1
|
Liu Y, Pu Y, Wang J, Li Z, Liu S, Tang S. A bioinformatics-driven approach to identify biomarkers and elucidate the pathogenesis of type 2 diabetes concurrent with pulmonary tuberculosis. Sci Rep 2025; 15:16931. [PMID: 40374744 PMCID: PMC12081747 DOI: 10.1038/s41598-025-00928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
Type 2 diabetes (T2DM) co-existing with pulmonary tuberculosis (PTB) is associated with increased rates of treatment failure and mortality. Therefore, greater understanding of the occurrence and prevalence of this comorbidity and research to address the prevention and treatment of PTB in patients with T2DM (PTB + T2DM) have become paramount. Weighted gene co-expression network analysis (WGCNA) and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were employed to identify key gene modules and functions related to PTB + T2DM. Immune cell infiltration and drug sensitivity were compared between PTB + T2DM patients and healthy controls (HCs), with a bioinformatic approach. Several key genes were chosen for in vitro expression assays using quantitative real-time PCR (qRT-PCR), western blotting (WB), and enzyme-linked immunosorbent assay (ELISA). Compared to HCs and T2DM-only patients, PTB + 2DM patients showed upregulated expression of complement component C1q. WGCNA identified five crucial genes associated with PTB + T2DM: C1QA, CD248, LINC00278, MMP8, and MMP9. Multiscale embedded gene co-expression network analysis further identified FN1. The main KEGG pathways in PTB + T2DM patients were related to extracellular matrix-receptor interaction, the interleukin-17 signaling pathway, the AGE-RAGE signaling pathway in diabetic complications, the PI3K-Akt signaling pathway, and neutrophil extracellular trap formation. Receiver operating characteristic (ROC) analysis indicated that CD248, MMP8, MMP9, LINC00278, and C1QA have potential as diagnostic markers for PTB + T2DM. The expression levels of C1QA, LINC00278, MMP8, and MMP9 were significantly higher, and that of CD248 was significantly lower, in PTB + T2DM patients than in HCs. A network comprising highly correlated hub genes and microRNAs revealed the following interactions: C1QA with hsa-miR-363-5p, hsa-miR-671-5p, and hsa-miR-25-5p; CD248 with COL1 A2, COL1 A1, and COL4 A1; MMP8 with hsa-miR-539-5p, MMP9, and CEACAM8; and MMP9 with FN1, MMP8, hsa-miR-29b-3p, hsa-miR-942-3p, hsa-miR-302-5p, and hsa-miR-133a-5p. Seven drugs (ERK_440_1713, JAK_8517_1739, Palbociclib_1054, PLX.4720_1036, Savolitinib_1936, Selumetinib_1736, and VX.11e_2096) exhibited significant sensitivity in patients with high-expression or low-expression of C1QA. ELISA, qRT-PCR, and WB analyses confirmed the upregulated expression of C1QA, MMP8, and MMP9 in the peripheral blood of PTB + T2DM patients. This study elucidated the intricate molecular connections between PTB and T2DM and identified potential shared targets. Five genes (C1QA, MMP8, MMP9, CD248, and LINC00278) have potential as diagnostic markers for PTB + T2DM, and three genes (C1QA, MMP8, and MMP9) were upregulated in the peripheral blood of PTB + T2DM patients. Our findings may serve as a valuable reference for future research and clinical applications.
Collapse
Affiliation(s)
- Yan Liu
- Clinical Medical Center for Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yonglan Pu
- Department of Infectious Diseases, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Jie Wang
- Department of Infectious Diseases, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China.
| | - Zhiyong Li
- Department of Infectious Diseases, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Songliang Liu
- Department of Infectious Diseases, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Taicang, China
| | - Shenjie Tang
- Clinical Medical Center for Tuberculosis & Beijing Tuberculosis Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 100091, China.
| |
Collapse
|
2
|
Zhang T, Zhou X, Wang L, Li C, Xu Y, Liu Z. Vascular toxicity of benzene series released from decorative materials. Toxicol Ind Health 2025:7482337251340797. [PMID: 40353507 DOI: 10.1177/07482337251340797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The health risks associated with benzene series emissions from decorative materials have become a paramount concern in indoor air quality assessments, particularly given their established link with cardiovascular diseases, such as hypertension and atherosclerosis. Despite epidemiological evidence supporting this correlation, the underlying mechanisms remain under debate. This research comprehensively reviewed contemporary epidemiological studies on the cardiovascular impacts of benzene series emissions. It concentrated on the elucidation of their vascular toxicity, encompassing structural damage to vascular tissues, impaired vasoconstrictive-diastolic function, and abnormal lipid accumulation. By illuminating these research advancements, this study aimed to outline directions for future investigations and furnish insights into mitigating the risk of cardiovascular diseases stemming from benzene-contaminated decorative materials, ultimately contributing to public health protection.
Collapse
Affiliation(s)
- Tanliu Zhang
- Anhui Vocational & Technical College, Hefei, PR China
| | - Xiuhong Zhou
- Center for Biotechnology, Anhui Agricultural University, Hefei, PR China
| | - Limei Wang
- Zhejiang Kangmu Pharmaceutical Co. Ltd, Shaoxing, PR China
| | - Chengwang Li
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, PR China
| | - Yan Xu
- National Key Laboratory for Tea Plant Gemplasm Innovation and Resource Utilization, School of Tea Sciences, Anhui Agricultural University, Hefei, PR China
| | - Zenghui Liu
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei, PR China
- Anhui Institute of Qi'men Snake Medicine, Qimen, PR China
| |
Collapse
|
3
|
Kempker RR, Salindri AD, Avaliani T, Kornfeld H, Auld SC, Jakobia N, Day CL, Subuddhi A, Krish KN, Vashakidze S, Avaliani Z, Goginashvili L, Bryan C, Bernheim A, Kipiani M, Magee MJ. High rates of post-tuberculosis lung disease among persons successfully treated for drug-susceptible and resistant tuberculosis. Thorax 2025:thorax-2024-222350. [PMID: 40335270 DOI: 10.1136/thorax-2024-222350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/07/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Tuberculosis (TB) remains a critical global public health challenge, and there is an urgent need to improve the diagnosis and management of post-TB lung disease (PTLD). We aimed to compare end of treatment prevalence of PTLD among participants with and without drug-resistant TB and to evaluate the association between plasma cytokines and matrix metalloproteinases with lung damage. METHODS We conducted a prospective cohort study among individuals with microbial cure status for drug-susceptible or multidrug-resistant pulmonary TB in Tbilisi, Georgia during 2020-2021. Eligible participants were ≥16 years without prior TB treatment history, microbiologically confirmed disease at baseline and who had a favourable treatment outcome (cured or completed treatment). The study outcome was the presence of PTLD defined as abnormalities on either chest CT, spirometry or Saint George's Respiratory Questionnaire. RESULTS Among 123 participants, the prevalence of PTLD was 74% (n=91) with 53 participants meeting one criteria, 27 two criteria and 11 all three criteria. The prevalence of impaired respiratory health (47%) and lung damage on imaging (46%) was higher than abnormal lung function (21%). PTLD was not associated with drug resistance (adjusted OR 0.91, 95% CI 0.42 to 1.99). Persistent cavitary disease at the end of treatment was associated with higher matrix metalloproteinase 8 and lower matrix metalloproteinase 2, interleukin-17A and interleukin-1ß. CONCLUSION Using comprehensive criteria, we found nearly three in four individuals with microbial cure status for TB disease had prevalent PTLD regardless of drug resistance status. Persistent cavitary disease was associated with serum markers of inflammation and lung tissue remodelling.
Collapse
Affiliation(s)
- Russell R Kempker
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Argita D Salindri
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Population Health Sciences, Georgia State University School of Public Health, Atlanta, Georgia, USA
| | - Teona Avaliani
- National Center For Tuberculosis And Lung Diseases, Tbilisi, Georgia
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sara C Auld
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Nino Jakobia
- National Center For Tuberculosis And Lung Diseases, Tbilisi, Georgia
| | - Cheryl L Day
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunobiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arijita Subuddhi
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunobiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Krista N Krish
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunobiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sergo Vashakidze
- National Center For Tuberculosis And Lung Diseases, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center For Tuberculosis And Lung Diseases, Tbilisi, Georgia
- European University, Tbilisi, Georgia
| | | | - Cassandra Bryan
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | | | - Maia Kipiani
- National Center For Tuberculosis And Lung Diseases, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
- David Tvildiani Medical University, Tbilisi, Tbilisi, Georgia
| | - Matthew J Magee
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Thong PM, Wong YH, Kornfeld H, Goletti D, Ong CWM. Immune dysregulation of diabetes in tuberculosis. Semin Immunol 2025; 78:101959. [PMID: 40267700 DOI: 10.1016/j.smim.2025.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/04/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The rising prevalence of diabetes mellitus (DM) is undermining global efforts to eliminate tuberculosis (TB). Most studies found that patients with pulmonary TB and DM have more cavitary lung lesions, higher mycobacterial burden on the lungs, longer periods of infectiousness, and worse outcomes. Both human and animal studies indicate that TB-DM is associated with impaired innate and adaptive immune responses, resulting in delayed bacterial clearance. Similar observations have been noted in other infections, such as those caused by Klebsiella pneumoniae, where DM contributes to increased susceptibility and worse outcomes due to compromised immune functions including defective phagocytosis and impaired early immune cell recruitment. This review delves into the mechanisms of immune dysfunction in TB-DM, exploring how DM increases TB susceptibility and severity. By elucidating these complex interactions, this review aims to offer insights into more effective strategies for managing and improving outcomes for patients with this challenging comorbidity.
Collapse
Affiliation(s)
- Pei Min Thong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi Hao Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology, National Institute for infectious diseases-IRCCS L. Spallanzani, Rome, Italy.
| | - Catherine W M Ong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore.
| |
Collapse
|
5
|
Yibcharoenporn C, Muanprasat C, Moonwiriyakit A, Satitsri S, Pathomthongtaweechai N. AMPK in Intestinal Health and Disease: A Multifaceted Therapeutic Target for Metabolic and Inflammatory Disorders. Drug Des Devel Ther 2025; 19:3029-3058. [PMID: 40291159 PMCID: PMC12024487 DOI: 10.2147/dddt.s507489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
The intestines play essential roles in nutrient absorption and immune function and help maintain a protective barrier. Disruptions to its function can result in various diseases, including metabolic disorders, inflammation, and cancer. As a key regulator of cellular energy levels, 5'-adenosine monophosphate-activated protein kinase (AMPK) is essential for intestinal health. Beyond its established metabolic role, emerging evidence suggests that AMPK exerts profound effects on intestinal cell physiology, influencing cell proliferation and differentiation, inflammation, autophagy, barrier integrity, and smooth muscle contractility. Here, we explore the structure and regulation of AMPK, as well as its diverse roles in intestinal diseases and potential as a therapeutic target. Our findings reveal that AMPK is a multifaceted regulator of intestinal health, modulating various cellular processes and intestinal diseases. It plays a dual role in cancer, acting as both a tumor suppressor and promoter, and it regulates inflammatory pathways, autophagy, tight junction formation, and smooth muscle contractility. Both natural and synthetic AMPK activators offer promise as therapeutic agents. This review of AMPK's mechanisms and activators offers valuable insights for developing novel therapies for intestinal disorders. Further research is needed to fully define AMPK's roles and therapeutic potential.
