1
|
Gustifante BN, Khairani S, Fauziah N, Riswari SF, Berbudi A. Targeting T-Cell Activation for Malaria Immunotherapy: Scoping Review. Pathogens 2025; 14:71. [PMID: 39861032 PMCID: PMC11768281 DOI: 10.3390/pathogens14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of Plasmodium proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells. Immunotherapy, which enhances the immune response and promotes durable T cell activity, offers a promising avenue for more effective and lasting malaria treatments. This review systematically analyzed 63 studies published in the last decade, focusing on the role of T cells in malaria. Among the studies, 87.2% targeted T cells as immunotherapy candidates, with CD4+ and CD8+ T cells each accounting for 47.6% of the studies. γδ T cells were the focus in 7.9% of cases, while 12.7% explored non-T cell contributions to enhancing T cell-mediated responses. The findings underscore the potential of T cells, particularly CD8+ T cells, in liver-stage defense and advocate for the exploration of advanced vaccine platforms and novel therapies, such as mRNA-based vectors and monoclonal antibodies.
Collapse
Affiliation(s)
- Balsa Nobility Gustifante
- Medical Undergraduate Study Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia;
| | - Shafia Khairani
- Veterinary Medicine Program, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia;
- Department of Biomedical Sciences, Cell Biology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nisa Fauziah
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| | - Silvita Fitri Riswari
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| | - Afiat Berbudi
- Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia; (N.F.); (S.F.R.)
| |
Collapse
|
2
|
Oser L, Midha A, Schlosser-Brandenburg J, Rausch S, Mugo RM, Kundik A, Elizalde-Velázquez LE, Adjah J, Musimbi ZD, Klopfleisch R, Helm CS, von Samson-Himmelstjerna G, Hartmann S, Ebner F. Ascaris suum infection in juvenile pigs elicits a local Th2 response in a setting of ongoing Th1 expansion. Front Immunol 2024; 15:1396446. [PMID: 38799456 PMCID: PMC11116563 DOI: 10.3389/fimmu.2024.1396446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Ascaris spp. undergo extensive migration within the body before establishing patent infections in the small intestinal tract of humans and pigs. However, whether larval migration is critical for inducing efficient type 2 responses remains poorly understood. Therefore, we investigated systemic versus local adaptive immune responses along the hepato-tracheal migration of Ascaris suum during primary, single infections in conventionally raised pigs. Neither the initial invasion of gut tissue nor migration through the liver resulted in discernable Th2 cell responses. In contrast, lung-stage larvae elicited a Th2-biased pulmonary response, which declined after the larvae had left the lungs. In the small intestine, we observed an accumulation of Th2 cells upon the arrival of fourth-stage larvae (L4) to the small intestinal lumen. In parallel, we noticed robust and increasing Th1 responses in circulation, migration-affected organs, and draining lymph nodes. Phenotypic analysis of CD4+ T cells specifically recognizing A. suum antigens in the circulation and lung tissue of infected pigs confirmed that the majority of Ascaris-specific T cells produced IL-4 (Th2) and, to a much lesser extent, IL-4/IFN-g (Th2/1 hybrids) or IFN-g alone (Th1). These data demonstrate that lung-stage but not the early liver-stage larvae lead to a locally restricted Th2 response. Significant Th2 cell accumulation in the small intestine occurs only when L4 complete the body migration. In addition, Th2 immunity seems to be hampered by the concurrent, nonspecific Th1 bias in growing pigs. Together, the late onset of Th2 immunity at the site of infection and the Th1-biased systemic immunity likely enable the establishment of intestinal infections by sufficiently large L4 stages and pre-adult worms, some of which resist expulsion mechanisms.
Collapse
Affiliation(s)
- Larissa Oser
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Ankur Midha
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Josephine Schlosser-Brandenburg
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Robert M. Mugo
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Luis E. Elizalde-Velázquez
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Joshua Adjah
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D. Musimbi
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Christina S. Helm
- Department of Veterinary Medicine, Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Georg von Samson-Himmelstjerna
- Department of Veterinary Medicine, Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Centre for Infection Medicine, Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
- Infection Pathogenesis, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Sharma I, Kataria P, Das J. Cerebral malaria pathogenesis: Dissecting the role of CD4 + and CD8 + T-cells as major effectors in disease pathology. Int Rev Immunol 2024; 43:309-325. [PMID: 38618863 DOI: 10.1080/08830185.2024.2336539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum (P. falciparum) infection, with complex pathogenesis involving multiple factors, including the host's immunological response. T lymphocytes, specifically CD4+ T helper cells and CD8+ cytotoxic T cells, are crucial in controlling parasite growth and activating cells for parasite clearance via cytokine secretion. Contrary to this, reports also suggest the pathogenic nature of T lymphocytes as they are often involved in disease progression and severity. CD8+ cytotoxic T cells migrate to the host's brain vasculature, disrupting the blood-brain barrier and causing neurological manifestations. CD4+ T helper cells on the other hand play a variety of functions as they differentiate into different subtypes which may function as pro-inflammatory or anti-inflammatory. The excessive pro-inflammatory response in CM can lead to multi-organ failure, necessitating a check mechanism to maintain immune homeostasis. This is achieved by regulatory T cells and their characteristic cytokines, which counterbalance the pro-inflammatory immune response. Maintaining a critical balance between pro and anti-inflammatory responses is crucial for determining disease outcomes in CM. A slight change in this balance may contribute to a disease severity owing to an extreme inflammatory response or unrestricted parasite growth, a potential target for designing immunotherapeutic treatment approaches. The review briefly discusses the pathogenesis of CM and various mechanisms responsible for the disruption of the blood-brain barrier. It also highlights the role of different T cell subsets during infection and emphasizes the importance of balance between pro and anti-inflammatory T cells that ultimately decides the outcome of the disease.
Collapse
Affiliation(s)
- Indu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Poonam Kataria
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Jyoti Das
- Academy of Scientific and Innovative Research (AcSIR), Noida, India
- Division of Immunology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
4
|
Lane JM, Brosschot TP, Gatti DM, Gauthier CM, Lawrence KM, Pluzhnikova V, Reynolds LA. Chronic small intestinal helminth infection perturbs bile acid homeostasis and disrupts bile acid signaling in the murine small intestine. FRONTIERS IN PARASITOLOGY 2023; 2:1214136. [PMID: 39816838 PMCID: PMC11731828 DOI: 10.3389/fpara.2023.1214136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2023] [Indexed: 01/18/2025]
Abstract
Intestinal helminths have evolved an abundance of immunomodulatory mechanisms to ensure long-lived infections in mammalian hosts. To manipulate mammalian immune responses helminths can directly produce immunomodulatory molecules, but helminth infection can also elicit functional changes in the intestinal microbiome which can impact immune functioning. Here we examined how bile acids (BA)s, a group of host-produced, microbiota-modified immunomodulatory metabolites, were altered in abundance and composition during a murine small intestinal helminth infection. We found that murine helminth infection resulted in consistently reduced concentrations of specific taurine-conjugated primary BAs (T-α-MCA and T-CDCA) in the small intestinal luminal contents of mice. BA transporters facilitate the uptake of BAs from the small intestinal lumen, allowing BAs to engage with nuclear BA receptors, and helminth infected mice showed reduced expression of genes encoding basal BA transporters in the small intestine. Finally, we report that there is reduced signaling through the nuclear BA receptor FXR in both the proximal small intestine and ileum of mice during small intestinal helminth infection. Together, our data reveal disruptions to BA homeostasis and signaling in the small intestine during helminth infection. As BAs are known to impact many aspects of mucosal physiology and immunity, examining the functional consequences of BA disruptions during helminth infection will be an important avenue for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
5
|
Schlosser-Brandenburg J, Midha A, Mugo RM, Ndombi EM, Gachara G, Njomo D, Rausch S, Hartmann S. Infection with soil-transmitted helminths and their impact on coinfections. FRONTIERS IN PARASITOLOGY 2023; 2:1197956. [PMID: 39816832 PMCID: PMC11731630 DOI: 10.3389/fpara.2023.1197956] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 01/18/2025]
Abstract
The most important soil-transmitted helminths (STHs) affecting humans are roundworms, whipworms, and hookworms, with a large proportion of the world's population infected with one or more of these intestinal parasites. On top of that, concurrent infections with several viruses, bacteria, protozoa, and other helminths such as trematodes are common in STH-endemic areas. STHs are potent immunomodulators, but knowledge about the effects of STH infection on the direction and extent of coinfections with other pathogens and vice versa is incomplete. By focusing on Kenya, a country where STH infections in humans are widespread, we provide an exemplary overview of the current prevalence of STH and co-occurring infections (e.g. with Human Immunodeficiency Virus, Plasmodium falciparum, Giardia duodenalis and Schistosoma mansoni). Using human data and complemented by experimental studies, we outline the immunomechanistic interactions of coinfections in both acutely STH transmigrated and chronically infected tissues, also highlighting their systemic nature. Depending on the coinfecting pathogen and immunological readout, STH infection may restrain, support, or even override the immune response to another pathogen. Furthermore, the timing of the particular infection and host susceptibility are decisive for the immunopathological consequences. Some examples demonstrated positive outcomes of STH coinfections, where the systemic effects of these helminths mitigate the damage caused by other pathogens. Nevertheless, the data available to date are rather unbalanced, as only a few studies have considered the effects of coinfection on the worm's life cycle and associated host immunity. These interactions are complex and depend largely on the context and biology of the coinfection, which can act in either direction, both to the benefit and detriment of the infected host.
