1
|
Keller V, Calchera A, Otte J, Schmitt I. Genomic features of lichen-associated black fungi. IUBMB Life 2025; 77:e2934. [PMID: 39710945 DOI: 10.1002/iub.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/06/2024] [Indexed: 12/24/2024]
Abstract
Lichens are mutualistic associations consisting of a primary fungal host, and one to few primary phototrophic symbiont(s), usually a green alga and/or a cyanobacterium. They form complex thallus structures, which provide unique and stable habitats for many other microorganisms. Frequently isolated from lichens are the so-called black fungi, or black yeasts, which are mainly characterized by melanized cell walls and extremophilic lifestyles. It is presently unclear in which ways these fungi interact with other members of the lichen symbiosis. Genomic resources of lichen-associated black fungi are needed to better understand the physiological potential of these fungi and shed light on the complexity of the lichen consortium. Here, we present high-quality genomes of 14 black fungal lineages, isolated from lichens of the rock-dwelling genus Umbilicaria. Nine of the lineages belong to the Eurotiomycetes (Chaetothyriales), four to the Dothideomycetes, and one to the Arthoniomycetes, representing the first genome of a black fungus in this class. The PacBio-based assemblies are highly contiguous (5-42 contigs per genome, mean coverage of 79-502, N50 of 1.0-7.3 mega-base-pair (Mb), Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness generally ≥95.4%). Most contigs are flanked by a telomere sequence, suggesting we achieved near chromosome-level assemblies. Genome sizes range between 26 and 44 Mb. Transcriptome-based annotations yielded ~11,000-18,000 genes per genome. We analyzed genome content with respect to repetitive elements, biosynthetic genes, and effector genes. Each genome contained a polyketide synthase gene related to the dihydroxynaphthalene-melanin pathway. This research provides insights into genome content and metabolic potential of these relatively unknown, but frequently encountered lichen associates.
Collapse
Affiliation(s)
- Victoria Keller
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Anjuli Calchera
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (S-BiKF), Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| |
Collapse
|
2
|
Castanho FM, Costa BLCD, Abe VY, Yokoyama A, Darben LM, Oliveira LS, Ferreira EGC, Lopes IDON, Carvalho MCDCGD, Balbi-Peña MI, Marcelino-Guimarães FC. Variability and functional characterization of the Phakopsora pachyrhizi Egh16-like effectors. Genet Mol Biol 2024; 47:e20230192. [PMID: 39239924 PMCID: PMC11378017 DOI: 10.1590/1678-4685-gmb-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/05/2024] [Indexed: 09/07/2024] Open
Abstract
Effector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of Pp and identify new family members. We described 22 members of the Egh16-like gene family in the Pp MT2006 genome and 18 in the UFV02 and K8108 genomes, highlighting a family expansion. Family members have a small signal peptide, conserved cysteine-rich R/Y/FxC motifs in the C-terminal region, and a virulence-related Egh16-like domain and were able to suppress PTI related responses in Benthamiana. Phylogenetic analysis placed the family members into eight clusters, with members induced during the early stages of rust infection. Members of clusters VI and VII are present in different copy numbers in Pp genomes and suppressed PAMP-related responses.
Collapse
Affiliation(s)
- Fernanda Machado Castanho
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Genética e Biologia Molecular, Londrina, PR, Brazil
| | | | - Valéria Yukari Abe
- Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil
| | - Alessandra Yokoyama
- Departamento de Bioquímica e Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Londrina, PR, Brazil
| | | | - Liliane Santana Oliveira
- Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Calia G, Porracciolo P, Chen Y, Kozlowski D, Schuler H, Cestaro A, Quentin M, Favery B, Danchin EGJ, Bottini S. Identification and characterization of specific motifs in effector proteins of plant parasites using MOnSTER. Commun Biol 2024; 7:850. [PMID: 38992096 PMCID: PMC11239862 DOI: 10.1038/s42003-024-06515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Plant pathogens cause billions of dollars of crop loss every year and are a major threat to global food security. Identifying and characterizing pathogens effectors is crucial towards their improved control. Because of their poor sequence conservation, effector identification is challenging, and current methods generate too many candidates without indication for prioritizing experimental studies. In most phyla, effectors contain specific sequence motifs which influence their localization and targets in the plant. Therefore, there is an urgent need to develop bioinformatics tools tailored for pathogen effectors. To circumvent these limitations, we have developed MOnSTER a specific tool that identifies clusters of motifs of protein sequences (CLUMPs). MOnSTER can be fed with motifs identified by de novo tools or from databases such as Pfam and InterProScan. The advantage of MOnSTER is the reduction of motif redundancy by clustering them and associating a score. This score encompasses the physicochemical properties of AAs and the motif occurrences. We built up our method to identify discriminant CLUMPs in oomycetes effectors. Consequently, we applied MOnSTER on plant parasitic nematodes and identified six CLUMPs in about 60% of the known nematode candidate parasitism proteins. Furthermore, we found co-occurrences of CLUMPs with protein domains important for invasion and pathogenicity. The potentiality of this tool goes beyond the effector characterization and can be used to easily cluster motifs and calculate the CLUMP-score on any set of protein sequences.
Collapse
Affiliation(s)
- Giulia Calia
- Free University of Bolzano, Faculty of Agricultural Environmental and Food Science, Bolzano, Italy
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Paola Porracciolo
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Université Côte d'Azur, Center of Modeling, Simulation and Interactions, Nice, France
| | - Yongpan Chen
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Djampa Kozlowski
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
- Université Côte d'Azur, Center of Modeling, Simulation and Interactions, Nice, France
| | - Hannes Schuler
- Free University of Bolzano, Faculty of Agricultural Environmental and Food Science, Bolzano, Italy
- Free University of Bolzano, Competence Centre for Plant Health, Bolzano, Italy
| | - Alessandro Cestaro
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Michaël Quentin
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Bruno Favery
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Etienne G J Danchin
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Silvia Bottini
- INRAE, Université Côte d'Azur, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France.
- Université Côte d'Azur, Center of Modeling, Simulation and Interactions, Nice, France.
| |
Collapse
|
4
|
Moonjely S, Ebert M, Paton-Glassbrook D, Noel ZA, Roze L, Shay R, Watkins T, Trail F. Update on the state of research to manage Fusarium head blight. Fungal Genet Biol 2023; 169:103829. [PMID: 37666446 DOI: 10.1016/j.fgb.2023.103829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Fusarium head blight (FHB) is one of the most devastating diseases of cereal crops, causing severe reduction in yield and quality of grain worldwide. In the United States, the major causal agent of FHB is the mycotoxigenic fungus, Fusarium graminearum. The contamination of grain with mycotoxins, including deoxynivalenol and zearalenone, is a particularly serious concern due to its impact on the health of humans and livestock. For the past few decades, multidisciplinary studies have been conducted on management strategies designed to reduce the losses caused by FHB. However, effective management is still challenging due to the emergence of fungicide-tolerant strains of F. graminearum and the lack of highly resistant wheat and barley cultivars. This review presents multidisciplinary approaches that incorporate advances in genomics, genetic-engineering, new fungicide chemistries, applied biocontrol, and consideration of the disease cycle for management of FHB.
Collapse
Affiliation(s)
- Soumya Moonjely
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Malaika Ebert
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Drew Paton-Glassbrook
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Zachary A Noel
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Ludmila Roze
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Rebecca Shay
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Tara Watkins
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
5
|
Zhao Y, Zheng X, Tabima JF, Zhu S, Søndreli KL, Hundley H, Bauer D, Barry K, Zhang Y, Schmutz J, Wang Y, LeBoldus JM, Xiong Q. Secreted Effector Proteins of Poplar Leaf Spot and Stem Canker Pathogen Sphaerulina musiva Manipulate Plant Immunity and Contribute to Virulence in Diverse Ways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:779-795. [PMID: 37551980 DOI: 10.1094/mpmi-07-23-0091-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Fungal effectors play critical roles in manipulating plant immune responses and promoting colonization. Sphaerulina musiva is a heterothallic ascomycete fungus that causes Septoria leaf spot and stem canker disease in poplar (Populus spp.) plantations. This disease can result in premature defoliation, branch and stem breakage, increased mortality, and plantation failure. However, little is known about the interaction between S. musiva and poplar. Previous work predicted 142 candidate secreted effector proteins in S. musiva (SmCSEPs), 19 of which were selected for further functional characterization in this study. SmCSEP3 induced plant cell death in Nicotiana benthamiana, while 8 out of 19 tested SmCSEPs suppressed cell death. The signal peptides of these eight SmCSEPs exhibited secretory activity in a yeast signal sequence trap assay. Confocal microscopy revealed that four of these eight SmCSEPs target both the cytoplasm and the nucleus, whereas four predominantly localize to discrete punctate structures. Pathogen challenge assays in N. benthamiana demonstrated that the transient expression of six SmCSEPs promoted Fusarium proliferatum infection. The expression of these six SmCSEP genes were induced during infection. SmCSEP2, SmCSEP13, and SmCSEP25 suppressed chitin-triggered reactive oxygen species burst and callose deposition in N. benthamiana. The candidate secreted effector proteins of S. musiva target multiple compartments in the plant cell and modulate different pattern-triggered immunity pathways. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.