Collapse
Affiliation(s)
- Chamnan Yibcharoenporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Saravut Satitsri
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| |
Collapse
|
6
|
Tian N, Chu H, Li Q, Sun H, Zhang J, Chu N, Sun Z. Host-directed therapy for tuberculosis. Eur J Med Res 2025; 30:267. [PMID: 40211397 PMCID: PMC11987284 DOI: 10.1186/s40001-025-02443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/09/2025] [Indexed: 04/13/2025] Open
Abstract
Current TB treatment regimens are hindered by drug resistance, numerous adverse effects, and long treatment durations, highlighting the need for 'me-better' treatment regimens. Host-directed therapy (HDT) has gained recognition as a promising approach in TB treatment. It allows the repurposing of existing drugs approved for other conditions and aims to enhance the effectiveness of existing anti-TB therapies, minimize drug resistance, decrease treatment duration, and adverse effects. By modulating the host immune response, HDT ameliorates immunopathological damage and improves overall outcomes by promoting autophagy, antimicrobial peptide production, and other mechanisms. It holds promise for addressing the challenges posed by multiple and extensively drug-resistant Mycobacterium tuberculosis strains, which are increasingly difficult to treat using conventional therapies. This article reviews various HDT candidates, including repurposed drugs, explores their underlying mechanisms such as autophagy promotion and inflammation reduction, while emphasizing their potential to improve TB treatment outcomes and outlining future research directions.
Collapse
Affiliation(s)
- Na Tian
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Qi Li
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hong Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jingfang Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Naihui Chu
- Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
7
|
Conejeros I, Velásquez ZD, Espinosa G, Rojas-Baron L, Grabbe M, Hermosilla C, Taubert A. AMPK and CAMKK activation participate in early events of Toxoplasma gondii-triggered NET formation in bovine polymorphonuclear neutrophils. Front Vet Sci 2025; 12:1557509. [PMID: 40171409 PMCID: PMC11960748 DOI: 10.3389/fvets.2025.1557509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans, eventually causing severe diseases like prenatal or ocular toxoplasmosis. T. gondii also infects cattle but rarely induces clinical signs in this intermediate host type. So far, the innate immune mechanisms behind the potential resistance of bovines to clinical T. gondii infections remain unclear. Here, we present evidence on sustained activation of bovine polymorphonuclear neutrophils PMN by T. gondii tachyzoites, which is linked to a rise in cytoplasmic calcium concentrations, an enhancement of calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK) and AMP-activated protein kinase (AMPK). NETosis is a specific form of programmed cell death, characterized by the release chromatin from the nucleus to the extracellular space resulting in formation of neutrophil extracellular traps (NETs). NETs can kill and entrap pathogens. In our experiments, NETosis was triggered by T. gondii, and this effector mechanism was enhanced by pre-treatments with the AMPK activator AICAR. Moreover, tachyzoite-mediated bovine neutrophil DNA release depended on MAPK- and store operated calcium entry- (SOCE) pathways since it was diminished by the inhibitors UO126 and 2-APB, respectively. Overall, we here provide new insights into early polymorphonuclear neutrophils responses against T. gondii for the bovine system.
Collapse
Affiliation(s)
- Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Li L, Jiao Q, Yang Q, Lu H, Zhou X, Zhang Q, Zhang F, Li H, Tian Z, Zeng Z. A bladder-blood immune barrier constituted by suburothelial perivascular macrophages restrains uropathogen dissemination. Immunity 2025; 58:568-584.e6. [PMID: 40015270 DOI: 10.1016/j.immuni.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/29/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Urinary tract infections (UTIs) predominantly occur in the bladder and can potentially progress into life-threatening sepsis if uropathogens spread unconstrainedly into the bloodstream. Here, we identified a subset of suburothelial perivascular macrophages (suPVMs) in the bladder that exerted a pivotal barrier function to prevent systemic bacterial dissemination during acute cystitis. During the initial phase of uropathogenic Escherichia coli (UPEC) infection, suPVMs actively captured UPEC invading the laminal propria and maintained the integrity of inflamed vessels. They subsequently underwent METosis to expel macrophage extracellular DNA traps (METs) into the urothelium to sequester bacteria within this avascular compartment. Matrix metallopeptidase-13 was released along with METs to promote neutrophil transuroepithelial migration. Replenished suPVMs from monocytes following a prior infection were functionally competent to confer protection against recurrent UTIs. Our study thus uncovers a bladder-blood immune barrier in restraining uropathogen dissemination, which could have implications for the prevention and treatment of urosepsis.
Collapse
Affiliation(s)
- Lu Li
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Qiancheng Jiao
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qianqian Yang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Haisen Lu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xia Zhou
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qing Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Futing Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hai Li
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhigang Tian
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhutian Zeng
- National Key Laboratory of Immune responses and Immunotherapy, Department of Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
9
|
Santos AP, Rodrigues LS, Rother N, Mello FCDQ, Magis-Escurra C. The role of neutrophil response in lung damage and post-tuberculosis lung disease: a translational narrative review. Front Immunol 2025; 16:1528074. [PMID: 40124364 PMCID: PMC11925771 DOI: 10.3389/fimmu.2025.1528074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
It is estimated that more than 150 million individuals alive in 2020 had survived tuberculosis (TB). A portion of this large population continues to experience chronic respiratory abnormalities, with or without symptoms, due to previous active pulmonary TB. This condition known as Post-TB Lung Disease (PTLD), involves a complex interaction between pathogen, host and environmental factors. These interactions are believed to drive a hyperinflammatory process in the lungs during active TB, resulting in tissue damage, which may lead to radiological sequelae, impaired pulmonary function, clinical symptoms, such as cough, dyspnea, hemoptysis, and respiratory infections. Such complications impose significant health, financial, and social burdens, which remain poorly understood and inadequately addressed by health care systems. Given the heterogeneity of immune cells and their products infiltrating the airways and the lung parenchyma during acute and chronic inflammation caused by Mycobacterium tuberculosis infection, it is evident that TB immunopathology is multifactorial. Among the various components involved, neutrophils have recently emerged as critical contributors to the deleterious immune response against TB, leading to severe pulmonary damage. In this translational narrative review, we aim to summarize the role of neutrophils and their primary products - proteases (such as elastase), matrix metalloproteinases and neutrophils extracellular traps (NETs) - in pulmonary TB. We highlight new concepts and emerging evidence of neutrophil involvement during the active disease, translating these insights from "bench to bedside" to facilitate dialogue between fundamental researchers and clinical practitioners. Additionally, we present potential targets for future treatment strategies that could mitigate or even prevent PTLD.
Collapse
Affiliation(s)
- Ana Paula Santos
- Pulmonary Diseases Department, Pedro Ernesto University Hospital, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Thoracic Diseases Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Respiratory Diseases-TB Expert Center, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luciana Silva Rodrigues
- Department of Pathology and Laboratories, Medical Sciences Faculty, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Cecile Magis-Escurra
- Department of Respiratory Diseases-TB Expert Center, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Walker NF, Schutz C, Ward A, Barr D, Opondo C, Shey M, Elkington PT, Wilkinson KA, Wilkinson RJ, Meintjes G. Elevated Plasma Matrix Metalloproteinases Are Associated With Mycobacterium tuberculosis Bloodstream Infection and Mortality in Human Immunodeficiency Virus-Associated Tuberculosis. J Infect Dis 2025; 231:109-114. [PMID: 39219411 PMCID: PMC7616822 DOI: 10.1093/infdis/jiae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 09/04/2024] Open
Abstract
Mortality from human immunodeficiency virus (HIV)-associated tuberculosis (TB) is high, particularly among hospitalized patients. In 433 people with HIV hospitalized with symptoms of TB, we investigated plasma matrix metalloproteinases (MMP) and matrix-derived biomarkers in relation to TB diagnosis, mortality, and Mycobacterium tuberculosis (Mtb) bloodstream infection (BSI). Compared to other diagnoses, MMP-8 was elevated in confirmed TB and in Mtb-BSI, positively correlating with extracellular matrix breakdown products. Baseline MMP-3, -7, -8, -10, and PIIINP were associated with Mtb-BSI and 12-week mortality. These findings implicate MMP dysregulation in pathophysiology of advanced HIV-TB and support MMP inhibition as a host-directed therapeutic strategy for HIV-TB.
Collapse
Affiliation(s)
- Naomi F Walker
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, United Kingdom
- Department of Clinical Sciences and Centre for Tuberculosis Research, Liverpool School of Tropical Medicine, United Kingdom
| | - Charlotte Schutz
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Amy Ward
- Department of Medicine, University of Cape Town, Observatory, South Africa
| | - David Barr
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Wellcome-Liverpool-Glasgow Centre for Global Health Research, University of Liverpool
- Department of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow
| | - Charles Opondo
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine
| | - Muki Shey
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Paul T Elkington
- National Institute for Health and Care Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton
| | - Katalin A Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
- The Francis Crick Institute, London
| | - Robert J Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
- The Francis Crick Institute, London
- Department of Infectious Diseases, Imperial College London, United Kingdom
| | - Graeme Meintjes
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
11
|
Liu Z, Wang S. A novel biomarker of COVI-19: MMP8 emerged by integrated bulk RNAseq and single-cell sequencing. Sci Rep 2024; 14:31086. [PMID: 39730651 PMCID: PMC11680813 DOI: 10.1038/s41598-024-82227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
COVID-19 has been emerging as the most influential illness which has caused great costs to the heath of population and social economy. Sivelestat sodium (SS) is indicated as an effective cure for lung dysfunction, a characteristic symptom of COVID-19 infection, but its pharmacological target is still unclear. Therefore, a deep understanding of the pathological progression and molecular alteration is an urgent issue for settling the diagnosis and therapy problems of COVID-19. In this study, the bulk ribonucleic acid sequencing (RNA-seq) data of healthy donors and non-severe and severe COVID-19 patients were collected. Then, target differentially expressed genes (DEGs) were screened through integrating sequencing data and the pharmacological database. Besides, with the help of functional and molecular interaction analyses, the potential effect of target gene alteration on COVID-19 progression was investigated. Single-cell sequencing was performed to evaluate the cell distribution of target genes, and the possible interaction of gene-positive cells with other cells was explored by intercellular ligand-receptor pattern analysis. The results showed that matrix metalloproteinase 8 (MMP8) was upregulated in severe COVID-19 patients, which was also identified as a targeting site to SS. Additionally, MMP8 took a core part in the regulatory interaction network of the screened DEGs in COVID-19 and was dramatically correlated with the inflammatory signaling pathway. The further investigations indicated that MMP8 was mainly expressed in myelocytes with a high degree of heterogeneity. MMP8-positive myelocytes interacted with other cell types through RETN-TLR4 and RETN-CAP1 ligand-receptor patterns. These findings emphasize the important role of MMP8 in COVID-19 progression and provide a potential therapeutic target for COVID-19 patients.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Intensive Care Unit, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Shunda Wang
- Department of Rehabilitative medicine, Shaanxi Provincial People's Hospital, No.256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
12
|
Scriba TJ, Maseeme M, Young C, Taylor L, Leslie AJ. Immunopathology in human tuberculosis. Sci Immunol 2024; 9:eado5951. [PMID: 39671470 DOI: 10.1126/sciimmunol.ado5951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/15/2024] [Indexed: 12/15/2024]
Abstract
Mycobacterium tuberculosis (M.tb) is a bacterial pathogen that has evolved in humans, and its interactions with the host are complex and best studied in humans. Myriad immune pathways are involved in infection control, granuloma formation, and progression to tuberculosis (TB) disease. Inflammatory cells, such as macrophages, neutrophils, conventional and unconventional T cells, B cells, NK cells, and innate lymphoid cells, interact via cytokines, cell-cell communication, and eicosanoid signaling to contain or eliminate infection but can alternatively mediate pathological changes required for pathogen transmission. Clinical manifestations include pulmonary and extrapulmonary TB, as well as post-TB lung disease. Risk factors for TB progression, in turn, largely relate to immune status and, apart from traditional chemotherapy, interventions primarily target immune mechanisms, highlighting the critical role of immunopathology in TB. Maintaining a balance between effector mechanisms to achieve protective immunity and avoid detrimental inflammation is central to the immunopathogenesis of TB. Many research gaps remain and deserve prioritization to improve our understanding of human TB immunopathogenesis.
