1
|
Son HG, Ha DT, Xia Y, Li T, Blandin J, Oka T, Azin M, Conrad DN, Zhou C, Zeng Y, Hasegawa T, Strickley JD, Messerschmidt JL, Guennoun R, Erlich TH, Shoemaker GL, Johnson LH, Palmer KE, Fisher DE, Horn TD, Neel VA, Nazarian RM, Joh JJ, Demehri S. Commensal papillomavirus immunity preserves the homeostasis of highly mutated normal skin. Cancer Cell 2025; 43:36-48.e10. [PMID: 39672169 PMCID: PMC11732714 DOI: 10.1016/j.ccell.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Immunosuppression commonly disrupts the homeostasis of mutated normal skin, leading to widespread skin dysplasia and field cancerization. However, the immune system's role in maintaining the normal state of mutated tissues remains uncertain. Herein, we demonstrate that T cell immunity to cutaneotropic papillomaviruses promotes the homeostasis of ultraviolet radiation-damaged skin. Mouse papillomavirus (MmuPV1) colonization blocks the expansion of mutant p53 clones in the epidermis in a CD8+ T cell-dependent manner. MmuPV1 activity is increased in p53-deficient keratinocytes, leading to their specific targeting by CD8+ T cells in the skin. Sun-exposed human skin containing mutant p53 clones shows increased epidermal beta-human papillomavirus (β-HPV) activity and CD8+ T cell infiltrates compared with sun-protected skin. The expansion of mutant p53 clones in premalignant skin lesions associates with β-HPV loss. Thus, immunity to commensal HPVs contributes to the homeostasis of mutated normal skin, highlighting the role of virome-immune system interactions in preserving aging human tissues.
Collapse
Affiliation(s)
- Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dat Thinh Ha
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yun Xia
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tiancheng Li
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmine Blandin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomonori Oka
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle N Conrad
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Can Zhou
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuhan Zeng
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tatsuya Hasegawa
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John D Strickley
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jonathan L Messerschmidt
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ranya Guennoun
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tal H Erlich
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory L Shoemaker
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Luke H Johnson
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Kenneth E Palmer
- Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas D Horn
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Victor A Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rosalynn M Nazarian
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joongho J Joh
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wong M, Tu HF, Tseng SH, Mellinger-Pilgrim R, Best S, Tsai HL, Xing D, Hung CF, Lambert PF, Roden RBS. MmuPV1 infection of Tmc6/Ever1 or Tmc8/Ever2 deficient FVB mice as a model of βHPV in typical epidermodysplasia verruciformis. PLoS Pathog 2025; 21:e1012837. [PMID: 39813296 PMCID: PMC11734914 DOI: 10.1371/journal.ppat.1012837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection. However, the complex is also present in lymphocytes and its loss may compromise cellular immune control of βHPV infection. Indeed, certain primary immunodeficiencies, iatrogenic immunosuppression and AIDS are associated with the atypical form of EV. While well controlled in immunocompetent mice, murine papillomavirus MmuPV1 was first isolated from immunodeficient mice with florid skin warts, modeling atypical EV. To examine their potential as a model of typical EV, Tmc6-/-, Tmc8-/- or wildtype FVB mice were challenged with MmuPV1. At day 16 post vaginal challenge with MmuPV1, the levels of viral transcripts were similar in Tmc6-/- and Tmc8-/- mice and wildtype FVB mice, arguing against Tmc6/8 acting as intracellular restriction factors. Thereafter, greater clearance of MmuPV1 by the wildtype that the Tmc6-/- and Tmc8-/- FVB mice was evident, supporting the hypothesis that typical EV reflects a subtle cellular immune deficit. Indeed, Tmc6-/- or Tmc8-/- mice exhibit partial CD8 T cell deficits and elevated Treg. While interferon-γ production and surface CD25 were similarly elevated in CD8 T cells upon in vitro stimulation with anti-CD3/CD28, the fraction of Tmc6-/- or Tmc8-/- CD8 T cells that were dividing was lower compared to wildtype. Typical EV patients exhibit normal control of most viral infections; Tmc6-/-, Tmc8-/- and wildtype FVB mice similarly controlled vaccinia virus after skin challenge and induced neutralizing antibodies.
Collapse
Affiliation(s)
- Margaret Wong
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ssu-Hsieh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Rebecca Mellinger-Pilgrim
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institution, Baltimore, Maryland, United States of America
| | - Simon Best
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institution, Baltimore, Maryland, United States of America
| | - Hua-Ling Tsai
- Oncology Biostatistics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Deyin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chien-fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Richard B. S. Roden
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Wang W, Pope A, Ward-Shaw E, Buehler D, Bachelerie F, Lambert PF. Increased Susceptibility of WHIM Mice to Papillomavirus-induced Disease is Dependent upon Immune Cell Dysfunction. PLoS Pathog 2024; 20:e1012472. [PMID: 39226327 PMCID: PMC11398641 DOI: 10.1371/journal.ppat.1012472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome is a rare primary immunodeficiency disease in humans caused by a gain of function in CXCR4, mostly due to inherited heterozygous mutations in CXCR4. One major clinical symptom of WHIM patients is their high susceptibility to human papillomavirus (HPV) induced disease, such as warts. Persistent high risk HPV infections cause 5% of all human cancers, including cervical, anogenital, head and neck and some skin cancers. WHIM mice bearing the same mutation identified in WHIM patients were created to study the underlying causes for the symptoms manifest in patients suffering from the WHIM syndrome. Using murine papillomavirus (MmuPV1) as an infection model in mice for HPV-induced disease, we demonstrate that WHIM mice are more susceptible to MmuPV1-induced warts (papillomas) compared to wild type mice. Namely, the incidence of papillomas is higher in WHIM mice compared to wild type mice when mice are exposed to low doses of MmuPV1. MmuPV1 infection facilitated both myeloid and lymphoid cell mobilization in the blood of wild type mice but not in WHIM mice. Higher incidence and larger size of papillomas in WHIM mice correlated with lower abundance of infiltrating T cells within the papillomas. Finally, we demonstrate that transplantation of bone marrow from wild type mice into WHIM mice normalized the incidence and size of papillomas, consistent with the WHIM mutation in hematopoietic cells contributing to higher susceptibility of WHIM mice to MmuPV1-induced disease. Our results provide evidence that MmuPV1 infection in WHIM mice is a powerful preclinical infectious model to investigate treatment options for alleviating papillomavirus infections in WHIM syndrome.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Ali Pope
