1
|
Pérez-Castro MÁ, Eraña H, Vidal E, Charco JM, Lorenzo NL, Gonçalves-Anjo N, Galarza-Ahumada J, Díaz-Domínguez CM, Piñeiro P, González-Miranda E, Giler S, Telling G, Sánchez-Martín MA, Garrido J, Geijo M, Requena JR, Castilla J. Cofactors facilitate bona fide prion misfolding in vitro but are not necessary for the infectivity of recombinant murine prions. PLoS Pathog 2025; 21:e1012890. [PMID: 39841704 PMCID: PMC11774496 DOI: 10.1371/journal.ppat.1012890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/28/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Prion diseases, particularly sporadic cases, pose a challenge due to their complex nature and heterogeneity. The underlying mechanism of the spontaneous conversion from PrPC to PrPSc, the hallmark of prion diseases, remains elusive. To shed light on this process and the involvement of cofactors, we have developed an in vitro system that faithfully mimics spontaneous prion misfolding using minimal components. By employing this PMSA methodology and introducing an isoleucine residue at position 108 in mouse PrP, we successfully generated recombinant murine prion strains with distinct biochemical and biological properties. Our study aimed to explore the influence of a polyanionic cofactor in modulating strain selection and infectivity in de novo-generated synthetic prions. These results not only validate PMSA as a robust method for generating diverse bona fide recombinant prions but also emphasize the significance of cofactors in shaping specific prion conformers capable of crossing species barriers. Interestingly, once these conformers are established, our findings suggest that cofactors are not necessary for their infectivity. This research provides valuable insights into the propagation and maintenance of the pathobiological features of cross-species transmissible recombinant murine prion and highlights the intricate interplay between cofactors and prion strain characteristics.
Collapse
Affiliation(s)
- Miguel Ángel Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- ATLAS Molecular Pharma S. L., Derio, Spain
| | - Enric Vidal
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Jorge M. Charco
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- ATLAS Molecular Pharma S. L., Derio, Spain
| | - Nuria L. Lorenzo
- Department of Medical Sciences, CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Nuno Gonçalves-Anjo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Josu Galarza-Ahumada
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Carlos M. Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Patricia Piñeiro
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Samanta Giler
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Glenn Telling
- Prion Research Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Manuel A. Sánchez-Martín
- Department of Medicine, Transgenic Facility, University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Joseba Garrido
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Mariví Geijo
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Jesús R. Requena
- Department of Medical Sciences, CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Carlos III National Health Institute, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Kim DJ, Kim YC, Jeong BH. First report of a novel polymorphism and genetic characteristics of the leporine prion protein ( PRNP) gene. Front Vet Sci 2023; 10:1229369. [PMID: 37808111 PMCID: PMC10556520 DOI: 10.3389/fvets.2023.1229369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) have been reported in a broad spectrum of hosts. The genetic polymorphisms and characteristics of the prion protein (PRNP) gene have a vital impact on the development of TSEs. Notably, natural TSE infection cases have never been reported in rabbits, and genetic variations of the leporine PRNP gene have not been investigated to date. To identify leporine PRNP gene polymorphism, we performed amplicon sequencing in 203 rabbits. We report a novel single nucleotide polymorphism on the leporine PRNP gene. In addition, we performed a comparative analysis of amino acid sequences of prion protein (PrP) across several hosts using ClustalW2. Furthermore, we evaluated the effect of changes of unique leporine PrP amino acids with those conserved among various species using Swiss-Pdb Viewer. Interestingly, we found seven unique leporine amino acids, and the change of unique leporine amino acids with those conserved among other species, including S175N, Q221K, Q221R, A226Y, A230G, and A230S, was predicted to reduce hydrogen bonds in leporine PrP.