Collapse
Affiliation(s)
- Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahlatse Maseeme
- Africa Health Research Institute, Durban, South Africa
- College of Heath Sciences, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Carly Young
- South African Tuberculosis Vaccine Initiative, Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Forensic Pathology Services, Western Cape Government/University of Cape Town, Cape Town, South Africa
| | - Alasdair J Leslie
- Africa Health Research Institute, Durban, South Africa
- University College London, London, UK
| |
Collapse
|
13
|
Chowdhury CS, Kinsella RL, McNehlan ME, Naik SK, Lane DS, Talukdar P, Smirnov A, Dubey N, Rankin AN, McKee SR, Woodson R, Hii A, Chavez SM, Kreamalmeyer D, Beatty W, Mattila JT, Stallings CL. Type I IFN-mediated NET release promotes Mycobacterium tuberculosis replication and is associated with granuloma caseation. Cell Host Microbe 2024; 32:2092-2111.e7. [PMID: 39637864 PMCID: PMC11637906 DOI: 10.1016/j.chom.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Neutrophils are the most abundant cell type in the airways of tuberculosis patients. Mycobacterium tuberculosis (Mtb) infection induces the release of neutrophil extracellular traps (NETs); however, the molecular regulation and impact of NET release on Mtb pathogenesis are unknown. We find that during Mtb infection in neutrophils, PAD4 citrullinates histones to decondense chromatin that gets released as NETs in a manner that can maintain neutrophil viability and promote Mtb replication. Type I interferon promotes the formation of chromatin-containing vesicles that allow NET release without compromising plasma membrane integrity. Analysis of nonhuman primate granulomas supports a model where neutrophils are exposed to type I interferon from macrophages as they migrate into the granuloma, thereby enabling the release of NETs associated with necrosis and caseation. Our data reveal NET release as a promising target to inhibit Mtb pathogenesis.
Collapse
Affiliation(s)
- Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E McNehlan
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sumanta K Naik
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Lane
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Priyanka Talukdar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ananda N Rankin
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abigail Hii
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA; UCD School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Cui T, Huang Z, Luo K, Nie J, Xv Y, Zeng Z, Liao L, Yang X, Zhou H. Identification of Hub Genes and Prediction of Targeted Drugs for Rheumatoid Arthritis and Idiopathic Pulmonary Fibrosis. Biochem Genet 2024; 62:5157-5178. [PMID: 38334875 DOI: 10.1007/s10528-023-10650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/25/2023] [Indexed: 02/10/2024]
Abstract
There is a potential link between rheumatoid arthritis (RA) and idiopathic pulmonary fibrosis (IPF). The aim of this study is to investigate the molecular processes that underlie the development of these two conditions by bioinformatics methods. The gene expression samples for RA (GSE77298) and IPF (GSE24206) were retrieved from the Gene Expression Omnibus (GEO) database. After identifying the overlapping differentially expressed genes (DEGs) for RA and IPF, we conducted functional annotation, protein-protein interaction (PPI) network analysis, and hub gene identification. Finally, we used the hub genes to predict potential medications for the treatment of both disorders. We identified 74 common DEGs for further analysis. Functional analysis demonstrated that cellular components, biological processes, and molecular functions all played a role in the emergence and progression of RA and IPF. Using the cytoHubba plugin, we identified 7 important hub genes, namely COL3A1, SDC1, CCL5, CXCL13, MMP1, THY1, and BDNF. As diagnostic indicators for RA, SDC1, CCL5, CXCL13, MMP1, and THY1 showed favorable values. For IPF, COL3A1, SDC1, CCL5, CXCL13, THY1, and BDNF were favorable diagnostic markers. Furthermore, we predicted 61 Chinese and 69 Western medications using the hub genes. Our research findings demonstrate a shared pathophysiology between RA and IPF, which may provide new insights for more mechanistic research and more effective treatments. These common pathways and hub genes identified in our study offer potential opportunities for developing more targeted therapies that can address both disorders.
Collapse
Affiliation(s)
- Ting Cui
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Zhican Huang
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Kun Luo
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Jingwei Nie
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Yimei Xv
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Zhu Zeng
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Linghan Liao
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Xin Yang
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Haiyan Zhou
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
15
|
Zou S, Han X, Luo S, Tan Q, Huang H, Yao Z, Hou W, Jie H, Wang J. Bay-117082 treats sepsis by inhibiting neutrophil extracellular traps (NETs) formation through down-regulating NLRP3/N-GSDMD. Int Immunopharmacol 2024; 141:112805. [PMID: 39146778 DOI: 10.1016/j.intimp.2024.112805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
During the inflammatory storm of sepsis, a significant quantity of neutrophil extracellular traps (NETs) are generated, which act as a double-edged sword and not only impede the invasion of foreign microorganisms but also exacerbate organ damage. This study provides evidence that NETs can cause damage to alveolar epithelial cells in vitro. The sepsis model developed in this study showed a significant increase in NETs in the bronchoalveolar lavage fluid (BALF). The development of NETs has been shown to increase the lung inflammatory response and aggravate injury to alveolar epithelial cells. Bay-117082, a well-known NF-κB suppressor, is used to modulate inflammation. This analysis revealed that Bay-117082 efficiently reduced total protein concentration, myeloperoxidase activity, and inflammatory cytokines in BALF. Moreover, Bay-117082 inhibited the formation of NETs, which in turn prevented the activation of the pore-forming protein gasdermin D (GSDMD). In summary, these results indicated that excessive NET production during sepsis exacerbated the onset and progression of acute lung injury (ALI). Therefore, Bay-117082 could serve as a novel therapeutic approach for ameliorating sepsis-associated ALI.
Collapse
Affiliation(s)
- Shujing Zou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shugeng Luo
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Quanguang Tan
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huiying Huang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhoulanlan Yao
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Hou
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jinghong Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
16
|
Auld SC, Barczak AK, Bishai W, Coussens AK, Dewi IMW, Mitini-Nkhoma SC, Muefong C, Naidoo T, Pooran A, Stek C, Steyn AJC, Tezera L, Walker NF. Pathogenesis of Post-Tuberculosis Lung Disease: Defining Knowledge Gaps and Research Priorities at the Second International Post-Tuberculosis Symposium. Am J Respir Crit Care Med 2024; 210:979-993. [PMID: 39141569 PMCID: PMC11531093 DOI: 10.1164/rccm.202402-0374so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Post-tuberculosis (post-TB) lung disease is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to post-TB lung disease are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the Pathogenesis and Risk Factors Committee for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa, in April 2023. The committee first identified six areas with high translational potential: 1) tissue matrix destruction, including the role of matrix metalloproteinase dysregulation and neutrophil activity; 2) fibroblasts and profibrotic activity; 3) granuloma fate and cell death pathways; 4) mycobacterial factors, including pathogen burden; 5) animal models; and 6) the impact of key clinical risk factors, including HIV, diabetes, smoking, malnutrition, and alcohol. We share the key findings from a literature review of those areas, highlighting knowledge gaps and areas where further research is needed.
Collapse
Affiliation(s)
- Sara C. Auld
- Departments of Medicine, Epidemiology, and Global Health, Emory University School of Medicine and Rollins School of Public Health, Atlanta, Georgia
| | - Amy K. Barczak
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Intan M. W. Dewi
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, and
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Caleb Muefong
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | - Threnesan Naidoo
- Department of Forensic & Legal Medicine and
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, and
- University of Cape Town Lung Institute and Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Cari Stek
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liku Tezera
- National Institute for Health and Care Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences and Centre for Tuberculosis Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; and
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
17
|
Gu LY, Jia CG, Sheng ZZ, Jiang WL, Xu ZW, Li WZ, Cui JY, Zhang H. Fibroblast Growth Factor 21 Suppressed Neutrophil Extracellular Traps Induced by Myocardial Ischemia/Reperfusion Injury via Adenosine Monophosphate-Activated Protein Kinase. Cardiol Res 2024; 15:404-414. [PMID: 39420979 PMCID: PMC11483118 DOI: 10.14740/cr1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Background Previous investigations have established the anti-inflammatory properties of fibroblast growth factor 21 (FGF21). However, the specific mechanism through which FGF21 mitigates myocardial ischemia/reperfusion (I/R) injury by inhibiting neutrophil extracellular traps (NETs) remains unclear. Methods A mice model of myocardial I/R injury was induced, and myocardial tissue was stained with immunofluorescence to assess NETs. Serum NETs levels were quantified using a PicoGreen kit. In addition, the expression levels of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and FGF21 were evaluated by Wes fully automated protein blotting quantitative analysis system. Moreover, a hypoxia/reoxygenation (H/R) model was established using AMPK inhibitor and agonist pretreated H9c2 cells to further explore the relationship between FGF21 and AMPK. Results Compared with the control group, serum NETs levels were significantly higher in I/R mice, and a large number of NETs were formed in myocardial tissues (97.63 ± 11.45 vs. 69.65 ± 3.33, P < 0.05). However, NETs levels were reversed in FGF21 pretreated mice (P < 0.05). Further studies showed that FGF21 enhanced AMPK expression, which was significantly increased after inhibition of AMPK and decreased after promotion of AMPK (P < 0.05). Conclusions FGF21 may exert cardioprotective effects by inhibiting I/R injury-induced NETs via AMPK.
Collapse
Affiliation(s)
- Ling Yun Gu
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Cheng Gao Jia
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Zuo Zhen Sheng
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Wen Long Jiang
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Zhuo Wen Xu
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Wei Zhang Li
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Jun You Cui
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Hua Zhang
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| |
Collapse
|
18
|
Geng X, Wang DW, Li H. The pivotal role of neutrophil extracellular traps in cardiovascular diseases: Mechanisms and therapeutic implications. Biomed Pharmacother 2024; 179:117289. [PMID: 39151311 DOI: 10.1016/j.biopha.2024.117289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.