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Francoise Bachelerie
- Inflammation, Microbiome and Immunosurveillance, INSERM UMR-996, Université Paris-Saclay, Orsay, France
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Atkins HM, Uslu AA, Li JJ, Shearer DA, Brendle SA, Han C, Kozak M, Lopez P, Nayar D, Balogh KK, Abendroth C, Copper J, Cheng KC, Christensen ND, Zhu Y, Avril S, Burgener AD, Murooka TT, Hu J. Monitoring mouse papillomavirus-associated cancer development using longitudinal Pap smear screening. mBio 2024; 15:e0142024. [PMID: 39012151 PMCID: PMC11323795 DOI: 10.1128/mbio.01420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
A substantial percentage of the population remains at risk for cervical cancer due to pre-existing human papillomavirus (HPV) infections, despite prophylactic vaccines. Early diagnosis and treatment are crucial for better disease outcomes. The development of new treatments heavily relies on suitable preclinical model systems. Recently, we established a mouse papillomavirus (MmuPV1) model that is relevant to HPV genital pathogenesis. In the current study, we validated the use of Papanicolaou (Pap) smears, a valuable early diagnostic tool for detecting HPV cervical cancer, to monitor disease progression in the MmuPV1 mouse model. Biweekly cervicovaginal swabs were collected from the MmuPV1-infected mice for viral DNA quantitation and cytology assessment. The Pap smear slides were evaluated for signs of epithelial cell abnormalities using the 2014 Bethesda system criteria. Tissues from the infected mice were harvested at various times post-viral infection for additional histological and virological assays. Over time, increased viral replication was consistent with higher levels of viral DNA, and it coincided with an uptick in epithelial cell abnormalities with higher severity scores noted as early as 10 weeks after viral infection. The cytological results also correlated with the histological evaluation of tissues harvested simultaneously. Both immunocompromised and immunocompetent mice with squamous cell carcinoma (SCC) cytology also developed vaginal SCCs. Notably, samples from the MmuPV1-infected mice exhibited similar cellular abnormalities compared to the corresponding human samples at similar disease stages. Hence, Pap smear screening proves to be an effective tool for the longitudinal monitoring of disease progression in the MmuPV1 mouse model. IMPORTANCE Papanicolaou (Pap) smear has saved millions of women's lives as a valuable early screening tool for detecting human papillomavirus (HPV) cervical precancers and cancer. However, more than 200,000 women in the United States alone remain at risk for cervical cancer due to pre-existing HPV infection-induced precancers, as there are currently no effective treatments for HPV-associated precancers and cancers other than invasive procedures including a loop electrosurgical excision procedure (LEEP) to remove abnormal tissues. In the current study, we validated the use of Pap smears to monitor disease progression in our recently established mouse papillomavirus model. To the best of our knowledge, this is the first study that provides compelling evidence of applying Pap smears from cervicovaginal swabs to monitor disease progression in mice. This HPV-relevant cytology assay will enable us to develop and test novel antiviral and anti-tumor therapies using this model to eliminate HPV-associated diseases and cancers.
Collapse
Affiliation(s)
- Hannah M. Atkins
- Department of Pathology and Laboratory Medicine, Division of Comparative Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aysegul Aksakal Uslu
- Department of Pathology and Laboratory Medicine, Division of Comparative Medicine, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jingwei J. Li
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Debra A. Shearer
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Sarah A. Brendle
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Chen Han
- TEM facility, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Michael Kozak
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Paul Lopez
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deesha Nayar
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Karla K. Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Catherine Abendroth
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jean Copper
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Keith C. Cheng
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Microbiology and immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Yusheng Zhu
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Stefanie Avril
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Adam D. Burgener
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Global Health and Diseases, University of Manitoba, Winnipeg, Canada
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Manitoba, Winnipeg, Canada
- Department of Medicine, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Thomas T. Murooka
- Department of Immunology, The University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
- Department of Pathology and laboratory medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
5
|
King RE, Rademacher J, Ward-Shaw ET, Hu R, Bilger A, Blaine-Sauer S, Spurgeon ME, Thibeault SL, Lambert PF. The Larynx is Protected from Secondary and Vertical Papillomavirus Infection in Immunocompetent Mice. Laryngoscope 2024; 134:2322-2330. [PMID: 38084790 PMCID: PMC11006576 DOI: 10.1002/lary.31228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE Mouse papillomavirus MmuPV1 causes both primary and secondary infections of the larynx in immunocompromised mice. Understanding lateral and vertical transmission of papillomavirus to the larynx would benefit patients with recurrent respiratory papillomatosis (RRP). To test the hypothesis that the larynx is uniquely vulnerable to papillomavirus infection, and to further develop a mouse model of RRP, we assessed whether immunocompetent mice were vulnerable to secondary or vertical laryngeal infection with MmuPV1. METHODS Larynges were collected from 405 immunocompetent adult mice that were infected with MmuPV1 in the oropharynx, oral cavity, or anus, and 31 mouse pups born to immunocompetent females infected in the cervicovaginal tract. Larynges were analyzed via polymerase chain reaction (PCR) of lavage fluid or whole tissues for viral DNA, histopathology, and/or in situ hybridization for MmuPV1 transcripts. RESULTS Despite some positive laryngeal lavage PCR screens, all laryngeal tissue PCR and histopathology results were negative for MmuPV1 DNA, transcripts, and disease. There was no evidence for lateral spread of MmuPV1 to the larynges of immunocompetent mice that were infected in the oral cavity, oropharynx, or anus. Pups born to infected mothers were negative for laryngeal MmuPV1 infection from birth through weaning age. CONCLUSION Secondary and vertical laryngeal MmuPV1 infections were not found in immunocompetent mice. Further work is necessary to explore immunologic control of laryngeal papillomavirus infection in a mouse model and to improve preclinical models of RRP. LEVEL OF EVIDENCE NA Laryngoscope, 134:2322-2330, 2024.