Collapse
Affiliation(s)
- Dong-Ju Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea
- Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
3
|
Eraña H, Díaz-Domínguez CM, Charco JM, Vidal E, González-Miranda E, Pérez-Castro MA, Piñeiro P, López-Moreno R, Sampedro-Torres-Quevedo C, Fernández-Veiga L, Tasis-Galarza J, Lorenzo NL, Santini-Santiago A, Lázaro M, García-Martínez S, Gonçalves-Anjo N, San-Juan-Ansoleaga M, Galarza-Ahumada J, Fernández-Muñoz E, Giler S, Valle M, Telling GC, Geijó M, Requena JR, Castilla J. Understanding the key features of the spontaneous formation of bona fide prions through a novel methodology that enables their swift and consistent generation. Acta Neuropathol Commun 2023; 11:145. [PMID: 37679832 PMCID: PMC10486007 DOI: 10.1186/s40478-023-01640-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Among transmissible spongiform encephalopathies or prion diseases affecting humans, sporadic forms such as sporadic Creutzfeldt-Jakob disease are the vast majority. Unlike genetic or acquired forms of the disease, these idiopathic forms occur seemingly due to a random event of spontaneous misfolding of the cellular PrP (PrPC) into the pathogenic isoform (PrPSc). Currently, the molecular mechanisms that trigger and drive this event, which occurs in approximately one individual per million each year, remain completely unknown. Modelling this phenomenon in experimental settings is highly challenging due to its sporadic and rare occurrence. Previous attempts to model spontaneous prion misfolding in vitro have not been fully successful, as the spontaneous formation of prions is infrequent and stochastic, hindering the systematic study of the phenomenon. In this study, we present the first method that consistently induces spontaneous misfolding of recombinant PrP into bona fide prions within hours, providing unprecedented possibilities to investigate the mechanisms underlying sporadic prionopathies. By fine-tuning the Protein Misfolding Shaking Amplification method, which was initially developed to propagate recombinant prions, we have created a methodology that consistently produces spontaneously misfolded recombinant prions in 100% of the cases. Furthermore, this method gives rise to distinct strains and reveals the critical influence of charged surfaces in this process.
Collapse
Affiliation(s)
- Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- ATLAS Molecular Pharma S. L. Bizkaia Technology Park, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Carlos M Díaz-Domínguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
- ATLAS Molecular Pharma S. L. Bizkaia Technology Park, 48160, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain
| | - Enric Vidal
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Miguel A Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Patricia Piñeiro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Rafael López-Moreno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Cristina Sampedro-Torres-Quevedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Leire Fernández-Veiga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Juan Tasis-Galarza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Nuria L Lorenzo
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
| | - Aileen Santini-Santiago
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Melisa Lázaro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Sandra García-Martínez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Nuno Gonçalves-Anjo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Maitena San-Juan-Ansoleaga
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Josu Galarza-Ahumada
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Eva Fernández-Muñoz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Samanta Giler
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain
| | - Mikel Valle
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Glenn C Telling
- Prion Research Center (PRC), Colorado State University, Fort Collins, CO, 80523, USA
| | - Mariví Geijó
- Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain
| | - Jesús R Requena
- CIMUS Biomedical Research Institute and Department of Medical Sciences, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Carlos III National Health Institute, 28029, Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| |
Collapse
|
4
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
5
|
Shoup D, Priola SA. Cell biology of prion strains in vivo and in vitro. Cell Tissue Res 2023; 392:269-283. [PMID: 35107622 PMCID: PMC11249200 DOI: 10.1007/s00441-021-03572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
The properties of infectious prions and the pathology of the diseases they cause are dependent upon the unique conformation of each prion strain. How the pathology of prion disease correlates with different strains and genetic backgrounds has been investigated via in vivo assays, but how interactions between specific prion strains and cell types contribute to the pathology of prion disease has been dissected more effectively using in vitro cell lines. Observations made through in vivo and in vitro assays have informed each other with regard to not only how genetic variation influences prion properties, but also how infectious prions are taken up by cells, modified by cellular processes and propagated, and the cellular components they rely on for persistent infection. These studies suggest that persistent cellular infection results from a balance between prion propagation and degradation. This balance may be shifted depending upon how different cell lines process infectious prions, potentially altering prion stability, and how fast they can be transported to the lysosome. Thus, in vitro studies have given us a deeper understanding of the interactions between different prions and cell types and how they may influence prion disease phenotypes in vivo.