Collapse
Affiliation(s)
- Yao Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210095, China
| | - Xinyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Javier F Tabima
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
- Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Sheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kelsey L Søndreli
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Hope Hundley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Diane Bauer
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Kerrie Barry
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, U.S.A
| | - Yaxin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A
| | - Yuanchao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210095, China
| | - Jared M LeBoldus
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, U.S.A
- Department of Biology, Clark University, Worcester, MA 01610, U.S.A
| | - Qin Xiong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Prasad P, Jain N, Chaudhary J, Thakur RK, Savadi S, Bhardwaj SC, Gangwar OP, Lata C, Adhikari S, Kumar S, Balyan HS, Gupta PK. Candidate effectors for leaf rust resistance gene Lr28 identified through transcriptome and in-silico analysis. Front Microbiol 2023; 14:1143703. [PMID: 37789861 PMCID: PMC10543267 DOI: 10.3389/fmicb.2023.1143703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/31/2023] [Indexed: 10/05/2023] Open
Abstract
Puccinia spp. causing rust diseases in wheat and other cereals secrete several specialized effector proteins into host cells. Characterization of these proteins and their interaction with host's R proteins could greatly help to limit crop losses due to diseases. Prediction of effector proteins by combining the transcriptome analysis and multiple in-silico approaches is gaining importance in revealing the pathogenic mechanism. The present study involved identification of 13 Puccinia triticina (Pt) coding sequences (CDSs), through transcriptome analysis, that were differentially expressed during wheat-leaf rust interaction; and prediction of their effector like features using different in-silico tools. NCBI-BLAST and pathogen-host interaction BLAST (PHI-BLAST) tools were used to annotate and classify these sequences based on their most closely matched counterpart in both the databases. Homology between CDSs and the annotated sequences in the NCBI database ranged from 79 to 94% and with putative effectors of other plant pathogens in PHI-BLAST from 24.46 to 54.35%. Nine of the 13 CDSs had effector-like features according to EffectorP 3.0 (≥0.546 probability of these sequences to be effector). The qRT-PCR expression analysis revealed that the relative expression of all CDSs in compatible interaction (HD2329) was maximum at 11 days post inoculation (dpi) and that in incompatible interactions (HD2329 + Lr28) was maximum at 3 dpi in seven and 9 dpi in five CDSs. These results suggest that six CDSs (>0.8 effector probability as per EffectorP 3.0) could be considered as putative Pt effectors. The molecular docking and MD simulation analysis of these six CDSs suggested that candidate Lr28 protein binds more strongly to candidate effector c14094_g1_i1 to form more stable complex than the remaining five. Further functional characterization of these six candidate effectors should prove useful for a better understanding of wheat-leaf rust interaction. In turn, this should facilitate effector-based leaf rust resistance breeding in wheat.
Collapse
Affiliation(s)
- Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Rajni Kant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | | | | | - Om Prakash Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Charu Lata
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Sneha Adhikari
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
- Division of Genetics, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
7
|
Fernandez J. The Phantom Menace: latest findings on effector biology in the rice blast fungus. ABIOTECH 2023; 4:140-154. [PMID: 37581025 PMCID: PMC10423181 DOI: 10.1007/s42994-023-00099-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/11/2023] [Indexed: 08/16/2023]
Abstract
Magnaporthe oryzae is a hemibiotrophic fungus responsible for the economically devastating and recalcitrant rice blast disease. However, the blast fungus is not only restricted to rice plants as it can also infect wheat, millet, and other crops. Despite previous outstanding discoveries aimed to understand and control the disease, the fungus remains one of the most important pathogens that threatens global food security. To cause disease, M. oryzae initiates morphological changes to attach, penetrate, and colonize rice cells, all while suppressing plant immune defenses that would otherwise hinder its proliferation. As such, M. oryzae actively secretes a battery of small proteins called "effectors" to manipulate host machinery. In this review, we summarize the latest findings in effector identification, expression, regulation, and functionality. We review the most studied effectors and their roles in pathogenesis. Additionally, we discern the current methodologies to structurally catalog effectors, and we highlight the importance of climate change and its impact on the future of rice blast disease.
Collapse
Affiliation(s)
- Jessie Fernandez
- Department of Microbiology and Cell Science at University of Florida-Institute of Food and Agricultural Science, Gainesville, FL 32611 USA
| |
Collapse
|
8
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
9
|
Lovelace AH, Dorhmi S, Hulin MT, Li Y, Mansfield JW, Ma W. Effector Identification in Plant Pathogens. PHYTOPATHOLOGY 2023; 113:637-650. [PMID: 37126080 DOI: 10.1094/phyto-09-22-0337-kd] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Effectors play a central role in determining the outcome of plant-pathogen interactions. As key virulence proteins, effectors are collectively indispensable for disease development. By understanding the virulence mechanisms of effectors, fundamental knowledge of microbial pathogenesis and disease resistance have been revealed. Effectors are also considered double-edged swords because some of them activate immunity in disease resistant plants after being recognized by specific immune receptors, which evolved to monitor pathogen presence or activity. Characterization of effector recognition by their cognate immune receptors and the downstream immune signaling pathways is instrumental in implementing resistance. Over the past decades, substantial research effort has focused on effector biology, especially concerning their interactions with virulence targets or immune receptors in plant cells. A foundation of this research is robust identification of the effector repertoire from a given pathogen, which depends heavily on bioinformatic prediction. In this review, we summarize methodologies that have been used for effector mining in various microbial pathogens which use different effector delivery mechanisms. We also discuss current limitations and provide perspectives on how recently developed analytic tools and technologies may facilitate effector identification and hence generation of a more complete vision of host-pathogen interactions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Sara Dorhmi
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
- Department of Microbiology and Plant Pathology, University of California Riverside, CA 92521, U.S.A
| | | | - Yufei Li
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
| | - John W Mansfield
- Faculty of Natural Sciences, Imperial College London, London, SW7 2BX, U.K
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich, NR4 7UH, U.K
| |
Collapse
|
10
|
Kiselev A, Camborde L, Carballo LO, Kaschani F, Kaiser M, van der Hoorn RAL, Gaulin E. The root pathogen Aphanomyces euteiches secretes modular proteases in pea apoplast during host infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1140101. [PMID: 37051076 PMCID: PMC10084794 DOI: 10.3389/fpls.2023.1140101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
To successfully colonize the host, phytopathogens have developed a large repertoire of components to both combat the host plant defense mechanisms and to survive in adverse environmental conditions. Microbial proteases are predicted to be crucial components of these systems. In the present work, we aimed to identify active secreted proteases from the oomycete Aphanomyces euteiches, which causes root rot diseases on legumes. Genome mining and expression analysis highlighted an overrepresentation of microbial tandemly repeated proteases, which are upregulated during host infection. Activity Based Protein Profiling and mass spectrometry (ABPP-MS) on apoplastic fluids isolated from pea roots infected by the pathogen led to the identification of 35 active extracellular microbial proteases, which represents around 30% of the genes expressed encoding serine and cysteine proteases during infection. Notably, eight of the detected active secreted proteases carry an additional C-terminal domain. This study reveals novel active modular extracellular eukaryotic proteases as potential pathogenicity factors in Aphanomyces genus.
Collapse
Affiliation(s)
- Andrei Kiselev
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Laura Ossorio Carballo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Farnusch Kaschani
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- ZMB Chemical Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Renier A. L. van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
11
|
Rozano L, Mukuka YM, Hane JK, Mancera RL. Ab Initio Modelling of the Structure of ToxA-like and MAX Fungal Effector Proteins. Int J Mol Sci 2023; 24:ijms24076262. [PMID: 37047233 PMCID: PMC10094246 DOI: 10.3390/ijms24076262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogenic fungal diseases in crops are mediated by the release of effector proteins that facilitate infection. Characterising the structure of these fungal effectors is vital to understanding their virulence mechanisms and interactions with their hosts, which is crucial in the breeding of plant cultivars for disease resistance. Several effectors have been identified and validated experimentally; however, their lack of sequence conservation often impedes the identification and prediction of their structure using sequence similarity approaches. Structural similarity has, nonetheless, been observed within fungal effector protein families, creating interest in validating the use of computational methods to predict their tertiary structure from their sequence. We used Rosetta ab initio modelling to predict the structures of members of the ToxA-like and MAX effector families for which experimental structures are known to validate this method. An optimised approach was then used to predict the structures of phenotypically validated effectors lacking known structures. Rosetta was found to successfully predict the structure of fungal effectors in the ToxA-like and MAX families, as well as phenotypically validated but structurally unconfirmed effector sequences. Interestingly, potential new effector structural families were identified on the basis of comparisons with structural homologues and the identification of associated protein domains.
Collapse
|
12
|
Achari SR, Mann RC, Sharma M, Edwards J. Diagnosis of Fusarium oxysporum f. sp. ciceris causing Fusarium wilt of chickpea using loop-mediated isothermal amplification (LAMP) and conventional end-point PCR. Sci Rep 2023; 13:2640. [PMID: 36788315 PMCID: PMC9929042 DOI: 10.1038/s41598-023-29730-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Fusarium oxysporum (Fo) is ubiquitous in soil and forms a species complex of pathogenic and putatively non-pathogenic strains. Pathogenic strains cause disease in over 150 plant species. Fusarium oxysporum f. sp. ciceris (Foc) is a major fungal pathogen causing Fusarium wilt in chickpeas (Cicer arietinum). In some countries such as Australia, Foc is a high-priority pest of biosecurity concern. Specific, sensitive, robust and rapid diagnostic assays are essential for effective disease management on the farm and serve as an effective biosecurity control measure. We developed and validated a novel and highly specific PCR and a LAMP assay for detecting the Indian Foc race 1 based on a putative effector gene uniquely present in its genome. These assays were assessed against 39 Fo formae speciales and found to be specific, only amplifying the target species, in a portable real-time fluorometer (Genie III) and qPCR machine in under 13 min with an anneal derivative temperature ranging from 87.7 to 88.3 °C. The LAMP assay is sensitive to low levels of target DNA (> 0.009 ng/µl). The expected PCR product size is 143 bp. The LAMP assay developed in this study was simple, fast, sensitive and specific and could be explored for other Foc races due to the uniqueness of this marker to the Foc genome.