Collapse
Affiliation(s)
| | - Ankur Midha
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert M. Mugo
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eric M. Ndombi
- Department of Medical Microbiology and Parasitology, Kenyatta University, Nairobi, Kenya
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - George Gachara
- Department of Medical Laboratory Science, Kenyatta University, Nairobi, Kenya
| | - Doris Njomo
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sebastian Rausch
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Hussain T, Nguyen A, Daunt C, Thiele D, Pang ES, Li J, Zaini A, O'Keeffe M, Zaph C, Harris NL, Quinn KM, La Gruta NL. Helminth Infection-Induced Increase in Virtual Memory CD8 T Cells Is Transient, Driven by IL-15, and Absent in Aged Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:297-309. [PMID: 36524995 DOI: 10.4049/jimmunol.2200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023]
Abstract
CD8 virtual memory T (TVM) cells are Ag-naive CD8 T cells that have undergone partial differentiation in response to common γ-chain cytokines, particularly IL-15 and IL-4. TVM cells from young individuals are highly proliferative in response to TCR and cytokine stimulation but, with age, they lose TCR-mediated proliferative capacity and exhibit hallmarks of senescence. Helminth infection can drive an increase in TVM cells, which is associated with improved pathogen clearance during subsequent infectious challenge in young mice. Given the cytokine-dependent profile of TVM cells and their age-associated dysfunction, we traced proliferative and functional changes in TVM cells, compared with true naive CD8 T cells, after helminth infection of young and aged C57BL/6 mice. We show that IL-15 is essential for the helminth-induced increase in TVM cells, which is driven only by proliferation of existing TVM cells, with negligible contribution from true naive cell differentiation. Additionally, TVM cells showed the greatest proliferation in response to helminth infection and IL-15 compared with other CD8 T cells. Furthermore, TVM cells from aged mice did not undergo expansion after helminth infection due to both TVM cell-intrinsic and -extrinsic changes associated with aging.
Collapse
Affiliation(s)
- Tabinda Hussain
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Angela Nguyen
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Carmel Daunt
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Daniel Thiele
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ee Shan Pang
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jasmine Li
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia; and
| | - Aidil Zaini
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Meredith O'Keeffe
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Colby Zaph
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Nicola L Harris
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Central Clinical School, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Kylie M Quinn
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Frech M, Omata Y, Schmalzl A, Wirtz S, Taher L, Schett G, Zaiss MM, Sarter K. Btn2a2 Regulates ILC2–T Cell Cross Talk in Type 2 Immune Responses. Front Immunol 2022; 13:757436. [PMID: 35145516 PMCID: PMC8821520 DOI: 10.3389/fimmu.2022.757436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILC) not only are responsible for shaping the innate immune response but also actively modulate T cell responses. However, the molecular processes regulating ILC-T cell interaction are not yet completely understood. The protein butyrophilin 2a2 (Btn2a2), a co-stimulatory molecule first identified on antigen-presenting cells, has a pivotal role in the maintenance of T cell homeostasis, but the main effector cell and the respective ligands remain elusive. We analyzed the role of Btn2a2 in the ILC-T cell cross talk. We found that the expression of Btn2a2 is upregulated in ILC2 following stimulation with IL-33/IL-25/TSLP. In vitro and in vivo experiments indicated that lack of Btn2a2 expression on ILC2 resulted in elevated T cell responses. We observed an enhanced proliferation of T cells as well as increased secretion of the type 2 cytokines IL-4/IL-5/IL-13 following cocultures with Btn2a2-deficient ILC2. In vivo transfer experiments confirmed the regulatory role of Btn2a2 on ILC2 as Btn2a2-deficient ILC2 induced stronger T cell responses and prevented chronic helminth infections. Taken together, we identified Btn2a2 as a significant player in the regulation of ILC2–T cell interactions.
Collapse
Affiliation(s)
- Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FriedrichAlexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yasunori Omata
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Orthopaedic Surgery, The University of Tokyo, Tokyo, Japan
| | - Angelika Schmalzl
- Department of Internal Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FriedrichAlexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FriedrichAlexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), FriedrichAlexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- *Correspondence: Kerstin Sarter,
| |
Collapse
|
9
|
Age-dependent rise in IFN-γ competence undermines effective type 2 responses to nematode infection. Mucosal Immunol 2022; 15:1270-1282. [PMID: 35690651 PMCID: PMC9705248 DOI: 10.1038/s41385-022-00519-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The efficient induction of type 2 immune responses is central to the control of helminth infections. Previous studies demonstrated that strong Th1 responses driven by intracellular pathogens as well as a bias for type 1 activity in senescent mice impedes the generation of Th2 responses and the control of intestinal nematode infections. Here, we show that the spontaneous differentiation of Th1 cells and their expansion with age restrains type 2 immunity to infection with the small intestinal nematode H. polygyrus much earlier in life than previously anticipated. This includes the more extensive induction of IFN-γ competent, nematode-specific Th2/1 hybrid cells in BALB/c mice older than three months compared to younger animals. In C57BL/6 mice, Th1 cells accumulate more rapidly at steady state, translating to elevated Th2/1 differentiation and poor control of parasite fitness in primary infections experienced at a young age. Blocking of early IFN-γ and IL-12 signals during the first week of nematode infection leads to sharply decreased Th2/1 differentiation and promotes resistance in both mouse lines. Together, these data suggest that IFN-γ competent, type 1 like effector cells spontaneously accumulating in the vertebrate host progressively curtail the effectiveness of anti-nematode type 2 responses with rising host age.
Collapse
|
10
|
Lechner A, Bohnacker S, Esser-von Bieren J. Macrophage regulation & function in helminth infection. Semin Immunol 2021; 53:101526. [PMID: 34802871 DOI: 10.1016/j.smim.2021.101526] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
11
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Ma Y, Su XZ, Lu F. The Roles of Type I Interferon in Co-infections With Parasites and Viruses, Bacteria, or Other Parasites. Front Immunol 2020; 11:1805. [PMID: 33193291 PMCID: PMC7649121 DOI: 10.3389/fimmu.2020.01805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Parasites, bacteria, and viruses pose serious threats to public health. Many parasite infections, including infections of protozoa and helminths, can inhibit inflammatory responses and impact disease outcomes caused by viral, bacterial, or other parasitic infections. Type I interferon (IFN-I) has been recognized as an essential immune effector in the host defense against various pathogens. In addition, IFN-I responses induced by co-infections with different pathogens may vary according to the host genetic background, immune status, and pathogen burden. However, there is only limited information on the roles of IFN-I in co-infections with parasites and viruses, bacteria, or other parasites. This review summarizes some recent findings on the roles of IFN-I in co-infections with parasites, including Leishmania spp., Plasmodium spp., Eimeria maxima, Heligmosomoides polygyrus, Brugia malayi, or Schistosoma mansoni, and viruses or bacteria and co-infections with different parasites (such as co-infection with Neospora caninum and Toxoplasma gondii, and co-infection with Plasmodium spp. and H. polygyrus). The potential mechanisms of host responses associated with co-infections, which may provide targets for immune intervention and therapies of the co-infections, are also discussed.
Collapse
Affiliation(s)
- Yuanlin Ma
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine, Guangzhou, China
- Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Midha A, Ebner F, Schlosser-Brandenburg J, Rausch S, Hartmann S. Trilateral Relationship: Ascaris, Microbiota, and Host Cells. Trends Parasitol 2020; 37:251-262. [PMID: 33008723 DOI: 10.1016/j.pt.2020.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Ascariasis is a globally spread intestinal nematode infection of humans and a considerable concern in pig husbandry. Ascaris accomplishes a complex body migration from the intestine via the liver and lung before returning to the intestine. Tissue migration and the habitat shared with a complex microbial community pose the question of how the nematode interacts with microbes and host cells from various tissues. This review addresses the current knowledge of the trilateral relationship between Ascaris, its microbial environment, and host cells, and discusses novel approaches targeting these interactions to combat this widespread infection of livestock and man.