Collapse
Affiliation(s)
- Daniel Shoup
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Health, National Institute of Allergy and Infectious Diseases, Hamilton, MT, 59840, USA.
| |
Collapse
|
6
|
Vidal E, Sánchez-Martín MA, Eraña H, Lázaro SP, Pérez-Castro MA, Otero A, Charco JM, Marín B, López-Moreno R, Díaz-Domínguez CM, Geijo M, Ordóñez M, Cantero G, di Bari M, Lorenzo NL, Pirisinu L, d’Agostino C, Torres JM, Béringue V, Telling G, Badiola JJ, Pumarola M, Bolea R, Nonno R, Requena JR, Castilla J. Bona fide atypical scrapie faithfully reproduced for the first time in a rodent model. Acta Neuropathol Commun 2022; 10:179. [PMID: 36514160 PMCID: PMC9749341 DOI: 10.1186/s40478-022-01477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrPC with I112 polymorphism (TgShI112, 1-2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrPres pattern with a predominant 7-10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrPC), Tg338 (ovine VRQ PrPC), Tg501 (ovine ARQ PrPC), Tg340 (human M129 PrPC), Tg361 (human V129 PrPC), TgVole (bank vole I109 PrPC), bank vole (I109I PrPC), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease.
Collapse
Affiliation(s)
- Enric Vidal
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Manuel A. Sánchez-Martín
- grid.11762.330000 0001 2180 1817Transgenic Facility. Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Hasier Eraña
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,ATLAS Molecular Pharma S. L., Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Pérez Lázaro
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Miguel A. Pérez-Castro
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Alicia Otero
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Jorge M. Charco
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,ATLAS Molecular Pharma S. L., Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Marín
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Rafael López-Moreno
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Carlos M. Díaz-Domínguez
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Mariví Geijo
- grid.509696.50000 0000 9853 6743Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Montserrat Ordóñez
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Guillermo Cantero
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Michele di Bari
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Nuria L. Lorenzo
- grid.11794.3a0000000109410645CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Laura Pirisinu
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Claudia d’Agostino
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Juan María Torres
- grid.419190.40000 0001 2300 669XCentro de Investigación en Sanidad Animal (CISA), Centro Superior de Investigaciones Científicas (CSIC) Valdeolmos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28130 Madrid, Spain
| | - Vincent Béringue
- grid.417961.cMolecular Virology and Immunology, Institut National de La Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Glenn Telling
- grid.47894.360000 0004 1936 8083Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO USA
| | - Juan J. Badiola
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Martí Pumarola
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Campus de UAB, Bellaterra, 08193 Barcelona, Catalonia Spain
| | - Rosa Bolea
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Romolo Nonno
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Jesús R. Requena
- grid.11794.3a0000000109410645CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Joaquín Castilla
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia Spain
| |
Collapse
|
7
|
Angelli JN, Passos YM, Brito JMA, Silva JL, Cordeiro Y, Vieira TCRG. Rabbit PrP Is Partially Resistant to in vitro Aggregation Induced by Different Biological Cofactors. Front Neurosci 2021; 15:689315. [PMID: 34220442 PMCID: PMC8249948 DOI: 10.3389/fnins.2021.689315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/04/2023] Open
Abstract
Prion diseases have been described in humans and other mammals, including sheep, goats, cattle, and deer. Since mice, hamsters, and cats are susceptible to prion infection, they are often used to study the mechanisms of prion infection and conversion. Mammals, such as horses and dogs, however, do not naturally contract the disease and are resistant to infection, while others, like rabbits, have exhibited low susceptibility. Infection involves the conversion of the cellular prion protein (PrPC) to the scrapie form (PrPSc), and several cofactors have already been identified as important adjuvants in this process, such as glycosaminoglycans (GAGs), lipids, and nucleic acids. The molecular mechanisms that determine transmissibility between species remain unclear, as well as the barriers to transmission. In this study, we examine the interaction of recombinant rabbit PrPC (RaPrP) with different biological cofactors such as GAGs (heparin and dermatan sulfate), phosphatidic acid, and DNA oligonucleotides (A1 and D67) to evaluate the importance of these cofactors in modulating the aggregation of rabbit PrP and explain the animal’s different degrees of resistance to infection. We used spectroscopic and chromatographic approaches to evaluate the interaction with cofactors and their effect on RaPrP aggregation, which we compared with murine PrP (MuPrP). Our data show that all cofactors induce RaPrP aggregation and exhibit pH dependence. However, RaPrP aggregated to a lesser extent than MuPrP in the presence of any of the cofactors tested. The binding affinity with cofactors does not correlate with these low levels of aggregation, suggesting that the latter are related to the stability of PrP at acidic pH. The absence of the N-terminus affected the interaction with cofactors, influencing the efficiency of aggregation. These findings demonstrate that the interaction with polyanionic cofactors is related to rabbit PrP being less susceptible to aggregation in vitro and that the N-terminal domain is important to the efficiency of conversion, increasing the interaction with cofactors. The decreased effect of cofactors in rabbit PrP likely explains its lower propensity to prion conversion.