Collapse
Affiliation(s)
- Saidi R. Achari
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia
| | - Ross C. Mann
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia
| | - Mamta Sharma
- grid.419337.b0000 0000 9323 1772International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Jacqueline Edwards
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia ,grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
13
|
Sinha S, Navathe S, Singh S, Gupta DK, Kharwar RN, Chand R. Genome sequencing and annotation of Cercospora sesami, a fungal pathogen causing leaf spot to Sesamum indicum. 3 Biotech 2023; 13:55. [PMID: 36685323 PMCID: PMC9852405 DOI: 10.1007/s13205-023-03468-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Cercospora sesami is a plant pathogen that causes leaf spot disease in sesame plants worldwide. In this study, genome sequence assembly of C. sesami isolate Cers 52-10 (MCC 9069) was generated using native paired-end and mate-pair DNA sequencing based on the Illumina HiSeq 2500 platform. The genome assembly of C. sesami is 34.3 Mb in size with an N50 of 26,222 bp and an average GC content of 53.02%. A total number of 10,872 genes were predicted in this study, out of which 9,712 genes were functionally annotated. Genes assigned to carbohydrate-active enzyme classes were also identified during the study. A total of 80 putative effector candidates were predicted and functionally annotated. The C. sesami genome sequence is available at DDBJ/ENA/GenBank, and other associated information is submitted to Mendeley's data. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03468-4.
Collapse
Affiliation(s)
- Shagun Sinha
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
- Center of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Sudhir Navathe
- Agharkar Research Institute, G. G. Agarkar Road, Pune, Maharashtra 411004 India
| | - Sakshi Singh
- Core Unit for Molecular Tumor Diagnostics, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Dresden, 01307 Germany
| | - Deepak K. Gupta
- Neogen Informatics Inc, Office 101, First Floor, A-121, Vikas Marg, New Delhi, 110092 India
| | - Ravindra Nath Kharwar
- Center of Advanced Studies in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
14
|
Seong K, Krasileva KV. Prediction of effector protein structures from fungal phytopathogens enables evolutionary analyses. Nat Microbiol 2023; 8:174-187. [PMID: 36604508 PMCID: PMC9816061 DOI: 10.1038/s41564-022-01287-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/11/2022] [Indexed: 01/07/2023]
Abstract
Elucidating the similarity and diversity of pathogen effectors is critical to understand their evolution across fungal phytopathogens. However, rapid divergence that diminishes sequence similarities between putatively homologous effectors has largely concealed the roots of effector evolution. Here we modelled the structures of 26,653 secreted proteins from 14 agriculturally important fungal phytopathogens, six non-pathogenic fungi and one oomycete with AlphaFold 2. With 18,000 successfully predicted folds, we performed structure-guided comparative analyses on two aspects of effector evolution: uniquely expanded sequence-unrelated structurally similar (SUSS) effector families and common folds present across the fungal species. Extreme expansion of lineage-specific SUSS effector families was found only in several obligate biotrophs, Blumeria graminis and Puccinia graminis. The highly expanded effector families were the source of conserved sequence motifs, such as the Y/F/WxC motif. We identified new classes of SUSS effector families that include known virulence factors, such as AvrSr35, AvrSr50 and Tin2. Structural comparisons revealed that the expanded structural folds further diversify through domain duplications and fusion with disordered stretches. Putatively sub- and neo-functionalized SUSS effectors could reconverge on regulation, expanding the functional pools of effectors in the pathogen infection cycle. We also found evidence that many effector families could have originated from ancestral folds conserved across fungi. Collectively, our study highlights diverse effector evolution mechanisms and supports divergent evolution as a major force in driving SUSS effector evolution from ancestral proteins.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
15
|
Ensiled Mixed Vegetables Enriched Carbohydrate Metabolism in Heterofermentative Lactic Acid Bacteria. FERMENTATION 2022. [DOI: 10.3390/fermentation8120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This study evaluated the fermentation quality, nutritive profile, in vitro fermentation, and microbial communities colonising sorghum ensiled with an unsalable vegetable mixture (chopped beans, carrot, and onion (1:1:1) ) including: (1)−100% sorghum; (2)−80% sorghum + 20% vegetable mix or (3)−60% sorghum + 40% vegetable mix, on a dry matter (DM) basis, with or without a probiotic inoculant. Samples were obtained across 0, 1, 3, 5,7, and 101 days ensiling and after 14 d aerobic exposure. The V4 region of the 16S rRNA gene and the ITS1 region were sequenced to profile bacterial, archaeal, and fungal communities. Compared to the 0% DM, ethanol increased (p < 0.01) from 8.42 to 20.4 ± 1.32 mM with 40% DM vegetable mix inclusion, while lactate decreased from 5.93 to 2.24 ± 0.26 mM. Linear discriminant analysis revealed that relative abundances of 12 bacterial taxa were influenced by silage treatments (log LDA score ≥ 4.02; p ≤ 0.03), while predicted functional pathways of alternative carbohydrate metabolism (hexitol, sulfoquinovose and glycerol degradation; N-acetyl glucosamine biosynthesis; log LDA score ≥ 2.04; p ≤ 0.02) were similarly enriched. This study indicated that carbohydrate metabolism by heterofermentative lactic acid bacteria can increase the feed value of sorghum when ensiled with an unsalable vegetable mixture at 40%DM, without requiring a high quantity of lactate.
Collapse
|
16
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022; 10:1980. [PMID: 36296254 PMCID: PMC9610748 DOI: 10.3390/microorganisms10101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Effectors are small, secreted molecules that alter host cell structure and function, thereby facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors in plant-pathogen interactions, where their contributions to virulence are determined in the plant host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes display similar functions but have different outcomes for plant health. Endophyte effectors commonly aid in the establishment of mutualistic interactions with the plant and contribute to plant health through the induction of systemic resistance against pathogens, while pathogenic effectors mainly debilitate the plant's immune response, resulting in the establishment of disease. Effectors of plant pathogens as well as plant endophytes are tools to be considered in effectoromics for the development of novel strategies for disease management. This review aims to present effectors in their roles as promotors of health or disease for the plant host.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
17
|
Satheesh GR, Koyyappurath S, Varghese L, Thomas G. Genome and Transcriptome Sequence Resources and Effector Repertoire of Pythium myriotylum Drechsler. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:715-718. [PMID: 35834413 DOI: 10.1094/mpmi-07-21-0165-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Gayathri R Satheesh
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Sayuj Koyyappurath
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Lini Varghese
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - George Thomas
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| |
Collapse
|
18
|
Li X, Yang S, Zhang M, Yang Y, Peng L. Identification of Pathogenicity-Related Effector Proteins and the Role of Piwsc1 in the Virulence of Penicillium italicum on Citrus Fruits. J Fungi (Basel) 2022; 8:jof8060646. [PMID: 35736129 PMCID: PMC9224591 DOI: 10.3390/jof8060646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Blue mold caused by Penicillium italicum is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of P. italicum. Three hundred and seventy-five secreted proteins of P. italicum were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene Piwsc1, a core candidate, was performed by gene knockout. The deletion of Piwsc1 resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of ΔPiwsc1 decreased. The findings provide us with new insights to understand the pathogenesis of P. italicum and develop an effective and sustainable control method for blue mold.
Collapse
|
19
|
Buijs VA, Groenewald JZ, Haridas S, LaButti KM, Lipzen A, Martin FM, Barry K, Grigoriev IV, Crous PW, Seidl MF. Enemy or ally: a genomic approach to elucidate the lifestyle of Phyllosticta citrichinaensis. G3 (BETHESDA, MD.) 2022; 12:jkac061. [PMID: 35311955 PMCID: PMC9073689 DOI: 10.1093/g3journal/jkac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/02/2022] [Indexed: 11/14/2022]
Abstract
Members of the fungal genus Phyllosticta can colonize a variety of plant hosts, including several Citrus species such as Citrus sinensis (orange), Citrus limon (lemon), and Citrus maxima (pomelo). Some Phyllosticta species have the capacity to cause disease, such as Citrus Black Spot, while others have only been observed as endophytes. Thus far, genomic differences underlying lifestyle adaptations of Phyllosticta species have not yet been studied. Furthermore, the lifestyle of Phyllosticta citrichinaensis is ambiguous, as it has been described as a weak pathogen but Koch's postulates may not have been established and the presence of this species was never reported to cause any crop or economic losses. Here, we examined the genomic differences between pathogenic and endophytic Phyllosticta spp. colonizing Citrus and specifically aimed to elucidate the lifestyle of Phyllosticta citrichinaensis. We found several genomic differences between species of different lifestyles, including groups of genes that were only present in pathogens or endophytes. We also observed that species, based on their carbohydrate active enzymes, group independent of their phylogenetic association, and this clustering correlated with trophy prediction. Phyllosticta citrichinaensis shows an intermediate lifestyle, sharing genomic and phenotypic attributes of both pathogens and endophytes. We thus present the first genomic comparison of multiple citrus-colonizing pathogens and endophytes of the genus Phyllosticta, and therefore provide the basis for further comparative studies into the lifestyle adaptations within this genus.
Collapse
Affiliation(s)
- Valerie A Buijs
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Johannes Z Groenewald
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt M LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Francis M Martin
- Department of Biology, Institut National de la Recherche Agronomique, UMR INRA-Université de Lorraine “Interaction Arbres/Microorganismes”, Champenoux F-54280, France
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pedro W Crous
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Utrecht 3584 CT, The Netherlands
- Department of Plant Sciences, Laboratory of Phytopathology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
20
|
Prediction of effector proteins and their implications in pathogenicity of phytopathogenic filamentous fungi: A review. Int J Biol Macromol 2022; 206:188-202. [PMID: 35227707 DOI: 10.1016/j.ijbiomac.2022.02.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
Plant pathogenic fungi encode and secrete effector proteins to promote pathogenesis. In recent years, the important role of effector proteins in fungi and plant host interactions has become increasingly prominent. In this review, the functional characterization and molecular mechanisms by which fungal effector proteins modulate biological processes and suppress the defense of plant hosts are discussed, with an emphasis on cell localization during fungal infection. This paper also provides a comprehensive review of bioinformatic and experimental methods that are currently available for the identification of fungal effector proteins. We additionally summarize the secretion pathways and the methods for verifying the presence effector proteins in plant host cells. For future research, comparative genomic studies of different pathogens with varying life cycles will allow comprehensive and systematic identification of effector proteins. Additionally, functional analysis of effector protein interactions with a wider range of hosts (especially non-model crops) will provide more detailed repertoires of fungal effectors. Identifying effector proteins and verifying their functions will improve our understanding of their role in causing disease and in turn guide future strategies for combatting fungal infections.