Collapse
Affiliation(s)
- Ankur Midha
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | - Friederike Ebner
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | | | - Sebastian Rausch
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Freie Universität Berlin, Robert von Ostertag-Str. 7-13, D-14163 Berlin, Germany.
| |
Collapse
|
14
|
Schrom EC, Levin SA, Graham AL. Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. PLoS Comput Biol 2020; 16:e1008051. [PMID: 32730250 PMCID: PMC7392205 DOI: 10.1371/journal.pcbi.1008051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
In the animal kingdom, various forms of swarming enable groups of autonomous individuals to transform uncertain information into unified decisions which are probabilistically beneficial. Crossing scales from individual to group decisions requires dynamically accumulating signals among individuals. In striking parallel, the mammalian immune system is also a group of decentralized autonomous units (i.e. cells) which collectively navigate uncertainty with the help of dynamically accumulating signals (i.e. cytokines). Therefore, we apply techniques of understanding swarm behavior to a decision-making problem in the mammalian immune system, namely effector choice among CD4+ T helper (Th) cells. We find that incorporating dynamic cytokine signaling into a simple model of Th differentiation comprehensively explains divergent observations of this process. The plasticity and heterogeneity of individual Th cells, the tunable mixtures of effector types that can be generated in vitro, and the polarized yet updateable group effector commitment often observed in vivo are all explained by the same set of underlying molecular rules. These rules reveal that Th cells harness dynamic cytokine signaling to implement a system of quorum sensing. Quorum sensing, in turn, may confer adaptive advantages on the mammalian immune system, especially during coinfection and during coevolution with manipulative parasites. This highlights a new way of understanding the mammalian immune system as a cellular swarm, and it underscores the power of collectives throughout nature.
Collapse
Affiliation(s)
- Edward C. Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
15
|
Ehsan M, Gadahi JA, Liu T, Lu M, Wang Y, Hasan MW, Haseeb M, Yan R, Xu L, Song X, Zhu XQ, Li X. Identification of a novel methyltransferase-type 12 protein from Haemonchus contortus and its effects on functions of goat PBMCs. Parasit Vectors 2020; 13:154. [PMID: 32228657 PMCID: PMC7106832 DOI: 10.1186/s13071-020-04028-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
Background Methyltransferases (MTFs) are broad range of enzymes, which are ubiquitously expressed in diverse organisms ranging from bacteria to animals. MTFs proteins have been associated with various biological/cellular processes including transcriptional regulation, subcellular protein and RNA localization, signal transduction and DNA-damage repair. However, the role of MTFs in immune mechanism during host–parasite interaction has not been addressed yet. Results An open reading frame (764 bp) of methyltransferase-type 12 gene of H. contortus denoted as HcMTF-12, was successfully cloned using reverse transcriptase-polymerase chain reaction (RT-PCR) followed by prokaryotic expression in Escherichia coli BL21 (DE3 strain). The recombinant HcMTF-12 protein (rHcMTF-12) was about 47 kDa along with a fusion vector protein of 18 kDa. Immunoblot results identified the native protein MTF-12 with antibodies produced in rats against rHcMT-12, whereas rHcMTF-12 protein was recognized with sera of goat experimentally infected with H. contortus. Immunohistochemical analysis revealed that the native MTF-12 protein was mainly located in the periphery (cuticle) of parasite sections as well as within the pharynx and intestinal region. An immunofluorescence assay validated that rHcMTF-12 attached to the surface of goat PBMCs. Furthermore, the cytokines transcription of IL-2, IFN-γ and IL-4 transcripts of PBMCs incubated with rHcMTF-12 were enhanced in a dose-dependent manner. The secretion of TGF-β1 and IL-10 was significantly decreased. However, IL-6 production was not significantly different as compared to the control groups. Moreover, the migration activity and nitric oxide (NO) production by PBMCs were induced considerably, whereas the proliferation of PBMCs cells was negatively affected when incubated with the rHcMTF-12 protein. Conclusions Our findings suggest that HcMTF-12 significantly mediated the functions of PBMCs, and it might be a potential candidate for therapeutic interventions against haemonchosis.![]()
Collapse
Affiliation(s)
- Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Javaid A Gadahi
- Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Tingqi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yujian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad W Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Abstract
Immunity to malaria has been linked to the availability and function of helper CD4+ T cells, cytotoxic CD8+ T cells and γδ T cells that can respond to both the asymptomatic liver stage and the symptomatic blood stage of Plasmodium sp. infection. These T cell responses are also thought to be modulated by regulatory T cells. However, the precise mechanisms governing the development and function of Plasmodium-specific T cells and their capacity to form tissue-resident and long-lived memory populations are less well understood. The field has arrived at a point where the push for vaccines that exploit T cell-mediated immunity to malaria has made it imperative to define and reconcile the mechanisms that regulate the development and functions of Plasmodium-specific T cells. Here, we review our current understanding of the mechanisms by which T cell subsets orchestrate host resistance to Plasmodium infection on the basis of observational and mechanistic studies in humans, non-human primates and rodent models. We also examine the potential of new experimental strategies and human infection systems to inform a new generation of approaches to harness T cell responses against malaria.
Collapse
|
17
|
Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiol Mol Biol Rev 2020; 84:84/2/e00064-19. [PMID: 32132244 DOI: 10.1128/mmbr.00064-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Technologies allowing genetic sequencing of the human microbiome are opening new realms to discovery. The host microbiota substantially impacts immune responses both in immune-mediated inflammatory diseases (IMIDs) and in tumors affecting tissues beyond skin and mucosae. However, a mechanistic link between host microbiota and cancer or IMIDs has not been well established. Here, we propose T helper 17 (TH17) lymphocytes as the connecting factor between host microbiota and rheumatoid or psoriatic arthritides, multiple sclerosis, breast or ovarian cancer, and multiple myeloma. We theorize that similar mechanisms favor the expansion of gut-borne TH17 cells and their deployment at the site of inflammation in extraborder IMIDs and tumors, where TH17 cells are driving forces. Thus, from a pathogenic standpoint, tumors may share mechanistic routes with IMIDs. A review of similarities and divergences in microbiota-TH17 cell interactions in IMIDs and cancer sheds light on previously ignored pathways in either one of the two groups of pathologies and identifies novel therapeutic avenues.
Collapse
|
18
|
Jackson CM, Mukherjee S, Wilburn AN, Cates C, Lewkowich IP, Deshmukh H, Zacharias WJ, Chougnet CA. Pulmonary Consequences of Prenatal Inflammatory Exposures: Clinical Perspective and Review of Basic Immunological Mechanisms. Front Immunol 2020; 11:1285. [PMID: 32636848 PMCID: PMC7318112 DOI: 10.3389/fimmu.2020.01285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Chorioamnionitis, a potentially serious inflammatory complication of pregnancy, is associated with the development of an inflammatory milieu within the amniotic fluid surrounding the developing fetus. When chorioamnionitis occurs, the fetal lung finds itself in the unique position of being constantly exposed to the consequent inflammatory meditators and/or microbial products found in the amniotic fluid. This exposure results in significant changes to the fetal lung, such as increased leukocyte infiltration, altered cytokine, and surfactant production, and diminished alveolarization. These alterations can have potentially lasting impacts on lung development and function. However, studies to date have only begun to elucidate the association between such inflammatory exposures and lifelong consequences such as lung dysfunction. In this review, we discuss the pathogenesis of and fetal immune response to chorioamnionitis, detail the consequences of chorioamnionitis exposure on the developing fetal lung, highlighting the various animal models that have contributed to our current understanding and discuss the importance of fetal exposures in regard to the development of chronic respiratory disease. Finally, we focus on the clinical, basic, and therapeutic challenges in fetal inflammatory injury to the lung, and propose next steps and future directions to improve our therapeutic understanding of this important perinatal stress.
Collapse
Affiliation(s)
- Courtney M. Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
| | - Adrienne N. Wilburn
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Chris Cates
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ian P. Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - William J. Zacharias
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Claire A. Chougnet
| |
Collapse
|
19
|
Kumar R, Loughland JR, Ng SS, Boyle MJ, Engwerda CR. The regulation of CD4
+
T cells during malaria. Immunol Rev 2019; 293:70-87. [DOI: 10.1111/imr.12804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Rajiv Kumar
- Centre of Experimental Medicine and Surgery Institute of Medical Sciences Banaras Hindu University Varanasi UP India
- Department of Medicine Institute of Medical Sciences Banaras Hindu University Varanasi UP India
| | - Jessica R. Loughland
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Susanna S. Ng
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Michelle J. Boyle
- Human Malaria Immunology Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| | - Christian R. Engwerda
- Immunology and Infection Laboratory QIMR Berghofer Medical Research Institute Brisbane Australia
| |
Collapse
|
20
|
French T, Düsedau HP, Steffen J, Biswas A, Ahmed N, Hartmann S, Schüler T, Schott BH, Dunay IR. Neuronal impairment following chronic Toxoplasma gondii infection is aggravated by intestinal nematode challenge in an IFN-γ-dependent manner. J Neuroinflammation 2019; 16:159. [PMID: 31352901 PMCID: PMC6661741 DOI: 10.1186/s12974-019-1539-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. Methods Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. Results Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1β) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. Conclusion Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner. Electronic supplementary material The online version of this article (10.1186/s12974-019-1539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy French
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Johannes Steffen
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Aindrila Biswas
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany
| | - Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Free University Berlin, Berlin, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute of Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Medizinische Fakultät, Otto-von-Guericke-University Magdeburg, Leipziger Straße 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
21
|
Yap GS, Gause WC. Helminth Infections Induce Tissue Tolerance Mitigating Immunopathology but Enhancing Microbial Pathogen Susceptibility. Front Immunol 2018; 9:2135. [PMID: 30386324 PMCID: PMC6198046 DOI: 10.3389/fimmu.2018.02135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/30/2018] [Indexed: 01/17/2023] Open
Abstract
Helminths are ubiquitous and have chronically infected vertebrates throughout their evolution. As such helminths have likely exerted considerable selection pressure on our immune systems. The large size of multicellular helminths and their limited replicative capacity in the host necessarily elicits different host protective mechanisms than the immune response evoked by microbial pathogens such as bacteria, viruses and intracellular parasites. The cellular damage resulting from helminth migration through tissues is a major trigger of the type 2 and regulatory immune responses, which activates wound repair mechanisms that increases tissue tolerance to injury and resistance mechanisms that enhance resistance to further colonization with larval stages. While these wound healing and anti-inflammatory responses may be beneficial to the helminth infected host, they may also compromise the host's ability to mount protective immune responses to microbial pathogens. In this review we will first describe helminth-induced tolerance mechanisms that develop in specific organs including the lung and the intestine, and how adaptive immunity may contribute to these responses through differential activation of T cells in the secondary lymphoid organs. We will then integrate studies that have examined how the immune response is modulated in these specific tissues during coinfection of helminths with viruses, protozoa, and bacteria.