Collapse
Affiliation(s)
- Juliana N Angelli
- Federal Institute of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yulli M Passos
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julyana M A Brito
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C R G Vieira
- Federal Institute of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Abstract
Transgenic rabbits have contributed to the progress of biomedical science as human disease models because of their unique features, such as the lipid metabolism system similar to humans and medium body size that facilitates handling and experimental manipulation. In fact, many useful transgenic rabbits have been generated and used in research fields such as lipid metabolism and atherosclerosis, cardiac failure, immunology, and oncogenesis. However, there have been long-term problems, namely that the transgenic efficiency when using pronuclear microinjection is low compared with transgenic mice and production of knockout rabbits is impossible owing to the lack of embryonic stem cells for gene targeting in rabbits. Despite these limitations, the emergence of novel genome editing technology has changed the production of genetically modified animals including the rabbit. We are finally able to produce both transgenic and knockout rabbit models to analyze gain- and loss-of-functions of specific genes. It is expected that the use of genetically modified rabbits will extend to various research fields. In this review, we describe the unique features of rabbits as laboratory animals, the current status of their development and use, and future perspectives of transgenic rabbit models for human diseases.
Collapse
|
9
|
Marín-Moreno A, Espinosa JC, Torres JM. Transgenic mouse models for the study of prion diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:147-177. [PMID: 32958231 DOI: 10.1016/bs.pmbts.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prions are unique agents that challenge the molecular biology dogma by transmitting information on the protein level. They cause neurodegenerative diseases that lack of any cure or treatment called transmissible spongiform encephalopathies. The function of the normal form of the prion protein, the exact mechanism of prion propagation between species as well as at the cellular level and neuron degeneration remains elusive. However, great amount of information known for all these aspects has been achieved thanks to the use of animal models and more precisely to transgenic mouse models. In this chapter, the main contributions of these powerful research tools in the prion field are revised.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.
| |
Collapse
|
10
|
Arshad H, Bourkas MEC, Watts JC. The utility of bank voles for studying prion disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:179-211. [PMID: 32958232 DOI: 10.1016/bs.pmbts.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transmission of prions between species is typically an inefficient process due to the species barrier, which represents incompatibility between prion seed and substrate molecules. Bank voles (Myodes glareolus) are an exception to this rule, as they are susceptible to a diverse range of prion strains from many different animal species. In particular, bank voles can be efficiently infected with most types of human prions and have played a critical role in validating variably protease-sensitive prionopathy (VPSPr) and certain forms of Gerstmann-Sträussler-Scheinker (GSS) disease as bona fide prion disorders rather than non-transmissible proteinopathies. The bank vole prion protein (BVPrP) confers a "universal prion acceptor" phenotype when expressed in mice and when used as a substrate for in vitro prion amplification assays, indicating that the unique prion transmission properties of bank voles are mediated by BVPrP. Over-expression of BVPrP in mice can also promote the spontaneous development of prion disease, indicating that BVPrP is intrinsically prone to both spontaneous and template-directed misfolding. Here, we discuss the utility of bank voles and BVPrP for prion research and how they have provided new tools for establishing rapid animal bioassays, modeling spontaneous prion disease, standardizing prion diagnostics, and understanding the molecular basis of the species barrier.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Myers R, Cembran A, Fernandez-Funez P. Insight From Animals Resistant to Prion Diseases: Deciphering the Genotype - Morphotype - Phenotype Code for the Prion Protein. Front Cell Neurosci 2020; 14:254. [PMID: 33013324 PMCID: PMC7461849 DOI: 10.3389/fncel.2020.00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are a group of neurodegenerative diseases endemic in humans and several ruminants caused by the misfolding of native prion protein (PrP) into pathological conformations. Experimental work and the mad-cow epidemic of the 1980s exposed a wide spectrum of animal susceptibility to prion diseases, including a few highly resistant animals: horses, rabbits, pigs, and dogs/canids. The variable susceptibility to disease offers a unique opportunity to uncover the mechanisms governing PrP misfolding, neurotoxicity, and transmission. Previous work indicates that PrP-intrinsic differences (sequence) are the main contributors to disease susceptibility. Several residues have been cited as critical for encoding PrP conformational stability in prion-resistant animals, including D/E159 in dog, S167 in horse, and S174 in rabbit and pig PrP (all according to human numbering). These amino acids alter PrP properties in a variety of assays, but we still do not clearly understand the structural correlates of PrP toxicity. Additional insight can be extracted from comparative structural studies, followed by molecular dynamics simulations of selected mutations, and testing in manipulable animal models. Our working hypothesis is that protective amino acids generate more compact and stable structures in a C-terminal subdomain of the PrP globular domain. We will explore this idea in this review and identify subdomains within the globular domain that may hold the key to unravel how conformational stability and disease susceptibility are encoded in PrP.
