the same cells in the planktonic state. It is one of the key reasons for the failure of traditional clinical drug to treat infectious diseases. Currently, no drugs are available to attack bacterial biofilms in the clinical setting. The development of novel preventive and therapeutic strategies is urgently needed to allow an effective management of biofilm-associated infections. Based on the properties of nanomaterials and biocompatibility, nanotechnology had the advantages of specific targeting, intelligent delivery and low toxicity, which could realize efficient intervention and precise treatment of biofilm-associated infections. In this paper, the mechanisms of bacterial biofilm resistance to antibiotics and host response tolerance were elaborated. Meanwhile, This paper highlighted multiple strategies of biofilms eradication based on nanotechnology. Nanotechnology can interfere with biofilm formation by destroying mature biofilm, modulating biofilm heterogeneity, inhibiting bacterial metabolism, playing antimicrobial properties, activating immunity and enhancing biofilm penetration, which is an important new anti-biofilm preparation. In addition, we presented the key challenges still faced by nanotechnology in combating bacterial biofilm infections. Utilization of nanotechnology safely and effectively should be further strengthened to confirm the safety aspects of their clinical application.
Collapse
Affiliation(s)
- Beiliang Miao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Dianhong Wang
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Li Yu
- Graduate school of Tianjin Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangfei Meng
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Shiyi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Jiatong Han
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Zeliang Chen
- School of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110161, China
| | - Ping Li
- Department of Nephrology, Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
3
|
Charlton S, Melaugh G, Marenduzzo D, MacPhee C, Secchi E. Role of cellular filamentation in bacterial aggregation and cluster-cluster assembly. Phys Rev E 2025; 111:024410. [PMID: 40103107 DOI: 10.1103/physreve.111.024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025]
Abstract
Bacterial aggregate formation and surface accumulation are increasingly viewed as alternative pathways for biofilm colonization. However, little is known about the dynamics of bacterial aggregate cluster-cluster assembly and their subsequent microstructural and mechanical properties. To this end, we studied experimentally and computationally an aggregating bacterial system that forms a space-spanning interconnected network via cluster-cluster assembly. By controllably inducing bacterial filamentation, we aimed to understand how cell length distribution and cell surface hydrophobicity control the dynamics of aggregation and sedimentation, as well as the microstructure and mechanics of the settled bacterial networks. We found that filamentation lowers the percolation threshold, leading to gelation at a lower number density with distinct assembly dynamics and lower network connectivity. Furthermore, we analyzed the mechanical properties of the bacterial networks. Static stress tests reveal three yielding modes: discrete cluster-cluster disassembly, collective delamination, and subregional network fracture. The yielding modes are consistent with the gel-like viscoelastic properties of the cluster-cluster assembled networks observed during macroscale rheometry. In particular, we observe a scaling relationship between the storage modulus and the volume fraction, characteristic of an attractive rod gel. Our experimental observations are supported by Langevin dynamic simulations, providing mechanistic insights into the factors determining network self-assembly and connectivity. Our findings elucidate the gel-like structure-function dynamics in cluster-cluster aggregated bacterial systems, and they underscore the fundamental importance of filamentation in their properties and mechanical behavior.
Collapse
Affiliation(s)
- Samuel Charlton
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - Gavin Melaugh
- University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh EH9 3FD, United Kingdom
- University of Edinburgh, School of Engineering, Edinburgh EH9 3JL, United Kingdom
| | - Davide Marenduzzo
- University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh EH9 3FD, United Kingdom
| | - Cait MacPhee
- University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh EH9 3FD, United Kingdom
| | - Eleonora Secchi
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| |
Collapse
|
4
|
Chekli Y, Thiriet-Rupert S, Caillet C, Quilès F, Le Cordier H, Deshayes E, Bardiaux B, Pédron T, Titecat M, Debarbieux L, Ghigo JM, Francius G, Duval JFL, Beloin C. Biophysical insights into sugar-dependent medium acidification promoting YfaL protein-mediated Escherichia coli self-aggregation, biofilm formation and acid stress resistance. NANOSCALE 2024; 16:17567-17584. [PMID: 39225712 DOI: 10.1039/d4nr01884b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The ability of bacteria to interact with their environment is crucial to form aggregates and biofilms, and develop a collective stress resistance behavior. Despite its environmental and medical importance, bacterial aggregation is poorly understood and mediated by few known adhesion structures. Here, we identified a new role for a surface-exposed Escherichia coli protein, YfaL, which can self-recognize and induce bacterial autoaggregation. This process occurs only under acidic conditions generated during E. coli growth in the presence of fermentable sugars. These findings were supported by electrokinetic and atomic force spectroscopy measurements, which revealed changes in the electrostatic, hydrophobic, and structural properties of YfaL-decorated cell surface upon sugar consumption. Furthermore, YfaL-mediated autoaggregation promotes biofilm formation and enhances E. coli resistance to acid stress. The prevalence and conservation of YfaL in environmental and clinical E. coli suggest strong evolutionary selection for its function inside or outside the host. Overall, our results emphasize the importance of environmental parameters such as low pH as physicochemical cues influencing bacterial adhesion and aggregation, affecting E. coli and potentially other bacteria's resistance to environmental stress.
Collapse
Affiliation(s)
- Yankel Chekli
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, 75015 Paris, France
| | | | - Céline Caillet
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-54000 Nancy, France
| | - Fabienne Quilès
- Université de Lorraine, CNRS, LCPME UMR 7564, F-54000 Nancy, France.
| | - Hélène Le Cordier
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-54000 Nancy, France
| | - Emilie Deshayes
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, 75015 Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Paris, France
| | - Thierry Pédron
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, Genetics of Biofilms Laboratory, 75015 Paris, France
| | - Grégory Francius
- Université de Lorraine, CNRS, LCPME UMR 7564, F-54000 Nancy, France.
| | - Jérôme F L Duval
- Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), F-54000 Nancy, France
| | - Christophe Beloin
- Université de Lorraine, CNRS, LCPME UMR 7564, F-54000 Nancy, France.
| |
Collapse
|
5
|
Wei S, Ding B, Wang G, Luo S, Zhao H, Dan X. Population characteristics of pathogenic Escherichia coli in puerperal metritis of dairy cows in Ningxia region of China: a systemic taxa distribution of virulence factors and drug resistance genes. Front Microbiol 2024; 15:1364373. [PMID: 38694808 PMCID: PMC11061491 DOI: 10.3389/fmicb.2024.1364373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Escherichia coli (E. coli) is closely associated with the occurrence of puerperal metritis in dairy cows. E. coli carries some the virulence and multi-drug resistant genes, which pose a serious threat to the health of postpartum cows. In this study, E. coli was isolated and identified from the uterine contents of postpartum cows with puerperal metritis in the Ningxia region of China, and its phylogenetic subgroups were determined. Meanwhile, virulence and drug resistance genes carried by E. coli and drug sensitivity were detected, and the characteristics of virulence and drug resistance genes distribution in E. coli phylogroups were further analyzed. The results showed that the isolation rate of E. coli in puerperal metritis samples was 95.2%. E. coli was mainly divided into phylogroups B2 and D, followed by groups A and B1, and was more connected to O157:H7, O169:H4, and ECC-1470 type strains. The virulence genes were mainly dominated by ompF (100%), traT (100%), fimH (97%), papC (96%), csgA (95%), Ang43 (93.9%), and ompC (93%), and the resistance genes were dominated by TEM (99%), tetA (71.7%), aac(3)II (66.7%), and cmlA (53.5%). Additionally, it was observed that the virulence and resistance gene phenotypes could be divided into two subgroups, with subgroup B2 and D having the highest distributions. Drug sensitivity tests also revealed that the E. coli was most sensitive to the fluoroquinolones enrofloxacin, followed by macrolides, aminoglycosides, tetracyclines, β-lactams, peptides and sulfonamides, and least sensitive to lincosamides. These results imply that pathogenic E. coli, which induces puerperal metritis of dairy cows in the Ningxia region of China, primarily belongs to the group B2 and D, contains multiple virulence and drug resistance genes, Moreover, E. coli has evolved resistance to several drugs including penicillin, lincomycin, cotrimoxazole, and streptomycin. It will offer specific guidelines reference for the prevention and treatment of puerperal metritis in dairy cows with E. coli infections in the Ningxia region of China.