Collapse
Affiliation(s)
- George S Yap
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
22
|
Affinass N, Zhang H, Löhning M, Hartmann S, Rausch S. Manipulation of the balance between Th2 and Th2/1 hybrid cells affects parasite nematode fitness in mice. Eur J Immunol 2018; 48:1958-1964. [PMID: 30267404 DOI: 10.1002/eji.201847639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
T-helper type 2 (Th2) responses are central to the control of helminth infections, but sensitive to opposing cytokine signals favoring Th1 priming. We previously reported on GATA-3+ T-bet+ Th2/1 hybrid cell differentiation in helminth mono-infections, resulting in a substantial proportion of cells coproducing IFN-γ next to Th2 cytokines. Here, we demonstrate Th2/1 cells as the major source of parasite-specific IFN-γ production in acute and chronic infections with the enteric nematode Heligmosomoides polygyrus. Th2/1 cells differentiated from naive precursors and accumulated in spleen and intestine of infected mice, resulting in increased systemic and mucosal IFN-γ production. IFN-γ supplementation early during infection supported Th2/1 differentiation, associated with elevated parasite fecundity and the maintenance of high worm burdens in the chronic stage of infection, whereas mice lacking IFN-γ signals generated poor Th2/1 responses and restricted parasite fecundity more efficiently. These findings suggest that Th2/1 hybrid responses take part in immune regulation during helminth infection and restrain effective anti-helminth immunity.
Collapse
Affiliation(s)
- Nicole Affinass
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hongwei Zhang
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Max Löhning
- Experimental Immunology, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Institute of Immunology, Centre of Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
González-Sánchez ME, Cuquerella M, Alunda JM. Superimposed visceral leishmanial infection aggravates response to Heligmosomoides polygyrus. Parasit Vectors 2018; 11:404. [PMID: 29996937 PMCID: PMC6042253 DOI: 10.1186/s13071-018-2987-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/02/2018] [Indexed: 01/03/2023] Open
Abstract
Background Polyparasitism is the rule in all animal species, including humans, and has an important role in pathogenicity, diagnosis and control measures. Among them, co-infections by gastrointestinal helminths and protists are very prevalent under natural conditions but experimental infections are relatively scarce. Thus, despite the frequent association of visceral Leishmania infections and intestinal helminth parasitism the experimental co-infection has not been addressed. Heligmosomoides polygyrus, an intestinal nematode of mice, is related to other helminths causing important pathologies and is a model species for immunological studies. Mice are valuable experimental model for visceral leishmaniasis. Methods BALB/c mice infected with H. polygyrus (200 third-stage larvae, L3) were subsequently infected seven days later with Leishmania infantum (107 promastigotes) with the aim of determining the effect of the overinfection on the host response to the primary infection with the helminth. Results Overinfection with the protist did not affect the establishment rate of the nematode but induced a higher fecal egg output. Helminth burdens in co-infected animals were significant at the end of the experiment. Early unspecific immune suppression induced by the nematode in mesenteric lymph nodes was not switched by L. infantum infection. Co-infection elicited a higher serum antibody (IgG1) response against the helminth. Conclusions Visceral leishmanial overinfection aggravated the early host response against primary infections with the intestinal helminth. This effect was evidenced by an increased longevity and higher production of non-protective antibodies.
Collapse
Affiliation(s)
- M E González-Sánchez
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre, Avda. Andalucía s/n, 28041, Madrid, Spain
| | - M Cuquerella
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain.,Instituto de Investigación Hospital Doce de Octubre, Avda. Andalucía s/n, 28041, Madrid, Spain
| | - J M Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040, Madrid, Spain. .,Instituto de Investigación Hospital Doce de Octubre, Avda. Andalucía s/n, 28041, Madrid, Spain.
| |
Collapse
|
24
|
Alhallaf R, Agha Z, Miller CM, Robertson AA, Sotillo J, Croese J, Cooper MA, Masters SL, Kupz A, Smith NC, Loukas A, Giacomin PR. The NLRP3 Inflammasome Suppresses Protective Immunity to Gastrointestinal Helminth Infection. Cell Rep 2018; 23:1085-1098. [DOI: 10.1016/j.celrep.2018.03.097] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/09/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
|
25
|
Gadahi JA, Li B, Ehsan M, Wang S, Zhang Z, Wang Y, Hasan MW, Yan R, Song X, Xu L, Li X. Recombinant Haemonchus contortus 24 kDa excretory/secretory protein (rHcES-24) modulate the immune functions of goat PBMCs in vitro. Oncotarget 2018; 7:83926-83937. [PMID: 27893414 PMCID: PMC5356635 DOI: 10.18632/oncotarget.13487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
A 24 kDa protein is one of the important components in Haemonchus contortus (barber pole worm) excretory/secretory products (HcESPs), which was shown to have important antigenic function. However, little is known about the immunomodulatory effects of this proteinon host cell. In the present study gene encoding 24kDa excretory/secretory protein (HcES-24) was cloned. The recombinant protein of HcES-24 (rHcES-24) was expressed in a histidine-tagged fusion protein soluble form in Escherichia coli. Binding activity of rHcES-24 to goat PBMCs was confirmed by immunofluorescence assay (IFA) and its immunomudulatory effect on cytokine secretion, cell proliferation, cell migration and nitric oxide production were observed by co-incubation of rHcES-24. IFA results revealed that rHcES-24 could bind to the PBMCs. The interaction of rHcES-24 increased the production of IL4, IL10, IL17 and cell migration in dose dependent manner. However, rHcES-24 treatment significantly suppressed the production of IFNγ, proliferation of the PBMC and Nitric oxide (NO) production. Our findings showed that the rHcES-24 played important regulatory effects on the goat PBMCs.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China.,Department of Veterinary Parasitology, Sindh Agriculture University Tandojam, Pakistan
| | - Baojie Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | | | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
26
|
Su X, Yuan H, Cui H, Zhu H, Yun X, Tang W, Chen J, Luan Z. Effect of T helper cell 1/T helper cell 2 balance and nuclear factor-κB on white matter injury in premature neonates. Mol Med Rep 2018; 17:5552-5556. [PMID: 29393452 DOI: 10.3892/mmr.2018.8511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
Incidence of white matter injury (WMI), which is featured as softening of white matter tissues, has recently increased. Previous studies have demonstrated a close correlation between T helper cell 1 and T helper cell 2 (Th1/Th2) imbalance and nuclear factor‑κB (NF‑κB) with brain disease. Their role in premature WMI, however, remains to be illustrated. Serum samples were collected from 60 premature WMI neonates, plus another control group of 60 premature babies without WMI. Patients were further divided into mild, moderate and severe WMI groups. Reverse transcription quantitative polymerase chain reaction was used to test mRNA expression levels of Th1/Th2 cytokines, including interleukin 2 (IL)‑2, tumor necrosis factor‑α (TNF‑α), IL‑4, IL‑10 and nuclear factor (NF)‑κB, whilst their serum levels were measured by ELISA. Their correlation with disease occurrence and progression were further analysed, to illustrate the effect of Th1/Th2 balance and NF‑κB on pathology of premature WMI. Serum levels of IL‑4 and IL‑10 were significantly decreased in premature WMI babies, whilst IL‑2, TNF‑α and NF‑κB were upregulated (P<0.05 vs. control group). With aggravated disease, IL‑4 and IL‑10 expression was further decreased while IL‑2, TNF‑α and NF‑κB were increased (P<0.05 vs. mild WMI group). Th1 cytokines IL‑2 and TNF‑α and NF‑κB were negatively correlated with Th2 cytokines IL‑4 and IL‑10. Disease severity was positively correlated with IL‑2, TNF‑α and NF‑κB expression, and was negatively correlated with IL‑4 and IL‑10 (P<0.05). Th1/Th2 imbalance and NF‑κB upregulation were observed in WMI pathogenesis, with elevated secretion of Th1 cytokines and decreased Th2 cytokines, suggesting that Th1/Th2 imbalance and NF‑κB upregulation may be a potential indicator for the early diagnosis and treatment of WMI pathogenesis and progression.