Collapse
Affiliation(s)
- Ryan Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
12
|
Vidal E, Fernández-Borges N, Eraña H, Parra B, Pintado B, Sánchez-Martín MA, Charco JM, Ordóñez M, Pérez-Castro MA, Pumarola M, Mathiason CK, Mayoral T, Castilla J. Dogs are resistant to prion infection, due to the presence of aspartic or glutamic acid at position 163 of their prion protein. FASEB J 2020; 34:3969-3982. [PMID: 31944411 DOI: 10.1096/fj.201902646r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/26/2019] [Accepted: 12/30/2019] [Indexed: 01/01/2023]
Abstract
Unlike other species, prion disease has never been described in dogs even though they were similarly exposed to the bovine spongiform encephalopathy (BSE) agent. This resistance prompted a thorough analysis of the canine PRNP gene and the presence of a negatively charged amino acid residue in position 163 was readily identified as potentially fundamental as it differed from all known susceptible species. In the present study, the first transgenic mouse model expressing dog prion protein (PrP) was generated and challenged intracerebrally with a panel of prion isolates, none of which could infect them. The brains of these mice were subjected to in vitro prion amplification and failed to find even minimal amounts of misfolded prions providing definitive experimental evidence that dogs are resistant to prion disease. Subsequently, a second transgenic model was generated in which aspartic acid in position 163 was substituted for asparagine (the most common in prion susceptible species) resulting in susceptibility to BSE-derived isolates. These findings strongly support the hypothesis that the amino acid residue at position 163 of canine cellular prion protein (PrPC ) is a major determinant of the exceptional resistance of the canidae family to prion infection and establish this as a promising therapeutic target for prion diseases.
Collapse
Affiliation(s)
- Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | - Beatriz Parra
- Laboratorio Central de Veterinaria (LCV), Madrid, Spain
| | - Belén Pintado
- Centro Nacional de Biotecnología (CNB), Madrid, Spain
| | - Manuel A Sánchez-Martín
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | | | - Montserrat Ordóñez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Martí Pumarola
- Departament de Medicina i Cirurgia Animals. Facultat de Veterinària, UAB, Barcelona, Spain
| | - Candace K Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Tomás Mayoral
- Laboratorio Central de Veterinaria (LCV), Madrid, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
13
|
Harrathi C, Fernández-Borges N, Eraña H, Elezgarai SR, Venegas V, Charco JM, Castilla J. Insights into the Bidirectional Properties of the Sheep-Deer Prion Transmission Barrier. Mol Neurobiol 2018; 56:5287-5303. [PMID: 30592012 PMCID: PMC6614146 DOI: 10.1007/s12035-018-1443-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
The large chronic wasting disease (CWD)-affected cervid population in the USA and Canada, and the risk of the disease being transmitted to humans through intermediate species, is a highly worrying issue that is still poorly understood. In this case, recombinant protein misfolding cyclic amplification was used to determine, in vitro, the relevance of each individual amino acid on cross-species prion transmission. Others and we have found that the β2-α2 loop is a key modulator of transmission barriers between species and markedly influences infection by sheep scrapie, bovine spongiform encephalopathy (BSE), or elk CWD. Amino acids that differentiate ovine and deer normal host prion protein (PrPC) and associated with structural rigidity of the loop β2-α2 (S173N, N177T) appear to confer resistance to some prion diseases. However, addition of methionine at codon 208 together with the previously described rigid loop substitutions seems to hide a key in this species barrier, as it makes sheep recombinant prion protein highly susceptible to CWD-induced misfolding. These studies indicate that interspecies prion transmission is not only governed just by the β2-α2 loop amino acid sequence but also by its interactions with the α3-helix as shown by substitution I208M. Transmissible spongiform encephalopathies, characterized by long incubation periods and spongiform changes associated with neuronal loss in the brain, have been described in several mammalian species appearing either naturally (scrapie in sheep and goats, bovine spongiform encephalopathy in cattle, chronic wasting disease in cervids, Creutzfeldt-Jakob disease in humans) or by experimental transmission studies (scrapie in mice and hamsters). Much of the pathogenesis of the prion diseases has been determined in the last 40 years, such as the etiological agent or the fact that prions occur as different strains that show distinct biological and physicochemical properties. However, there are many unanswered questions regarding the strain phenomenon and interspecies transmissibility. To assess the risk of interspecies transmission between scrapie and chronic wasting disease, an in vitro prion propagation method has been used. This technique allows to predict the amino acids preventing the transmission between sheep and deer prion diseases.