Collapse
Affiliation(s)
| | | | | | | | - Hongxi Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Xingang Dan
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Parmar D, Rosado-Rosa JM, Shrout JD, Sweedler JV. Metabolic insights from mass spectrometry imaging of biofilms: A perspective from model microorganisms. Methods 2024; 224:21-34. [PMID: 38295894 PMCID: PMC11149699 DOI: 10.1016/j.ymeth.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/17/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Biofilms are dense aggregates of bacterial colonies embedded inside a self-produced polymeric matrix. Biofilms have received increasing attention in medical, industrial, and environmental settings due to their enhanced survival. Their characterization using microscopy techniques has revealed the presence of structural and cellular heterogeneity in many bacterial systems. However, these techniques provide limited chemical detail and lack information about the molecules important for bacterial communication and virulence. Mass spectrometry imaging (MSI) bridges the gap by generating spatial chemical information with unmatched chemical detail, making it an irreplaceable analytical platform in the multi-modal imaging of biofilms. In the last two decades, over 30 species of biofilm-forming bacteria have been studied using MSI in different environments. The literature conveys both analytical advancements and an improved understanding of the effects of environmental variables such as host surface characteristics, antibiotics, and other species of microorganisms on biofilms. This review summarizes the insights from frequently studied model microorganisms. We share a detailed list of organism-wide metabolites, commonly observed mass spectral adducts, culture conditions, strains of bacteria, substrate, broad problem definition, and details of the MS instrumentation, such as ionization sources and matrix, to facilitate future studies. We also compared the spatial characteristics of the secretome under different study designs to highlight changes because of various environmental influences. In addition, we highlight the current limitations of MSI in relation to biofilm characterization to enable cross-comparison between experiments. Overall, MSI has emerged to become an important approach for the spatial/chemical characterization of bacterial biofilms and its use will continue to grow as MSI becomes more accessible.
Collapse
Affiliation(s)
- Dharmeshkumar Parmar
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joenisse M Rosado-Rosa
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Joshua D Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
7
|
Nhu NTK, Rahman MA, Goh KGK, Kim SJ, Phan MD, Peters KM, Alvarez-Fraga L, Hancock SJ, Ravi C, Kidd TJ, Sullivan MJ, Irvine KM, Beatson SA, Sweet MJ, Irwin AD, Vukovic J, Ulett GC, Hasnain SZ, Schembri MA. A convergent evolutionary pathway attenuating cellulose production drives enhanced virulence of some bacteria. Nat Commun 2024; 15:1441. [PMID: 38383596 PMCID: PMC10881479 DOI: 10.1038/s41467-024-45176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024] Open
Abstract
Bacteria adapt to selective pressure in their immediate environment in multiple ways. One mechanism involves the acquisition of independent mutations that disable or modify a key pathway, providing a signature of adaptation via convergent evolution. Extra-intestinal pathogenic Escherichia coli (ExPEC) belonging to sequence type 95 (ST95) represent a global clone frequently associated with severe human infections including acute pyelonephritis, sepsis, and neonatal meningitis. Here, we analysed a publicly available dataset of 613 ST95 genomes and identified a series of loss-of-function mutations that disrupt cellulose production or its modification in 55.3% of strains. We show the inability to produce cellulose significantly enhances ST95 invasive infection in a rat model of neonatal meningitis, leading to the disruption of intestinal barrier integrity in newborn pups and enhanced dissemination to the liver, spleen and brain. Consistent with these observations, disruption of cellulose production in ST95 augmented innate immune signalling and tissue neutrophil infiltration in a mouse model of urinary tract infection. Mutations that disrupt cellulose production were also identified in other virulent ExPEC STs, Shigella and Salmonella, suggesting a correlative association with many Enterobacteriaceae that cause severe human infection. Together, our findings provide an explanation for the emergence of hypervirulent Enterobacteriaceae clones.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - M Arifur Rahman
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- QIMR Berghofer Medical Research Institute, Brisbane QLD, Australia
| | - Kelvin G K Goh
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Seung Jae Kim
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Kate M Peters
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Laura Alvarez-Fraga
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, Narbonne, 11100, France
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chitra Ravi
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Central Microbiology, Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Katharine M Irvine
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Adam D Irwin
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- University of Queensland Centre for Clinical Research, Brisbane, Australia
- Queensland Children's Hospital, Brisbane, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia.
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.
| | - Sumaira Z Hasnain
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia.
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Cleaver L, Garnett JA. How to study biofilms: technological advancements in clinical biofilm research. Front Cell Infect Microbiol 2023; 13:1335389. [PMID: 38156318 PMCID: PMC10753778 DOI: 10.3389/fcimb.2023.1335389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Biofilm formation is an important survival strategy commonly used by bacteria and fungi, which are embedded in a protective extracellular matrix of organic polymers. They are ubiquitous in nature, including humans and other animals, and they can be surface- and non-surface-associated, making them capable of growing in and on many different parts of the body. Biofilms are also complex, forming polymicrobial communities that are difficult to eradicate due to their unique growth dynamics, and clinical infections associated with biofilms are a huge burden in the healthcare setting, as they are often difficult to diagnose and to treat. Our understanding of biofilm formation and development is a fast-paced and important research focus. This review aims to describe the advancements in clinical biofilm research, including both in vitro and in vivo biofilm models, imaging techniques and techniques to analyse the biological functions of the biofilm.
Collapse
Affiliation(s)
- Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| | - James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
Abstract
Imaging mass spectrometry is a well-established technology that can easily and succinctly communicate the spatial localization of molecules within samples. This review communicates the recent advances in the field, with a specific focus on matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) applied on tissues. The general sample preparation strategies for different analyte classes are explored, including special considerations for sample types (fresh frozen or formalin-fixed,) strategies for various analytes (lipids, metabolites, proteins, peptides, and glycans) and how multimodal imaging strategies can leverage the strengths of each approach is mentioned. This work explores appropriate experimental design approaches and standardization of processes needed for successful studies, as well as the various data analysis platforms available to analyze data and their strengths. The review concludes with applications of imaging mass spectrometry in various fields, with a focus on medical research, and some examples from plant biology and microbe metabolism are mentioned, to illustrate the breadth and depth of MALDI IMS.
Collapse
Affiliation(s)
- Jessica L Moore
- Department of Proteomics, Discovery Life Sciences, Huntsville, Alabama 35806, United States
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
10
|
Saint Martin C, Caccia N, Darsonval M, Gregoire M, Combeau A, Jubelin G, Dubois-Brissonnet F, Leroy S, Briandet R, Desvaux M. Spatially localised expression of the glutamate decarboxylase gadB in Escherichia coli O157:H7 microcolonies in hydrogel matrices. NPJ Sci Food 2023; 7:55. [PMID: 37838796 PMCID: PMC10576782 DOI: 10.1038/s41538-023-00229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Functional diversity within isogenic spatially organised bacterial populations has been shown to trigger emergent community properties such as stress tolerance. Considering gadB gene encoding a key glutamate decarboxylase involved in E. coli tolerance to acidic conditions, we investigated its expression in hydrogels mimicking the texture of some structured food matrices (such as minced meat or soft cheese). Taking advantage of confocal laser scanning microscopy combined with a genetically-engineered dual fluorescent reporter system, it was possible to visualise the spatial patterns of bacterial gene expression from in-gel microcolonies. In E. coli O157:H7 microcolonies, gadB showed radically different expression patterns between neutral (pH 7) or acidic (pH 5) hydrogels. Differential spatial expression was determined in acidic hydrogels with a strong expression of gadB at the microcolony periphery. Strikingly, very similar spatial patterns of gadB expression were further observed for E. coli O157:H7 grown in the presence of L. lactis. Considering the ingestion of contaminated foodstuff, survival of E. coli O157:H7 to acidic stomachal stress (pH 2) was significantly increased for bacterial cells grown in microcolonies in acidic hydrogels compared to planktonic cells. These findings have significant implications for risk assessment and public health as they highlight inherent differences in bacterial physiology and virulence between liquid and structured food products. The contrasting characteristics observed underscore the need to consider the distinct challenges posed by these food types, thereby emphasising the importance of tailored risk mitigation strategies.