Collapse
Affiliation(s)
- Xinyu Geng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
19
|
Annis JL, Brown MG. Inflammation and Macrophage Loss Mark Increased Susceptibility in a Genetic Model of Acute Viral Infection-Induced Tissue Damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:853-864. [PMID: 39046317 PMCID: PMC11371500 DOI: 10.4049/jimmunol.2400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
M.R2k/b mice are identical to the MA/My parent strain aside from a 5.58-Mb C57L-derived region on chromosome 17 (Cmv5s) that causes increased susceptibility to acute murine CMV (MCMV) infection and the development of significant spleen tissue damage. Spleen pathology begins at the marginal zone (MZ), apparent by 2 d postinfection (dpi), and progresses throughout the red pulp by 4 dpi. To better understand how M.R2k/b mice respond to infection and how Cmv5s contributes to tissue damage in the spleen, we assessed the regulation of myeloid cells and inflammation during acute MCMV infection in MA/My and M.R2k/b mice. We found that Cmv5s drove increased neutrophil accumulation and cell death at the MZ, which corresponded with evidence of localized oxidative stress and increased overall spleen IL-6 and TGF-β1 early during infection. Further assessment of MCMV infection dynamics at the early MZ revealed infected SIGNR1+ MZ macrophages as the first apparent cell type lost during infection in these mice and the likely target of early neutrophil recruitment. Spleen macrophages were also identified as the mediators of differential spleen IL-6 and TGF-β1 between MA/My and M.R2k/b mice. Interrogation of MCMV progression past 2 dpi revealed substantial M.R2k/b F480+ red pulp macrophage loss along with buildup of oxidative stress and MZ macrophage debris that was not neutrophil dependent. Together we identify Cmv5s-driven macrophage loss and inflammation during acute MCMV infection corresponding with the spatial and temporal development of spleen tissue damage.
Collapse
Affiliation(s)
- Jessica L. Annis
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
| | - Michael G. Brown
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, USA
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Auld SC, Sheshadri A, Alexander-Brett J, Aschner Y, Barczak AK, Basil MC, Cohen KA, Dela Cruz C, McGroder C, Restrepo MI, Ridge KM, Schnapp LM, Traber K, Wunderink RG, Zhang D, Ziady A, Attia EF, Carter J, Chalmers JD, Crothers K, Feldman C, Jones BE, Kaminski N, Keane J, Lewinsohn D, Metersky M, Mizgerd JP, Morris A, Ramirez J, Samarasinghe AE, Staitieh BS, Stek C, Sun J, Evans SE. Postinfectious Pulmonary Complications: Establishing Research Priorities to Advance the Field: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2024; 21:1219-1237. [PMID: 39051991 DOI: 10.1513/annalsats.202406-651st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Continued improvements in the treatment of pulmonary infections have paradoxically resulted in a growing challenge of individuals with postinfectious pulmonary complications (PIPCs). PIPCs have been long recognized after tuberculosis, but recent experiences such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the importance of PIPCs following other lower respiratory tract infections. Independent of the causative pathogen, most available studies of pulmonary infections focus on short-term outcomes rather than long-term morbidity among survivors. In this document, we establish a conceptual scope for PIPCs with discussion of globally significant pulmonary pathogens and an examination of how these pathogens can damage different components of the lung, resulting in a spectrum of PIPCs. We also review potential mechanisms for the transition from acute infection to PIPC, including the interplay between pathogen-mediated injury and aberrant host responses, which together result in PIPCs. Finally, we identify cross-cutting research priorities for the field to facilitate future studies to establish the incidence of PIPCs, define common mechanisms, identify therapeutic strategies, and ultimately reduce the burden of morbidity in survivors of pulmonary infections.
Collapse
|
21
|
Wang P, Yang GL, He YF, Shen YH, Hao XH, Liu HP, Shen HB, Wang L, Sha W. Single-cell transcriptomics of blood identified IFIT1 + neutrophil subcluster expansion in NTM-PD patients. Int Immunopharmacol 2024; 137:112412. [PMID: 38901242 DOI: 10.1016/j.intimp.2024.112412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/22/2024]
Abstract
OBJECTIVE Non-tuberculous mycobacterial pulmonary disease (NTM-PD) is caused by an imbalance between pathogens and impaired host immune responses. Mycobacterium avium complex (MAC) and Mycobacterium abscessus (MAB) are the two major pathogens that cause NTM-PD. In this study, we sought to dissect the transcriptomes of peripheral blood immune cells at the single-cell resolution in NTM-PD patients and explore potential clinical markers for NTM-PD diagnosis and treatment. METHODS Peripheral blood samples were collected from six NTM-PD patients, including three MAB-PD patients, three MAC-PD patients, and two healthy controls. We employed single-cell RNA sequencing (scRNA-seq) to define the transcriptomic landscape at a single-cell resolution. A comprehensive scRNA-seq analysis was performed, and flow cytometry was conducted to validate the results of scRNA-seq. RESULTS A total of 27,898 cells were analyzed. Nine T-cells, six mononuclear phagocytes (MPs), and four neutrophil subclusters were defined. During NTM infection, naïve T-cells were reduced, and effector T-cells increased. High cytotoxic activities were shown in T-cells of NTM-PD patients. The proportion of inflammatory and activated MPs subclusters was enriched in NTM-PD patients. Among neutrophil subclusters, an IFIT1+ neutrophil subcluster was expanded in NTM-PD compared to healthy controls. This suggests that IFIT1+ neutrophil subcluster might play an important role in host defense against NTM. Functional enrichment analysis of this subcluster suggested that it is related to interferon response. Cell-cell interaction analysis revealed enhanced CXCL8-CXCR1/2 interactions between the IFIT1+ neutrophil subcluster and NK cells, NKT cells, classical mononuclear phagocytes subcluster 1 (classical Mo1), classical mononuclear phagocytes subcluster 2 (classical Mo2) in NTM-PD patients compared to healthy controls. CONCLUSIONS Our data revealed disease-specific immune cell subclusters and provided potential new targets of NTM-PD. Specific expansion of IFIT1+ neutrophil subclusters and the CXCL8-CXCR1/2 axis may be involved in the pathogenesis of NTM-PD. These insights may have implications for the diagnosis and treatment of NTM-PD.
Collapse
Affiliation(s)
- Peng Wang
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Guo-Ling Yang
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yi-Fan He
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yan-Heng Shen
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Xiao-Hui Hao
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Hai-Peng Liu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Hong-Bo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Li Wang
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Wei Sha
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| |
Collapse
|
22
|
Jhilta A, Jadhav K, Singh R, Ray E, Kumar A, Singh AK, Verma RK. Breaking the Cycle: Matrix Metalloproteinase Inhibitors as an Alternative Approach in Managing Tuberculosis Pathogenesis and Progression. ACS Infect Dis 2024; 10:2567-2583. [PMID: 39038212 DOI: 10.1021/acsinfecdis.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has long posed a significant challenge to global public health, resulting in approximately 1.6 million deaths annually. Pulmonary tuberculosis (TB) instigated by Mtb is characterized by extensive lung tissue damage, leading to lesions and dissemination within the tissue matrix. Matrix metalloproteinases (MMPs) exhibit endopeptidase activity, contributing to inflammatory tissue damage and, consequently, morbidity and mortality in TB patients. MMP activities in TB are intricately regulated by various components, including cytokines, chemokines, cell receptors, and growth factors, through intracellular signaling pathways. Primarily, Mtb-infected macrophages induce MMP expression, disrupting the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs), thereby impairing extracellular matrix (ECM) deposition in the lungs. Recent research underscores the significance of immunomodulatory factors in MMP secretion and granuloma formation during Mtb pathogenesis. Several studies have investigated both the activation and inhibition of MMPs using endogenous MMP inhibitors (i.e., TIMPs) and synthetic inhibitors. However, despite their promising pharmacological potential, few MMP inhibitors have been explored for TB treatment as host-directed therapy. Scientists are exploring novel strategies to enhance TB therapeutic regimens by suppressing MMP activity to mitigate Mtb-associated matrix destruction and reduce TB induced lung inflammation. These strategies include the use of MMP inhibitor molecules alone or in combination with anti-TB drugs. Additionally, there is growing interest in developing novel formulations containing MMP inhibitors or MMP-responsive drug delivery systems to suppress MMPs and release drugs at specific target sites. This review summarizes MMPs' expression and regulation in TB, their role in immune response, and the potential of MMP inhibitors as effective therapeutic targets to alleviate TB immunopathology.
Collapse
Affiliation(s)
- Agrim Jhilta
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Krishna Jadhav
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Eupa Ray
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| | - Alok Kumar
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India 226014
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India 282004
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, India 140306
| |
Collapse
|
23
|
Conejeros I, Velásquez ZD, Rojas-Barón L, Espinosa G, Hermosilla C, Taubert A. The CAMKK/AMPK Pathway Contributes to Besnoitia besnoiti-Induced NETosis in Bovine Polymorphonuclear Neutrophils. Int J Mol Sci 2024; 25:8442. [PMID: 39126009 PMCID: PMC11313139 DOI: 10.3390/ijms25158442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Besnoitia besnoiti is an obligate intracellular apicomplexan parasite and the causal agent of bovine besnoitiosis. Bovine besnoitiosis has a considerable economic impact in Africa and Asia due to reduced milk production, abortions, and bull infertility. In Europe, bovine besnoitiosis is classified as an emerging disease. Polymorphonuclear neutrophils (PMN) are one of the most abundant leukocytes in cattle blood and amongst the first immunological responders toward invading pathogens. In the case of B. besnoiti, bovine PMN produce reactive oxygen species (ROS), release neutrophil extracellular traps (NETs), and show increased autophagic activities upon exposure to tachyzoite stages. In that context, the general processes of NETosis and autophagy were previously reported as associated with AMP-activated protein kinase (AMPK) activation. Here, we study the role of AMPK in B. besnoiti tachyzoite-induced NET formation, thereby expanding the analysis to both upstream proteins, such as the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK), and downstream signaling and effector molecules, such as the autophagy-related proteins ULK-1 and Beclin-1. Current data revealed early AMPK activation (<30 min) in both B. besnoiti-exposed and AMPK activator (AICAR)-treated bovine PMN. This finding correlated with upstream responses on the level of CAMKK activation. Moreover, these reactions were accompanied by an augmented autophagic activity, as represented by enhanced expression of ULK-1 but not of Beclin-1. Referring to neutrophil effector functions, AICAR treatments induced both AMPK phosphorylation and NET formation, without affecting cell viability. In B. besnoiti tachyzoite-exposed PMN, AICAR treatments failed to affect oxidative responses, but led to enhanced NET formation, thereby indicating that AMPK and autophagic activation synergize with B. besnoiti-driven NETosis.