Collapse
Affiliation(s)
- Chafik Harrathi
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | | | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Vanessa Venegas
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Jorge M Charco
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, 48160, Derio, Bizkaia, Spain. .,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Bizkaia, Spain.
| |
Collapse
|
14
|
Fernández-Borges N, Eraña H, Castilla J. Behind the potential evolution towards prion resistant species. Prion 2018; 12:83-87. [PMID: 29388474 DOI: 10.1080/19336896.2018.1435935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Historically, the observation of naturally occurring cases of prion disease led to the classification of different susceptibility grades and to the designation of prion resistant species. However, the development of highly efficient in vitro prion propagation systems and the generation of ad hoc transgenic models allowed determining that leporidae and equidae families have been erroneously considered resistant to prion infection. On the contrary, similar approaches revealed an unexpected high level of resistance of the canidae family. In PLoS Pathogens [ 1 ], we describe experiments directed toward elucidating which are the determinants of the alleged prion resistance of this family. Studies based on the sequence of the canine prion protein coupled with structural in silico analysis identified a key residue probably implicated in this resistance. Cell and brain-based PMCA highlighted that the presence of aspartic or glutamic acid at codon 163 of the canid PrP, strongly inhibits prion replication in vitro. Transgenic animals carrying this substitution in mouse PrP were resistant to prion infection after intracerebral challenge with different mouse prion strains. The confirmation of the importance of this substitution and its exclusivity in this family, suggests it could have been evolutionarily favored, due to their diet based on carrion and small ruminants.
Collapse
Affiliation(s)
| | - Hasier Eraña
- a CIC bioGUNE, Parque Tecnológico de Bizkaia , Derio , Spain
| | - Joaquín Castilla
- a CIC bioGUNE, Parque Tecnológico de Bizkaia , Derio , Spain.,b IKERBASQUE, Basque Foundation for Science , Bilbao , Spain
| |
Collapse
|
15
|
Cofactors influence the biological properties of infectious recombinant prions. Acta Neuropathol 2018; 135:179-199. [PMID: 29094186 DOI: 10.1007/s00401-017-1782-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/23/2022]
Abstract
Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.
Collapse
|
16
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
17
|
In Vitro Approach To Identify Key Amino Acids in Low Susceptibility of Rabbit Prion Protein to Misfolding. J Virol 2017; 91:JVI.01543-17. [PMID: 28978705 DOI: 10.1128/jvi.01543-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/22/2017] [Indexed: 01/10/2023] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are a group of rare progressive neurodegenerative disorders caused by an abnormally folded prion protein (PrPSc). This is capable of transforming the normal cellular prion protein (PrPC) into new infectious PrPSc Interspecies prion transmissibility studies performed by experimental challenge and the outbreak of bovine spongiform encephalopathy that occurred in the late 1980s and 1990s showed that while some species (sheep, mice, and cats) are readily susceptible to TSEs, others are apparently resistant (rabbits, dogs, and horses) to the same agent. To study the mechanisms of low susceptibility to TSEs of certain species, the mouse-rabbit transmission barrier was used as a model. To identify which specific amino acid residues determine high or low susceptibility to PrPSc propagation, protein misfolding cyclic amplification (PMCA), which mimics PrPC-to-PrPSc conversion with accelerated kinetics, was used. This allowed amino acid substitutions in rabbit PrP and accurate analysis of misfolding propensities. Wild-type rabbit recombinant PrP could not be misfolded into a protease-resistant self-propagating isoform in vitro despite seeding with at least 12 different infectious prions from diverse origins. Therefore, rabbit recombinant PrP mutants were designed to contain every single amino acid substitution that distinguishes rabbit recombinant PrP from mouse recombinant PrP. Key amino acid residue substitutions were identified that make rabbit recombinant PrP susceptible to misfolding, and using these, protease-resistant misfolded recombinant rabbit PrP was generated. Additional studies characterized the mechanisms by which these critical amino acid residue substitutions increased the misfolding susceptibility of rabbit PrP.IMPORTANCE Prion disorders are invariably fatal, untreatable diseases typically associated with long incubation periods and characteristic spongiform changes associated with neuronal loss in the brain. Development of any treatment or preventative measure is dependent upon a detailed understanding of the pathogenesis of these diseases, and understanding the mechanism by which certain species appear to be resistant to TSEs is critical. Rabbits are highly resistant to naturally acquired TSEs, and even under experimental conditions, induction of clinical disease is not easy. Using recombinant rabbit PrP as a model, this study describes critical molecular determinants that confer this high resistance to transmissible spongiform encephalopathies.