Collapse
Affiliation(s)
- Cédric Saint Martin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France
- INRAE, UCA, UMR0454 MEDIS, 63000, Clermont-Ferrand, France
| | - Nelly Caccia
- INRAE, UCA, UMR0454 MEDIS, 63000, Clermont-Ferrand, France
| | - Maud Darsonval
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France
| | - Marina Gregoire
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France
| | - Arthur Combeau
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France
| | | | | | - Sabine Leroy
- INRAE, UCA, UMR0454 MEDIS, 63000, Clermont-Ferrand, France
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS Institute, 78350, Jouy-en-Josas, France.
| | | |
Collapse
|
11
|
Archana M, Rubini D, Dharshini KP, Hari BNV, Jayasankari S, Ramyadevi D, Gonciarz W, Domańska A, Brzeziński M, Nithyanand P. Development of an anti-infective urinary catheter composed of polyvinyl alcohol/sodium alginate/methylcellulose/polyethylene glycol by using a pressure-assisted 3D-printing technique. Int J Biol Macromol 2023; 249:126029. [PMID: 37524285 DOI: 10.1016/j.ijbiomac.2023.126029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/10/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Catheter-associated urinary tract infections (CAUTI) are a common complication associated with catheterization, leading to urosepsis, bacteriuria, and septicaemia. The present work focuses on 3D printing a urinary catheter with anti-infective properties using various concentrations of polyvinyl alcohol (PVA, e.g., 6-8 %), sodium alginate (NaAlg, e.g. 1-4 %), methylcellulose (MC, 5 %), polyethylene glycol (PEG, 5 %) impregnated with secnidazole, an antibiotic acting against Gram-negative bacteria. To produce suitable polymer ink for Pressure Assisted Microsyringe (PAM) 3D printing, the cross-linked between NaAlg and calcium chloride is necessary to prepare the catheter. The optimised catheter was found to have an outer diameter of 5 mm, an inner diameter of 3.5 mm, and a length of the catheter of 50 mm. The analysis by various methods confirms the successful incorporation of secnidazole in the 3D-printed catheter. A drug-loaded/coated catheter showed an initial drug release of 79 % following a sustained release to reach 100 % within 5 h. Weibull model fits well with the drug release data. The release models suggest the Quasi-Fickian diffusion mechanism from the system. Moreover, the secnidazole 3D printed catheter disrupted biofilms and suppressed all the Quorum sensing mediated virulence factors of two important keystone pathogens causing urinary tract infections.
Collapse
Affiliation(s)
- Menon Archana
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Krishnan Priya Dharshini
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Bodethala Narayanan Vedha Hari
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; Centre of Molecular and Macromolecular Studies in Łódź, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Senthilganesh Jayasankari
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Durai Ramyadevi
- Pharmaceutical Technology Laboratory, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Agnieszka Domańska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies in Łódź, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
12
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
13
|
Cheah H, Bae S. Multichannel Microfluidic Platform for Temporal-Spatial Investigation of Niche Roles of Pseudomonas aeruginosa and Escherichia coli within a Dual-Species Biofilm. Appl Environ Microbiol 2023; 89:e0065123. [PMID: 37382537 PMCID: PMC10370331 DOI: 10.1128/aem.00651-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
In natural or man-made environments, microorganisms exist predominantly as biofilms forming surface-associated bacterial communities embedded in extracellular polymeric substances (EPSs). Often, biofilm reactors used for endpoint and disruptive analyses of biofilm are not suitable for periodic observation of biofilm formation and development. In this study, a microfluidic device designed with multiple channels and a gradient generator was used for high-throughput analysis and real-time monitoring of dual-species biofilm formation and development. We compared the structural parameters of monospecies and dual-species biofilms containing Pseudomonas aeruginosa (expressing mCherry) and Escherichia coli (expressing green fluorescent protein [GFP]) to understand the interactions in the biofilm. The rate of biovolume increase of each species in monospecies biofilm (2.7 × 105 μm3) was higher than those in a dual-species biofilm (9.68 × 104 μm3); however, synergism was still observed in the dual-species biofilm due to overall increases in biovolume for both species. Synergism was also observed in a dual-species biofilm, where P. aeruginosa forms a "blanket" over E. coli, providing a physical barrier against shear stress in the environment. The microfluidic chip was useful for monitoring the dual-species biofilm in the microenvironment, indicating that different species in a multispecies biofilm exhibit different niches for the survival of the biofilm community. Finally, we demonstrated that the nucleic acids can be extracted from the dual-species biofilm in situ after biofilm imaging analysis. In addition, gene expression supported that the activation and suppression of different quorum sensing genes resulted in the different phenotype seen in the biofilm. This study showed that the integration of microfluidic device with microscopy analysis and molecular techniques could be a promising tool for studying biofilm structure and gene quantification and expression simultaneously. IMPORTANCE In natural or man-made environments, microorganisms exist predominantly as biofilms forming surface-associated bacterial communities embedded in extracellular polymeric substances (EPSs). Often, biofilm reactors used for endpoint and disruptive analyses of biofilm are not suitable for periodic observation of biofilm formation and development. Here, we demonstrate that a microfluidic device with multiple channels and a gradient generator can be useful for high-throughput analysis and real-time monitoring of dual-species biofilm formation and development. Our study revealed synergism in the dual-species biofilm, where P. aeruginosa forms a "blanket" over E. coli, providing a physical barrier against shear stress in the environment. Furthermore, different species in a multispecies biofilm exhibit different niches for the survival of the biofilm community. This study showed that the integration of microfluidic device with microscopy analysis and molecular techniques could be a promising tool for studying biofilm structure and gene quantification and expression simultaneously.
Collapse
Affiliation(s)
- Hee Cheah
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Brannon JR, Reasoner SA, Bermudez TA, Dunigan TL, Wiebe MA, Beebout CJ, Ross T, Bamidele A, Hadjifrangiskou M. Mapping Niche-specific Two-Component System Requirements in Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541942. [PMID: 37292752 PMCID: PMC10245908 DOI: 10.1101/2023.05.23.541942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify - for the first time - a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.
Collapse
Affiliation(s)
- John R. Brannon
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A. Reasoner
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tomas A. Bermudez
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taryn L. Dunigan
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle A. Wiebe
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Connor J. Beebout
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tamia Ross
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adebisi Bamidele
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
15
|
Hadjifrangiskou M. Sampling the rainbow. Nat Chem Biol 2023:10.1038/s41589-023-01305-6. [PMID: 37055615 DOI: 10.1038/s41589-023-01305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Affiliation(s)
- Maria Hadjifrangiskou
- Department of Pathology, Microbiology & Immunology at Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
Martín-Rodríguez AJ. Respiration-induced biofilm formation as a driver for bacterial niche colonization. Trends Microbiol 2023; 31:120-134. [PMID: 36075785 DOI: 10.1016/j.tim.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
Depending on their physiology and metabolism, bacteria can carry out diverse redox processes for energy acquisition, which facilitates adaptation to environmental or host-associated niches. Of these processes, respiration, using oxygen or alternative terminal electron acceptors, is energetically the most favorable in heterotrophic bacteria. The biofilm lifestyle, a coordinated multicellular behavior, is ubiquitous in bacteria and is regulated by a variety of intrinsic and extrinsic cues. Respiration of distinct electron acceptors has been shown to induce biofilm formation or dispersal. The notion of biofilm formation regulation by electron acceptor availability and respiration has often been considered species-specific. However, recent evidence suggests that this phenomenon can be strain-specific, even in strains sharing the same functional respiratory pathways, thereby implying subtle regulatory mechanisms. On this basis, I argue that induction of biofilm formation by sensing and respiration of electron acceptors might direct subgroups of redox-specialized strains to occupy certain niches. A palette of respiration and electron-transfer-mediated microbial social interactions within biofilms may broaden ecological opportunities. The strain specificity of this phenomenon represents an important opportunity to identify key molecular mechanisms and their ecophysiological significance, which in turn may lay the ground for applications in areas ranging from biotechnology to the prevention of antimicrobial resistance.