Collapse
Affiliation(s)
- Xuewen Su
- Department of Paediatrics, Inner Mongolia People's Hospital, Huhehot, Inner Mongolia 010017, P.R. China
| | - Haifeng Yuan
- Department of Paediatrics, Inner Mongolia People's Hospital, Huhehot, Inner Mongolia 010017, P.R. China
| | - Hongwei Cui
- Department of Paediatrics, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Huhehot, Inner Mongolia 010010, P.R. China
| | - Hua Zhu
- Department of Paediatrics, Inner Mongolia People's Hospital, Huhehot, Inner Mongolia 010017, P.R. China
| | - Xia Yun
- Department of Paediatrics, Inner Mongolia People's Hospital, Huhehot, Inner Mongolia 010017, P.R. China
| | - Wenyan Tang
- Department of Paediatrics, Affiliated Navy General Hospital of Southern Medical University, Haidian, Beijing 100048, P.R. China
| | - Junlong Chen
- Department of Paediatrics, Inner Mongolia People's Hospital, Huhehot, Inner Mongolia 010017, P.R. China
| | - Zu Luan
- Department of Paediatrics, An Hui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
27
|
Agalioti T, Villablanca EJ, Huber S, Gagliani N. T H17 cell plasticity: The role of dendritic cells and molecular mechanisms. J Autoimmun 2018; 87:50-60. [PMID: 29371049 DOI: 10.1016/j.jaut.2017.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 01/18/2023]
Abstract
Upon interaction with dendritic cells (DCs), naïve CD4 T cells differentiate into distinct subsets and orchestrate the development of a physiological immune response. When uncontrolled by cellular and molecular mechanisms, CD4 T cells can also lead to immune mediated inflammatory diseases (IMIDs). Initially, these distinct CD4 T-cell subsets were defined according to the expression of a limited number of cytokines. Later it was revealed that CD4 T cells can acquire much more complex functional phenotypes than previously thought. Experimental data showed that the CD4 T-cell subset TH17 can secrete IFN-γ and IL-4, which are signature molecules of other T-cell subsets. Furthermore, some TH17 cells can also explore an anti-inflammatory fate and participate in the resolution of the immune response. A more flexible theory has therefore evolved with the scope to better represent the plastic biology of CD4 T cells. In this context, several aspects still remain unclear. The goal of this review is to discuss the role of extrinsic and intrinsic cellular and molecular mechanisms, which can drive the plasticity of TH17 cells. In particular, we will outline the role of DCs and the function of transcriptional factors in shaping the fate of TH17 cells towards either a pathogenic or a regulatory phenotype. Finally, we will discuss whether TH17 cell plasticity could be a target for new therapies for IMIDs. We indeed envision that when the cellular and molecular mechanisms controlling TH17 plasticity are known, new therapies, which aim to reset the immune system, will be developed. This will be achieved by either selectively depleting only the pathogenic TH17 cells or, if possible, re converting these cells from pathogenic to regulatory. This will overcome the challenge posed by the immune suppressive side effects caused by the current therapies, which impair the function of CD4 cells or delete all of them, to the detriment of the patient.
Collapse
Affiliation(s)
- Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden.
| |
Collapse
|
28
|
Abstract
CD4+ T helper cells orchestrate the immune response and play a pivotal role during infection, chronic inflammatory, autoimmune diseases, and carcinogenesis. CD4+ T helper cells can be subdivided into different subsets, which are characterized by a specific network of transcriptional regulators and unique cytokine profiles: Th17 cells express RORγt that in turn promotes the transcription of Il17a, Il17f; Th1 cells, expresses T-bet and produces IFN-γ, IL-2, and TNF-α; Th2 cells express GATA-3 and secrete IL-4, IL-5, and IL-13. The two most studied regulatory T cell subtypes are Foxp3+ regulatory T cells, which can be generated either in the thymus (tTreg) or induced in peripheral lymphoid organs (pTregs) and type 1 regulatory T cells (Tr1), which are induced in the periphery. These T helper cell subsets can be differentiated from naïve T cells. In addition, recent findings indicate that some T helper cell subsets can emerge from other T helper cells, suggesting a certain degree of plastiticy. Here we report basic aspects of T helper cell differentiation and function while underlining some still open questions.
Collapse
|
29
|
Schrom EC, Graham AL. Instructed subsets or agile swarms: how T-helper cells may adaptively counter uncertainty with variability and plasticity. Curr Opin Genet Dev 2017; 47:75-82. [PMID: 28926759 DOI: 10.1016/j.gde.2017.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 10/25/2022]
Abstract
Over recent years, extensive phenotypic variability and plasticity have been revealed among the T-helper cells of the mammalian adaptive immune system, even within clonal lineages of identical antigen specificity. This challenges the conventional view that T-helper cells assort into functionally distinct subsets following differential instruction by the innate immune system. We argue that the adaptive value of coping with uncertainty can reconcile the 'instructed subset' framework with T-helper variability and plasticity. However, we also suggest that T-helper cells might better be understood as agile swarms engaged in collective decision-making to promote host fitness. With rigorous testing, the 'agile swarms' framework may illuminate how variable and plastic individual T-helper cells interact to create coherent immunity.
Collapse
Affiliation(s)
- Edward C Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
30
|
IL-17A contributes to reducing IFN-γ/IL-4 ratio and persistence of Entamoeba histolytica during intestinal amebiasis. Parasitol Int 2017; 66:817-823. [PMID: 28927906 DOI: 10.1016/j.parint.2017.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 01/21/2023]
Abstract
Amebiasis is an infectious disease caused by Entamoeba histolytica, an anaerobic protozoan parasite, and is a major public health problem worldwide, particularly in areas with inadequate sanitation and poor hygiene. Th1 responses, represented by interferon gamma (IFN-γ), play a protective role by clearing the amebae from the gut, whereas Th2 responses are responsible for chronic infection. Th17 responses preconditioned by vaccination or by modulating the intestinal microbiome protect mice from the settlement of E. histolytica. However, the role of interleukin-17A (IL-17A), which is upregulated during the natural course of intestinal amebiasis, has not been clarified. The aim of this study was to investigate the role of IL-17A during intestinal amebiasis in a mouse model. IL-17A knockout and wild-type CBA/J mice were challenged intracecally with 2×106E. histolytica trophozoites, and their infection, pathology, and immune responses were monitored. Neither the initial settlement of E. histolytica nor the inflammation of the cecum was affected by the absence of IL-17A for week 1, but the infection rate and parasite burden declined in a late stage of infection, accompanied by an increased IFN-γ/IL-4 ratio. Therefore, IL-17A contributes to the persistence of E. histolytica and modulates the immune response, including the IFN-γ/IL-4 ratio, which may be responsible for the reduction of the parasite burden in the IL-17A knockout mice during the chronic phase of intestinal amebiasis.
Collapse
|
31
|
Cull AH, Snetsinger B, Buckstein R, Wells RA, Rauh MJ. Tet2 restrains inflammatory gene expression in macrophages. Exp Hematol 2017; 55:56-70.e13. [PMID: 28826859 DOI: 10.1016/j.exphem.2017.08.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022]
Abstract
Tet methylcytosine dioxygenase 2 (TET2) is one of the earliest and most frequently mutated genes in clonal hematopoiesis of indeterminate potential (CHIP) and myeloid cancers, including myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). TET2 catalyzes the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, leading to DNA demethylation, and also affects transcription by recruiting histone modifiers. Inactivating TET2 mutations cause epigenetic dysregulation, clonal hematopoietic stem cell (HSC) dominance, and monocytic lineage skewing. Here, we found that Tet2 was the most highly expressed Tet enzyme in murine macrophage (MΦ) differentiation. Tet2 transcription was further induced by lipopolysaccharide (LPS), but not interleukin (IL)-4, stimulation, potentially in a nuclear factor κβ-dependent manner. Tet2 loss did not affect early LPS gene responses in vitro, but increased Il-1b, Il-6, and Arginase 1 (Arg1) mRNA expression at later stages of stimulation in bone-marrow-derived MΦs (BMMΦs). Tet2-deficient peritoneal MΦs, however, demonstrated profound, constitutive expression of LPS-induced genes associated with an inflammatory state in vivo. In contrast, Tet2 deficiency did not affect alternative MΦ gene expression significantly in response to IL-4. These results suggested impaired resolution of inflammation in the absence of Tet2 both in vitro and in vivo. For the first time, we also detected TET2 mutations in BMMΦs from MDS and CMML patients and assayed their effects on LPS responses, including their potential influence on human IL-6 expression. Our results show that Tet2 restrains inflammation in murine MΦs and mice, raising the possibility that loss of TET2 function in MΦs may alter the immune environment in the large elderly population with TET2-mutant CHIP and in TET2-mutant myeloid cancer patients.