Collapse
Affiliation(s)
- Iván Conejeros
- Institute of Parasitology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (Z.D.V.); (L.R.-B.); (G.E.); (C.H.); (A.T.)
| | | | | | | | | | | |
Collapse
|
24
|
Messah ADV, Darmiati S, Rumende CM, Soemarwoto RA, Prihartono J, Asmarinah A. Correlation between Gene polymorphism levels of serum matrix metalloproteinases with cavitary features and pulmonary fibrosis of the Patient tuberculosis multi-drug resistance using high-resolution computerized tomography of the Thorax. Heliyon 2024; 10:e33671. [PMID: 39071560 PMCID: PMC11283093 DOI: 10.1016/j.heliyon.2024.e33671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are proteins that play a role in the inflammatory and remodeling processes caused by infections, including pulmonary tuberculosis (TB), especially multidrug resistance. This study aims to investigate the relationship between variations in MMP-1 and MMP-9 blood levels, cavity features such as number, diameter, and wall thickness, and the location of fibrosis in multidrug-resistant (MDR) and drug-sensitive (DS) tuberculosis patients. This study used a comparative cross-sectional study design. The subjects, who were outpatients at Abdoel Moelok Hospital, Lampung, Indonesia, had passed the ethical test. We divided the subjects into two groups: 34 in the MDR-TB group and 36 in the DS-TB group. An ELISA test determined the levels of MMP-1 and MMP-9, while the PCR-sequencing method determined the genotypes of MMP-1 and MMP-9. Additionally, we measured cavities and fibrosis using thoracic high-resolution computerized tomography (HRCT) imaging. In MDR-TB patients, there was a significant difference in the number of cavities larger than 6.6 mm in diameter, as well as cavity thickness, compared to DS-TB patients. The distribution of fibrosis in lung segments was also significantly different in MDR-TB compared to DS-TB. Although MMP-9 levels in the MDR-TB group were higher than in the DS-TB group, there was no statistically significant difference. Based on HRCT measurements, this study found a link between MDR-TB and DS-TB in terms of the number of cavities, the diameter of the cavities, the thickness of the cavity walls, and the location of fibrosis in the affected lung segments. There was no link between the MMP-1 (-1607G) and MMP-9 (C1562T) genotypes and the levels of MMP-1 and MMP-9 in the blood. The MMP-1 genotype in the two study groups was very different and was linked to twice as many cases of MDR-TB. In addition, there was a substantial difference in cavity wall thickness between the G/G MMP-1 1607 genotype and the T/T MMP-9 genotype in the two study groups.
Collapse
Affiliation(s)
| | - Sawitri Darmiati
- Department of Radiology, General Hospital Cipto Mangunkusumo, Faculty of Medicine University of Indonesia, Indonesia
| | - Cleopas Martin Rumende
- Department of Internal Medicine Sciences, Pulmonology Division, Faculty of Medicine, University of Indonesia, Indonesia
| | - Retno Ariza Soemarwoto
- Department of Pulmonology, General Hospital Abdoel Moelok, Faculty of Medicine University of Lampung, Indonesia
| | - Joedo Prihartono
- Department of Community Medical Sciences, Faculty University of Indonesia Medicine, Indonesia
| | - Asmarinah Asmarinah
- Doctoral Program in Biomedical Sciences, Faculty of Medicine University of Indonesia, Indonesia
- Departement of Medical Biology, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
25
|
Singh H, Gonzalez-Juarbe N, Pieper R, Yu Y, Vashee S. Predictive biomarkers for latent Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2024; 147:102399. [PMID: 37648595 PMCID: PMC10891298 DOI: 10.1016/j.tube.2023.102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Tuberculosis is a leading cause of infectious death worldwide, with almost a fourth of the world's population latently infected with its causative agent, Mycobacterium tuberculosis. Current diagnostic methods are insufficient to differentiate between healthy and latently infected populations. Here, we used a machine learning approach to analyze publicly available proteomic data from saliva and serum in Ethiopia's healthy, latent TB (LTBI) and active TB (ATBI) people. Our analysis discovered a profile of six proteins, Mast Cell Expressed Membrane Protein-1, Hemopexin, Lamin A/C, Small Proline Rich Protein 2F, Immunoglobulin Kappa Variable 4-1, and Voltage Dependent Anion Channel 2 that can precisely differentiate between the healthy and latently infected populations. This data suggests that a combination of six host proteins can serve as accurate biomarkers to diagnose latent infection. This is important for populations living in high-risk areas as it may help in the surveillance and prevention of severe disease.
Collapse
Affiliation(s)
- Harinder Singh
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, USA.
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, USA
| | - Rembert Pieper
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, USA
| | - Yanbao Yu
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, USA
| | - Sanjay Vashee
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, 9605 Medical Center Drive Suite 150, Rockville, MD, USA
| |
Collapse
|
26
|
Nhamoyebonde S, Chambers M, Ndlovu L, Karim F, Mazibuko M, Mhlane Z, Madziwa L, Moosa Y, Moodley S, Hoque M, Leslie A. Detailed phenotyping reveals diverse and highly skewed neutrophil subsets in both the blood and airways during active tuberculosis infection. Front Immunol 2024; 15:1422836. [PMID: 38947330 PMCID: PMC11212598 DOI: 10.3389/fimmu.2024.1422836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Neutrophils play a complex and important role in the immunopathology of TB. Data suggest they are protective during early infection but become a main driver of immunopathology if infection progresses to active disease. Neutrophils are now recognized to exist in functionally diverse states, but little work has been done on how neutrophil states or subsets are skewed in TB disease. Methods To address this, we carried out comprehensive phenotyping by flow cytometry of neutrophils in the blood and airways of individuals with active pulmonary TB with and without HIV co-infection recruited in Durban, South Africa. Results Active TB was associated with a profound skewing of neutrophils in the blood toward phenotypes associated with activation and apoptosis, reduced phagocytosis, reverse transmigration, and immune regulation. This skewing was also apparently in airway neutrophils, particularly the regulatory subsets expressing PDL-1 and LOX-1. HIV co-infection did not impact neutrophil subsets in the blood but was associated with a phenotypic change in the airways and a reduction in key neutrophil functional proteins cathelicidin and arginase 1. Discussion Active TB is associated with profound skewing of blood and airway neutrophils and suggests multiple mechanisms by which neutrophils may exacerbate the immunopathology of TB. These data indicate potential avenues for reducing neutrophil-mediated lung pathology at the point of diagnosis.
Collapse
Affiliation(s)
| | - Mark Chambers
- Africa Health Research Institute, Durban, South Africa
| | - Lerato Ndlovu
- Africa Health Research Institute, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
| | | | - Zoey Mhlane
- Africa Health Research Institute, Durban, South Africa
| | | | - Yunus Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Monjurul Hoque
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, Durban, South Africa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
27
|
Lu HJ, Guo D, Wei QQ. Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting Microglia. Aging Dis 2024; 15:1255-1276. [PMID: 37196131 PMCID: PMC11081169 DOI: 10.14336/ad.2023.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
28
|
Murphy DM, Walsh A, Stein L, Petrasca A, Cox DJ, Brown K, Duffin E, Jameson G, Connolly SA, O'Connell F, O'Sullivan J, Basdeo SA, Keane J, Phelan JJ. Human Macrophages Activate Bystander Neutrophils' Metabolism and Effector Functions When Challenged with Mycobacterium tuberculosis. Int J Mol Sci 2024; 25:2898. [PMID: 38474145 DOI: 10.3390/ijms25052898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Neutrophils are dynamic cells, playing a critical role in pathogen clearance; however, neutrophil infiltration into the tissue can act as a double-edged sword. They are one of the primary sources of excessive inflammation during infection, which has been observed in many infectious diseases including pneumonia and active tuberculosis (TB). Neutrophil function is influenced by interactions with other immune cells within the inflammatory lung milieu; however, how these interactions affect neutrophil function is unclear. Our study examined the macrophage-neutrophil axis by assessing the effects of conditioned medium (MΦ-CM) from primary human monocyte-derived macrophages (hMDMs) stimulated with LPS or a whole bacterium (Mycobacterium tuberculosis) on neutrophil function. Stimulated hMDM-derived MΦ-CM boosts neutrophil activation, heightening oxidative and glycolytic metabolism, but diminishes migratory potential. These neutrophils exhibit increased ROS production, elevated NET formation, and heightened CXCL8, IL-13, and IL-6 compared to untreated or unstimulated hMDM-treated neutrophils. Collectively, these data show that MΦ-CM from stimulated hMDMs activates neutrophils, bolsters their energetic profile, increase effector and inflammatory functions, and sequester them at sites of infection by decreasing their migratory capacity. These data may aid in the design of novel immunotherapies for severe pneumonia, active tuberculosis and other diseases driven by pathological inflammation mediated by the macrophage-neutrophil axis.
Collapse
Affiliation(s)
- Dearbhla M Murphy
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Anastasija Walsh
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Laura Stein
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Andreea Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, D02 R590 Dublin, Ireland
| | - Donal J Cox
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Kevin Brown
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Emily Duffin
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Gráinne Jameson
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Sarah A Connolly
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute (TTMI), St. James's Hospital, Dublin 8, D08 W9RT Dublin, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute (TTMI), St. James's Hospital, Dublin 8, D08 W9RT Dublin, Ireland
| | - Sharee A Basdeo
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - Joseph Keane
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| | - James J Phelan
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, St. James's Hospital, Trinity College Dublin, The University of Dublin, Dublin 8, D08 W9RT Dublin, Ireland
| |
Collapse
|
29
|
Sehgal IS, Dhooria S, Muthu V, Salzer HJF, Agarwal R. Burden, clinical features, and outcomes of post-tuberculosis chronic obstructive lung diseases. Curr Opin Pulm Med 2024; 30:156-166. [PMID: 37902135 DOI: 10.1097/mcp.0000000000001026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
PURPOSE OF REVIEW Post-tuberculosis lung disease (PTLD) is an increasingly recognized and debilitating consequence of pulmonary tuberculosis (PTB). In this review, we provide a comprehensive overview of PTLD with airflow obstruction (PTLD-AFO), focusing on its burden, pathophysiology, clinical manifestations, diagnostic methods, and management strategies. RECENT FINDINGS The relationship between PTLD and airflow obstruction is complex and multifactorial. Approximately 60% of the patients with PTLD have some spirometric abnormality. Obstruction is documented in 18-22% of PTLD patients. The host susceptibility and host response to mycobacterium drive the pathogenic mechanism of PTLD. A balance between inflammatory, anti-inflammatory, and fibrotic pathways decides whether an individual with PTB would have PTLD after microbiological cure. An obstructive abnormality in PTLD-AFO is primarily due to destruction of bronchial walls, aberrant healing, and reduction of mucosal glands. The most common finding on computed tomography (CT) of thorax in patients with PTLD-AFO is bronchiectasis and cavitation. Therefore, the 'Cole's vicious vortex' described in bronchiectasis applies to PTLD. A multidisciplinary approach is required for diagnosis and treatment. The disability-adjusted life-years (DALYs) attributed to PTLD represent about 50% of the total estimated burden of DALYs due to tuberculosis (TB). Patients with PTLD require comprehensive care that includes psychosocial support, pulmonary rehabilitation, and vaccination against respiratory pathogens. In the absence of trials evaluating different treatments for PTLD-AFO, therapy is primarily symptomatic. SUMMARY PTLD with airflow obstruction has considerable burden and causes a significant morbidity and mortality. However, many aspects of PTLD-AFO still need to be answered. Studies are required to evaluate different phenotypes, especially concerning Aspergillus -related complications. The treatment should be personalized based on the predominant phenotype of airflow obstruction. Extensive studies to understand the exact burden, pathogenesis, and treatment of PTBLD-AFO are needed.