Collapse
|
17
|
In Vivo Role of Two-Component Regulatory Systems in Models of Urinary Tract Infections. Pathogens 2023; 12:pathogens12010119. [PMID: 36678467 PMCID: PMC9861413 DOI: 10.3390/pathogens12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Two-component signaling systems (TCSs) are finely regulated mechanisms by which bacteria adapt to environmental conditions by modifying the expression of target genes. In bacterial pathogenesis, TCSs play important roles in modulating adhesion to mucosal surfaces, resistance to antibiotics, and metabolic adaptation. In the context of urinary tract infections (UTI), one of the most common types infections causing significant health problems worldwide, uropathogens use TCSs for adaptation, survival, and establishment of pathogenicity. For example, uropathogens can exploit TCSs to survive inside bladder epithelial cells, sense osmolar variations in urine, promote their ascension along the urinary tract or even produce lytic enzymes resulting in exfoliation of the urothelium. Despite the usefulness of studying the function of TCSs in in vitro experimental models, it is of primary necessity to study bacterial gene regulation also in the context of host niches, each displaying its own biological, chemical, and physical features. In light of this, the aim of this review is to provide a concise description of several bacterial TCSs, whose activity has been described in mouse models of UTI.
Collapse
|
18
|
Popovics P, Penniston KL. Current research and future directions in non-malignant urologic research - proceedings of the annual CAIRIBU meeting. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:449-461. [PMID: 36636691 PMCID: PMC9831912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/14/2023]
Abstract
The Annual Collaborating for the Advancement of Interdisciplinary Research (CAIRIBU) Meeting in 2022 highlighted basic, translational, and clinical non-malignant urology research within five main areas affecting the urinary tract: urinary dysfunction due to prostate disease, microbes and infection, bladder function and physiology, neurology and neuromuscular influences and calculi and obstruction. In this paper, we summarize main findings and future directions outlined by CAIRIBU-affiliated scientists who presented as part of the scientific sessions.
Collapse
Affiliation(s)
- Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical SchoolVA, USA
| | - Kristina L Penniston
- Department of Urology, University of Wisconsin School of Medicine and Public HealthWI, USA
| |
Collapse
|
19
|
Fleming BA, Blango MG, Rousek AA, Kincannon WM, Tran A, Lewis A, Russell C, Zhou Q, Baird LM, Barber A, Brannon JR, Beebout C, Bandarian V, Hadjifrangiskou M, Howard M, Mulvey M. A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Res 2022; 50:7570-7590. [PMID: 35212379 PMCID: PMC9303304 DOI: 10.1093/nar/gkac116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.
Collapse
Affiliation(s)
- Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexis A Rousek
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Alexander Tran
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam J Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Colin W Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Qin Zhou
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa M Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
20
|
Andersen S, Nawrocki A, Johansen AE, Herrero-Fresno A, Menéndez VG, Møller-Jensen J, Olsen JE. Proteomes of Uropathogenic Escherichia coli Growing in Human Urine and in J82 Urinary Bladder Cells. Proteomes 2022; 10:proteomes10020015. [PMID: 35645373 PMCID: PMC9149909 DOI: 10.3390/proteomes10020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the most common cause of urinary tract infection (UTI). UPEC normally reside in the intestine, and during establishment of UTI, they undergo metabolic adaptations, first to urine and then upon tissue invasion to the bladder cell interior. To understand these adaptations, we used quantitative proteomic profiling to characterize protein expression of the UPEC strain UTI89 growing in human urine and when inside J82 bladder cells. In order to facilitate detection of UPEC proteins over the excess amount of eukaryotic proteins in bladder cells, we developed a method where proteins from UTI89 grown in MOPS and urine was spiked-in to enhance detection of bacterial proteins. More than 2000 E. coli proteins were detected. During growth in urine, proteins associated with iron acquisition and several amino acid uptake and biosynthesis systems, most prominently arginine metabolism, were significantly upregulated. During growth in J82 cells, proteins related to iron uptake and arginine metabolisms were likewise upregulated together with proteins involved in sulfur compound turnover. Ribosomal proteins were downregulated relative to growth in MOPS in this environment. There was no direct correlation between upregulated proteins and proteins reported to be essential for infections, showing that upregulation during growth does not signify that the proteins are essential for growth under a condition.
Collapse
Affiliation(s)
- Sisse Andersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (A.N.); (J.M.-J.)
| | - Andreas Eske Johansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
| | - Vanesa García Menéndez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (A.N.); (J.M.-J.)
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
- Correspondence:
| |
Collapse
|
21
|
Torres-Puig S, García V, Stærk K, Andersen TE, Møller-Jensen J, Olsen JE, Herrero-Fresno A. “Omics” Technologies - What Have They Told Us About Uropathogenic Escherichia coli Fitness and Virulence During Urinary Tract Infection? Front Cell Infect Microbiol 2022; 12:824039. [PMID: 35237532 PMCID: PMC8882828 DOI: 10.3389/fcimb.2022.824039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the main etiological agent of urinary tract infection (UTI), a widespread infectious disease of great impact on human health. This is further emphasized by the rapidly increase in antimicrobial resistance in UPEC, which compromises UTI treatment. UPEC biology is highly complex since uropathogens must adopt extracellular and intracellular lifestyles and adapt to different niches in the host. In this context, the implementation of forefront ‘omics’ technologies has provided substantial insight into the understanding of UPEC pathogenesis, which has opened the doors for new therapeutics and prophylactics discovery programs. Thus, ‘omics’ technologies applied to studies of UPEC during UTI, or in models of UTI, have revealed extensive lists of factors that are important for the ability of UPEC to cause disease. The multitude of large ‘omics’ datasets that have been generated calls for scrutinized analysis of specific factors that may be of interest for further development of novel treatment strategies. In this review, we describe main UPEC determinants involved in UTI as estimated by ‘omics’ studies, and we compare prediction of factors across the different ‘omics’ technologies, with a focus on those that have been confirmed to be relevant under UTI-related conditions. We also discuss current challenges and future perspectives regarding analysis of data to provide an overview and better understanding of UPEC mechanisms involved in pathogenesis which should assist in the selection of target sites for future prophylaxis and treatment.
Collapse
Affiliation(s)
- Sergi Torres-Puig
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Kristian Stærk
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Thomas E. Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Ana Herrero-Fresno,
| |
Collapse
|
22
|
Karayel-Basar M, Uras I, Kiris I, Sahin B, Akgun E, Baykal AT. Spatial proteomic alterations detected via MALDI-MS imaging implicate neuronal loss in a Huntington's disease mouse (YAC128) brain. Mol Omics 2022; 18:336-347. [PMID: 35129568 DOI: 10.1039/d1mo00440a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that occurs with the increase of CAG trinucleotide repeats in the huntingtin gene. To understand the mechanisms of HD, powerful proteomics techniques, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) were employed. However, one major drawback of these methods is loss of the region-specific quantitative information of the proteins due to analysis of total tissue lysates. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a MS-based label-free technique that works directly on tissue sections and gathers m/z values with their respective regional information. In this study, we established a data processing protocol that includes several software programs and methods to determine spatial protein alterations between the brain samples of a 12 month-old YAC128 HD mouse model and their non-transgenic littermates. 22 differentially expressed proteins were revealed with their respective regional information, and possible relationships of several proteins were discussed. As a validation of the MALDI-MSI analysis, a differentially expressed protein (GFAP) was verified using immunohistochemical staining. Furthermore, since several proteins detected in this study have previously been associated with neuronal loss, neuronal loss in the cortical region was demonstrated using an anti-NeuN immunohistochemical staining method. In conclusion, the findings of this research have provided insights into the spatial proteomic changes between HD transgenic and non-transgenic littermates and therefore, we suggest that MALDI-MSI is a powerful technique to determine spatial proteomic alterations between biological samples, and the data processing that we present here can be employed as a complementary tool for the data analysis.