Collapse
|
18
|
Fernández-Borges N, Parra B, Vidal E, Eraña H, Sánchez-Martín MA, de Castro J, Elezgarai SR, Pumarola M, Mayoral T, Castilla J. Unraveling the key to the resistance of canids to prion diseases. PLoS Pathog 2017; 13:e1006716. [PMID: 29131852 PMCID: PMC5703577 DOI: 10.1371/journal.ppat.1006716] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/27/2017] [Accepted: 10/28/2017] [Indexed: 01/08/2023] Open
Abstract
One of the characteristics of prions is their ability to infect some species but not others and prion resistant species have been of special interest because of their potential in deciphering the determinants for susceptibility. Previously, we developed different in vitro and in vivo models to assess the susceptibility of species that were erroneously considered resistant to prion infection, such as members of the Leporidae and Equidae families. Here we undertake in vitro and in vivo approaches to understand the unresolved low prion susceptibility of canids. Studies based on the amino acid sequence of the canine prion protein (PrP), together with a structural analysis in silico, identified unique key amino acids whose characteristics could orchestrate its high resistance to prion disease. Cell- and brain-based PMCA studies were performed highlighting the relevance of the D163 amino acid in proneness to protein misfolding. This was also investigated by the generation of a novel transgenic mouse model carrying this substitution and these mice showed complete resistance to disease despite intracerebral challenge with three different mouse prion strains (RML, 22L and 301C) known to cause disease in wild-type mice. These findings suggest that dog D163 amino acid is primarily, if not totally, responsible for the prion resistance of canids. Detection of individuals or whole species resistant to any infectious disease is vital to understand the determinants of susceptibility and to develop appropriate therapeutic and preventative strategies. Canids have long been considered resistant to prion infection given the absence of clinical disease despite exposure to the causal agent. Through extensive analysis of the canine prion protein we have detected a key amino acid that might be responsible for their universal resistance to prion disease. Using in vitro and in vivo models we demonstrated that the presence of this residue confers resistance to prion infection when introduced to susceptible animals, opening the way to develop a new therapeutic approach against these, at present, untreatable disorders.
Collapse
Affiliation(s)
| | - Beatriz Parra
- Laboratorio Central de Veterinaria (LCV), Madrid, Spain
| | - Enric Vidal
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio, Bizkaia, Spain
| | - Manuel A. Sánchez-Martín
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Jorge de Castro
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | | | - Martí Pumarola
- Department of Animal Medicine and Surgery, Veterinary faculty, Universitat Autònoma de Barcelona (UAB), Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Tomás Mayoral
- Laboratorio Central de Veterinaria (LCV), Madrid, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain
- * E-mail:
| |
Collapse
|
19
|
Prion replication without host adaptation during interspecies transmissions. Proc Natl Acad Sci U S A 2017; 114:1141-1146. [PMID: 28096357 DOI: 10.1073/pnas.1611891114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrPC) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrPC Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrPC conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrPC was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrPC from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrPC also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders.