Collapse
Affiliation(s)
- Renee E. King
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
- Division of Surgical Oncology, Department of Surgery, University of Wisconsin-Madison, Madison, WI
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Josef Rademacher
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Ella T. Ward-Shaw
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI
| | - Andrea Bilger
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Susan L. Thibeault
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Madison, WI
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
6
|
Pei L, Hickman HD. T Cell Surveillance during Cutaneous Viral Infections. Viruses 2024; 16:679. [PMID: 38793562 PMCID: PMC11126121 DOI: 10.3390/v16050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The skin is a complex tissue that provides a strong physical barrier against invading pathogens. Despite this, many viruses can access the skin and successfully replicate in either the epidermal keratinocytes or dermal immune cells. In this review, we provide an overview of the antiviral T cell biology responding to cutaneous viral infections and how these responses differ depending on the cellular targets of infection. Much of our mechanistic understanding of T cell surveillance of cutaneous infection has been gained from murine models of poxvirus and herpesvirus infection. However, we also discuss other viral infections, including flaviviruses and papillomaviruses, in which the cutaneous T cell response has been less extensively studied. In addition to the mechanisms of successful T cell control of cutaneous viral infection, we highlight knowledge gaps and future directions with possible impact on human health.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
7
|
Brendle SA, Li JJ, Walter V, Schell TD, Kozak M, Balogh KK, Lu S, Christensen ND, Zhu Y, El-Bayoumy K, Hu J. Immune Responses in Oral Papillomavirus Clearance in the MmuPV1 Mouse Model. Pathogens 2023; 12:1452. [PMID: 38133335 PMCID: PMC10745854 DOI: 10.3390/pathogens12121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Human papillomavirus (HPV)-induced oropharyngeal cancer now exceeds HPV-induced cervical cancer, with a noticeable sex bias. Although it is well established that women have a more proficient immune system, it remains unclear whether immune control of oral papillomavirus infections differs between sexes. In the current study, we use genetically modified mice to target CCR2 and Stat1 pathways, with the aim of investigating the role of both innate and adaptive immune responses in clearing oral papillomavirus, using our established papillomavirus (MmuPV1) infection model. Persistent oral MmuPV1 infection was detected in Rag1ko mice with T and B cell deficiencies. Meanwhile, other tested mice were susceptible to MmuPV1 infections but were able to clear the virus. We found sex differences in key myeloid cells, including macrophages, neutrophils, and dendritic cells in the infected tongues of wild type and Stat1ko mice but these differences were not observed in CCR2ko mice. Intriguingly, we also observed a sex difference in anti-MmuPV1 E4 antibody levels, especially for two IgG isotypes: IgG2b and IgG3. However, we found comparable numbers of interferon-gamma-producing CD8 T cells stimulated by E6 and E7 in both sexes. These findings suggest that males and females may use different components of innate and adaptive immune responses to control papillomavirus infections in the MmuPV1 mouse model. The observed sex difference in immune responses, especially in myeloid cells including dendritic cell (DC) subsets, may have potential diagnostic and prognostic values for HPV-associated oropharyngeal cancer.
Collapse
Affiliation(s)
- Sarah A. Brendle
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Jingwei J. Li
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Vonn Walter
- Department of Biochemistry & Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.W.); (K.E.-B.)
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Todd D. Schell
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Karla K. Balogh
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Song Lu
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
| | - Yusheng Zhu
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| | - Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.W.); (K.E.-B.)
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, State College, PA 17033, USA; (S.A.B.); (J.J.L.); (M.K.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.L.); (Y.Z.)
| |
Collapse
|
8
|
Ticar V, Tschirley A, Wilson M, Plessis AD, Hibma M. Case report: An adverse response to cyclosporin A treatment in BALB/cJ mice. Lab Anim 2023; 57:669-675. [PMID: 37395465 DOI: 10.1177/00236772231177857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cyclosporin A (CsA) is an immunosuppressive drug that has been widely used in mice at a range of doses from 10 to 200 mg/kg. Our group carried out an experiment in 2016 where we delivered 75 mg/kg CsA (NeoralTM) to BALB/cJ mice by oral gavage to enable wart formation in mice, which was moderately well-tolerated. We recently commenced another study using the same dose and route of delivery of CsA in BALB/cJ mice in order to immune suppress mice to make them susceptible for mouse papillomavirus infection. We highlight in this case report that in contrast to our earlier study, we observed almost immediate unexpected toxicity and had to terminate the recent experiment after only five days of treatment. Seven to eight-week-old female BALB/cJ mice were treated with 75 mg/kg of CsA by oral gavage daily for five days before treatment was stopped due to body weight loss and mice becoming moribund. The probability of survival of the mice following CsA treatment was 80% in this study, compared with 98% in our 2016 study. Mice showed signs of probable acute kidney injury, which was reversible following withdrawal of CsA. Although it is unclear why the clinical response to CsA in BALB/cJ mice differed markedly between the two experiments, this case report highlights the risk of CsA to mouse welfare. CD3 depletion has been used rather than CsA treatment in other studies and should be considered as an alternative to CsA treatment as it is immune-selective, and may be more effective at enabling wart formation in mice.
Collapse
Affiliation(s)
- Vaughn Ticar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Allison Tschirley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michelle Wilson
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anene du Plessis
- Animal Welfare Office, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Li Y, Feng Y, Chen Y, Lin W, Gao H, Chen M, Osafo KS, Mao X, Kang Y, Huang L, Liu D, Xu S, Huang L, Dong B, Sun P. Peripheral blood lymphocytes influence human papillomavirus infection and clearance: a retrospective cohort study. Virol J 2023; 20:80. [PMID: 37127618 PMCID: PMC10152704 DOI: 10.1186/s12985-023-02039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND There is a close correlation between HPV infection and systemic immune status. The purpose of this study was to determine which lymphocytes in peripheral blood influence human papillomavirus (HPV) infection and to identify whether peripheral blood lymphocyte (PBL) subsets could be used as biomarkers to predict HPV clearance in the short term. METHODS This study involved 716 women undergoing colposcopy from 2019 to 2021. Logistic and Cox regression were used to analyze the association of PBLs with HPV infection and clearance. Using Cox regression, bidirectional stepwise regression and the Akaike information criterion (AIC), lymphocyte prediction models were developed, with the C-index assessing performance. ROC analysis determined optimal cutoff values, and their accuracy for HPV clearance risk stratification was evaluated via Kaplan‒Meier and time-dependent ROC. Bootstrap resampling validated the model and cutoff values. RESULTS Lower CD4 + T cells were associated with a higher risk of HPV, high-risk HPV, HPV18 and HPV52 infections, with corresponding ORs (95% CI) of 1.58 (1.16-2.15), 1.71 (1.23-2.36), 2.37 (1.12-5.02), and 3.67 (1.78-7.54), respectively. PBL subsets mainly affect the natural clearance of HPV, but their impact on postoperative HPV outcomes is not significant (P > 0.05). Lower T-cell and CD8 + T-cell counts, as well as a higher NK cell count, are unfavorable factors for natural HPV clearance (P < 0.05). The optimal cutoff values determined by the PBL prognostic model (T-cell percentage: 67.39%, NK cell percentage: 22.65%, CD8 + T-cell model risk score: 0.95) can effectively divide the population into high-risk and low-risk groups, accurately predicting the natural clearance of HPV. After internal validation with bootstrap resampling, the above conclusions still hold. CONCLUSIONS CD4 + T cells were important determinants of HPV infection. T cells, NK cells, and CD8 + T cells can serve as potential biomarkers for predicting natural HPV clearance, which can aid in patient risk stratification, individualized treatment, and follow-up management.
Collapse
Affiliation(s)
- Ye Li
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Yebin Feng
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Department of Scientific Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Yanlin Chen
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Wenyu Lin
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Hangjing Gao
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Ming Chen
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Kelvin Stefan Osafo
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Xiaodan Mao
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Yafang Kang
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Leyi Huang
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Dabin Liu
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Shuxia Xu
- Department of Pathology, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China
| | - Binhua Dong
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China.