Collapse
Affiliation(s)
- Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, India
| | - Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, India
| | - Helmut J F Salzer
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine 4 - Pneumology, Kepler University Hospital
- Medical Faculty, Johannes Kepler University Linz, Linz
- Ignaz-Semmelweis-Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab, India
| |
Collapse
|
30
|
Abstract
Infections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alejandra Aroca-Crevillén
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
| | - Tommaso Vicanolo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
| | - Samuel Ovadia
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Andrés Hidalgo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| |
Collapse
|
31
|
Rocha EF, Vinhaes CL, Araújo-Pereira M, Mota TF, Gupte AN, Kumar NP, Arriaga MB, Sterling TR, Babu S, Gaikwad S, Karyakarte R, Mave V, Kulkarni V, Paradkar M, Viswanathan V, Kornfeld H, Gupta A, Andrade BB, Queiroz ATLD, RePORT Brazil, RePORT India Consortia. The sound of silent RNA in tuberculosis and the lncRNA role on infection. iScience 2024; 27:108662. [PMID: 38205253 PMCID: PMC10777062 DOI: 10.1016/j.isci.2023.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, and Diabetes Mellitus is one of the major comorbidities (TB/DM) associated with the disease. A total of 103 differentially expressed ncRNAs have been identified in the TB and TB/DM comparisons. A machine learning algorithm was employed to identify the most informative lncRNAs: ADM-DT, LINC02009, LINC02471, SOX2-OT, and GK-AS1. These lncRNAs presented substantial accuracy in classifying TB from HC (AUCs >0.85) and TB/DM from HC (AUCs >0.90) in the other three countries. Genes with significant correlations with the five lncRNAs enriched common pathways in Brazil and India for both TB and TB/DM. This suggests that lncRNAs play an important role in the regulation of genes related to the TB immune response.
Collapse
Affiliation(s)
- Eduardo Fukutani Rocha
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Caian Leal Vinhaes
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
| | - Mariana Araújo-Pereira
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, Brazil
| | - Tiago Feitosa Mota
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | | | - Maria Belen Arriaga
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Timothy R. Sterling
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| | - Subash Babu
- National Institutes of Health- NIRT - International Center for Excellence in Research, Chennai, India
| | - Sanjay Gaikwad
- Department of Pulmonary Medicine, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Rajesh Karyakarte
- Department of Microbiology, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
| | - Vidya Mave
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
| | - Vandana Kulkarni
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
| | - Mandar Paradkar
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
| | | | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA USA
- UMass Chan Medical School, Worcester, MA USA
| | - Amita Gupta
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
| | - Bruno Bezerril Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, Brazil
| | - Artur Trancoso Lopo de Queiroz
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - RePORT Brazil
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Boston University School of Public Health, Boston, MA USA
- National Institutes of Health- NIRT - International Center for Excellence in Research, Chennai, India
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pulmonary Medicine, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
- Department of Microbiology, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
- Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, Brazil
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA USA
- UMass Chan Medical School, Worcester, MA USA
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - RePORT India Consortia
- Centro de Integração de Dados e Conhecimentos para Saúde, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-150, Brazil
- Boston University School of Public Health, Boston, MA USA
- National Institutes of Health- NIRT - International Center for Excellence in Research, Chennai, India
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Department of Pulmonary Medicine, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
- Department of Microbiology, Byramjee-Jeejeebhoy Government Medical College and Sassoon General Hospitals, Pune, India
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, India
- Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
- Faculdade de Tecnologia e Ciências, Instituto de Pesquisa Clínica e Translacional, Salvador, Brazil
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA USA
- UMass Chan Medical School, Worcester, MA USA
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
32
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
33
|
Malefane L, Maarman G. Post-tuberculosis lung disease and inflammatory role players: can we characterise the myriad inflammatory pathways involved to gain a better understanding? Chem Biol Interact 2024; 387:110817. [PMID: 38006959 DOI: 10.1016/j.cbi.2023.110817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Tuberculosis (TB) remains a global health threat, and even after successful TB treatment, a subset of patients develops serious long-term lung impairments, recently termed post-tuberculosis lung disease (PTLD). Much remains to be discovered, as PTLD as a post-TB disease is a developing field, still in its infancy. The pathogenesis of PTLD is not fully elucidated but has been linked to elevated inflammatory pathways. The complexity of PTLD makes it challenging to pinpoint the specific inflammatory pathways involved in its pathophysiology. Therefore, this paper provides a comprehensive review of inflammatory cytokines and their potential roles in PLTD, with a specific focus on interleukin 6 (IL-6), IL-1, IL-8, tumour necrosis factor-alpha (TNF-α), transforming growth factor beta (TGF-β) and C-Reactive Protein (CRP). We delve into PTLD pathology, discuss its impact on lung function and review risk factors for PTLD. In addition, we summarise the current gaps in knowledge, provide recommendations for measuring inflammatory biomarkers and propose potential directions for future studies. We propose that future studies measure a wide range of inflammatory markers in TB populations with and without PTLD. In addition, studies could isolate peripheral blood mononuclear cells from patient blood to try and identify possible impairments that could be correlated with a PTLD diagnosis. Given that the PTLD field is still in an early stage of development, a comprehensive inflammatory analysis may help to know which pathways are key in PTLD development, and this may ultimately help to predict patients who are at risk. More research is warranted.
Collapse
Affiliation(s)
- Lindiwe Malefane
- CARMA: Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa
| | - Gerald Maarman
- CARMA: Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 8000, South Africa.
| |
Collapse
|
34
|
Walker NF, Schutz C, Ward A, Barr D, Opondo C, Shey M, Elkington PT, Wilkinson KA, Wilkinson RJ, Meintjes G. Elevated plasma matrix metalloproteinases associate with Mycobacterium tuberculosis blood stream infection and mortality in HIV-associated tuberculosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.12.23299845. [PMID: 38168355 PMCID: PMC10760259 DOI: 10.1101/2023.12.12.23299845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mortality from HIV-associated tuberculosis (HIV-TB) is high, particularly among hospitalised patients. In 433 people living with HIV admitted to hospital with symptoms of TB, we investigated plasma matrix metalloproteinases (MMP) and matrix-derived biomarkers in relation to TB diagnosis, mortality and Mycobacterium tuberculosis (Mtb) blood stream infection (BSI). Compared to other diagnoses, MMP-8 was elevated in confirmed TB and in Mtb-BSI, positively correlating with extracellular matrix breakdown products. Baseline MMP-3, -7, -8, -10 and procollagen III N-terminal propeptide (PIIINP) associated with Mtb-BSI and 12-week mortality. These findings implicate MMP dysregulation in pathophysiology of advanced HIV-TB and support MMP inhibition as a host-directed therapeutic strategy for HIV-TB.
Collapse
Affiliation(s)
- N F Walker
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, WC1E 7HT, United Kingdom
| | - C Schutz
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - A Ward
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - D Barr
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Wellcome Liverpool Glasgow Centre for Global Health Research, University of Liverpool, Liverpool, L69 3BX, United Kingdom
- Department of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow, G51 4TF
| | - C Opondo
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, WC1E 7HT, United Kingdom
| | - M Shey
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - P T Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - K A Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - R J Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
- Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom
| | - G Meintjes
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
35
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
36
|
Shojaan H, Kalami N, Ghasempour Alamdari M, Emami Alorizy SM, Ghaedi A, Bazrgar A, Khanzadeh M, Lucke-Wold B, Khanzadeh S. Diagnostic value of the neutrophil lymphocyte ratio in discrimination between tuberculosis and bacterial community acquired pneumonia: A meta-analysis. J Clin Tuberc Other Mycobact Dis 2023; 33:100395. [PMID: 37692090 PMCID: PMC10485633 DOI: 10.1016/j.jctube.2023.100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis, based on Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, to evaluate current literature on diagnostic value of neutrophil to lymphocyte ratio (NLR) in discrimination between tuberculosis (TB) and bacterial community acquired pneumonia (B-CAP). METHODS Literature search was conducted from July 20, 2023 using Scopus, PubMed, and Web of Science databases. STATA software (version 12.0; Stata Corporation) was used for all analyses. RESULTS We found that patients with TB had significantly lower levels of NLR compared to those with B-CAP (SMD = -1.09, 95 %CI = -1.78- -0.40, P = 0.002). In the quality subgroup analysis, we found that patients with TB had significantly lower level of NLR compared to those with B-CAP consistent in moderate (SMD = -0.86, 95 %CI = -2.30, 0.57, P = 0.23) and high-quality studies (SMD = -1.25, 95 %CI = -2.07, -0.42). In the subgroup analysis based on continent, we found that patients with TB had significantly lower level of NLR compared to those with B-CAP in studies performed in Asian populations (SMD = -1.37, 95 %CI = -2.13, -0.61, P < 0.001), but not on African population (SMD = -0.02, 95 %CI = -1.06, 1.02, P = 0.97). The result of this study did not change after execution of sensitivity analysis. The pooled sensitivity of NLR was 0.86 (95% CI = 0.80, 0.91), and the pooled specificity was0.88 (95% CI = 0.69, 0.95). CONCLUSION Patients with TB had a significantly lower NLR levels compared to those with B-CAP, so we utilized this biomarker for distinguishing between the disorders.
Collapse
Affiliation(s)
- Horieh Shojaan
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niusha Kalami
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Bazrgar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Khanzadeh
- Geriatric & Gerontology Department, Medical School, Tehran University of Medical and Health Sciences, Tehran, Iran
| | | | | |
Collapse
|
37
|
Wei C. The multifaceted roles of matrix metalloproteinases in lung cancer. Front Oncol 2023; 13:1195426. [PMID: 37766868 PMCID: PMC10520958 DOI: 10.3389/fonc.2023.1195426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background Though the matrix metalloproteinases (MMPs) are widely investigated in lung cancer (LC), however, almost no review systematically clarify their multi-faced roles in LC. Methods We investigated the expression of MMPs and their effects on survival of patients with LC, the resistance mechanisms of MMPs in anti-tumor therapy, the regulatory networks of MMPs involved, the function of MMPs inducing CSCLs, MMPs-related tumor immunity, and effects of MMP polymorphisms on risk of LC. Results High expression of MMPs was mainly related to poor survival, high clinical stages and cancer metastasis. Role of MMPs in LC are multi-faced. MMPs are involved in drug resistance, induced CSCLs, participated in tumor immunity. Besides, MMPs polymorphisms may increase risk of LC. Conclusions MMPs might be promising targets to restore the anti-tumor immune response and enhance the killing function of nature immune cells in LC.