Collapse
Affiliation(s)
- Merve Karayel-Basar
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irep Uras
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kiris
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Betul Sahin
- Acibadem Labmed Clinical Laboratories, R&D Center, Istanbul, Turkey
| | - Emel Akgun
- Department of Medical Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| |
Collapse
|
23
|
The battle for oxygen during bacterial and fungal infections. Trends Microbiol 2022; 30:643-653. [DOI: 10.1016/j.tim.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
|
24
|
Béchon N, Ghigo JM. Gut biofilms: Bacteroides as model symbionts to study biofilm formation by intestinal anaerobes. FEMS Microbiol Rev 2021; 46:6440158. [PMID: 34849798 DOI: 10.1093/femsre/fuab054] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial biofilms are communities of adhering bacteria that express distinct properties compared to their free-living counterparts, including increased antibiotic tolerance and original metabolic capabilities. Despite the potential impact of the biofilm lifestyle on the stability and function of the dense community of micro-organisms constituting the mammalian gut microbiota, the overwhelming majority of studies performed on biofilm formation by gut bacteria focused either on minor and often aerobic members of the community or on pathogenic bacteria. In this review, we discuss the reported evidence for biofilm-like structures formed by gut bacteria, the importance of considering the anaerobic nature of gut biofilms and we present the most recent advances on biofilm formation by Bacteroides, one of the most abundant genera of the human gut microbiota. Bacteroides species can be found attached to food particles and colonizing the mucus layer and we propose that Bacteroides symbionts are relevant models to probe the physiology of gut microbiota biofilms.
Collapse
Affiliation(s)
- Nathalie Béchon
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris, UMR CNRS2001, Genetics of Biofilms Laboratory 75015 Paris, France
| |
Collapse
|
25
|
Thymus vulgaris Essential Oil and Its Biological Activity. PLANTS 2021; 10:plants10091959. [PMID: 34579491 PMCID: PMC8467294 DOI: 10.3390/plants10091959] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Thymus vulgaris essential oil has potential good biological activity. The aim of the research was to evaluate the biological activity of the T. vulgaris essential oil from the Slovak company. The main components of T. vulgaris essential oil were thymol (48.1%), p-cymene (11.7%), 1,8-cineole (6.7), γ-terpinene (6.1%), and carvacrol (5.5%). The antioxidant activity was 85.2 ± 0.2%, which corresponds to 479.34 ± 1.1 TEAC. The antimicrobial activity was moderate or very strong with inhibition zones from 9.89 to 22.44 mm. The lowest values of MIC were determined against B. subtilis, E. faecalis, and S. aureus. In situ antifungal analysis on bread shows that the vapor phase of T. vulgaris essential oil can inhibit the growth of the microscopic filamentous fungi of the genus Penicillium. The antimicrobial activity against S. marcescens showed 46.78-87.80% inhibition at concentrations 62.5-500 µL/mL. The MALDI TOF MS analyses suggest changes in the protein profile of biofilm forming bacteria P. fluorescens and S. enteritidis after the fifth and the ninth day, respectively. Due to the properties of the T. vulgaris essential oil, it can be used in the food industry as a natural supplement to extend the shelf life of the foods.
Collapse
|
26
|
Improving Phage-Biofilm In Vitro Experimentation. Viruses 2021; 13:v13061175. [PMID: 34205417 PMCID: PMC8234374 DOI: 10.3390/v13061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages or phages, the viruses of bacteria, are abundant components of most ecosystems, including those where bacteria predominantly occupy biofilm niches. Understanding the phage impact on bacterial biofilms therefore can be crucial toward understanding both phage and bacterial ecology. Here, we take a critical look at the study of bacteriophage interactions with bacterial biofilms as carried out in vitro, since these studies serve as bases of our ecological and therapeutic understanding of phage impacts on biofilms. We suggest that phage-biofilm in vitro experiments often may be improved in terms of both design and interpretation. Specific issues discussed include (a) not distinguishing control of new biofilm growth from removal of existing biofilm, (b) inadequate descriptions of phage titers, (c) artificially small overlying fluid volumes, (d) limited explorations of treatment dosing and duration, (e) only end-point rather than kinetic analyses, (f) importance of distinguishing phage enzymatic from phage bacteriolytic anti-biofilm activities, (g) limitations of biofilm biomass determinations, (h) free-phage interference with viable-count determinations, and (i) importance of experimental conditions. Toward bettering understanding of the ecology of bacteriophage-biofilm interactions, and of phage-mediated biofilm disruption, we discuss here these various issues as well as provide tips toward improving experiments and their reporting.
Collapse
|
27
|
Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 2021; 18:314-334. [PMID: 33510461 DOI: 10.1038/s41575-020-00397-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France.
| | - John L Wallace
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Antibe Therapeutics Inc., Toronto, ON, Canada
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Céline Deraison
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
28
|
Beebout CJ, Sominsky LA, Eberly AR, Van Horn GT, Hadjifrangiskou M. Cytochrome bd promotes Escherichia coli biofilm antibiotic tolerance by regulating accumulation of noxious chemicals. NPJ Biofilms Microbiomes 2021; 7:35. [PMID: 33863914 PMCID: PMC8052454 DOI: 10.1038/s41522-021-00210-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Nutrient gradients in biofilms cause bacteria to organize into metabolically versatile communities capable of withstanding threats from external agents including bacteriophages, phagocytes, and antibiotics. We previously determined that oxygen availability spatially organizes respiration in uropathogenic Escherichia coli biofilms, and that the high-affinity respiratory quinol oxidase cytochrome bd is necessary for extracellular matrix production and biofilm development. In this study we investigate the physiologic consequences of cytochrome bd deficiency in biofilms and determine that loss of cytochrome bd induces a biofilm-specific increase in expression of general diffusion porins, leading to elevated outer membrane permeability. In addition, loss of cytochrome bd impedes the proton mediated efflux of noxious chemicals by diminishing respiratory flux. As a result, loss of cytochrome bd enhances cellular accumulation of noxious chemicals and increases biofilm susceptibility to antibiotics. These results identify an undescribed link between E. coli biofilm respiration and stress tolerance, while suggesting the possibility of inhibiting cytochrome bd as an antibiofilm therapeutic approach.
Collapse
Affiliation(s)
- Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Allison R Eberly
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Gerald T Van Horn
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
29
|
Bisht K, Moore JL, Caprioli RM, Skaar EP, Wakeman CA. Impact of temperature-dependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms Microbiomes 2021; 7:22. [PMID: 33727555 PMCID: PMC7966754 DOI: 10.1038/s41522-021-00194-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that forms robust biofilms in the different niches it occupies. Numerous physiological adaptations are required as this organism shifts from soil or aquatic environments to a host-associated lifestyle. While many conditions differ between these niches, temperature shifts are a factor that can contribute to physiological stress during this transition. To understand how temperature impacts biofilm formation in this pathogen, we used proteomic and transcriptomic tools to elucidate physiological responses in environment-relevant vs. host-relevant temperatures. These studies uncovered differential expression of various proteins including a phage protein that is associated with the EPS matrix in P. aeruginosa. This filamentous phage was induced at host temperatures and was required for full biofilm-forming capacity specifically at human body temperature. These data highlight the importance of temperature shift in biofilm formation and suggest bacteriophage proteins could be a possible therapeutic target in biofilm-associated infections.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jessica L Moore
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
30
|
Virulence gene transcription, phylogroups, and antibiotic resistance of cervico-vaginal pathogenic E. coli in Mexico. PLoS One 2020; 15:e0234730. [PMID: 32569308 PMCID: PMC7307731 DOI: 10.1371/journal.pone.0234730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/01/2020] [Indexed: 11/19/2022] Open
Abstract
The pathogenicity of Escherichia coli strains that cause cervico-vaginal infections (CVI) is due to the presence of several virulence genes. The objective of this study was to define the variability regarding the genotype of antibiotic resistance, the transcription profiles of virulence genes after in vitro infection of the vaginal cell line A431 and the phylogroup composition of a group of cervico-vaginal E. coli strains (CVEC). A total of 200 E. coli strains isolated from Mexican women with CVI from two medical units of the Mexican Institute of Social Security were analysed. E. coli strains and antibiotic resistance genes were identified using conventional polymerase chain reaction (PCR), and phylogroups were identified using multiplex PCR. Virulence gene transcription was measured through reverse-transcriptase real-time PCR after infection of the vaginal cell line A431. The most common antibiotic resistance genes among the CVEC strains were aac(3)II, TEM, dfrA1, sul1, and qnrA. The predominant phylogroup was B2. The genes most frequently transcribed in these strains were fimH, papC, irp2, iroN, kpsMTII, cnf1, and ompT, mainly in CVEC strains isolated from chronic and occasional vaginal infections. The strains showed a large diversity of transcription of the virulence genes phenotype and antibiotic resistance genotype, especially in the strains of phylogroups, B2, A, and D. The strains formed 2 large clusters, which contained several subclusters. The genetic diversity of CVEC strains was high. These strains have a large number of transcription patterns of virulence genes, and one-third of them carry three to seven antibiotic resistance genes.