Collapse
Affiliation(s)
- Alyssa H Cull
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brooke Snetsinger
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rena Buckstein
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Richard A Wells
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Michael J Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
32
|
Ahmed N, French T, Rausch S, Kühl A, Hemminger K, Dunay IR, Steinfelder S, Hartmann S. Toxoplasma Co-infection Prevents Th2 Differentiation and Leads to a Helminth-Specific Th1 Response. Front Cell Infect Microbiol 2017; 7:341. [PMID: 28791259 PMCID: PMC5524676 DOI: 10.3389/fcimb.2017.00341] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023] Open
Abstract
Nematode infections, in particular gastrointestinal nematodes, are widespread and co-infections with other parasites and pathogens are frequently encountered in humans and animals. To decipher the immunological effects of a widespread protozoan infection on the anti-helminth immune response we studied a co-infection with the enteric nematode Heligmosomoides polygyrus in mice previously infected with Toxoplasma gondii. Protective immune responses against nematodes are dependent on parasite-specific Th2 responses associated with IL-4, IL-5, IL-13, IgE, and IgG1 antibodies. In contrast, Toxoplasma gondii infection elicits a strong and protective Th1 immune response characterized by IFN-γ, IL-12, and IgG2a antibodies. Co-infected animals displayed significantly higher worm fecundity although worm burden remained unchanged. In line with this, the Th2 response to H. polygyrus in co-infected animals showed a profound reduction of IL-4, IL-5, IL-13, and GATA-3 expressing T cells. Co-infection also resulted in the lack of eosinophilia and reduced expression of the Th2 effector molecule RELM-β in intestinal tissue. In contrast, the Th1 response to the protozoan parasite was not diminished and parasitemia of T. gondii was unaffected by concurrent helminth infection. Importantly, H. polygyrus specific restimulation of splenocytes revealed H. polygyrus-reactive CD4+ T cells that produce a significant amount of IFN-γ in co-infected animals. This was not observed in animals infected with the nematode alone. Increased levels of H. polygyrus-specific IgG2a antibodies in co-infected mice mirrored this finding. This study suggests that polarization rather than priming of naive CD4+ T cells is disturbed in mice previously infected with T. gondii. In conclusion, a previous T. gondii infection limits a helminth-specific Th2 immune response while promoting a shift toward a Th1-type immune response.
Collapse
Affiliation(s)
- Norus Ahmed
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Timothy French
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Anja Kühl
- Division of Gastroenterology, Medical Department, Infection and Rheumatology, Research Center ImmunoSciencesBerlin, Germany
| | - Katrin Hemminger
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke UniversityMagdeburg, Germany
| | - Svenja Steinfelder
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
33
|
Yeast-expressed recombinant As16 protects mice against Ascaris suum infection through induction of a Th2-skewed immune response. PLoS Negl Trop Dis 2017; 11:e0005769. [PMID: 28708895 PMCID: PMC5529013 DOI: 10.1371/journal.pntd.0005769] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/26/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Background Ascariasis remains the most common helminth infection in humans. As an alternative or complementary approach to global deworming, a pan-anthelminthic vaccine is under development targeting Ascaris, hookworm, and Trichuris infections. As16 and As14 have previously been described as two genetically related proteins from Ascaris suum that induced protective immunity in mice when formulated with cholera toxin B subunit (CTB) as an adjuvant, but the exact protective mechanism was not well understood. Methodology/Principal findings As16 and As14 were highly expressed as soluble recombinant proteins (rAs16 and rAs14) in Pichia pastoris. The yeast-expressed rAs16 was highly recognized by immune sera from mice infected with A. suum eggs and elicited 99.6% protection against A. suum re-infection. Mice immunized with rAs16 formulated with ISA720 displayed significant larva reduction (36.7%) and stunted larval development against A. suum eggs challenge. The protective immunity was associated with a predominant Th2-type response characterized by high titers of serological IgG1 (IgG1/IgG2a > 2000) and high levels of IL-4 and IL-5 produced by restimulated splenocytes. A similar level of protection was observed in mice immunized with rAs16 formulated with alum (Alhydrogel), known to induce mainly a Th2-type immune response, whereas mice immunized with rAs16 formulated with MPLA or AddaVax, both known to induce a Th1-type biased response, were not significantly protected against A. suum infection. The rAs14 protein was not recognized by A. suum infected mouse sera and mice immunized with rAs14 formulated with ISA720 did not show significant protection against challenge infection, possibly due to the protein’s inaccessibility to the host immune system or a Th1-type response was induced which would counter a protective Th2-type response. Conclusions/Significance Yeast-expressed rAs16 formulated with ISA720 or alum induced significant protection in mice against A. suum egg challenge that associates with a Th2-skewed immune response, suggesting that rAS16 could be a feasible vaccine candidate against ascariasis. Roundworms (Ascaris) infect more than 700 million people living in poverty worldwide and cause malnutrition and physical and mental developmental delays in children. As an alternative or complementary approach to global deworming, a pan-anthelminthic vaccine is under development that targets ascariasis in addition to other human intestinal nematode infections. Towards this goal, two Ascaris suum antigens, As16 and As14, were expressed in Pichia pastoris as recombinant proteins. Mice immunized with rAs16 formulated with ISA720 adjuvant produced significant larva reduction (36.7%) and stunted larval development against A. suum egg challenge. The protection was associated with predominant Th2-type responses characterized by high levels of serological IgG1 (IgG1/IgG2a > 2,000) and Th2 cytokines, IL-4 and IL-5. A similar level of protection was observed in mice immunized with rAs16 formulated with alum that induces mainly a Th2-type immune response, whereas mice immunized with rAs16 formulated with MPLA or AddaVax, both inducing major Th1-type responses, were not significantly protected against A. suum infection. High-yield expression of rAs16 in yeast will allow for large-scale manufacture, and its protective efficacy when formulated with alum suggests its suitability as a vaccine candidate.
Collapse
|
34
|
Abstract
Innate lymphoid cells are functionally diverse subsets of immune cells including the conventional natural killer cells, lymphoid tissue inducers, type 1, 2, and 3 with significant roles in immunity and pathogenesis of inflammatory diseases. Type 2 innate lymphoid cells (ILC2s) resemble type 2 helper (Th2) cells in cytokine production and contribute to anti-helminth immunity, maintaining mucosal tissue integrity, and adipose tissue browning. ILC2s play important roles in the pathogenesis of allergic diseases and asthma. Studying the pathways of activation and regulation of ILC2s are currently a priority for giving a better understanding of pathogenesis of diseases with immunological roots. Recently, our laboratory and others have shown several pathways of regulation of ILC2s by co-stimulatory molecules such as ICOS, regulatory T cells and by compounds such as nicotine. In this review, we summarize the current understanding of the mechanisms of activation and regulation of ILC2s and the role of these cells in health and disease.
Collapse
Affiliation(s)
- Hadi Maazi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, California 90033, USA
| |
Collapse
|
35
|
Ehsan M, Gao W, Gadahi JA, Lu M, Liu X, Wang Y, Yan R, Xu L, Song X, Li X. Arginine kinase from Haemonchus contortus decreased the proliferation and increased the apoptosis of goat PBMCs in vitro. Parasit Vectors 2017. [PMID: 28651566 PMCID: PMC5485575 DOI: 10.1186/s13071-017-2244-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arginine kinase (AK), an important member of phosphagen kinase family has been extensively studied in various vertebrates and invertebrates. Immunologically, AKs are important constituents of different body parts, involved in various biological and cellular functions, and considered as immune-modulator and effector for pro-inflammatory cytokines. However, immunoregulatory changes of host cells triggered by AK protein of Haemonchus contortus, a parasitic nematode of ruminants, are still unknown. The current study was focused on cloning and characterisation of Hc-AK, and its regulatory effects on cytokines level, cell migration, cell proliferation, nitric oxide production and apoptosis of goat peripheral blood mononuclear cells (PBMCs) were observed. METHODS The full-length sequence of the Hc-AK gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sub-cloned into the prokaryotic expression vector pET-32a. The biochemical characteristics of recombinant protein Hc-AK, which was purified by affinity chromatography, were performed based on the enzymatic assay. Binding of rHc-AK with PBMCs was confirmed by immunofluorescence assay (IFA). Immunohistochemical analysis was used to detect localisation of Hc-AK within adult worms sections. The immunoregulatory effects of rHc-AK on cytokine secretions, cell proliferation, cell migration, nitric oxide production and apoptosis were determined by co-incubation of rHc-AK with goat PBMCs. RESULTS The full-length ORF (1080 bp) of the Hc-AK gene was successfully cloned, and His-tagged AK protein was expressed in the Escherichia coli strain BL21. The recombinant protein of Hc-AK (rHc-AK) was about 58.5 kDa together with the fused vector protein of 18 kDa. The biochemical assay showed that the protein encoded by the Hc-ak exhibited enzymatic activity. Western blot analysis confirmed that the rHc-AK was recognised by the sera from rat (rat-antiHc-AK). The IFA results showed that rHc-AK could bind on the surface of goat PBMCs. Immunohistochemically, Hc-AK was localised at the inner and outer membrane as well as in the gut region of adult worms. The binding of rHc-AK to host cells increased the levels of IL-4, IL-10, IL-17, IFN-γ, nitric oxide (NO) production and cell apoptosis of goat PBMCs, whereas, TGF-β1 levels, cell proliferation and PBMCs migration were significantly decreased in a dose dependent manner. CONCLUSIONS Our findings suggested that rHc-AK is an important excretory and secretory (ES) protein involved in host immune responses and exhibit distinct immunomodulatory properties during interaction with goat PBMCs.