Collapse
|
20
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) in cervids. EFSA J 2017; 15:e04667. [PMID: 32625260 PMCID: PMC7010154 DOI: 10.2903/j.efsa.2017.4667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April and May of 2016, Norway confirmed two cases of chronic wasting disease (CWD) in a wild reindeer and a wild moose, respectively. In the light of this emerging issue, the European Commission requested EFSA to recommend surveillance activities and, if necessary, additional animal health risk-based measures to prevent the introduction of the disease and the spread into/within the EU, specifically Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Poland and Sweden, and considering seven wild, semidomesticated and farmed cervid species (Eurasian tundra reindeer, Finnish (Eurasian) forest reindeer, moose, roe deer, white-tailed deer, red deer and fallow deer). It was also asked to assess any new evidence on possible public health risks related to CWD. A 3-year surveillance system is proposed, differing for farmed and wild or semidomesticated cervids, with a two-stage sampling programme at the farm/geographically based population unit level (random sampling) and individual level (convenience sampling targeting high-risk animals). The current derogations of Commission Implementing Decision (EU) 2016/1918 present a risk of introduction of CWD into the EU. Measures to prevent the spread of CWD within the EU are dependent upon the assumption that the disease is already present; this is currently unknown. The measures listed are intended to contain (limit the geographic extent of a focus) and/or to control (actively stabilise/reduce infection rates in an affected herd or population) the disease where it occurs. With regard to the zoonotic potential, the human species barrier for CWD prions does not appear to be absolute. These prions are present in the skeletal muscle and other edible tissues, so humans may consume infected material in enzootic areas. Epidemiological investigations carried out to date make no association between the occurrence of sporadic Creutzfeldt-Jakob disease in humans and exposure to CWD prions.
Collapse
|
21
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
22
|
Sarradin P, Viglietta C, Limouzin C, Andréoletti O, Daniel-Carlier N, Barc C, Leroux-Coyau M, Berthon P, Chapuis J, Rossignol C, Gatti JL, Belghazi M, Labas V, Vilotte JL, Béringue V, Lantier F, Laude H, Houdebine LM. Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie. PLoS Pathog 2015; 11:e1005077. [PMID: 26248157 PMCID: PMC4527776 DOI: 10.1371/journal.ppat.1005077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/08/2015] [Indexed: 12/26/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6-8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background.
Collapse
Affiliation(s)
- Pierre Sarradin
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
- INRA, UE1277, Plate-Forme d’Infectiologie Expérimentale, PFIE, Nouzilly, France
- * E-mail: (PS); (VB)
| | - Céline Viglietta
- INRA-CNRS-ENVA, UMR1198, Biologie du Développement et Reproduction, BDR, Jouy-en-Josas, France
| | - Claude Limouzin
- INRA, UE1277, Plate-Forme d’Infectiologie Expérimentale, PFIE, Nouzilly, France
| | | | - Nathalie Daniel-Carlier
- INRA-CNRS-ENVA, UMR1198, Biologie du Développement et Reproduction, BDR, Jouy-en-Josas, France
| | - Céline Barc
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
- INRA, UE1277, Plate-Forme d’Infectiologie Expérimentale, PFIE, Nouzilly, France
| | - Mathieu Leroux-Coyau
- INRA-CNRS-ENVA, UMR1198, Biologie du Développement et Reproduction, BDR, Jouy-en-Josas, France
| | - Patricia Berthon
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
| | - Jérôme Chapuis
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Christelle Rossignol
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
| | - Jean-Luc Gatti
- INRA- CNRS-UNS, UMR1355, Institut Sophia Agrobiotech, ISA, Sophia Antipolis, France
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, Institut Français du Cheval et de l’Equitation, Physiologie de la Reproduction et des Comportements, Plate-forme d’Analyse Intégrative des Biomolécules, Nouzilly, France
| | - Maya Belghazi
- INRA, UMR INRA85, UMR CNRS 7247, Université de Tours, Institut Français du Cheval et de l’Equitation, Physiologie de la Reproduction et des Comportements, Plate-forme d’Analyse Intégrative des Biomolécules, Nouzilly, France
- CNRS-Aix-Marseille Université, UMR7286, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, CRN2M, Marseille, France
| | - Valérie Labas
- CNRS-Aix-Marseille Université, UMR7286, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, CRN2M, Marseille, France
| | - Jean-Luc Vilotte
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail: (PS); (VB)
| | - Frédéric Lantier
- INRA-Université de Tours, UMR1282, Infectiologie et Santé Publique, ISP, Nouzilly, France
| | - Hubert Laude
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Louis-Marie Houdebine
- INRA-CNRS-ENVA, UMR1198, Biologie du Développement et Reproduction, BDR, Jouy-en-Josas, France
| |
Collapse
|