Collapse
|
21
|
Rocher F, Alouane T, Philippe G, Martin ML, Label P, Langin T, Bonhomme L. Fusarium graminearum Infection Strategy in Wheat Involves a Highly Conserved Genetic Program That Controls the Expression of a Core Effectome. Int J Mol Sci 2022; 23:ijms23031914. [PMID: 35163834 PMCID: PMC8836836 DOI: 10.3390/ijms23031914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms underlying plant susceptibility and to identify their main drivers, the pathogen’s effectors. Although the F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies are needed to confirm their effective accumulation in host tissues and to identify their role during the infection process. Taking advantage of the genetic variability from both species, a RNAseq-based profiling of gene expression was performed during an infection time course using an aggressive F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted proteins and exhibiting significant expression changes along infection progress were selected to identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector genes were expressed by the aggressive strain, among which 91% were found in all the infected hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were identified, among which 90% were systematically expressed in the three strains. We revealed a robust F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that exhibited conserved expression patterns over time. Several wheat compartments were predicted to be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria. Taken together, our results shed light on a highly conserved parasite strategy. They led to the identification of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and provided valuable information about their putative targets.
Collapse
Affiliation(s)
- Florian Rocher
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Tarek Alouane
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Géraldine Philippe
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Marie-Laure Martin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, 91190 Gif sur Yvette, France;
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91190 Gif sur Yvette, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Philippe Label
- UMR 547 Physique et Physiologie Intégratives de l’Arbre en environnement Fluctuant, INRAE, Université Clermont Auvergne, 63178 Aubière, France;
| | - Thierry Langin
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (F.R.); (T.A.); (G.P.); (T.L.)
- Correspondence:
| |
Collapse
|
22
|
Sperschneider J, Dodds PN. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:146-156. [PMID: 34698534 DOI: 10.1094/mpmi-08-21-0201-r] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many fungi and oomycete species are devasting plant pathogens. These eukaryotic filamentous pathogens secrete effector proteins to facilitate plant infection. Fungi and oomycete pathogens have diverse infection strategies and their effectors generally do not share sequence homology. However, they occupy similar host environments, either the plant apoplast or plant cytoplasm, and, therefore, may share some unifying properties based on the requirements of these host compartments. Here, we exploit these biological signals and present the first classifier (EffectorP 3.0) that uses two machine-learning models: one trained on apoplastic effectors and one trained on cytoplasmic effectors. EffectorP 3.0 accurately predicts known apoplastic and cytoplasmic effectors in fungal and oomycete secretomes with low estimated false-positive rates of 3 and 8%, respectively. Cytoplasmic effectors have a higher proportion of positively charged amino acids, whereas apoplastic effectors are enriched for cysteine residues. The combination of fungal and oomycete effectors in training leads to a higher number of predicted cytoplasmic effectors in biotrophic fungi. EffectorP 3.0 expands predicted effector repertoires beyond small, cysteine-rich secreted proteins in fungi and RxLR-motif containing secreted proteins in oomycetes. We show that signal peptide prediction is essential for accurate effector prediction, because EffectorP 3.0 recognizes a cytoplasmic signal also in intracellular, nonsecreted proteins.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| |
Collapse
|
23
|
Kiselev A, San Clemente H, Camborde L, Dumas B, Gaulin E. A Comprehensive Assessment of the Secretome Responsible for Host Adaptation of the Legume Root Pathogen Aphanomyces euteiches. J Fungi (Basel) 2022; 8:88. [PMID: 35050028 PMCID: PMC8780586 DOI: 10.3390/jof8010088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
The soil-borne oomycete pathogen Aphanomyces euteiches causes devastating root rot diseases in legumes such as pea and alfalfa. The different pathotypes of A. euteiches have been shown to exhibit differential quantitative virulence, but the molecular basis of host adaptation has not yet been clarified. Here, we re-sequenced a pea field reference strain of A. euteiches ATCC201684 with PacBio long-reads and took advantage of the technology to generate the mitochondrial genome. We identified that the secretome of A. euteiches is characterized by a large portfolio of secreted proteases and carbohydrate-active enzymes (CAZymes). We performed Illumina sequencing of four strains of A. euteiches with contrasted specificity to pea or alfalfa and found in different geographical areas. Comparative analysis showed that the core secretome is largely represented by CAZymes and proteases. The specific secretome is mainly composed of a large set of small, secreted proteins (SSP) without any predicted functional domain, suggesting that the legume preference of the pathogen is probably associated with unknown functions. This study forms the basis for further investigations into the mechanisms of interaction of A. euteiches with legumes.
Collapse
Affiliation(s)
| | | | | | | | - Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Toulouse, France; (A.K.); (H.S.C.); (L.C.); (B.D.)
| |
Collapse
|
24
|
Huang Z, Li H, Zhou Y, Bao Y, Duan Z, Wang C, Powell CA, Chen B, Zhang M, Yao W. Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression. J Fungi (Basel) 2022; 8:jof8010059. [PMID: 35049998 PMCID: PMC8780550 DOI: 10.3390/jof8010059] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023] Open
Abstract
One of the causative agents of pokkah boeng disease (PBD), which affects sugarcane crops globally, is the fungus Fusarium sacchari. These fungal infections reduce sugar quality and yield, resulting in severe economic losses. Effector proteins play important roles in the interactions between pathogenic fungi and plants. Here, we used bioinformatic prediction approaches to identify 316 candidate secreted effector proteins (CSEPs) in the complete genome of F. sacchari. In total, 95 CSEPs contained known conserved structures, representing 40 superfamilies and 18 domains, while an additional 91 CSEPs contained seven known motifs. Of the 130 CSEPs containing no known domains or motifs, 14 contained one of four novel motifs. A heterogeneous expression system in Nicotiana benthamiana was used to investigate the functions of 163 CSEPs. Seven CSEPs suppressed BAX-triggered programmed cell death in N. benthamiana, while four caused cell death in N. benthamiana. The expression profiles of these eleven CSEPs during F. sacchari infection suggested that they may be involved in sugarcane-F. sacchari interaction. Our results establish a basis for further studies of the role of effector molecules in pathogen–sugarcane interactions, and provide a framework for future predictions of pathogen effector molecules.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Huixue Li
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yuming Zhou
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | | | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; (Z.H.); (H.L.); (Y.Z.); (Y.B.); (Z.D.); (C.W.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence: (M.Z.); (W.Y.)
| |
Collapse
|
25
|
Hunziker L, Tarallo M, Gough K, Guo M, Hargreaves C, Loo TS, McDougal RL, Mesarich CH, Bradshaw RE. Apoplastic effector candidates of a foliar forest pathogen trigger cell death in host and non-host plants. Sci Rep 2021; 11:19958. [PMID: 34620932 PMCID: PMC8497623 DOI: 10.1038/s41598-021-99415-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Forests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum uses effector proteins to facilitate host infection, it is currently unclear whether any of these effectors are recognised by immune receptors to activate the host immune system. Such information is needed to identify and select disease resistance against D. septosporum in pines. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered DsCEs that trigger cell death in the angiosperm Nicotiana spp., indicative of a hypersensitive defence response and suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to a DsCE, as well as to a reference cell death-inducing protein. The conservation of responses across plant taxa suggests that knowledge of pathogen-angiosperm interactions may also be relevant to pathogen-gymnosperm interactions. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.
Collapse
Affiliation(s)
- Lukas Hunziker
- Centre for Crop and Disease Management, Curtin University, Bentley, Perth, 6102, Australia
| | - Mariana Tarallo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Keiko Gough
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Melissa Guo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Cathy Hargreaves
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Trevor S Loo
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand
| | - Rebecca L McDougal
- Scion, New Zealand Forest Research Institute Ltd, Rotorua, 3010, New Zealand
| | - Carl H Mesarich
- Bio-Protection Research Centre, School of Agriculture and Environment, Massey University, Palmerston North, 4474, New Zealand
| | - Rosie E Bradshaw
- Bio-Protection Research Centre, School of Fundamental Sciences, Massey University, Palmerston North, 4474, New Zealand.
| |
Collapse
|
26
|
Kiran K, Rawal HC, Dubey H, Jaswal R, Bhardwaj SC, Deshmukh R, Sharma TR. Genome-Wide Analysis of Four Pathotypes of Wheat Rust Pathogen ( Puccinia graminis) Reveals Structural Variations and Diversifying Selection. J Fungi (Basel) 2021; 7:701. [PMID: 34575739 PMCID: PMC8468629 DOI: 10.3390/jof7090701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022] Open
Abstract
Diseases caused by Puccinia graminis are some of the most devastating diseases of wheat. Extensive genomic understanding of the pathogen has proven helpful not only in understanding host- pathogen interaction but also in finding appropriate control measures. In the present study, whole-genome sequencing of four diverse P. graminis pathotypes was performed to understand the genetic variation and evolution. An average of 63.5 Gb of data per pathotype with about 100× average genomic coverage was achieved with 100-base paired-end sequencing performed with Illumina Hiseq 1000. Genome structural annotations collectively predicted 9273 functional proteins including ~583 extracellular secreted proteins. Approximately 7.4% of the genes showed similarity with the PHI database which is suggestive of their significance in pathogenesis. Genome-wide analysis demonstrated pathotype 117-6 as likely distinct and descended through a different lineage. The 3-6% more SNPs in the regulatory regions and 154 genes under positive selection with their orthologs and under negative selection in the other three pathotypes further supported pathotype 117-6 to be highly diverse in nature. The genomic information generated in the present study could serve as an important source for comparative genomic studies across the genus Puccinia and lead to better rust management in wheat.