Collapse
Affiliation(s)
- Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - WenXiang Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - MingMin Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XinChao Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - YuJian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
36
|
Craig JM, Scott AL. Antecedent Nippostrongylus infection alters the lung immune response to Plasmodium berghei. Parasite Immunol 2017; 39. [PMID: 28475238 DOI: 10.1111/pim.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/25/2017] [Indexed: 12/13/2022]
Abstract
In endemic regions, it is not uncommon for patients to be co-infected with soil-transmitted helminths and malaria. Although both malaria and many helminth species use the lungs as a site of development, little attention has been paid to the impact that pulmonary immunity induced by one parasite has on the lung response to the other. To model the consequences of a prior hookworm exposure on the development of immunity to malaria in the lungs, mice were infected with Nippostrongylus brasiliensis and 2 weeks later challenged with Plasmodium berghei. We found that a pre-existing hookworm-induced type 2 immune environment had a measurable but modest impact on the nature of the malaria-driven type 1 cytokine response in the lungs that was associated with a transient effect on parasite development and no significant changes in morbidity and mortality after malaria infection. However, prior hookworm infection did have a lasting effect on lung macrophages, where the malaria-induced M1-like response was blunted by previous M2 polarization. These results demonstrate that, although helminth parasites confer robust changes to the immunological status of the pulmonary microenvironment, lung immunity is plastic and capable of rapidly adapting to consecutive heterologous infections.
Collapse
Affiliation(s)
- J M Craig
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - A L Scott
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
37
|
Pelly VS, Coomes SM, Kannan Y, Gialitakis M, Entwistle LJ, Perez-Lloret J, Czieso S, Okoye IS, Rückerl D, Allen JE, Brombacher F, Wilson MS. Interleukin 4 promotes the development of ex-Foxp3 Th2 cells during immunity to intestinal helminths. J Exp Med 2017; 214:1809-1826. [PMID: 28507062 PMCID: PMC5460998 DOI: 10.1084/jem.20161104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 01/03/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022] Open
Abstract
Pelly et al. use novel mouse reporter systems to show that a proportion of Th2 cells develop from Foxp3-expressing cells in an IL-4–dependent manner, highlighting the potential to subvert T reg cell–mediated suppression in favor of type 2 immunity. Immunity to intestinal helminth infections requires the rapid activation of T helper 2 cells (Th2 cells). However, simultaneous expansion of CD4+Foxp3+ regulatory T cells (T reg cells) impedes protective responses, resulting in chronic infections. The ratio between T reg and effector T cells can therefore determine the outcome of infection. The redifferentiation of T reg cells into Th cells has been identified in hyperinflammatory diseases. In this study, we asked whether ex–T reg Th2 cells develop and contribute to type-2 immunity. Using multigene reporter and fate-reporter systems, we demonstrate that a significant proportion of Th2 cells derive from Foxp3+ cells after Heligmosomoides polygyrus infection and airway allergy. Ex-Foxp3 Th2 cells exhibit characteristic Th2 effector functions and provide immunity to H. polygyrus. Through selective deletion of Il4ra on Foxp3+ cells, we further demonstrate IL-4 is required for the development of ex-Foxp3 Th2 cells. Collectively, our findings indicate that converting T reg cells into Th2 cells could concomitantly enhance Th2 cells and limit T reg cell–mediated suppression.
Collapse
Affiliation(s)
- Victoria S Pelly
- Allergy and Anti-Helminth Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Stephanie M Coomes
- Allergy and Anti-Helminth Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Yashaswini Kannan
- Allergy and Anti-Helminth Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Manolis Gialitakis
- Ahr Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Lewis J Entwistle
- Allergy and Anti-Helminth Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Jimena Perez-Lloret
- Allergy and Anti-Helminth Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Stephanie Czieso
- Allergy and Anti-Helminth Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Isobel S Okoye
- Allergy and Anti-Helminth Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| | - Dominik Rückerl
- Faculty of Life Sciences (3IR), University of Manchester, Manchester M13 9PT, England, UK
| | - Judith E Allen
- Faculty of Life Sciences (3IR), University of Manchester, Manchester M13 9PT, England, UK
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, University of Cape Town, Institute of Infectious Disease and Molecular Medicine and South African Medical Research Council, 7925 Cape Town, South Africa
| | - Mark S Wilson
- Allergy and Anti-Helminth Immunity Laboratory, Mill Hill Laboratory, The Francis Crick Institute, London NW7 1AA, England, UK
| |
Collapse
|
38
|
Doligalska M, Jóźwicka K, Donskow-Łysoniewska K, Kalinowska M. The antiparasitic activity of avenacosides against intestinal nematodes. Vet Parasitol 2017; 241:5-13. [PMID: 28579031 DOI: 10.1016/j.vetpar.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022]
Abstract
Avena sativa L., 1753 (Poaceae) is used as feed for livestock and as a crop rotation agent. The purpose of the study was to examine the molecular mechanisms behind the antihelminth activity of the oat saponins avenacoside B (AveB) and 26-desglucoavenacoside B (26DGAveB) by evaluating their effect on Heligmosomoides bakeri, a parasitic nematode of mice. The avenacosides AveB and 26DGAveB were separated and purified from A. sativa green leaves, and their mycotoxic activity was confirmed against the fungus Trichoderma harzianum. The anti-nematode activity of the avenacosides was measured by egg hatching assay. In the surviving L3 larvae exposed to avenacosides, the expression of CED-9, a protein of the apoptosis pathway, was identified by Western blotting. The protein profile of L3 larvae was monitored by High Performance Liquid Chromatography (HPLC). The action of saponins on glycoprotein pump (Pgp) activity in L3 larvae was compared to that of the pump blocker Verapamil (VPL). A mouse model was used to measure the infectivity of L3 larvae exposed to AveB and 26DGAveB, and the outcome of the immune response. Both compounds induced morphological changes in larvae and blocked Pgp activity; however, only 26DGAveB provoked expression of CED-9. The infected mice displayed changes in the molecular pattern of larval proteins and enhanced IL-4 production, indicating that avenacosides reduced the infectivity of H. bakeri larvae. In avenacosides, the residue without glucose at the C26 position demonstrated greater anti-nematode activity. Our findings indicate that A. sativa compounds are natural products with anti-parasitic activity.
Collapse
Affiliation(s)
- Maria Doligalska
- Department of Parasitology, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Kinga Jóźwicka
- Department of Parasitology, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | - Małgorzata Kalinowska
- Department of Plant Biochemistry, Faculty of Biology University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
39
|
Li B, Gadahi JA, Gao W, Zhang Z, Ehsan M, Xu L, Song X, Li X, Yan R. Characterization of a novel aspartyl protease inhibitor from Haemonchus contortus. Parasit Vectors 2017; 10:191. [PMID: 28420411 PMCID: PMC5395858 DOI: 10.1186/s13071-017-2137-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
Background Aspartyl protease inhibitor (API) was thought to protect intestinal parasitic nematodes from their hostile proteolytic environment. Studies on Ostertagia ostertagi, Ascaris suum and Brugia malayi indicated that aspins might play roles in nematode infection. In a recent study, proteins differentially expressed between free-living third-stage larvae (L3) and activated L3 (xL3) of Haemonchus contortus were identified by 2D-DIGE. API was found downregulated in xL3 when compared with L3. However, there was no report about the functions of H. contortus API in the parasite-host interaction. In this study, the gene encoding API from H. contortus was cloned, expressed, and part of its biological characteristics were studied. Results A DNA fragment of 681 bp was amplified by RT-PCR. Ninety one percent of the amino acid sequence was similar with that for aspin from O. ostertagi. The recombinant API protein was fusion-expressed with a molecular weight of 48 × 103. Results of Western blot showed that the recombinant API could be recognized by serum from goat infected with H. contortus. It was found that API was localized exclusively in the subcutaneous tissue and epithelial cells of the gastrointestinal tract in adult H. contortus. qRT-PCR suggested that the API gene was differentially transcribed in different life-cycle stages, with the lowest level in female adults and the highest in free-living L3 larvae. Enzyme inhibition assay indicated that the recombinant API can inhibit the activity of pepsin significantly, and the optimal reaction pH and temperature were 4.0 and 37–50 °C respectively. In vitro study showed that the recombinant API could induce goat PBMCs to express IFN-γ, IL-4 and IL-10. Conclusions A new aspartyl protease inhibitor was cloned from H. contortus and its characteristics were studied for the first time. The results indicate that API may regulate the immune response of the host and play roles in the infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baojie Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Veterinary Parasitology, Sindh Agriculture University, Tandojam, Pakistan
| | - Wenxiang Gao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenchao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
40
|
Plank MW, Kaiko GE, Maltby S, Weaver J, Tay HL, Shen W, Wilson MS, Durum SK, Foster PS. Th22 Cells Form a Distinct Th Lineage from Th17 Cells In Vitro with Unique Transcriptional Properties and Tbet-Dependent Th1 Plasticity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2182-2190. [PMID: 28100680 PMCID: PMC5367520 DOI: 10.4049/jimmunol.1601480] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
Abstract
Th22 cells are a major source of IL-22 and have been found at sites of infection and in a range of inflammatory diseases. However, their molecular characteristics and functional roles remain largely unknown because of our inability to generate and isolate pure populations. We developed a novel Th22 differentiation assay and generated dual IL-22/IL-17A reporter mice to isolate and compare pure populations of cultured Th22 and Th17 cells. Il17a fate-mapping and transcriptional profiling provide evidence that these Th22 cells have never expressed IL-17A, suggesting that they are potentially a distinct cell lineage from Th17 cells under in vitro culture conditions. Interestingly, Th22 cells also expressed granzymes, IL-13, and increased levels of Tbet. Using transcription factor-deficient cells, we demonstrate that RORγt and Tbet act as positive and negative regulators of Th22 differentiation, respectively. Furthermore, under Th1 culture conditions in vitro, as well as in an IFN-γ-rich inflammatory environment in vivo, Th22 cells displayed marked plasticity toward IFN-γ production. Th22 cells also displayed plasticity under Th2 conditions in vitro by upregulating IL-13 expression. Our work has identified conditions to generate and characterize Th22 cells in vitro. Further, it provides evidence that Th22 cells develop independently of the Th17 lineage, while demonstrating plasticity toward both Th1- and Th2-type cells.