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China.
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children's Hospital), Fuzhou, Fujian, 350001, China.
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou, Fujian, 350001, China.
| |
Collapse
|
10
|
Passive Immunization with a Single Monoclonal Neutralizing Antibody Protects against Cutaneous and Mucosal Mouse Papillomavirus Infections. J Virol 2022; 96:e0070322. [PMID: 35920658 PMCID: PMC9400481 DOI: 10.1128/jvi.00703-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have established a mouse papillomavirus (MmuPV1) model that induces both cutaneous and mucosal infections and cancers. In the current study, we use this model to test our hypothesis that passive immunization using a single neutralizing monoclonal antibody can protect both cutaneous and mucosal sites at different time points after viral inoculation. We conducted a series of experiments involving the administration of either a neutralizing monoclonal antibody, MPV.A4, or control monoclonal antibodies to both outbred and inbred athymic mice. Three clinically relevant mucosal sites (lower genital tract for females and anus and tongue for both males and females) and two cutaneous sites (muzzle and tail) were tested. At the termination of the experiments, all tested tissues were harvested for virological analyses. Significantly lower levels of viral signals were detected in the MPV.A4-treated female mice up to 6 h post-viral inoculation compared to those in the isotype control. Interestingly, males displayed partial protection when they received MPV.A4 at the time of viral inoculation, even though they were completely protected when receiving MPV.A4 at 24 h before viral inoculation. We detected MPV.A4 in the blood starting at 1 h and up to 8 weeks postadministration in some mice. Parallel to these in vivo studies, we conducted in vitro neutralization using a mouse keratinocyte cell line and observed complete neutralization up to 8 h post-viral inoculation. Thus, passive immunization with a monoclonal neutralizing antibody can protect against papillomavirus infection at both cutaneous and mucosal sites and is time dependent. IMPORTANCE This is the first study testing a single monoclonal neutralizing antibody (MPV.A4) by passive immunization against papillomavirus infections at both cutaneous and mucosal sites in the same host in the mouse papillomavirus model. We demonstrated that MPV.A4 administered before viral inoculation can protect both male and female athymic mice against MmuPV1 infections at cutaneous and mucosal sites. MPV.A4 also offers partial protection at 6 h post-viral inoculation in female mice. MPV.A4 can be detected in the blood from 1 h to 8 weeks after intraperitoneal (i.p.) injection. Interestingly, males were only partially protected when they received MPV.A4 at the time of viral inoculation. The failed protection in males was due to the absence of neutralizing MPV.A4 at the infected sites. Our findings suggest passive immunization with a single monoclonal neutralizing antibody can protect against diverse papillomavirus infections in a time-dependent manner in mice.
Collapse
|
11
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
12
|
Saunders-Wood T, Egawa N, Zheng K, Giaretta A, Griffin HM, Doorbar J. Role of E6 in Maintaining the Basal Cell Reservoir during Productive Papillomavirus Infection. J Virol 2022; 96:e0118121. [PMID: 35019722 PMCID: PMC8906426 DOI: 10.1128/jvi.01181-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses exclusively infect stratified epithelial tissues and cause chronic infections. To achieve this, infected cells must remain in the epithelial basal layer alongside their uninfected neighbors for years or even decades. To examine how papillomaviruses achieve this, we used the in vivo MmuPV1 (Mus musculus papillomavirus 1) model of lesion formation and persistence. During early lesion formation, an increased cell density in the basal layer, as well as a delay in the infected cells' commitment to differentiation, was apparent in cells expressing MmuPV1 E6/E7 RNA. Using cell culture models, keratinocytes exogenously expressing MmuPV1 E6, but not E7, recapitulated this delay in differentiation postconfluence and also grew to a significantly higher density. Cell competition assays further showed that MmuPV1 E6 expression led to a preferential persistence of the cell in the first layer, with control cells accumulating almost exclusively in the second layer. Interestingly, the disruption of MmuPV1 E6 binding to MAML1 protein abrogated these phenotypes. This suggests that the interaction between MAML1 and E6 is necessary for the lower (basal)-layer persistence of MmuPV1 E6-expressing cells. Our results indicate a role for E6 in lesion establishment by facilitating the persistence of infected cells in the epithelial basal layer, a mechanism that is most likely shared by other papillomavirus types. Interruption of this interaction is predicted to impede persistent papillomavirus infection and consequently provides a novel treatment target. IMPORTANCE Persistent infection with high-risk HPV types can lead to development of HPV-associated cancers, and persistent low-risk HPV infection causes problematic diseases, such as recurrent respiratory papillomatosis. The management and treatment of these conditions pose a considerable economic burden. Maintaining a reservoir of infected cells in the basal layer of the epithelium is critical for the persistence of infection in the host, and our studies using the mouse papillomavirus model suggest that E6 gene expression leads to the preferential persistence of epithelial cells in the lower layers during stratification. The E6 interaction with MAML1, a component of the Notch pathway, is required for this phenotype and is linked to E6 effects on cell density and differentiation. These observations are likely to reflect a common E6 role that is preserved among papillomaviruses and provide us with a novel therapeutic target for the treatment of recalcitrant lesions.
Collapse
Affiliation(s)
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alberto Giaretta
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Heather M. Griffin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Zayats R, Murooka TT, McKinnon LR. HPV and the Risk of HIV Acquisition in Women. Front Cell Infect Microbiol 2022; 12:814948. [PMID: 35223546 PMCID: PMC8867608 DOI: 10.3389/fcimb.2022.814948] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
The risk of HIV acquisition is low on a per-contact basis but increased by transmission co-factors such as other sexually transmitted infections (STIs). Human papillomavirus (HPV) is a prevalent STI that most individuals will acquire HPV in their lifetime. Current HPV vaccines can prevent newly acquired infections, but are largely ineffective against established HPV, complicating worldwide eradication efforts. In addition to being the causative agent of cervical cancer, accumulating evidence suggests that HPV infection and/or accompanying cervical inflammation increase the risk of HIV infection in men and women. The fact that immunological features observed during HPV infection overlap with cellular and molecular pathways known to enhance HIV susceptibility underscore the potential interplay between these two viral infections that fuel their mutual spread. Here we review current insights into how HPV infection and the generation of anti-HPV immunity contribute to higher HIV transmission rates, and the impact of HPV on mucosal inflammation, immune cell trafficking, and epithelial barrier function.