Collapse
|
31
|
Brannon JR, Dunigan TL, Beebout CJ, Ross T, Wiebe MA, Reynolds WS, Hadjifrangiskou M. Invasion of vaginal epithelial cells by uropathogenic Escherichia coli. Nat Commun 2020; 11:2803. [PMID: 32499566 PMCID: PMC7272400 DOI: 10.1038/s41467-020-16627-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Host-associated reservoirs account for the majority of recurrent and oftentimes recalcitrant infections. Previous studies established that uropathogenic E. coli - the primary cause of urinary tract infections (UTIs) - can adhere to vaginal epithelial cells preceding UTI. Here, we demonstrate that diverse urinary E. coli isolates not only adhere to, but also invade vaginal cells. Intracellular colonization of the vaginal epithelium is detected in acute and chronic murine UTI models indicating the ability of E. coli to reside in the vagina following UTI. Conversely, in a vaginal colonization model, E. coli are detected inside vaginal cells and the urinary tract, indicating that vaginal colonization can seed the bladder. More critically, bacteria are identified inside vaginal cells from clinical samples from women with a history of recurrent UTI. These findings suggest that E. coli can establish a vaginal intracellular reservoir, where it may reside safely from extracellular stressors prior to causing an ascending infection.
Collapse
Affiliation(s)
- John R Brannon
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA.
| | - Taryn L Dunigan
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Tamia Ross
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Michelle A Wiebe
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | | | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA.
- Department of Urology, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
32
|
Mih N, Monk JM, Fang X, Catoiu E, Heckmann D, Yang L, Palsson BO. Adaptations of Escherichia coli strains to oxidative stress are reflected in properties of their structural proteomes. BMC Bioinformatics 2020; 21:162. [PMID: 32349661 PMCID: PMC7191737 DOI: 10.1186/s12859-020-3505-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The reconstruction of metabolic networks and the three-dimensional coverage of protein structures have reached the genome-scale in the widely studied Escherichia coli K-12 MG1655 strain. The combination of the two leads to the formation of a structural systems biology framework, which we have used to analyze differences between the reactive oxygen species (ROS) sensitivity of the proteomes of sequenced strains of E. coli. As proteins are one of the main targets of oxidative damage, understanding how the genetic changes of different strains of a species relates to its oxidative environment can reveal hypotheses as to why these variations arise and suggest directions of future experimental work. RESULTS Creating a reference structural proteome for E. coli allows us to comprehensively map genetic changes in 1764 different strains to their locations on 4118 3D protein structures. We use metabolic modeling to predict basal ROS production levels (ROStype) for 695 of these strains, finding that strains with both higher and lower basal levels tend to enrich their proteomes with antioxidative properties, and speculate as to why that is. We computationally assess a strain's sensitivity to an oxidative environment, based on known chemical mechanisms of oxidative damage to protein groups, defined by their localization and functionality. Two general groups - metalloproteins and periplasmic proteins - show enrichment of their antioxidative properties between the 695 strains with a predicted ROStype as well as 116 strains with an assigned pathotype. Specifically, proteins that a) utilize a molybdenum ion as a cofactor and b) are involved in the biogenesis of fimbriae show intriguing protective properties to resist oxidative damage. Overall, these findings indicate that a strain's sensitivity to oxidative damage can be elucidated from the structural proteome, though future experimental work is needed to validate our model assumptions and findings. CONCLUSION We thus demonstrate that structural systems biology enables a proteome-wide, computational assessment of changes to atomic-level physicochemical properties and of oxidative damage mechanisms for multiple strains in a species. This integrative approach opens new avenues to study adaptation to a particular environment based on physiological properties predicted from sequence alone.
Collapse
Affiliation(s)
- Nathan Mih
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093 USA
| | - Jonathan M. Monk
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Xin Fang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Edward Catoiu
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - David Heckmann
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Laurence Yang
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
| |
Collapse
|
33
|
Bessaiah H, Pokharel P, Habouria H, Houle S, Dozois CM. yqhG Contributes to Oxidative Stress Resistance and Virulence of Uropathogenic Escherichia coli and Identification of Other Genes Altering Expression of Type 1 Fimbriae. Front Cell Infect Microbiol 2019; 9:312. [PMID: 31555608 PMCID: PMC6727828 DOI: 10.3389/fcimb.2019.00312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections and the vast majority of UTIs are caused by extraintestinal pathogenic Escherichia coli (ExPEC) strains referred to as uropathogenic E. coli (UPEC). Successful colonization of the human urinary tract by UPEC is mediated by secreted or surface exposed virulence factors-toxins, iron transport systems, and adhesins, such as type 1 fimbriae (pili). To identify factors involved in the expression of type 1 fimbriae, we constructed a chromosomal transcriptional reporter consisting of lux under the control of the fimbrial promoter region, fimS and this construct was inserted into the reference UPEC strain CFT073 genome at the attTn7 site. This fimS reporter strain was used to generate a Tn10 transposon mutant library, coupled with high-throughput sequencing to identify genes that affect the expression of type 1 fimbriae. Transposon insertion sites were linked to genes involved in protein fate and synthesis, energy metabolism, adherence, transcriptional regulation, and transport. We showed that YqhG, a predicted periplasmic protein, is one of the important mediators that contribute to the decreased expression of type 1 fimbriae in UPEC strain CFT073. The ΔyqhG mutant had reduced expression of type 1 fimbriae and a decreased capacity to colonize the murine urinary tract. Reduced expression of type 1 fimbriae correlated with an increased bias for orientation of the fim switch in the OFF position. Interestingly, the ΔyqhG mutant was more motile than the WT strain and was also significantly more sensitive to hydrogen peroxide. Taken together, loss of yqhG may decrease virulence in the urinary tract due to a decrease in production of type 1 fimbriae and a greater sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Hicham Bessaiah
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Pravil Pokharel
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Hajer Habouria
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Sébastien Houle
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| | - Charles M. Dozois
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- CRIPA-Centre de Recherche en Infectiologie Porcine et Avicole, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
34
|
Bisht K, Wakeman CA. Discovery and Therapeutic Targeting of Differentiated Biofilm Subpopulations. Front Microbiol 2019; 10:1908. [PMID: 31507548 PMCID: PMC6718512 DOI: 10.3389/fmicb.2019.01908] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
The association of microorganisms into biofilms produces functionally organized microbial structures that promote community survival in a wide range of environments. Much like when individual cells within a multicellular organism express different genes from the same DNA blueprint, individual microbial cells located within different regions of a biofilm structure can exhibit distinct genetic programs. These spatially defined regions of physiologically differentiated cells are reminiscent of the role of tissues in multicellular organisms, with specific subpopulations in the microbial community serving defined roles to promote the overall health of the biofilm. The functions of these subpopulations are quite diverse and can range from dormant cells that can withstand antibiotic onslaughts to cells actively producing extracellular polymeric substances providing integrity to the entire community. The purpose of this review is to discuss the diverse roles of subpopulations in the stability and function of clonal biofilms, the methods for studying these subpopulations, and the ways these subpopulations can potentially be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Karishma Bisht
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Catherine Ann Wakeman
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
35
|
Lee JH, Kim YG, Raorane CJ, Ryu SY, Shim JJ, Lee J. The anti-biofilm and anti-virulence activities of trans-resveratrol and oxyresveratrol against uropathogenic Escherichia coli. BIOFOULING 2019; 35:758-767. [PMID: 31505984 DOI: 10.1080/08927014.2019.1657418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/08/2019] [Indexed: 05/25/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections, which are one of the most common infectious disease types in humans. UPEC infections involve bacterial cell adhesion to bladder epithelial cells, and UPEC can also form biofilms on indwelling catheters that are often tolerant to common antibiotics. In this study, the anti-biofilm activities of t-stilbene, stilbestrol, t-resveratrol, oxyresveratrol, ε-viniferin, suffruticosol A, and vitisin A were investigated against UPEC. t-Resveratrol, oxyresveratrol, and ε-viniferin, suffruticosol A, and vitisin A significantly inhibited UPEC biofilm formation at subinhibitory concentrations (10-50 μg ml-1). These findings were supported by observations that t-resveratrol and oxyresveratrol reduced fimbriae production and the swarming motility in UPEC. Furthermore, t-resveratrol and oxyresveratrol markedly diminished the hemagglutinating ability of UPEC, and enhanced UPEC killing by human whole blood. The findings show that t-resveratrol, oxyresveratrol, and resveratrol oligomers warrant further attention as antivirulence strategies against persistent UPEC infections.