Collapse
Affiliation(s)
- Kanti Kiran
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (K.K.); (H.C.R.); (H.D.); (R.J.)
| | - Hukam C. Rawal
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (K.K.); (H.C.R.); (H.D.); (R.J.)
| | - Himanshu Dubey
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (K.K.); (H.C.R.); (H.D.); (R.J.)
| | - Rajdeep Jaswal
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (K.K.); (H.C.R.); (H.D.); (R.J.)
| | - Subhash C. Bhardwaj
- Regional Station, ICAR-Indian Institute of Wheat and Barley Research, Shimla 171002, India;
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute, Punjab 140306, India;
| | - Tilak Raj Sharma
- Pusa Campus, ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India; (K.K.); (H.C.R.); (H.D.); (R.J.)
- Division of Crop Science, ICAR-Indian Council of Agricultural Research, New Delhi 110001, India
| |
Collapse
|
27
|
Dagvadorj B, Solomon PS. Simple and efficient heterologous expression of necrosis-inducing effectors using the model plant Nicotiana benthamiana. PLANT DIRECT 2021; 5:e341. [PMID: 34466773 PMCID: PMC8381856 DOI: 10.1002/pld3.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 05/06/2023]
Abstract
Plant fungal pathogens cause devastating diseases on cereal plants and threaten global food security. During infection, these pathogens secrete proteinaceous effectors that promote disease. Some of these effectors from necrotrophic plant pathogens induce a cell death response (necrosis), which facilitates pathogen growth in planta. Characterization of these effectors typically requires heterologous expression, and microbial expression systems such as bacteria and yeast are the predominantly used. However, microbial expression systems often require optimization for any given effector and are, in general, not suitable for effectors involving cysteine bridges and posttranslational modifications for activity. Here, we describe a simple and efficient method for expressing such effectors in the model plant Nicotiana benthamiana. Briefly, an effector protein is transiently expressed and secreted into the apoplast of N. benthamiana by Agrobacterium-mediated infiltration. Two to three days subsequent to agroinfiltration, the apoplast from the infiltrated leaves is extracted and can be directly used for phenotyping on host plants. The efficacy of this approach was demonstrated by expressing the ToxA, Tox3, and Tox1 necrosis-inducing effectors from Parastagonospora nodorum. All three effectors produced in N. benthamiana were capable of inducing necrosis in wheat lines, and two of three showed visible bands on Coomassie-stained gel. These data suggest that N. benthamiana-agroinfiltration system is a feasible tool to obtain fungal effectors, especially those that require disulfide bonds and posttranslational modifications. Furthermore, due to the low number of proteins typically observed in the apoplast (compared with intracellular), this simple and high-throughput approach circumvents the requirement to lyse cells and further purifies the target proteins that are required in other heterologous systems. Because of its simplicity and potential for high-throughput, this method is highly amenable to the phenotyping of candidate protein effectors on host plants.
Collapse
Affiliation(s)
- Bayantes Dagvadorj
- Research School of BiologyThe Australian National UniversityCanberraACTAustralia
| | - Peter S. Solomon
- Research School of BiologyThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
28
|
Kristianingsih R, MacLean D. Accurate plant pathogen effector protein classification ab initio with deepredeff: an ensemble of convolutional neural networks. BMC Bioinformatics 2021; 22:372. [PMID: 34273967 PMCID: PMC8285798 DOI: 10.1186/s12859-021-04293-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Plant pathogens cause billions of dollars of crop loss every year and are a major threat to global food security. Effector proteins are the tools such pathogens use to infect the cell, predicting effectors de novo from sequence is difficult because of the heterogeneity of the sequences. We hypothesised that deep learning classifiers based on Convolutional Neural Networks would be able to identify effectors and deliver new insights. Results We created a training set of manually curated effector sequences from PHI-Base and used these to train a range of model architectures for classifying bacteria, fungal and oomycete sequences. The best performing classifiers had accuracies from 93 to 84%. The models were tested against popular effector detection software on our own test data and data provided with those models. We observed better performance from our models. Specifically our models showed greater accuracy and lower tendencies to call false positives on a secreted protein negative test set and a greater generalisability. We used GRAD-CAM activation map analysis to identify the sequences that activated our CNN-LSTM models and found short but distinct N-terminal regions in each taxon that was indicative of effector sequences. No motifs could be observed in these regions but an analysis of amino acid types indicated differing patterns of enrichment and depletion that varied between taxa. Conclusions Small training sets can be used effectively to train highly accurate and sensitive deep learning models without need for the operator to know anything other than sequence and without arbitrary decisions made about what sequence features or physico-chemical properties are important. Biological insight on subsequences important for classification can be achieved by examining the activations in the model Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04293-3.
Collapse
Affiliation(s)
| | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
| |
Collapse
|
29
|
Andronis CE, Hane JK, Bringans S, Hardy GESJ, Jacques S, Lipscombe R, Tan KC. Gene Validation and Remodelling Using Proteogenomics of Phytophthora cinnamomi, the Causal Agent of Dieback. Front Microbiol 2021; 12:665396. [PMID: 34394023 PMCID: PMC8360494 DOI: 10.3389/fmicb.2021.665396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
Phytophthora cinnamomi is a pathogenic oomycete that causes plant dieback disease across a range of natural ecosystems and in many agriculturally important crops on a global scale. An annotated draft genome sequence is publicly available (JGI Mycocosm) and suggests 26,131 gene models. In this study, soluble mycelial, extracellular (secretome), and zoospore proteins of P. cinnamomi were exploited to refine the genome by correcting gene annotations and discovering novel genes. By implementing the diverse set of sub-proteomes into a generated proteogenomics pipeline, we were able to improve the P. cinnamomi genome annotation. Liquid chromatography mass spectrometry was used to obtain high confidence peptides with spectral matching to both the annotated genome and a generated 6-frame translation. Two thousand seven hundred sixty-four annotations from the draft genome were confirmed by spectral matching. Using a proteogenomic pipeline, mass spectra were used to edit the P. cinnamomi genome and allowed identification of 23 new gene models and 60 edited gene features using high confidence peptides obtained by mass spectrometry, suggesting a rate of incorrect annotations of 3% of the detectable proteome. The novel features were further validated by total peptide support, alongside functional analysis including the use of Gene Ontology and functional domain identification. We demonstrated the use of spectral data in combination with our proteogenomics pipeline can be used to improve the genome annotation of important plant diseases and identify missed genes. This study presents the first use of spectral data to edit and manually annotate an oomycete pathogen.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,Proteomics International, Nedlands, WA, Australia
| | - James K Hane
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,Faculty of Science and Engineering, Curtin Institute for Computation, Curtin University, Perth, WA, Australia
| | | | - Giles E S J Hardy
- Centre for Phytophthora Science and Management, Murdoch University, Murdoch, WA, Australia
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| |
Collapse
|
30
|
Singh Y, Nair AM, Verma PK. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst. PLANT COMMUNICATIONS 2021; 2:100142. [PMID: 34027389 PMCID: PMC8132124 DOI: 10.1016/j.xplc.2021.100142] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 01/01/2021] [Indexed: 05/04/2023]
Abstract
Fungal phytopathogens pose a serious threat to global crop production. Only a handful of strategies are available to combat these fungal infections, and the increasing incidence of fungicide resistance is making the situation worse. Hence, the molecular understanding of plant-fungus interactions remains a primary focus of plant pathology. One of the hallmarks of host-pathogen interactions is the overproduction of reactive oxygen species (ROS) as a plant defense mechanism, collectively termed the oxidative burst. In general, high accumulation of ROS restricts the growth of pathogenic organisms by causing localized cell death around the site of infection. To survive the oxidative burst and achieve successful host colonization, fungal phytopathogens employ intricate mechanisms for ROS perception, ROS neutralization, and protection from ROS-mediated damage. Together, these countermeasures maintain the physiological redox homeostasis that is essential for cell viability. In addition to intracellular antioxidant systems, phytopathogenic fungi also deploy interesting effector-mediated mechanisms for extracellular ROS modulation. This aspect of plant-pathogen interactions is significantly under-studied and provides enormous scope for future research. These adaptive responses, broadly categorized into "escape" and "exploitation" mechanisms, are poorly understood. In this review, we discuss the oxidative stress response of filamentous fungi, their perception signaling, and recent insights that provide a comprehensive understanding of the distinct survival mechanisms of fungal pathogens in response to the host-generated oxidative burst.
Collapse
Affiliation(s)
- Yeshveer Singh
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Athira Mohandas Nair
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
31
|
Effectors of Puccinia striiformis f. sp. tritici Suppressing the Pathogenic-Associated Molecular Pattern-Triggered Immune Response Were Screened by Transient Expression of Wheat Protoplasts. Int J Mol Sci 2021; 22:ijms22094985. [PMID: 34067160 PMCID: PMC8125866 DOI: 10.3390/ijms22094985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
Puccinia striiformis f. sp. tritici (Pst) is an important pathogen of wheat (Triticum aestivum L.) stripe rust, and the effector protein secreted by haustoria is a very important component involved in the pathogenic process. Although the candidate effector proteins secreted by Pst haustoria have been predicted to be abundant, few have been functionally validated. Our study confirmed that chitin and flg22 could be used as elicitors of the pathogenic-associated molecular pattern-triggered immune (PTI) reaction in wheat leaves and that TaPr-1-14 could be used as a marker gene to detect the PTI reaction. In addition, the experimental results were consistent in wheat protoplasts. A rapid and efficient method for screening and identifying the effector proteins of Pst was established by using the wheat protoplast transient expression system. Thirty-nine Pst haustorial effector genes were successfully cloned and screened for expression in the protoplast. We identified three haustorial effector proteins, PSEC2, PSEC17, and PSEC45, that may inhibit the response of wheat to PTI. These proteins are localized in the somatic cytoplasm and nucleus of wheat protoplasts and are highly expressed during the infection and parasitism of wheat.