Collapse
Affiliation(s)
- Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Thomas T. Murooka, ; Lyle R. McKinnon,
| | - Lyle R. McKinnon
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- *Correspondence: Thomas T. Murooka, ; Lyle R. McKinnon,
| |
Collapse
|
14
|
Stanley M. Host defence and persistent human papillomavirus infection. Curr Opin Virol 2021; 51:106-110. [PMID: 34628358 DOI: 10.1016/j.coviro.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The ability to establish long term persistent infection is a feature of human papillomaviruses. The available evidence is that this ability is a consequence of a complex local immune milieu whereby innate immune receptors and signalling pathway cascades are inhibited by HPV early proteins resulting in failure of dendritic cell maturation, antigen processing and presentation and activation of cytotoxic antigen specific T cell responses. The development of cutaneous and mucosal infection models with the mouse papillomavirus MmuPV1 and the access to multiple gene deficient strains is providing the frame work to dissect the mechanisms underlying these complex host virus interactions.
Collapse
|
15
|
Béziat V, Rapaport F, Hu J, Titeux M, Bonnet des Claustres M, Bourgey M, Griffin H, Bandet É, Ma CS, Sherkat R, Rokni-Zadeh H, Louis DM, Changi-Ashtiani M, Delmonte OM, Fukushima T, Habib T, Guennoun A, Khan T, Bender N, Rahman M, About F, Yang R, Rao G, Rouzaud C, Li J, Shearer D, Balogh K, Al Ali F, Ata M, Dabiri S, Momenilandi M, Nammour J, Alyanakian MA, Leruez-Ville M, Guenat D, Materna M, Marcot L, Vladikine N, Soret C, Vahidnezhad H, Youssefian L, Saeidian AH, Uitto J, Catherinot É, Navabi SS, Zarhrate M, Woodley DT, Jeljeli M, Abraham T, Belkaya S, Lorenzo L, Rosain J, Bayat M, Lanternier F, Lortholary O, Zakavi F, Gros P, Orth G, Abel L, Prétet JL, Fraitag S, Jouanguy E, Davis MM, Tangye SG, Notarangelo LD, Marr N, Waterboer T, Langlais D, Doorbar J, Hovnanian A, Christensen N, Bossuyt X, Shahrooei M, Casanova JL. Humans with inherited T cell CD28 deficiency are susceptible to skin papillomaviruses but are otherwise healthy. Cell 2021; 184:3812-3828.e30. [PMID: 34214472 PMCID: PMC8329841 DOI: 10.1016/j.cell.2021.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/03/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.
Collapse
Affiliation(s)
- Vivien Béziat
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA.
| | | | - Jiafen Hu
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Matthias Titeux
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | | | | | | | - Élise Bandet
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roya Sherkat
- Isfahan University of Medical Sciences, AIRC, Isfahan 81746-73461, Iran
| | | | - David M Louis
- Stanford University Medical School, Stanford, CA 94305, USA
| | | | - Ottavia M Delmonte
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Toshiaki Fukushima
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | - Noemi Bender
- German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Frédégonde About
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Rui Yang
- The Rockefeller University, New York, NY 10065, USA
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Claire Rouzaud
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Jingwei Li
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Debra Shearer
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Karla Balogh
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | - Soroosh Dabiri
- Zahedan University of Medical Sciences, 054 Zahedan, Iran
| | | | - Justine Nammour
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | | | | | - David Guenat
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | - Marie Materna
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Léa Marcot
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Natasha Vladikine
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Christine Soret
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | | | | | | | - Jouni Uitto
- Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | - Mohammed Zarhrate
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - David T Woodley
- University of Southern California, Los Angeles, CA 90033, USA
| | | | - Thomas Abraham
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Lazaro Lorenzo
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France
| | - Jérémie Rosain
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Mousa Bayat
- Zahedan University of Medical Sciences, 054 Zahedan, Iran
| | - Fanny Lanternier
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Olivier Lortholary
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Faramarz Zakavi
- Ahvaz Jundishapur University of Medical Sciences, 061 Ahvaz, Iran
| | - Philippe Gros
- McGill University, Montreal, QC H3A 0G1, Canada; McGill Research Centre on Complex Traits, Montreal, QC H3G 0B1, Canada
| | | | - Laurent Abel
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA
| | - Jean-Luc Prétet
- Papillomavirus National Reference Center, Besançon Hospital, 25030 Besançon, France
| | - Sylvie Fraitag
- Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Emmanuelle Jouanguy
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA
| | - Mark M Davis
- HHMI, Stanford University Medical School, Stanford, CA 94305, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Luigi D Notarangelo
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Tim Waterboer
- German Cancer Research Center, 69120 Heidelberg, Germany
| | - David Langlais
- McGill University, Montreal, QC H3A 0G1, Canada; McGill Research Centre on Complex Traits, Montreal, QC H3G 0B1, Canada
| | | | - Alain Hovnanian
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
| | - Neil Christensen
- Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | - Mohammad Shahrooei
- University of Leuven, 3000 Leuven, Belgium; Dr. Shahrooei Lab, Ahvaz, Iran
| | - Jean-Laurent Casanova
- University of Paris, Imagine Institute, INSERM U1163, 75015 Paris, France; The Rockefeller University, New York, NY 10065, USA; HHMI, New York, NY 10065, USA.
| |
Collapse
|
16
|
EXPRESSION OF E8^E2 IS REQUIRED FOR WART FORMATION BY MOUSE PAPILLOMAVIRUS 1 IN VIVO. J Virol 2021; 95:JVI.01930-20. [PMID: 33472931 PMCID: PMC8103706 DOI: 10.1128/jvi.01930-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) E1 and E2 proteins activate genome replication. E2 also modulates viral gene expression and is involved in the segregation of viral genomes. In addition to full length E2, almost all PV share the ability to encode an E8^E2 protein, that is a fusion of E8 with the C-terminal half of E2 which mediates specific DNA-binding and dimerization. HPV E8^E2 acts as a repressor of viral gene expression and genome replication. To analyze the function of E8^E2 in vivo, we used the Mus musculus PV1 (MmuPV1)-mouse model system. Characterization of the MmuPV1 E8^E2 protein revealed that it inhibits transcription from viral promoters in the absence and presence of E1 and E2 proteins and that this is partially dependent upon the E8 domain. MmuPV1 genomes, in which the E8 ATG start codon was disrupted (E8-), displayed a 10- to 25-fold increase in viral gene expression compared to wt genomes in cultured normal mouse tail keratinocytes in short-term experiments. This suggests that the function and mechanism of E8^E2 is conserved between MmuPV1 and HPVs. Surprisingly, challenge of athymic nude Foxn1nu/nu mice with MmuPV1 E8- genomes did not induce warts on the tail in contrast to wt MmuPV1. Furthermore, viral gene expression was completely absent at E8- MmuPV1 sites 20 - 22 weeks after DNA challenge on the tail or quasivirus challenge in the vaginal vault. This reveals that expression of E8^E2 is necessary to form tumors in vivo and that this is independent from the presence of T-cells.IMPORTANCE HPV encode an E8^E2 protein which acts as repressors of viral gene expression and genome replication. In cultured normal keratinocytes, E8^E2 is essential for long-term episomal maintenance of HPV31 genomes, but not for HPV16. To understand E8^E2's role in vivo, the Mus musculus PV1 (MmuPV1)-mouse model system was used. This revealed that E8^E2's function as a repressor of viral gene expression is conserved. Surprisingly, MmuPV1 E8^E2 knock out genomes did not induce warts in T-cell deficient mice. This shows for the first time that expression of E8^E2 is necessary for tumor formation in vivo independently of T cell immunity. This indicates that E8^E2 could be an interesting target for anti-viral therapy in vivo.