Collapse
Affiliation(s)
- Maximilian W Plank
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Gerard E Kaiko
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Jessica Weaver
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Wei Shen
- Laboratory of Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702; and
| | - Mark S Wilson
- Division of Molecular Immunology, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Scott K Durum
- Laboratory of Immunoregulation, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702; and
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Pharmacy and Biomedical Sciences, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales 2308, Australia;
| |
Collapse
|
41
|
Syedbasha M, Egli A. Interferon Lambda: Modulating Immunity in Infectious Diseases. Front Immunol 2017; 8:119. [PMID: 28293236 PMCID: PMC5328987 DOI: 10.3389/fimmu.2017.00119] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections and autoimmune diseases, through a network of induced genes. IFN-λs act by binding to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation-dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, which modulate various immune functions via complex forward and feedback loops. When compared to the well-characterized IFN-α signaling cascade, three important differences have been discovered. First, the IFNLR is not ubiquitously expressed: in particular, immune cells show significant variation in the expression levels of and susceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR varies greatly and are generally lower compared to the binding affinities of IFN-α to its receptor. Finally, genetic variation in the form of a series of single-nucleotide polymorphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been described and associated with the clinical course and treatment outcomes of hepatitis B and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, however, reach far beyond viral hepatitis. Recent publications show important roles for IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial colonization and infections as shown for Staphylococcus aureus and Mycobacterium tuberculosis. Although the immunological processes involved in controlling viral and bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced signaling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions via macrophage and dendritic cell polarization, and subsequent priming, activation, and proliferation of pathogen-specific T- and B-cells may also be important elements associated with infectious disease outcomes. This review summarizes the emerging details of the IFN-λ immunobiology in the context of the host immune response and viral and bacterial infections.
Collapse
Affiliation(s)
- Mohammedyaseen Syedbasha
- Applied Microbiology Research, Department of Biomedicine, University of Basel , Basel , Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
42
|
Gadahi JA, Ehsan M, Wang S, Zhang Z, Wang Y, Yan R, Song X, Xu L, Li X. Recombinant protein of Haemonchus contortus 14-3-3 isoform 2 (rHcftt-2) decreased the production of IL-4 and suppressed the proliferation of goat PBMCs in vitro. Exp Parasitol 2016; 171:57-66. [PMID: 27751769 DOI: 10.1016/j.exppara.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
14-3-3 proteins have been found to be an excreted/secreted antigen and assumed to be released into the host-parasite interface and described in several unicellular and multicellular parasites. However, little is known about the immunomodulatory effects of H. controtus 14-3-3 protein on host cell. In present study, 14-3-3 isoform 2 gene, designated as Hcftt-2, was amplified by reverse transcription-polymerase chain reaction (RT-PCR) from the adult H. contortus cDNA and cloned into expression plasmid pET32a (+) and expression of the recombinant protein (rHcftt-2) was induced by IPTG. Binding activity of rHcftt-2 to goat peripheral blood mononuclear cells (PBMCs) was confirmed by immunofluorescence assay (IFA) and modulatory effects on cytokine production, cell proliferation, cell migration and nitric oxide (NO) production were observed by co-incubation of rHcftt-2 with goat PBMCs. Sequence analysis showed that it had significant homology with the known 14-3-3 protein isoform 2. Results of IFA revealed that, the rHcftt-2 was bound to the cell surface. We found that, the productions of IL10, IL-17, IFN-γ and cell migration of PBMCs were increased after the cells were incubated with rHCftt-2. However, the productions of IL-4, NO and cell proliferation of the PBMCs were significantly decreased in dose depended manner. Our results showed that the Hcftt-2 played important suppressive regulatory effects on the goat PBMCs.
Collapse
Affiliation(s)
- Javaid Ali Gadahi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Muhammad Ehsan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Shuai Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - ZhenChao Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yujian Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - RuoFeng Yan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - XiaoKai Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - LiXin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - XiangRui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
43
|
Hercor M, Anciaux M, Denanglaire S, Debuisson D, Leo O, Andris F. Antigen-presenting cell-derived IL-6 restricts the expression of GATA3 and IL-4 by follicular helper T cells. J Leukoc Biol 2016; 101:5-14. [PMID: 27474166 DOI: 10.1189/jlb.1hi1115-511r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 06/09/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
Follicular helper T cells (Tfh) support high-affinity Ab production by germinal center B cells through both membrane interactions and secretion of IL-4 and -21, two major cytokines implicated in B-cell survival and Ab class switch. Tfh-2 cells recently emerged in humans as a strong IL-4 producer Tfh cell subset implicated in both autoimmune and allergic diseases. Although the molecular mechanisms governing Tfh cell differentiation from naive T cells have been widely described, much less is known about the regulation of cytokine secretion by mouse Tfh-2 cells. The purpose of our study was to evaluate the role of dendritic cell-derived IL-6 in fine-tuning cytokine secretion by Tfh cells. Our results demonstrate that priming of Th cells by IL-6-deficient antigen-presenting dendritic cells preferentially leads to accumulation of a subset of Tfh cells characterized by high expression of GATA3 and IL-4, associated with reduced production of IL-21. STAT3-deficient Tfh cells also overexpress GATA3, suggesting that early IL-6/STAT3 signaling during Tfh cell development inhibits the expression of a set of genes associated with the Th2 differentiation program. Overall, our data indicate that IL-6/STAT3 signaling restrains the expression of Th2-like genes in Tfh cells, thus contributing to the control of IgE secretion in vivo.
Collapse
Affiliation(s)
- Mélanie Hercor
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Belgium
| | - Maelle Anciaux
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Belgium
| | | | | | - Oberdan Leo
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Belgium
| | - Fabienne Andris
- Laboratoire d'Immunobiologie, Université Libre de Bruxelles, Belgium
| |
Collapse
|
44
|
Guivier E, Bellenger J, Sorci G, Faivre B. Helminth Interaction with the Host Immune System: Short-Term Benefits and Costs in Relation to the Infectious Environment. Am Nat 2016; 188:253-63. [PMID: 27420789 DOI: 10.1086/687149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chronic infections imply that the parasite and the host immune system closely interact for a long time without a fatal outcome. Environmental changes encountered by hosts and parasites, such as coinfections, can deeply affect the stability of this apparent equilibrium. Our study aimed to determine the effect of the infectious environment on the costs and benefits of chronic infection with the gut nematode Heligmosomoides polygyrus in mice. Heligmosomoides polygyrus is known for its capacity to actively interfere with the host immune response by secreting molecules that can dampen immunity. We simulated bacterial coinfection of H. polygyrus-infected CBA-strain mice during the chronic phase of the infection by injecting them with Escherichia coli lipopolysaccharide. We found that infection by H. polygyrus induced only weak costs for the host (in terms of reproductive investment) and was characterized by the upregulation of both Th1 (interferon-γ) and anti-inflammatory (transforming growth factor-β) cytokines, which is favorable to parasite persistence. However, when co-occurring with the simulated bacterial infection, H. polygyrus infection was associated with a pronounced shift toward a pro-inflammatory status, which was deleterious to both the parasite and the host. Our study highlights the dynamic equilibrium reached during chronic infection, where a rapid environmental change, such as a concomitant bacterial infection, can deeply affect the outcome of the host-parasite interaction.
Collapse
|