Collapse
Affiliation(s)
- Cui Wei
- Department of Emergency, The Third Hospital of Changsha, Changsha, China
| |
Collapse
|
38
|
García-Bengoa M, Meurer M, Stehr M, Elamin AA, Singh M, Oehlmann W, Mörgelin M, von Köckritz-Blickwede M. Mycobacterium tuberculosis PE/PPE proteins enhance the production of reactive oxygen species and formation of neutrophil extracellular traps. Front Immunol 2023; 14:1206529. [PMID: 37675111 PMCID: PMC10478095 DOI: 10.3389/fimmu.2023.1206529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Neutrophil granulocytes predominate in the lungs of patients infected with Mycobacterium tuberculosis (Mtb) in earlier stages of the disease. During infection, neutrophils release neutrophil extracellular traps (NETs), an antimicrobial mechanism by which a DNA-backbone spiked with antimicrobial components traps the mycobacteria. However, the specific mycobacterial factors driving NET formation remain unclear. Proteins from the proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family are critical to Mtb pathophysiology and virulence. Methods Here, we investigated NET induction by PE18, PPE26, and PE31 in primary human blood-derived neutrophils. Neutrophils were stimulated with the respective proteins for 3h, and NET formation was subsequently assessed using confocal fluorescence microscopy. Intracellular ROS levels and cell necrosis were estimated by flow cytometry. Additionally, the influence of phorbol-12-myristate-13-acetate (PMA), a known NADPH oxidase enhancer, on NET formation was examined. Neutrophil integrity following incubation with the PE/PPE proteins was evaluated using transmission electron microscopy. Results For the first time, we report that stimulation of primary human blood-derived neutrophils with Mtb proteins PE18, PPE26, and PE31 resulted in the formation of NETs, which correlated with an increase in intracellular ROS levels. Notably, the presence of PMA further amplified this effect. Following incubation with the PE/PPE proteins, neutrophils were found to remain viable and structurally intact, as verified through transmission electron microscopy, indicating the occurrence of vital NET formation. Discussion These findings offer valuable insights that contribute to a better understanding of host-pathogen interactions during Mtb infection. Moreover, they underscore the significance of these particular Mtb antigens in triggering NET formation, representing a distinctive and previously unrecognized function of PE/PPE antigens.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Marita Meurer
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Matthias Stehr
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | | | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | | | | | - Maren von Köckritz-Blickwede
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonosis (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
39
|
Ruan H, Li SS, Zhang Q, Ran X. Elevated MMP-8 levels, inversely associated with BMI, predict mortality in mechanically ventilated patients: an observational multicenter study. Crit Care 2023; 27:290. [PMID: 37464428 PMCID: PMC10355076 DOI: 10.1186/s13054-023-04579-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The present study aimed to investigate the correlation between weight status and mortality in mechanically ventilated patients and explore the potential mediators. METHODS Three medical centers encompassing 3301 critically ill patients receiving mechanical ventilation were assembled for retrospective analysis to compare mortality across various weight categories of patients using machine learning algorithms. Bioinformatics analysis identified genes exhibiting differential expression among distinct weight categories. A prospective study was then conducted on a distinct cohort of 50 healthy individuals and 193 other mechanically ventilated patients. The expression levels of the genes identified through bioinformatics analysis were quantified through enzyme-linked immunosorbent assay (ELISA). RESULTS The retrospective analysis revealed that overweight individuals had a lower mortality rate than underweight individuals, and body mass index (BMI) was an independent protective factor. Bioinformatics analysis identified matrix metalloproteinase 8 (MMP-8) as a differentially expressed gene between overweight and underweight populations. The results of further prospective studies showed that overweight patients had significantly lower MMP-8 levels than underweight patients ((3.717 (2.628, 4.191) vs. 2.763 (1.923, 3.753), ng/ml, P = 0.002). High MMP-8 levels were associated with increased mortality risk (OR = 4.249, P = 0.005), indicating that elevated level of MMP-8 predicts the mortality risk of underweight patients receiving mechanical ventilation. CONCLUSIONS This study provides evidence for a protective effect of obesity in mechanically ventilated patients and highlights the potential role of MMP-8 level as a biomarker for predicting mortality risk in this population.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Sheng Li
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China.
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Cavalcante-Silva LHA, Almeida FS, Andrade AGD, Comberlang FC, Cardoso LL, Vanderley SER, Keesen TSL. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci 2023; 24:11385. [PMID: 37511144 PMCID: PMC10379580 DOI: 10.3390/ijms241411385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), a disease that causes pulmonary inflammation but can also affect other tissues. Despite macrophages having a defined role in TB immunopathogenesis, other innate immune cells, such as neutrophils, are involved in this process. These cells have high phagocytic ability and a microbial-killing machine comprised of enzymes, antimicrobial peptides, and reactive oxygen species. In the last two decades, a new neutrophil immune response, the neutrophil extracellular traps (NETs), has been intensely researched. NETs comprise DNA associated with histones, enzymes, and antimicrobial peptides. These structures are related to antimicrobial immune response and some immuno-pathogenesis mechanisms. This mini review highlights the role of NETs in tuberculosis and how they can be helpful as a diagnostic tool and/or therapeutic target.
Collapse
Affiliation(s)
- Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Leonardo Lima Cardoso
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
41
|
García-Bengoa M, Meurer M, Goethe R, Singh M, Reljic R, von Köckritz-Blickwede M. Role of phagocyte extracellular traps during Mycobacterium tuberculosis infections and tuberculosis disease processes. Front Microbiol 2023; 14:983299. [PMID: 37492257 PMCID: PMC10365110 DOI: 10.3389/fmicb.2023.983299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) infections remain one of the most significant causes of mortality worldwide. The current situation shows an emergence of new antibiotic-resistant strains making it difficult to control the tuberculosis (TB) disease. A large part of its success as a pathogen is due to its ability to persist for years or even decades without causing evident clinical manifestations. M.tb is highly successful in evading the host-defense by manipulating host-signalling pathways. Although macrophages are generally viewed as the key cell type involved in harboring M.tb, growing evidence shows that neutrophils also play a fundamental role. Both cells are known to act in multiple ways when encountering an invading pathogen, including phagocytosis, release of cytokines and chemokines, and oxidative burst. In addition, the formation of neutrophil extracellular traps (NETs) and macrophage extracellular traps (METs) has been described to contribute to M.tb infections. NETs/METs are extracellular DNA fibers with associated granule components, which are released upon activation of the cells by the pathogen or by pro-inflammatory mediators. On one hand, they can lead to a protective immune response by entrapment and killing of pathogens. However, on the other hand, they can also play a severe pathological role by inducing tissue damage. Extracellular traps (ETs) produced in the pulmonary alveoli can expand easily and expose tissue-damaging factors with detrimental effects. Since host-directed therapies offer a complementary strategy in TB, the knowledge of NET/MET formation is important for understanding potential protective versus detrimental pathways during innate immune signaling. In this review, we summarize the progress made in understanding the role of NETs/METs in the pathogenesis of TB.
Collapse
Affiliation(s)
- María García-Bengoa
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Marita Meurer
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Mahavir Singh
- LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Rajko Reljic
- Institute for Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Maren von Köckritz-Blickwede
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
42
|
Saha S, Müller D, Clark AG. Mechanosensory feedback loops during chronic inflammation. Front Cell Dev Biol 2023; 11:1225677. [PMID: 37492225 PMCID: PMC10365287 DOI: 10.3389/fcell.2023.1225677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Epithelial tissues are crucial to maintaining healthy organization and compartmentalization in various organs and act as a first line of defense against infection in barrier organs such as the skin, lungs and intestine. Disruption or injury to these barriers can lead to infiltration of resident or foreign microbes, initiating local inflammation. One often overlooked aspect of this response is local changes in tissue mechanics during inflammation. In this mini-review, we summarize known molecular mechanisms linking disruption of epithelial barrier function to mechanical changes in epithelial tissues. We consider direct mechanisms, such as changes in the secretion of extracellular matrix (ECM)-modulating enzymes by immune cells as well as indirect mechanisms including local activation of fibroblasts. We discuss how these mechanical changes can modulate local immune cell activity and inflammation and perturb epithelial homeostasis, further dysregulating epithelial barrier function. We propose that this two-way relationship between loss of barrier function and altered tissue mechanics can lead to a positive feedback loop that further perpetuates inflammation. We discuss this cycle in the context of several chronic inflammatory diseases, including inflammatory bowel disease (IBD), liver disease and cancer, and we present the modulation of tissue mechanics as a new framework for combating chronic inflammation.
Collapse
Affiliation(s)
- Sarbari Saha
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| | - Dafne Müller
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Andrew G. Clark
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| |
Collapse
|
43
|
Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, Ellner J, Salgame P. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2023; 13:1146571. [PMID: 37415827 PMCID: PMC10320222 DOI: 10.3389/fcimb.2023.1146571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD. Severe lung function impairment has been reported in post-TB patients. Despite increasing evidence to support the association between TB and COPD, only a few studies describe the immunological basis of COPD among TB patients following successful treatment completion. In this review, we draw on well-elaborated Mycobacterium tuberculosis-induced immune mechanisms in the lungs to highlight shared mechanisms for COPD pathogenesis in the setting of tuberculosis disease. We further examine how such mechanisms could be exploited to guide COPD therapeutics.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Brian Nyiro
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, United States
| | - Bruce Kirenga
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Moses Lutaakome Joloba
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Jerrold Ellner
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
44
|
Sitoe N, Chelene I, Ligeiro S, Castiano C, Ahmed MIM, Held K, Nhassengo P, Khosa C, Matavele-Chissumba R, Hoelscher M, Rachow A, Geldmacher C. Effect of TB Treatment on Neutrophil-Derived Soluble Inflammatory Mediators in TB Patients with and without HIV Coinfection. Pathogens 2023; 12:794. [PMID: 37375484 DOI: 10.3390/pathogens12060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The mycobacteriological analysis of sputum samples is the gold standard for tuberculosis diagnosis and treatment monitoring. However, sputum production can be challenging after the initiation of TB treatment. As a possible alternative, we therefore investigated the dynamics of neutrophil-derived soluble inflammatory mediators during TB treatment in relation to HIV ART status and the severity of lung impairment. Plasma samples of TB patients with (N = 47) and without HIV (N = 21) were analyzed at baseline, month 2, month 6 (end of TB treatment) and month 12. Plasma levels of MMP-1, MMP-8, MPO and S100A8 markedly decreased over the course of TB treatment and remained at similar levels thereafter. Post-TB treatment initiation, significantly elevated plasma levels of MMP-8 were detected in TB patients living with HIV, especially if they were not receiving ART treatment at baseline. Our data confirm that the plasma levels of neutrophil-based biomarkers can be used as candidate surrogate markers for TB treatment outcome and HIV-infection influenced MMP-8 and S100A8 levels. Future studies to validate our results and to understand the dynamics of neutrophils-based biomarkers post-TB treatment are needed.
Collapse
Affiliation(s)
- Nádia Sitoe
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
- CIH LMU Center for International Health, Ludwig-Maximilians University, 80802 Munich, Germany
| | - Imelda Chelene
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Sofia Ligeiro
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Celso Castiano
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | - Mohamed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | | | - Celso Khosa
- Instituto Nacional de Saúde, Marracuene 3943, Mozambique
| | | | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 80802 Munich, Germany
- German Center for Infection Research, Partner Site Munich, 80802 Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, 80799 Munich, Germany
| |
Collapse
|
45
|
Goekeri C, Pennitz P, Groenewald W, Behrendt U, Kirsten H, Zobel CM, Berger S, Heinz GA, Mashreghi MF, Wienhold SM, Dietert K, Dorhoi A, Gruber AD, Scholz M, Rohde G, Suttorp N, CAPNETZ Study Group, Witzenrath M, Nouailles G. MicroRNA-223 Dampens Pulmonary Inflammation during Pneumococcal Pneumonia. Cells 2023; 12:cells12060959. [PMID: 36980300 PMCID: PMC10047070 DOI: 10.3390/cells12060959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Community-acquired pneumonia remains a major contributor to global communicable disease-mediated mortality. Neutrophils play a leading role in trying to contain bacterial lung infection, but they also drive detrimental pulmonary inflammation, when dysregulated. Here we aimed at understanding the role of microRNA-223 in orchestrating pulmonary inflammation during pneumococcal pneumonia. Serum microRNA-223 was measured in patients with pneumococcal pneumonia and in healthy subjects. Pulmonary inflammation in wild-type and microRNA-223-knockout mice was assessed in terms of disease course, histopathology, cellular recruitment and evaluation of inflammatory protein and gene signatures following pneumococcal infection. Low levels of serum microRNA-223 correlated with increased disease severity in pneumococcal pneumonia patients. Prolonged neutrophilic influx into the lungs and alveolar spaces was detected in pneumococci-infected microRNA-223-knockout mice, possibly accounting for aggravated histopathology and acute lung injury. Expression of microRNA-223 in wild-type mice was induced by pneumococcal infection in a time-dependent manner in whole lungs and lung neutrophils. Single-cell transcriptome analyses of murine lungs revealed a unique profile of antimicrobial and cellular maturation genes that are dysregulated in neutrophils lacking microRNA-223. Taken together, low levels of microRNA-223 in human pneumonia patient serum were associated with increased disease severity, whilst its absence provoked dysregulation of the neutrophil transcriptome in murine pneumococcal pneumonia.