Collapse
|
17
|
|
18
|
Insights into the Role of Innate Immunity in Cervicovaginal Papillomavirus Infection from Studies Using Gene-Deficient Mice. J Virol 2020; 94:JVI.00087-20. [PMID: 32295905 DOI: 10.1128/jvi.00087-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 01/28/2023] Open
Abstract
We demonstrate that female C57BL/6J mice are susceptible to a transient lower genital tract infection with MmuPV1 mouse papillomavirus and display focal histopathological abnormalities resembling those of human papillomavirus (HPV) infection. We took advantage of strains of genetically deficient mice to study in vivo the role of innate immune signaling in the control of papillomavirus. At 4 months, we sacrificed MmuPV1-infected mice and measured viral 757/3139 spliced transcripts by TaqMan reverse transcription-PCR (RT-PCR), localization of infection by RNAscope in situ hybridization, and histopathological abnormities by hematoxylin and eosin (H&E) staining. Among mice deficient in receptors for pathogen-associated molecular patterns, MyD88-/- and STING-/- mice had 1,350 and 80 copies of spliced transcripts/μg RNA, respectively, while no viral expression was detected in MAVS-/- and Ripk2-/- mice. Mice deficient in an adaptor molecule, STAT1-/-, for interferon signaling had 46,000 copies/μg RNA. Among mice with targeted deficiencies in the inflammatory response, interleukin-1 receptor knockout (IL-1R-/-) and caspase-1-/- mice had 350 and 30 copies/μg RNA, respectively. Among mice deficient in chemokine receptors, CCR6-/- mice had 120 copies/μg RNA, while CXCR2-/- and CXCR3-/- mice were negative. RNAscope confirmed focal infection in MyD88-/-, STAT1-/-, and CCR6-/- mice but was negative for other gene-deficient mice. Histological abnormalities were seen only in the latter mice. Our findings and the literature support a working model of innate immunity to papillomaviruses involving the activation of a MyD88-dependent pathway and IL-1 receptor signaling, control of viral replication by interferon-stimulated genes, and clearance of virus-transformed dysplastic cells by the action of the CCR6/CCL20 axis.IMPORTANCE Papillomaviruses infect stratified squamous epithelia, and the viral life cycle is linked to epithelial differentiation. Additionally, changes occur in viral and host gene expression, and immune cells are activated to modulate the infectious process. In vitro studies with keratinocytes cannot fully model the complex viral and host responses and do not reflect the contribution of local and migrating immune cells. We show that female C57BL/6J mice are susceptible to a transient papillomavirus cervicovaginal infection, and mice deficient in select genes involved in innate immune responses are susceptible to persistent infection with variable manifestations of histopathological abnormalities. The results of our studies support a working model of innate immunity to papillomaviruses, and the model provides a framework for more in-depth studies. A better understanding of mechanisms of early viral clearance and the development of approaches to induce clearance will be important for cancer prevention and the treatment of HPV-related diseases.
Collapse
|
19
|
Spurgeon ME, Lambert PF. Mus musculus Papillomavirus 1: a New Frontier in Animal Models of Papillomavirus Pathogenesis. J Virol 2020; 94:e00002-20. [PMID: 32051276 PMCID: PMC7163119 DOI: 10.1128/jvi.00002-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Animal models of viral pathogenesis are essential tools in human disease research. Human papillomaviruses (HPVs) are a significant public health issue due to their widespread sexual transmission and oncogenic potential. Infection-based models of papillomavirus pathogenesis have been complicated by their strict species and tissue specificity. In this Gem, we discuss the discovery of a murine papillomavirus, Mus musculus papillomavirus 1 (MmuPV1), and how its experimental use represents a major advancement in models of papillomavirus-induced pathogenesis/carcinogenesis, and their transmission.
Collapse
Affiliation(s)
- Megan E Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Wang W, Uberoi A, Spurgeon M, Gronski E, Majerciak V, Lobanov A, Hayes M, Loke A, Zheng ZM, Lambert PF. Stress keratin 17 enhances papillomavirus infection-induced disease by downregulating T cell recruitment. PLoS Pathog 2020; 16:e1008206. [PMID: 31968015 PMCID: PMC6975545 DOI: 10.1371/journal.ppat.1008206] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
High-risk human papillomaviruses (HPVs) cause 5% of human cancers. Despite the availability of HPV vaccines, there remains a strong urgency to find ways to treat persistent HPV infections, as current HPV vaccines are not therapeutic for individuals already infected. We used a mouse papillomavirus infection model to characterize virus-host interactions. We found that mouse papillomavirus (MmuPV1) suppresses host immune responses via overexpression of stress keratins. In mice deficient for stress keratin K17 (K17KO), we observed rapid regression of papillomas dependent on T cells. Cellular genes involved in immune response were differentially expressed in the papillomas arising on the K17KO mice correlating with increased numbers of infiltrating CD8+ T cells and upregulation of IFNγ-related genes, including CXCL9 and CXCL10, prior to complete regression. Blocking the receptor for CXCL9/CXCL10 prevented early regression. Our data provide a novel mechanism by which papillomavirus-infected cells evade host immunity and defines new therapeutic targets for treating persistent papillomavirus infections.
Collapse
Affiliation(s)
- Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Aayushi Uberoi
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Megan Spurgeon
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Ellery Gronski
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, National Cancer Institute, Frederick, MD, United States of America
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, MD, United States of America
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Amanda Loke
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, National Cancer Institute, Frederick, MD, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
21
|
The human papillomavirus 16 E5 gene potentiates MmuPV1-Dependent pathogenesis. Virology 2019; 541:1-12. [PMID: 31826841 DOI: 10.1016/j.virol.2019.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
The papillomavirus E5 gene contributes to transformation and tumorigenesis; however, its exact function in these processes and viral pathogenesis is unclear. While E5 is present in high-risk mucosotropic HPVs that cause anogenital and head and neck cancers, it is absent in cutaneous HPVs and the recently discovered mouse papillomavirus (MmuPV1), which causes papillomas and squamous cell carcinomas of the skin and mucosal epithelia in laboratory mice. We infected K14E5 transgenic mice, which express the high-risk mucosotropic HPV16 E5 gene in stratified epithelia, with MmuPV1 to investigate the effects of E5 on papillomavirus-induced pathogenesis. Skin lesions in MmuPV1-infected K14E5 mice had earlier onset, higher incidence, and reduced frequency of spontaneous regression compared to those in non-transgenic mice. K14E5 mice were also more susceptible to cervicovaginal cancers when infected with MmuPV1 and treated with estrogen compared to non-transgenic mice. Our studies support the hypothesis that E5 contributes to papillomavirus-induced pathogenesis.