Collapse
Affiliation(s)
- Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University , Gyeongsan , Republic of Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University , Gyeongsan , Republic of Korea
| | | | - Shi Yong Ryu
- Department of Medicinal Chemistry, Korea Research Institute of Chemical Technology , Daejeon , Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University , Gyeongsan , Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University , Gyeongsan , Republic of Korea
| |
Collapse
|
36
|
Beebout CJ, Eberly AR, Werby SH, Reasoner SA, Brannon JR, De S, Fitzgerald MJ, Huggins MM, Clayton DB, Cegelski L, Hadjifrangiskou M. Respiratory Heterogeneity Shapes Biofilm Formation and Host Colonization in Uropathogenic Escherichia coli. mBio 2019; 10:e02400-18. [PMID: 30940709 PMCID: PMC6445943 DOI: 10.1128/mbio.02400-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization to the biofilm community such that biofilm residents can benefit from the production of common goods while being protected from exogenous insults. Spatial organization is driven by the presence of chemical gradients, such as oxygen. Here we show that two quinol oxidases found in Escherichia coli and other bacteria organize along the biofilm oxygen gradient and that this spatially coordinated expression controls architectural integrity. Cytochrome bd, a high-affinity quinol oxidase required for aerobic respiration under hypoxic conditions, is the most abundantly expressed respiratory complex in the biofilm community. Depletion of the cytochrome bd-expressing subpopulation compromises biofilm complexity by reducing the abundance of secreted extracellular matrix as well as increasing cellular sensitivity to exogenous stresses. Interrogation of the distribution of quinol oxidases in the planktonic state revealed that ∼15% of the population expresses cytochrome bd at atmospheric oxygen concentration, and this population dominates during acute urinary tract infection. These data point toward a bet-hedging mechanism in which heterogeneous expression of respiratory complexes ensures respiratory plasticity of E. coli across diverse host niches.IMPORTANCE Biofilms are multicellular bacterial communities encased in a self-secreted extracellular matrix comprised of polysaccharides, proteinaceous fibers, and DNA. Organization of these components lends spatial organization in the biofilm community. Here we demonstrate that oxygen gradients in uropathogenic Escherichia coli (UPEC) biofilms lead to spatially distinct expression programs for quinol oxidases-components of the terminal electron transport chain. Our studies reveal that the cytochrome bd-expressing subpopulation is critical for biofilm development and matrix production. In addition, we show that quinol oxidases are heterogeneously expressed in planktonic populations and that this respiratory heterogeneity provides a fitness advantage during infection. These studies define the contributions of quinol oxidases to biofilm physiology and suggest the presence of respiratory bet-hedging behavior in UPEC.
Collapse
Affiliation(s)
- Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Allison R Eberly
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sabrina H Werby
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Seth A Reasoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shuvro De
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Douglass B Clayton
- Division of Pediatric Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
37
|
Mass transfer from a soluble Taylor bubble to the surrounding flowing liquid in a vertical macro tube — A numerical approach. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Zhang P, Zhu J, Xu XY, Qing TP, Dai YZ, Feng B. Identification and function of extracellular protein in wastewater treatment using proteomic approaches: A minireview. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:24-29. [PMID: 30553123 DOI: 10.1016/j.jenvman.2018.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/04/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Microbial extracellular proteins serve as important functions in wastewater treatment process. Analysis of their compositions and properties is crucial to probe their specific functions. However, conventional analytical techniques cannot obtain interest protein information from complex proteins. Recently, the extracellular proteomics method has been applied to resolve the composition of extracellular proteins. In order to better understand the roles of extracellular protein in wastewater treatment process, this review provides the information on the proteomics methods and their application in investigating extracellular proteins involved in microbial attachment/aggregation, biodegradation of pollutants, and response to environmental stresses. Future work needs to exploit the full capability of the proteome.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Jing Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Xiao-Yan Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Tai-Ping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
39
|
Fuqua C, Filloux A, Ghigo JM, Visick KL. Biofilms 2018: A diversity of microbes and mechanisms. J Bacteriol 2019; 201:JB.00118-19. [PMID: 30782638 PMCID: PMC6707918 DOI: 10.1128/jb.00118-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 8th ASM Conference on Biofilms was held in Washington D.C. on October 7-11, 2018. This very highly subscribed meeting represented a wide breadth of current research in biofilms, and included over 500 attendees, 12 sessions with 64 oral presentations, and four poster sessions with about 400 posters.
Collapse
Affiliation(s)
- Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College, London, United Kingdom
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
40
|
Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, Yin WF, Chan KG, Chromek M, Brauner A, Chapman MR, Beatson SA, Schembri MA. Discovery of New Genes Involved in Curli Production by a Uropathogenic Escherichia coli Strain from the Highly Virulent O45:K1:H7 Lineage. mBio 2018; 9:e01462-18. [PMID: 30131362 PMCID: PMC6106082 DOI: 10.1128/mbio.01462-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Milan Chromek
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pediatrics, CLINTEC, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
41
|
Zhang P, Chen YP, Qiu JH, Dai YZ, Feng B. Imaging the Microprocesses in Biofilm Matrices. Trends Biotechnol 2018; 37:214-226. [PMID: 30075862 DOI: 10.1016/j.tibtech.2018.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
Biofilms, which are aggregates of microorganisms and extracellular matrices, widely colonize natural water bodies, wastewater treatment systems, and body tissues, and have vital roles in water purification, biofouling, and infectious diseases. Recently, multiple imaging modalities have been developed to visualize the morphological structure and material distribution within biofilms and to probe the microprocesses in biofilm matrices, including biofilm formation, transfer and metabolism of substrates, and cell-cell communication. These technologies have improved our understanding of biofilm control and the fates of substrates in biofilms. In this review, we describe the principles of various imaging techniques and discuss the advantages and limitations of each approach to characterizing microprocesses in biofilm matrices.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| | - Ju-Hui Qiu
- College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
42
|
Santos T, Théron L, Chambon C, Viala D, Centeno D, Esbelin J, Hébraud M. MALDI mass spectrometry imaging and in situ microproteomics of Listeria monocytogenes biofilms. J Proteomics 2018; 187:152-160. [PMID: 30071319 DOI: 10.1016/j.jprot.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023]
Abstract
MALDI-TOF Mass spectrometry Imaging (MSI) is a surface-sampling technology that can determine spatial information and relative abundance of analytes directly from biological samples. Human listeriosis cases are due to the ingestion of contaminated foods with the pathogenic bacteria Listeria monocytogenes. The reduction of water availability in food workshops by decreasing the air relative humidity (RH) is one strategy to improve the control of bacterial contamination. This study aims to develop and implement an MSI approach on L. monocytogenes biofilms and proof of concept using a dehumidified stress condition. MSI allowed examining the distribution of low molecular weight proteins within the biofilms subjected to a dehumidification environment, mimicking the one present in a food workshop (10 °C, 75% RH). Furthermore, a LC-MS/MS approach was made to link the dots between MSI and protein identification. Five identified proteins were assigned to registered MSI m/z, including two cold-shock proteins and a ligase involved in cell wall biogenesis. These data demonstrate how imaging can be used to dissect the proteome of an intact bacterial biofilm giving new insights into protein expression relating to a dehumidification stress adaptation. Data are available via ProteomeXchange with identifier PXD010444. BIOLOGICAL SIGNIFICANCE The ready-to-eat food processing industry has the daily challenge of controlling the contamination of surfaces and machines with spoilage and pathogenic microorganisms. In some cases, it is a lost cause due to these microorganisms' capacity to withstand the cleaning treatments, like desiccation procedures. Such a case is the ubiquitous Gram-positive Bacterium Listeria monocytogenes. Its surface proteins have particular importance for the interaction with its environment, being important factors contributing to adaptation to stress conditions. There are few reproducibly techniques to obtain the surface proteins of Gram-positive cells. Here, we developed a workflow that enables the use of MALDI imaging on Gram-positive bacterium biofilms to study the impact of dehumidification on sessile cells. It will be of the most interest to test this workflow with different environmental conditions and potentially apply it to other biofilm-forming bacteria.