Collapse
|
32
|
dos Santos KCG, Pelletier G, Séguin A, Guillemette F, Hawkes J, Desgagné-Penix I, Germain H. Unrelated Fungal Rust Candidate Effectors Act on Overlapping Plant Functions. Microorganisms 2021; 9:microorganisms9050996. [PMID: 34063040 PMCID: PMC8148019 DOI: 10.3390/microorganisms9050996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
Abstract
Rust fungi cause epidemics that threaten the production of important plant species, such as wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candidate effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing 14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299 deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We further observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line, with “highly unsaturated and phenolic compounds” and “peptides” enriched among down- and up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity and function. This supports that effector functional investigation in the context of their virulence activity and effect on plant susceptibility requires the investigation of the individual effector and precludes generalization based on sequence similarity.
Collapse
Affiliation(s)
- Karen Cristine Goncalves dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - François Guillemette
- Centre for Research on Aquatic Ecosystem Interactions (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada;
| | - Jeffrey Hawkes
- Department of Chemistry—BMC, Analytical Chemistry, Uppsala University, VJ2J+92 Uppsala, Sweden;
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
- Correspondence:
| |
Collapse
|
33
|
Debler JW, Henares BM, Lee RC. Agroinfiltration for transient gene expression and characterisation of fungal pathogen effectors in cool-season grain legume hosts. PLANT CELL REPORTS 2021; 40:805-818. [PMID: 33811500 PMCID: PMC8058004 DOI: 10.1007/s00299-021-02671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/30/2021] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Modified pEAQ-HT-DEST1 vectors were used for agroinfiltration in legumes. We demonstrate protein expression and export in pea, lentil, and faba bean; however, the method for chickpea was not successful. Agroinfiltration is a valuable research method for investigating virulence and avirulence effector proteins from pathogens and pests, where heterologous effector proteins are transiently expressed in plant leaves and hypersensitive necrosis responses and other effector functions can be assessed. Nicotiana benthamiana is widely used for agroinfiltration and the characterisation of broad-spectrum effectors. The method has also been used in other plant species including field pea, but not yet developed for chickpea, lentil, or faba bean. Here, we have modified the pEAQ-HT-DEST1 vector for expression of 6 × histidine-tagged green-fluorescent protein (GFP) and the known necrosis-inducing broad-spectrum effector necrosis and ethylene-inducing peptide (Nep1)-like protein (NLP). Modified pEAQ-based vectors were adapted to encode signal peptide sequences for apoplast targeting of expressed proteins. We used confocal microscopy to assess the level of GFP expression in agroinfiltrated leaves. While at 3 days after infiltration in N. benthamiana, GFP was expressed at a relatively high level, expression in field pea and faba bean at the same time point was relatively low. In lentil, an expression level of GFP similar to field pea and faba bean at 3 days was only observed after 5 days. Chickpea leaf cells were transformed at low frequency and agroinfiltration was concluded to not be successful for chickpea. We concluded that the pEAQ vector is suitable for testing host-specific effectors in field pea, lentil, and faba bean, but low transformation efficiency limits the utility of the method for chickpea.
Collapse
Affiliation(s)
- Johannes W Debler
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, 1 Kent St, Bentley, WA, 6102, Australia
| | - Bernadette M Henares
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, 1 Kent St, Bentley, WA, 6102, Australia
| | - Robert C Lee
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, 1 Kent St, Bentley, WA, 6102, Australia.
| |
Collapse
|
34
|
Simbaqueba J, Rodríguez EA, Burbano-David D, González C, Caro-Quintero A. Putative Novel Effector Genes Revealed by the Genomic Analysis of the Phytopathogenic Fungus Fusarium oxysporum f. sp. physali ( Foph) That Infects Cape Gooseberry Plants. Front Microbiol 2021; 11:593915. [PMID: 33537009 PMCID: PMC7847934 DOI: 10.3389/fmicb.2020.593915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/28/2020] [Indexed: 02/02/2023] Open
Abstract
The vascular wilt disease caused by the fungus Fusarium oxysporum f. sp. physali (Foph) is one of the most limiting factors for the production and export of cape gooseberry (Physalis peruviana) in Colombia. A transcriptomic analysis of a highly virulent strain of F. oxysporum in cape gooseberry plants, revealed the presence of secreted in the xylem (SIX) effector genes, known to be involved in the pathogenicity of other formae speciales (ff. spp.) of F. oxysporum. This pathogenic strain was classified as a new f. sp. named Foph, due to its specificity for cape gooseberry hosts. Here, we sequenced and assembled the genome of five strains of F. oxysporum from a fungal collection associated to the cape gooseberry crop (including Foph), focusing on the validation of the presence of SIX homologous and on the identification of putative effectors unique to Foph. By comparative and phylogenomic analyses based on single-copy orthologous, we found that Foph is closely related to F. oxysporum ff. spp., associated with solanaceous hosts. We confirmed the presence of highly identical homologous genomic regions between Foph and Fol that contain effector genes and identified six new putative effector genes, specific to Foph pathogenic strains. We also conducted a molecular characterization using this set of putative novel effectors in a panel of 36 additional stains of F. oxysporum including two of the four sequenced strains, from the fungal collection mentioned above. These results suggest the polyphyletic origin of Foph and the putative independent acquisition of new candidate effectors in different clades of related strains. The novel effector candidates identified in this genomic analysis, represent new sources involved in the interaction between Foph and cape gooseberry, that could be implemented to develop appropriate management strategies of the wilt disease caused by Foph in the cape gooseberry crop.
Collapse
Affiliation(s)
- Jaime Simbaqueba
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Edwin A Rodríguez
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Diana Burbano-David
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Carolina González
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | | |
Collapse
|
35
|
Li Z, Wang Y, Fan Y, Ahmad B, Wang X, Zhang S, Zhu Y, Gao L, Chang P, Wang X. Transcriptome Analysis of the Grape- Elsinoë ampelina Pathosystem Reveals Novel Effectors and a Robust Defense Response. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:110-121. [PMID: 33006532 DOI: 10.1094/mpmi-08-20-0227-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elsinoë ampelina is an ascomycetous fungus that causes grape anthracnose, a potentially devastating disease worldwide. In this study, a dual RNA-seq analysis was used to simultaneously monitor the fungal genes related to pathogenesis and grape genes related to defense during the interaction at 2, 3, 4, and 5 days postinoculation. Consistent with their potential roles in pathogenicity, genes for carbohydrate-active enzymes, secondary metabolite synthesis, pathogen-host interaction, and those encoding secreted proteins are upregulated during infection. Based on Agrobacterium tumefaciens-mediated transient assays in Nicotiana benthamiana, we further showed that eight and nine candidate effectors, respectively, suppressed BAX- and INF1-mediated programmed cell death. The host response was characterized by the induction of multiple defense systems against E. ampelina, including synthesis of phenylpropanoids, stilbenes, and terpenoid biosynthesis, cell-wall modifications, regulation by phytohormones, and expression of defense-related genes. Together, these findings offer new insights into molecular mechanisms underlying the grape-E. ampelina interaction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchun Fan
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianhang Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pingping Chang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
36
|
Singh KP, Kumari P, Rai PK. Current Status of the Disease-Resistant Gene(s)/QTLs, and Strategies for Improvement in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2021; 12:617405. [PMID: 33747001 PMCID: PMC7965955 DOI: 10.3389/fpls.2021.617405] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/08/2021] [Indexed: 05/15/2023]
Abstract
Brassica juncea is a major oilseed crop in tropical and subtropical countries, especially in south-east Asia like India, China, Bangladesh, and Pakistan. The widespread cultivation of genetically similar varieties tends to attract fungal pathogens which cause heavy yield losses in the absence of resistant sources. The conventional disease management techniques are often expensive, have limited efficacy, and cause additional harm to the environment. A substantial approach is to identify and use of resistance sources within the Brassica hosts and other non-hosts to ensure sustainable oilseed crop production. In the present review, we discuss six major fungal pathogens of B. juncea: Sclerotinia stem rot (Sclerotinia sclerotiorum), Alternaria blight (Alternaria brassicae), White rust (Albugo candida), Downy mildew (Hyaloperonospora parasitica), Powdery mildew (Erysiphe cruciferarum), and Blackleg (Leptoshaeria maculans). From discussing studies on pathogen prevalence in B. juncea, the review then focuses on highlighting the resistance sources and quantitative trait loci/gene identified so far from Brassicaceae and non-filial sources against these fungal pathogens. The problems in the identification of resistance sources for B. juncea concerning genome complexity in host subpopulation and pathotypes were addressed. Emphasis has been laid on more elaborate and coordinated research to identify and deploy R genes, robust techniques, and research materials. Examples of fully characterized genes conferring resistance have been discussed that can be transformed into B. juncea using advanced genomics tools. Lastly, effective strategies for B. juncea improvement through introgression of novel R genes, development of pre-breeding resistant lines, characterization of pathotypes, and defense-related secondary metabolites have been provided suggesting the plan for the development of resistant B. juncea.