Collapse
|
22
|
Immunity to commensal papillomaviruses protects against skin cancer. Nature 2019; 575:519-522. [PMID: 31666702 PMCID: PMC6872936 DOI: 10.1038/s41586-019-1719-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Immunosuppression increases the risk of cancers associated with viral
infection1. In
particular, squamous cell carcinoma (SCC) of the skin has a >100-fold
increased risk in immunosuppressed patients and has been associated with beta
human papillomavirus (β-HPV) infection2–4. Previous
studies, however, have failed to establish a causative role for HPVs in driving
skin cancer development. Herein, we provide an alternative explanation for this
association by demonstrating that the T cell immunity against commensal
papillomaviruses suppresses skin cancer in immunocompetent hosts. The loss of
this immunity, rather than the oncogenic effect of HPVs, is the reason for the
markedly increased risk of skin cancer in immunosuppressed patients. To
investigate the impact of papillomavirus on carcinogen-driven skin cancer, we
colonized several strains of immunocompetent mice with mouse papillomavirus type
1 (MmuPV1)5. Mice with natural
anti-MmuPV1 immunity after colonization and acquired immunity due to T cell
transfer from immune mice or MmuPV1 vaccination were protected against chemical-
and ultraviolet (UV)-induced skin carcinogenesis in a CD8+ T
cell-dependent manner. RNA and DNA in situ hybridizations for 25 commensal
β-HPVs revealed a significant reduction in viral activity and load in
human skin cancer compared to the adjacent normal skin, suggesting a strong
immune selection against virus-positive malignant cells. Consistently,
β-HPV E7 peptides activated CD8+ T cells from normal human
skin. Our findings reveal a beneficial role for commensal viruses and establish
the foundation for novel immune-based approaches to block skin cancer
development by boosting immunity against the commensal HPVs present in all of
our skin.
Collapse
|
23
|
Spurgeon ME, Lambert PF. Sexual transmission of murine papillomavirus (MmuPV1) in Mus musculus. eLife 2019; 8:e50056. [PMID: 31621578 PMCID: PMC6797482 DOI: 10.7554/elife.50056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Human papillomaviruses (HPVs) are the most common sexually transmitted infectious agents. Because of the species specificity of HPVs, study of their natural transmission in laboratory animals is not possible. The papillomavirus, MmuPV1, which infects laboratory mice (Mus musculus), can cause infections in the female cervicovaginal epithelium of immunocompetent mice that progress to cancer. Here, we provide evidence that MmuPV1 is sexually transmitted in unmanipulated, immunocompetent male and female mice. Female 'donor' mice experimentally infected with MmuPV1 in their lower reproductive tract were housed with unmanipulated male mice. The male mice were then transferred to cages holding 'recipient' female mice. One third of the female recipient mice acquired cervicovaginal infections. Prolonged infections were verified by histopathology and in situ hybridization analyses of both male and recipient female mice at the study endpoint. These findings indicate that MmuPV1 is a new model animal papillomavirus with which to study sexually transmission of papillomaviruses.
Collapse
Affiliation(s)
- Megan E Spurgeon
- McArdle Laboratory for Cancer Research, Department of OncologyUniversity of Wisconsin-Madison School of Medicine and Public HealthMadisonUnited States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, Department of OncologyUniversity of Wisconsin-Madison School of Medicine and Public HealthMadisonUnited States
| |
Collapse
|
24
|
Spurgeon ME, Uberoi A, McGregor SM, Wei T, Ward-Shaw E, Lambert PF. A Novel In Vivo Infection Model To Study Papillomavirus-Mediated Disease of the Female Reproductive Tract. mBio 2019; 10:e00180-19. [PMID: 30837335 PMCID: PMC6401479 DOI: 10.1128/mbio.00180-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
Papillomaviruses exhibit species-specific tropism, thereby limiting understanding and research of several aspects of HPV infection and carcinogenesis. The discovery of a murine papillomavirus (MmuPV1) provides the opportunity to study papillomavirus infections in a tractable, in vivo laboratory model. MmuPV1 infects and causes disease in the cutaneous epithelium, as well as the mucosal epithelia of the oral cavity and anogenital tract. In this report, we describe a murine model of MmuPV1 infection and neoplastic disease in the female reproductive tracts of wild-type immunocompetent FVB mice. Low-grade dysplastic lesions developed in reproductive tracts of FVB mice infected with MmuPV1 for 4 months, and mice infected for 6 months developed significantly worse disease, including squamous cell carcinoma (SCC). We also tested the contribution of estrogen and/or UV radiation (UVR), two cofactors we previously identified as being involved in papillomavirus-mediated disease, to cervicovaginal disease. Similar to HPV16 transgenic mice, exogenous estrogen treatment induced high-grade precancerous lesions in the reproductive tracts of MmuPV1-infected mice by 4 months and together with MmuPV1 efficiently induced SCC by 6 months. UV radiation and exogenous estrogen cooperated to promote carcinogenesis in MmuPV1-infected mice. This murine infection model represents the first instance of de novo papillomavirus-mediated carcinogenesis in the female reproductive tract of wild-type mice resulting from active virus infection and is also the first report of the female hormone estrogen contributing to this process. This model will provide an additional platform for fundamental studies on papillomavirus infection, cervicovaginal disease, and the role of cellular cofactors during papillomavirus-induced carcinogenesis.IMPORTANCE Tractable and efficient models of papillomavirus-induced pathogenesis are limited due to the strict species-specific and tissue-specific tropism of these viruses. Here, we report a novel preclinical murine model of papillomavirus-induced cervicovaginal disease in wild-type, immunocompetent mice using the recently discovered murine papillomavirus, MmuPV1. In this model, MmuPV1 establishes persistent viral infections in the mucosal epithelia of the female reproductive tract, a necessary component needed to accurately mimic HPV-mediated neoplastic disease in humans. Persistent MmuPV1 infections were able to induce progressive neoplastic disease and carcinogenesis, either alone or in combination with previously identified cofactors of papillomavirus-induced disease. This new model will provide a much-needed platform for basic and translational studies on both papillomavirus infection and associated disease in immunocompetent mice.