Collapse
Affiliation(s)
- Tiago Santos
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Laëtitia Théron
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Christophe Chambon
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Didier Viala
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Delphine Centeno
- INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France
| | - Julia Esbelin
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France
| | - Michel Hébraud
- Université Clermont Auvergne, INRA, UMR MEDiS, F-63122 Saint-Genès Champanelle, France; INRA, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), F-63122 Saint-Genès Champanelle, France.
| |
Collapse
|
43
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
44
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
45
|
Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infect Immun 2018; 86:e00746-17. [PMID: 29311232 PMCID: PMC5820936 DOI: 10.1128/iai.00746-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut.
Collapse
Affiliation(s)
- Colin W Russell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Courtney A Jost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alexander Tran
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alan T Stenquist
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Morgan A Wambaugh
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Mary P Bronner
- Department of Pathology, ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| |
Collapse
|
46
|
Steiner BD, Eberly AR, Hurst MN, Zhang EW, Green HD, Behr S, Jung K, Hadjifrangiskou M. Evidence of Cross-Regulation in Two Closely Related Pyruvate-Sensing Systems in Uropathogenic Escherichia coli. J Membr Biol 2018; 251:65-74. [PMID: 29374286 DOI: 10.1007/s00232-018-0014-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
Two-component systems (TCSs) dictate many bacterial responses to environmental change via the activation of a membrane-embedded sensor kinase, which has molecular specificity for a cognate response regulator protein. However, although the majority of TCSs operate through seemingly strict cognate protein-protein interactions, there have been several reports of TCSs that violate this classical model of signal transduction. Our group has recently demonstrated that some of these cross-interacting TCSs function in a manner that imparts a fitness advantage to bacterial pathogens. In this study, we describe interconnectivity between the metabolite-sensing TCSs YpdA/YpdB and BtsS/BtsR in uropathogenic Escherichia coli (UPEC). The YpdA/YpdB and BtsS/BtsR TCSs have been previously reported to interact in K12 E. coli, where they alter the expression of putative transporter genes yhjX and yjiY, respectively. These target genes are both upregulated in UPEC during acute and chronic murine models of urinary tract infection, as well as in response to pyruvate and serine added to growth media in vitro. Here, we show that proper regulation of yhjX in UPEC requires the presence of all components from both of these TCSs. By utilizing plasmid-encoded luciferase reporters tracking the activity of the yhjX and yjiY promoters, we demonstrate that deletions in one TCS substantially alter transcriptional activity of the opposing system's target gene. However, unlike in K12 E. coli, single gene deletions in the YpdA/YpdB system do not alter yjiY gene expression in UPEC, suggesting that niche and lifestyle-specific pressures may be selecting for differential cross-regulation of TCSs in pathogenic and non-pathogenic E. coli.
Collapse
Affiliation(s)
- Bradley D Steiner
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Allison R Eberly
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN A5225A, Nashville, TN, 37232, USA
| | - Melanie N Hurst
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN A5225A, Nashville, TN, 37232, USA
| | - Ellisa W Zhang
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN A5225A, Nashville, TN, 37232, USA
| | | | - Stefan Behr
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - Kirsten Jung
- Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN A5225A, Nashville, TN, 37232, USA.
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology & Inflammation, Nashville, TN, USA.
| |
Collapse
|
47
|
Biofilm Formation by Uropathogenic Escherichia coli Is Favored under Oxygen Conditions That Mimic the Bladder Environment. Int J Mol Sci 2017; 18:ijms18102077. [PMID: 28973965 PMCID: PMC5666759 DOI: 10.3390/ijms18102077] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
One of the most common urologic problems afflicting millions of people worldwide is urinary tract infection (UTI). The severity of UTIs ranges from asymptomatic bacteriuria to acute cystitis, and in severe cases, pyelonephritis and urosepsis. The primary cause of UTIs is uropathogenic Escherichia coli (UPEC), for which current antibiotic therapies often fail. UPEC forms multicellular communities known as biofilms on urinary catheters, as well as on and within bladder epithelial cells. Biofilm formation protects UPEC from environmental conditions, antimicrobial therapy, and the host immune system. Previous studies have investigated UPEC biofilm formation in aerobic conditions (21% oxygen); however, urine oxygen tension is reduced (4–6%), and urine contains molecules that can be used by UPEC as alternative terminal electron acceptors (ATEAs) for respiration. This study was designed to determine whether these different terminal electron acceptors utilized by E. coli influence biofilm formation. A panel of 50 urine-associated E. coli isolates was tested for the ability to form biofilm under anaerobic conditions and in the presence of ATEAs. Biofilm production was reduced under all tested sub-atmospheric levels of oxygen, with the notable exception of 4% oxygen, the reported concentration of oxygen within the bladder.
Collapse
|
48
|
Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol 2017; 8:1566. [PMID: 28861072 PMCID: PMC5559502 DOI: 10.3389/fmicb.2017.01566] [Citation(s) in RCA: 395] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most common pathological conditions in both community and hospital settings. It has been estimated that about 150 million people worldwide develop UTI each year, with high social costs in terms of hospitalizations and medical expenses. Among the common uropathogens associated to UTIs development, UroPathogenic Escherichia coli (UPEC) is the primary cause. UPEC strains possess a plethora of both structural (as fimbriae, pili, curli, flagella) and secreted (toxins, iron-acquisition systems) virulence factors that contribute to their capacity to cause disease, although the ability to adhere to host epithelial cells in the urinary tract represents the most important determinant of pathogenicity. On the opposite side, the bladder epithelium shows a multifaceted array of host defenses including the urine flow and the secretion of antimicrobial substances, which represent useful tools to counteract bacterial infections. The fascinating and intricate dynamics between these players determine a complex interaction system that needs to be revealed. This review will focus on the most relevant components of UPEC arsenal of pathogenicity together with the major host responses to infection, the current approved treatment and the emergence of resistant UPEC strains, the vaccine strategies, the natural antimicrobial compounds along with innovative anti-adhesive and prophylactic approaches to prevent UTIs.
Collapse
Affiliation(s)
| | | | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of TurinTorino, Italy
| |
Collapse
|
49
|
Podgorny OV, Lazarev VN. Laser microdissection: A promising tool for exploring microorganisms and their interactions with hosts. J Microbiol Methods 2017; 138:82-92. [PMID: 26775287 DOI: 10.1016/j.mimet.2016.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/11/2015] [Accepted: 01/01/2016] [Indexed: 12/14/2022]
Abstract
Laser microdissection is a method that allows for the isolation of homogenous cell populations from their native niches in tissues for downstream molecular assays. This method is widely used for genomic analysis, gene expression profiling and proteomic and metabolite assays in various fields of biology, but it remains an uncommon approach in microbiological research. In spite of the limited number of publications, laser microdissection was shown to be an extremely useful method for studying host-microorganism interactions in animals and plants, investigating bacteria within biofilms, identifying uncultivated bacteria and performing single prokaryotic cell analysis. The current paper describes the methodological aspects of commercially available laser microdissection instruments and representative examples that demonstrate the advantages of this method for resolving a variety of issues in microbiology.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow 119435, Russia; Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Str., Moscow 119334, Russia.
| | - Vassili N Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya Str., Moscow 119435, Russia
| |
Collapse
|
50
|
'Omic' Approaches to Study Uropathogenic Escherichia coli Virulence. Trends Microbiol 2017; 25:729-740. [PMID: 28550944 DOI: 10.1016/j.tim.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/21/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is a pathogen of major significance to global human health and is strongly associated with rapidly increasing antibiotic resistance. UPEC is the primary cause of urinary tract infection (UTI), a disease that involves a complicated pathogenic pathway of extracellular and intracellular lifestyles during interaction with the host. The application of multiple 'omic' technologies, including genomics, transcriptomics, proteomics, and metabolomics, has provided enormous knowledge to our understanding of UPEC biology. Here we outline this progress and present a view for future developments using these exciting forefront technologies to fully comprehend UPEC pathogenesis in the context of infection.
Collapse
|