Collapse
Affiliation(s)
- Kaushal Pratap Singh
- ICAR-Directorate of Rapeseed-Mustard Research, Bharatpur, India
- *Correspondence: Kaushal Pratap Singh,
| | - Preetesh Kumari
- Genetics Division, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
37
|
Kanja C, Hammond‐Kosack KE. Proteinaceous effector discovery and characterization in filamentous plant pathogens. MOLECULAR PLANT PATHOLOGY 2020; 21:1353-1376. [PMID: 32767620 PMCID: PMC7488470 DOI: 10.1111/mpp.12980] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 07/05/2020] [Indexed: 05/26/2023]
Abstract
The complicated interplay of plant-pathogen interactions occurs on multiple levels as pathogens evolve to constantly evade the immune responses of their hosts. Many economically important crops fall victim to filamentous pathogens that produce small proteins called effectors to manipulate the host and aid infection/colonization. Understanding the effector repertoires of pathogens is facilitating an increased understanding of the molecular mechanisms underlying virulence as well as guiding the development of disease control strategies. The purpose of this review is to give a chronological perspective on the evolution of the methodologies used in effector discovery from physical isolation and in silico predictions, to functional characterization of the effectors of filamentous plant pathogens and identification of their host targets.
Collapse
Affiliation(s)
- Claire Kanja
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
38
|
Zhang Y, Wei J, Qi Y, Li J, Amin R, Yang W, Liu D. Predicating the Effector Proteins Secreted by Puccinia triticina Through Transcriptomic Analysis and Multiple Prediction Approaches. Front Microbiol 2020; 11:538032. [PMID: 33072007 PMCID: PMC7536266 DOI: 10.3389/fmicb.2020.538032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Wheat leaf rust caused by Puccinia triticina is one of the most common and serious diseases in wheat production. The constantly changing pathogens overcome the plant resistance to P. triticina. Plant pathogens secrete effector proteins that alter the structure of the host cell, interfere plant defenses, or modify the physiology of plant cells. Therefore, the identification of effector proteins is critical to reveal the pathogenic mechanism. We used SignalP v4.1, TargetP v1.1, TMHMM v2.0, and EffectorP v2.0 to screen the candidate effector proteins in P. triticina isolates – KHTT, JHKT, and THSN. As a result, a total of 635 candidate effector proteins were obtained. Structural analysis showed that effector proteins were small in size (50AA to 422AA) and of diverse sequences, and the conserved sequential elements or clear common elements were not involved, regardless of their secretion from the pathogen to the host. There were 427 candidate effector proteins that contain more than or equal to 4 cysteine residues, and 339 candidate effector proteins contained the known motifs. Sixteen families, 9 domains, and 53 other known functional types were found in 186 candidate effector proteins using the Pfam search. Three novel motifs were found by MEME. Heterogeneous expression system was performed to verify the functions of 30 candidate effectors by inhibiting the programmed cell death (PCD) induced by BAX (the mouse-apoptotic gene elicitor) on Nicotiana benthamiana. Hypersensitive response (HR) can be induced by the six effectors in the wheat leaf rust resistance near isogenic lines, and this would be shown by the method of transient expression through Agrobacterium tumefaciens infiltration. The quantitative reverse transcription PCR (qRT-PCR) analysis of 14 candidate effector proteins secreted after P. triticina inoculation showed that the tested effectors displayed different expression patterns in different stages, suggesting that they may be involved in the wheat–P. triticina interaction. The results showed that the prediction of P. triticina effector proteins based on transcriptomic analysis and multiple bioinformatics software is effective and more accurate, laying the foundation of revealing the pathogenic mechanism of Pt and controlling disease.
Collapse
Affiliation(s)
- Yue Zhang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Jie Wei
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Yue Qi
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Jianyuan Li
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China.,College of Biological Sciences and Engineering, Hebei Xingtai College, Xingtai, China
| | - Raheela Amin
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, China
| | - Daqun Liu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
39
|
Purayannur S, Cano LM, Bowman MJ, Childs KL, Gent DH, Quesada-Ocampo LM. The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Front Genet 2020; 11:910. [PMID: 32849854 PMCID: PMC7432248 DOI: 10.3389/fgene.2020.00910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/22/2020] [Indexed: 01/18/2023] Open
Abstract
Pseudoperonospora humuli is an obligate biotrophic oomycete that causes downy mildew (DM), one of the most destructive diseases of cultivated hop that can lead to 100% crop loss in susceptible cultivars. We used the published genome of P. humuli to predict the secretome and effectorome and analyze the transcriptome variation among diverse isolates and during infection of hop leaves. Mining the predicted coding genes of the sequenced isolate OR502AA of P. humuli revealed a secretome of 1,250 genes. We identified 296 RXLR and RXLR-like effector-encoding genes in the secretome. Among the predicted RXLRs, there were several WY-motif-containing effectors that lacked canonical RXLR domains. Transcriptome analysis of sporangia from 12 different isolates collected from various hop cultivars revealed 754 secreted proteins and 201 RXLR effectors that showed transcript evidence across all isolates with reads per kilobase million (RPKM) values > 0. RNA-seq analysis of OR502AA-infected hop leaf samples at different time points after infection revealed highly expressed effectors that may play a relevant role in pathogenicity. Quantitative RT-PCR analysis confirmed the differential expression of selected effectors. We identified a set of P. humuli core effectors that showed transcript evidence in all tested isolates and elevated expression during infection. These effectors are ideal candidates for functional analysis and effector-assisted breeding to develop DM resistant hop cultivars.
Collapse
Affiliation(s)
- Savithri Purayannur
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Liliana M. Cano
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Indian River Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Megan J. Bowman
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Ball Horticultural Company, West Chicago, IL, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - David H. Gent
- United States Department of Agriculture-Agricultural Research Service, Forage Seed and Cereal Research Unit, Oregon State University, Corvallis, OR, United States
| | - Lina M. Quesada-Ocampo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
40
|
Figueroa M, Dodds PN, Henningsen EC. Evolution of virulence in rust fungi - multiple solutions to one problem. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:20-27. [PMID: 32244171 DOI: 10.1016/j.pbi.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 05/18/2023]
Abstract
Rust fungi are major pathogens that negatively affect crops and ecosystems. Recent rust disease epidemics driven by the emergence of strains with novel virulence profiles demand a better understanding of the evolutionary mechanisms of these organisms. Here, we review research advances in genome-scale analysis coupled with functional validation of effector candidate genes that have been instrumental to elucidate processes that contribute to changes in virulence phenotypes. We highlight how haplotype-phased genome references have paved the road to link these processes to the reproductive phases of rust fungi and have provided evidence for somatic exchange between strains as an important mechanism for generating diversity in asexual populations. With increasing data availability, we envision the future development of molecular virulence diagnostic tools.
Collapse
Affiliation(s)
- Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Eva C Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
41
|
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. Global Role of Crop Genomics in the Face of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:922. [PMID: 32765541 PMCID: PMC7378793 DOI: 10.3389/fpls.2020.00922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/05/2020] [Indexed: 05/05/2023]
Abstract
The development of climate change resilient crops is necessary if we are to meet the challenge of feeding the growing world's population. We must be able to increase food production despite the projected decrease in arable land and unpredictable environmental conditions. This review summarizes the technological and conceptual advances that have the potential to transform plant breeding, help overcome the challenges of climate change, and initiate the next plant breeding revolution. Recent developments in genomics in combination with high-throughput and precision phenotyping facilitate the identification of genes controlling critical agronomic traits. The discovery of these genes can now be paired with genome editing techniques to rapidly develop climate change resilient crops, including plants with better biotic and abiotic stress tolerance and enhanced nutritional value. Utilizing the genetic potential of crop wild relatives (CWRs) enables the domestication of new species and the generation of synthetic polyploids. The high-quality crop plant genome assemblies and annotations provide new, exciting research targets, including long non-coding RNAs (lncRNAs) and cis-regulatory regions. Metagenomic studies give insights into plant-microbiome interactions and guide selection of optimal soils for plant cultivation. Together, all these advances will allow breeders to produce improved, resilient crops in relatively short timeframes meeting the demands of the growing population and changing climate.
Collapse
Affiliation(s)
| | | | | | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
42
|
Fourie A, de Jonge R, van der Nest MA, Duong TA, Wingfield MJ, Wingfield BD, Barnes I. Genome comparisons suggest an association between Ceratocystis host adaptations and effector clusters in unique transposable element families. Fungal Genet Biol 2020; 143:103433. [PMID: 32652232 DOI: 10.1016/j.fgb.2020.103433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/18/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023]
Abstract
Ceratocystis fimbriata is a host specific fungal pathogen of sweet potato (Ipomoea batatas). The closely related species, C. manginecans, is an important pathogen of trees (e.g. Acacia mangium and Mangifera indica) but has never been isolated from tuber crops. The genetic factors that determine the host range and host specificity of these species have not been determined. The aim of this study was to compare the genomes of C. fimbriata and C. manginecans in order to identify species-specific genetic differences that could be associated with host specificity. This included whole-genome alignments as well as comparisons of gene content and transposable elements (TEs). The genomes of the two species were found to be very similar, sharing similar catalogues of CAZymes, peptidases and lipases. However, the genomes of the two species also varied, harbouring species-specific genes (e.g. small secreted effectors, nutrient processing proteins and stress response proteins). A portion of the TEs identified (17%) had a unique distribution in each species. Transposable elements appeared to have played a prominent role in the divergence of the two species because they were strongly associated with chromosomal translocations and inversions as well as with unique genomic regions containing species-specific genes. Two large effector clusters, with unique TEs in each species, were identified. These effectors displayed non-synonymous mutations and deletions, conserved within a species, and could serve as mutational hot-spots for the development of host specificity in the two species.