Collapse
Affiliation(s)
- Cengiz Goekeri
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine, Cyprus International University, 99040 Nicosia, Cyprus
- Correspondence: (C.G.); (G.N.)
| | - Peter Pennitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Wibke Groenewald
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Ulrike Behrendt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics, and Epidemiology, Universität Leipzig, 04107 Leipzig, Germany
| | - Christian M. Zobel
- Department of Internal Medicine, Bundeswehrkrankenhaus Berlin, 10115 Berlin, Germany
| | - Sarah Berger
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Gitta A. Heinz
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Institut der Leibniz-Gemeinschaft, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), ein Institut der Leibniz-Gemeinschaft, 10117 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kristina Dietert
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics, and Epidemiology, Universität Leipzig, 04107 Leipzig, Germany
| | - Gernot Rohde
- Department of Respiratory Medicine, Medical Clinic I, Goethe-Universität Frankfurt am Main, 60596 Frankfurt am Main, Germany
- CAPNETZ STIFTUNG, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- CAPNETZ STIFTUNG, 30625 Hannover, Germany
- German Center for Lung Research (DZL), 10117 Berlin, Germany
| | | | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- CAPNETZ STIFTUNG, 30625 Hannover, Germany
- German Center for Lung Research (DZL), 10117 Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Correspondence: (C.G.); (G.N.)
| |
Collapse
|
46
|
Alkarni M, Lipman M, Lowe DM. The roles of neutrophils in non-tuberculous mycobacterial pulmonary disease. Ann Clin Microbiol Antimicrob 2023; 22:14. [PMID: 36800956 PMCID: PMC9938600 DOI: 10.1186/s12941-023-00562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is an increasingly recognised global health issue. Studies have suggested that neutrophils may play an important role in controlling NTM infection and contribute to protective immune responses within the early phase of infection. However, these cells are also adversely associated with disease progression and exacerbation and can contribute to pathology, for example in the development of bronchiectasis. In this review, we discuss the key findings and latest evidence regarding the diverse functions of neutrophils in NTM infection. First, we focus on studies that implicate neutrophils in the early response to NTM infection and the evidence reporting neutrophils' capability to kill NTM. Next, we present an overview of the positive and negative effects that characterise the bidirectional relationship between neutrophils and adaptive immunity. We consider the pathological role of neutrophils in driving the clinical phenotype of NTM-PD including bronchiectasis. Finally, we highlight the current promising treatments in development targeting neutrophils in airways diseases. Clearly, more insights on the roles of neutrophils in NTM-PD are needed in order to inform both preventative strategies and host-directed therapy for these important infections.
Collapse
Affiliation(s)
- Meyad Alkarni
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| | - Marc Lipman
- grid.83440.3b0000000121901201UCL Respiratory, University College London, London, UK
| | - David M. Lowe
- grid.83440.3b0000000121901201Institute of Immunity and Transplantation, University College London, Pears Building, Rowland Hill Street, London, NW3 2PP UK
| |
Collapse
|
47
|
Wang X, Sima Y, Zhao Y, Zhang N, Zheng M, Du K, Wang M, Wang Y, Hao Y, Li Y, Liu M, Piao Y, Liu C, Tomassen P, Zhang L, Bachert C. Endotypes of chronic rhinosinusitis based on inflammatory and remodeling factors. J Allergy Clin Immunol 2023; 151:458-468. [PMID: 36272582 DOI: 10.1016/j.jaci.2022.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies on the endotyping of chronic rhinosinusitis (CRS) that were based on inflammatory factors have broadened our understanding of the disease. However, the endotype of CRS combined with inflammatory and remodeling features has not yet been clearly elucidated. OBJECTIVE We sought to identify the endotypes of patients with CRS according to inflammatory and remodeling factors. METHODS Forty-eight inflammatory and remodeling factors in the nasal mucosal tissues of 128 CRS patients and 24 control subjects from northern China were analyzed by Luminex, ELISA, and ImmunoCAP. Sixteen factors were used to perform the cluster analysis. The characteristics of each cluster were analyzed using correlation analysis and validated by immunofluorescence staining. RESULTS Patients were classified into 5 clusters. Clusters 1 and 2 showed non-type 2 signatures with low biomarker concentrations, except for IL-19 and IL-27. Cluster 3 involved a low type 2 endotype with the highest expression of neutrophil factors, such as granulocyte colony-stimulating factor, IL-8, and myeloperoxidase, and remodeling factors, such as matrix metalloproteinases and fibronectin. Cluster 4 exhibited moderate type 2 inflammation. Cluster 5 exhibited high type 2 inflammation, which was associated with relatively higher levels of neutrophil and remodeling factors. The proportion of CRS with nasal polyps, asthma, allergies, anosmia, aspirin sensitivity, and the recurrence of CRS increased from clusters 1 to 5. CONCLUSION Diverse inflammatory mechanisms result in distinct CRS endotypes and remodeling profiles. The explicit differentiation and accurate description of these endotypes will guide targeted treatment decisions.
Collapse
Affiliation(s)
- Xiangdong Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yutong Sima
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Nan Zhang
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Ming Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kun Du
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Min Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Yun Hao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | | | - Yingshi Piao
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chengyao Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peter Tomassen
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China; Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
48
|
Rice CM, Lewis P, Ponce-Garcia FM, Gibbs W, Groves S, Cela D, Hamilton F, Arnold D, Hyams C, Oliver E, Barr R, Goenka A, Davidson A, Wooldridge L, Finn A, Rivino L, Amulic B. Hyperactive immature state and differential CXCR2 expression of neutrophils in severe COVID-19. Life Sci Alliance 2023; 6:6/2/e202201658. [PMID: 36622345 PMCID: PMC9748722 DOI: 10.26508/lsa.202201658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are vital in defence against pathogens, but excessive neutrophil activity can lead to tissue damage and promote acute respiratory distress syndrome. COVID-19 is associated with systemic expansion of immature neutrophils, but the functional consequences of this shift to immaturity are not understood. We used flow cytometry to investigate activity and phenotypic diversity of circulating neutrophils in acute and convalescent COVID-19 patients. First, we demonstrate hyperactivation of immature CD10- subpopulations in severe disease, with elevated markers of secondary granule release. Partially activated immature neutrophils were detectable 12 wk post-hospitalisation, indicating long term myeloid dysregulation in convalescent COVID-19 patients. Second, we demonstrate that neutrophils from moderately ill patients down-regulate the chemokine receptor CXCR2, whereas neutrophils from severely ill individuals fail to do so, suggesting an altered ability for organ trafficking and a potential mechanism for induction of disease tolerance. CD10- and CXCR2hi neutrophil subpopulations were enriched in severe disease and may represent prognostic biomarkers for the identification of individuals at high risk of progressing to severe COVID-19.
Collapse
Affiliation(s)
- Christopher M Rice
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Philip Lewis
- University of Bristol Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fernando M Ponce-Garcia
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Willem Gibbs
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah Groves
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Drinalda Cela
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fergus Hamilton
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Catherine Hyams
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Rachael Barr
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Anu Goenka
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Linda Wooldridge
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Laura Rivino
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
49
|
Prolonged B-Lymphocyte-Mediated Immune and Inflammatory Responses to Tuberculosis Infection in the Lungs of TB-Resistant Mice. Int J Mol Sci 2023; 24:ijms24021140. [PMID: 36674664 PMCID: PMC9861759 DOI: 10.3390/ijms24021140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
During tuberculosis (TB) infection, B-lymphocytes migrate to the lungs and form B-cell follicles (BCFs) in the vicinity of TB granulomata. B-cell-lacking mice display enhanced susceptibility to TB infection, and early B-cell depletion in infected non-human primates alters T-lymphocyte cytokine responses and increases bacterial burdens in the lungs. However, the role of B cells during late TB stages remained unaddressed. Here, we demonstrate that B cells and BCFs persist up to weeks 25-45 post-challenge in the lungs of TB-resistant C57BL/6 (B6) mice. In hyper-susceptible I/St mice, B-cell content markedly drops between weeks 12-16 post-infection, paralleled by diffuse lung tissue inflammation and elevated gene expression levels for pro-inflammatory cytokines IL-1, IL-11, IL-17a, and TNF-α. To check whether B-cells/BCFs control TB infection at advanced stages, we specifically depleted B-cells from B6 mice by administrating anti-CD20 mAbs at week 16 post-infection. This resulted in more rapid cachexia, a shortened lifespan of the infected animals, an increase in (i) lung-infiltrating CD8+ T cells, (ii) IL-6 production by F4/80+ macrophages, (iii) expression levels of genes for neutrophil-attracting factors CXCL1 and IL-17, and tissue-damaging factors MMP8, MMP9, and S100A8. Taken together, our results suggest that lung B cells and BCFs are moderately protective against chronic TB infection.
Collapse
|
50
|
Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin Immunol 2023; 65:101672. [PMID: 36469987 DOI: 10.1016/j.smim.2022.101672] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/04/2022]
Abstract
Treatment of tuberculosis (TB) involves the administration of anti-mycobacterial drugs for several months. The emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb, the causative agent) together with increased disease severity in people with co-morbidities such as diabetes mellitus and HIV have hampered efforts to reduce case fatality. In severe disease, TB pathology is largely attributable to over-exuberant host immune responses targeted at controlling bacterial replication. Non-resolving inflammation driven by host pro-inflammatory mediators in response to high bacterial load leads to pulmonary pathology including cavitation and fibrosis. The need to improve clinical outcomes and reduce treatment times has led to a two-pronged approach involving the development of novel antimicrobials as well as host-directed therapies (HDT) that favourably modulate immune responses to Mtb. HDT strategies incorporate aspects of immune modulation aimed at downregulating non-productive inflammatory responses and augmenting antimicrobial effector mechanisms to minimise pulmonary pathology and accelerate symptom resolution. HDT in combination with existing antimycobacterial agents offers a potentially promising strategy to improve the long-term outcome for TB patients. In this review, we describe components of the host immune response that contribute to inflammation and tissue damage in pulmonary TB, including cytokines, matrix metalloproteinases, lipid mediators, and neutrophil extracellular traps. We then proceed to review HDT directed at these pathways.
Collapse
|