Collapse
Affiliation(s)
- Arista Fourie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; Biotechnology Platform, Agricultural Research Council, Private Bag X05, Onderstepoort 0110, 0002, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
43
|
|
44
|
Wu JQ, Dong C, Song L, Park RF. Long-Read-Based de novo Genome Assembly and Comparative Genomics of the Wheat Leaf Rust Pathogen Puccinia triticina Identifies Candidates for Three Avirulence Genes. Front Genet 2020; 11:521. [PMID: 32582280 PMCID: PMC7287177 DOI: 10.3389/fgene.2020.00521] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022] Open
Abstract
Leaf rust, caused by Puccinia triticina (Pt), is one of the most devastating diseases of wheat, affecting production in nearly all wheat-growing regions worldwide. Despite its economic importance, genomic resources for Pt are very limited. In the present study, we have used long-read sequencing (LRS) and the pipeline of FALCON and FALCON-Unzip (v4.1.0) to carry out the first LRS-based de novo genome assembly for Pt. Using 22.4-Gb data with an average read length of 11.6 kb and average coverage of 150-fold, we generated a genome assembly for Pt104 [strain 104-2,3,(6),(7),11; isolate S423], considered to be the founding isolate of a clonal lineage of Pt in Australia. The Pt104 genome contains 162 contigs with a total length of 140.5 Mb and N50 of 2 Mb, with the associated haplotigs providing haplotype information for 91% of the genome. This represents the best quality of Pt genome assembly to date, which reduces the contig number by 91-fold and improves the N50 by 4-fold as compared to the previous Pt race1 assembly. An annotation pipeline that combined multiple lines of evidence including the transcriptome assemblies derived from RNA-Seq, previously identified expressed sequence tags and Pt race 1 protein sequences predicted 29,043 genes for Pt104 genome. Based on the presence of a signal peptide, no transmembrane segment, and no target location to mitochondria, 2,178 genes were identified as secreted proteins (SPs). Whole-genome sequencing (Illumina paired-end) was performed for Pt104 and six additional strains with differential virulence profile on the wheat leaf rust resistance genes Lr26, Lr2a, and Lr3ka. To identify candidates for the corresponding avirulence genes AvrLr26, AvrLr2a, and AvrLr3ka, genetic variation within each strain was first identified by mapping to the Pt104 genome. Variants within predicted SP genes between the strains were then correlated to the virulence profiles, identifying 38, 31, and 37 candidates for AvrLr26, AvrLr2a, and AvrLr3ka, respectively. The identification of these candidate genes lays a good foundation for future studies on isolating these avirulence genes, investigating the molecular mechanisms underlying host-pathogen interactions, and the development of new diagnostic tools for pathogen monitoring.
Collapse
Affiliation(s)
| | | | | | - Robert F. Park
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
45
|
Jeffress S, Arun-Chinnappa K, Stodart B, Vaghefi N, Tan YP, Ash G. Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters. PLoS One 2020; 15:e0227396. [PMID: 32469865 PMCID: PMC7259788 DOI: 10.1371/journal.pone.0227396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.
Collapse
Affiliation(s)
- Sarah Jeffress
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Kiruba Arun-Chinnappa
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Ben Stodart
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Yu Pei Tan
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Gavin Ash
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
46
|
MacWilliams JR, Dingwall S, Chesnais Q, Sugio A, Kaloshian I. AcDCXR Is a Cowpea Aphid Effector With Putative Roles in Altering Host Immunity and Physiology. FRONTIERS IN PLANT SCIENCE 2020; 11:605. [PMID: 32499809 PMCID: PMC7243947 DOI: 10.3389/fpls.2020.00605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 06/01/2023]
Abstract
Cowpea, Vigna unguiculata, is a crop that is essential to semiarid areas of the world like Sub-Sahara Africa. Cowpea is highly susceptible to cowpea aphid, Aphis craccivora, infestation that can lead to major yield losses. Aphids feed on their host plant by inserting their hypodermal needlelike flexible stylets into the plant to reach the phloem sap. During feeding, aphids secrete saliva, containing effector proteins, into the plant to disrupt plant immune responses and alter the physiology of the plant to their own advantage. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to identify the salivary proteome of the cowpea aphid. About 150 candidate proteins were identified including diacetyl/L-xylulose reductase (DCXR), a novel enzyme previously unidentified in aphid saliva. DCXR is a member of short-chain dehydrogenases/reductases with dual enzymatic functions in carbohydrate and dicarbonyl metabolism. To assess whether cowpea aphid DCXR (AcDCXR) has similar functions, recombinant AcDCXR was purified and assayed enzymatically. For carbohydrate metabolism, the oxidation of xylitol to xylulose was tested. The dicarbonyl reaction involved the reduction of methylglyoxal, an α-β-dicarbonyl ketoaldehyde, known as an abiotic and biotic stress response molecule causing cytotoxicity at high concentrations. To assess whether cowpea aphids induce methylglyoxal in plants, we measured methylglyoxal levels in both cowpea and pea (Pisum sativum) plants and found them elevated transiently after aphid infestation. Agrobacterium-mediated transient overexpression of AcDCXR in pea resulted in an increase of cowpea aphid fecundity. Taken together, our results indicate that AcDCXR is an effector with a putative ability to generate additional sources of energy to the aphid and to alter plant defense responses. In addition, this work identified methylglyoxal as a potential novel aphid defense metabolite adding to the known repertoire of plant defenses against aphid pests.
Collapse
Affiliation(s)
- Jacob R. MacWilliams
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie Dingwall
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | | | - Akiko Sugio
- INRAE, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Isgouhi Kaloshian
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
- Department of Nematology, University of California Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
47
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
48
|
Denton‐Giles M, McCarthy H, Sehrish T, Dijkwel Y, Mesarich CH, Bradshaw RE, Cox MP, Dijkwel PP. Conservation and expansion of a necrosis-inducing small secreted protein family from host-variable phytopathogens of the Sclerotiniaceae. MOLECULAR PLANT PATHOLOGY 2020; 21:512-526. [PMID: 32061186 PMCID: PMC7060139 DOI: 10.1111/mpp.12913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 05/02/2023]
Abstract
Fungal effector proteins facilitate host-plant colonization and have generally been characterized as small secreted proteins (SSPs). We classified and functionally tested SSPs from the secretomes of three closely related necrotrophic phytopathogens: Ciborinia camelliae, Botrytis cinerea, and Sclerotinia sclerotiorum. Alignment of predicted SSPs identified a large protein family that share greater than 41% amino acid identity and that have key characteristics of previously described microbe-associated molecular patterns (MAMPs). Strikingly, 73 of the 75 SSP family members were predicted within the secretome of the host-specialist C. camelliae with single-copy homologs identified in the secretomes of the host generalists S. sclerotiorum and B. cinerea. To explore the potential function of this family of SSPs, 10 of the 73 C. camelliae proteins, together with the single-copy homologs from S. sclerotiorum (SsSSP3) and B. cinerea (BcSSP2), were cloned and expressed as recombinant proteins. Infiltration of SsSSP3 and BcSSP2 into host tissue induced rapid necrosis. In contrast, only one of the 10 tested C. camelliae SSPs was able to induce a limited amount of necrosis. Analysis of chimeric proteins consisting of domains from both a necrosis-inducing and a non-necrosis-inducing SSP demonstrated that the C-terminus of the S. sclerotiorum SSP is essential for necrosis-inducing function. Deletion of the BcSSP2 homolog from B. cinerea did not affect growth or pathogenesis. Thus, this research uncovered a family of highly conserved SSPs present in diverse ascomycetes that exhibit contrasting necrosis-inducing functions.
Collapse
Affiliation(s)
- Matthew Denton‐Giles
- Centre for Crop and Disease ManagementCurtin UniversityPerthAustralia
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Hannah McCarthy
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Tina Sehrish
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Yasmin Dijkwel
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Carl H. Mesarich
- School of Agriculture and EnvironmentMassey UniversityPalmerston NorthNew Zealand
| | - Rosie E. Bradshaw
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Murray P. Cox
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Paul P. Dijkwel
- School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
49
|
Li Y, Xia C, Wang M, Yin C, Chen X. Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates. BMC Genomics 2020; 21:247. [PMID: 32197579 PMCID: PMC7085141 DOI: 10.1186/s12864-020-6677-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background The stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), threats world wheat production. Resistance to Pst is often overcome by pathogen virulence changes, but the mechanisms of variation are not clearly understood. To determine the role of mutation in Pst virulence changes, in previous studies 30 mutant isolates were developed from a least virulent isolate using ethyl methanesulfonate (EMS) mutagenesis and phenotyped for virulence changes. The progenitor isolate was sequenced, assembled and annotated for establishing a high-quality reference genome. In the present study, the 30 mutant isolates were sequenced and compared to the wide-type isolate to determine the genomic variation and identify candidates for avirulence (Avr) genes. Results The sequence reads of the 30 mutant isolates were mapped to the wild-type reference genome to identify genomic changes. After selecting EMS preferred mutations, 264,630 and 118,913 single nucleotide polymorphism (SNP) sites and 89,078 and 72,513 Indels (Insertion/deletion) were detected among the 30 mutant isolates compared to the primary scaffolds and haplotigs of the wild-type isolate, respectively. Deleterious variants including SNPs and Indels occurred in 1866 genes. Genome wide association analysis identified 754 genes associated with avirulence phenotypes. A total of 62 genes were found significantly associated to 16 avirulence genes after selection through six criteria for putative effectors and degree of association, including 48 genes encoding secreted proteins (SPs) and 14 non-SP genes but with high levels of association (P ≤ 0.001) to avirulence phenotypes. Eight of the SP genes were identified as avirulence-associated effectors with high-confidence as they met five or six criteria used to determine effectors. Conclusions Genome sequence comparison of the mutant isolates with the progenitor isolate unraveled a large number of mutation sites along the genome and identified high-confidence effector genes as candidates for avirulence genes in Pst. Since the avirulence gene candidates were identified from associated SNPs and Indels caused by artificial mutagenesis, these avirulence gene candidates are valuable resources for elucidating the mechanisms of the pathogen pathogenicity, and will be studied to determine their functions in the interactions between the wheat host and the Pst pathogen.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. .,USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164-6430, USA.
| |
Collapse
|
50
|
Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. THE NEW PHYTOLOGIST 2020; 225:1852-1872. [PMID: 31774564 DOI: 10.1111/nph.16340] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.
Collapse
Affiliation(s)
- Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA
| | - Andrea Pitzschke
- Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| |
Collapse
|