Collapse
Affiliation(s)
- Megan E Spurgeon
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aayushi Uberoi
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Stephanie M McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tao Wei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Hasche D, Vinzón SE, Rösl F. Cutaneous Papillomaviruses and Non-melanoma Skin Cancer: Causal Agents or Innocent Bystanders? Front Microbiol 2018; 9:874. [PMID: 29770129 PMCID: PMC5942179 DOI: 10.3389/fmicb.2018.00874] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| | - Sabrina E Vinzón
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, Research Program "Infection, Inflammation and Cancer", German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
26
|
Abstract
The discovery of genotype 16 as the prototype oncogenic human papillomavirus (HPV) initiated a quarter century of laboratory and epidemiological studies that demonstrated their necessary, but not sufficient, aetiological role in cervical and several other anogenital and oropharyngeal cancers. Early virus-induced immune deviation can lead to persistent subclinical infection that brings the risk of progression to cancer. Effective secondary prevention of cervical cancer through cytological and/or HPV screening depends on regular and widespread use in the general population, but coverage is inadequate in low-resource settings. The discovery that the major capsid antigen L1 could self-assemble into empty virus-like particles (VLPs) that are both highly immunogenic and protective led to the licensure of several prophylactic VLP-based HPV vaccines for the prevention of cervical cancer. The implementation of vaccination programmes in adolescent females is underway in many countries, but their impact critically depends on the population coverage and is improved by herd immunity. This Review considers how our expanding knowledge of the virology and immunology of HPV infection can be exploited to improve vaccine technologies and delivery of such preventive strategies to maximize reductions in HPV-associated disease, including incorporation of an HPV vaccine covering oncogenic types within a standard multitarget paediatric vaccine.
Collapse
Affiliation(s)
| | - Peter L. Stern
- Division of Molecular and Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Uberoi A, Yoshida S, Lambert PF. Development of an in vivo infection model to study Mouse papillomavirus-1 (MmuPV1). J Virol Methods 2017; 253:11-17. [PMID: 29253496 DOI: 10.1016/j.jviromet.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Preclinical model systems to study multiple features of the papillomavirus life cycle are extremely valuable tools to aid our understanding of Human Papillomavirus (HPV) biology, disease progression and treatments. Mouse papillomavirus (MmuPV1) is the first ever rodent papillomavirus that can infect the laboratory strain of mice and was discovered recently in 2011. This model is an attractive model to study papillomavirus pathogenesis due to the ubiquitous availability of lab mice and the fact that this mouse species is easily genetically modifiable. Several other groups, including ours, have reported that MmuPV1-induced papillomas are restricted to T-cell deficient immunosuppressed mice. In our lab we showed for the first time that MmuPV1 causes skin cancers in UVB-irradiated immunocompetent animals. In this report we describe in detail the MmuPV1-UV infection model that can be adapted to study MmuPV1 biology in immunocompetent animals.
Collapse
Affiliation(s)
- Aayushi Uberoi
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States
| | - Satoshi Yoshida
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States
| | - Paul F Lambert
- McArdle Laboratory of Cancer Research, 1111 Highland Avenue, University of Wisconsin, Madison 53705, United States.
| |
Collapse
|
28
|
Mouse papillomavirus infection persists in mucosal tissues of an immunocompetent mouse strain and progresses to cancer. Sci Rep 2017; 7:16932. [PMID: 29208932 PMCID: PMC5717108 DOI: 10.1038/s41598-017-17089-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/20/2017] [Indexed: 11/10/2022] Open
Abstract
Mouse papillomavirus has shown broad tissue tropism in nude mice. Previous studies have tested cutaneous infections in different immunocompromised and immunocompetent mouse strains. In the current study, we examined mucosal infection in several immunocompetent and immunocompromised mouse strains. Viral DNA was monitored periodically by Q-PCR of lavage samples. Immunohistochemistry and in situ hybridization were used to determine viral capsid protein and viral DNA respectively. All athymic nude mouse strains showed active infections at both cutaneous and mucosal sites. Interestingly, NOD/SCID mice, which have a deficiency in T, B, and NK cells, showed minimal disease at cutaneous sites but developed persistent infection at the mucosal sites including those of the anogenital region and the oral cavity. Three strains of immunocompetent mice supported mucosal infections. Infections of the lower genital tract in heterozygous (immunocompetent) mice of the NU/J strain progressed to high grade dysplasia and to carcinoma in situ. Anti-MmuPV1 neutralizing antibodies were detected in the sera of all immunocompetent animals. Our findings demonstrate that the mucosae may be the preferred sites for this virus in mice. The mouse model is expected to be a valuable model for the study of mucosal papillomavirus disease, progression, and host immune control.
Collapse
|
29
|
Abstract
Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.
Collapse
|
30
|
Hasche D, Stephan S, Braspenning-Wesch I, Mikulec J, Niebler M, Gröne HJ, Flechtenmacher C, Akgül B, Rösl F, Vinzón SE. The interplay of UV and cutaneous papillomavirus infection in skin cancer development. PLoS Pathog 2017; 13:e1006723. [PMID: 29190285 PMCID: PMC5708609 DOI: 10.1371/journal.ppat.1006723] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Cutaneous human papillomaviruses (HPVs) are considered as cofactors for non-melanoma skin cancer (NMSC) development, especially in association with UVB. Extensively studied transgenic mouse models failed to mimic all aspects of virus-host interactions starting from primary infection to the appearance of a tumor. Using the natural model Mastomys coucha, which reflects the human situation in many aspects, we provide the first evidence that only UVB and Mastomys natalensis papillomavirus (MnPV) infection strongly promote NMSC formation. Using UVB exposures that correspond to UV indices of different geographical regions, irradiated animals developed either well-differentiated keratinizing squamous cell carcinomas (SCCs), still supporting productive infections with high viral loads and transcriptional activity, or poorly differentiated non-keratinizing SCCs almost lacking MnPV DNA and in turn, early and late viral transcription. Intriguingly, animals with the latter phenotype, however, still showed strong seropositivity, clearly verifying a preceding MnPV infection. Of note, the mere presence of MnPV could induce γH2AX foci, indicating that viral infection without prior UVB exposure can already perturb genome stability of the host cell. Moreover, as shown both under in vitro and in vivo conditions, MnPV E6/E7 expression also attenuates the excision repair of cyclobutane pyrimidine dimers upon UVB irradiation, suggesting a viral impact on the DNA damage response. While mutations of Ras family members (e.g. Hras, Kras, and Nras) were absent, the majority of SCCs harbored-like in humans-Trp53 mutations especially at two hot-spots in the DNA-binding domain, resulting in a loss of function that favored tumor dedifferentiation, counter-selective for viral maintenance. Such a constellation provides a reasonable explanation for making continuous viral presence dispensable during skin carcinogenesis as observed in patients with NMSC.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja Stephan
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ilona Braspenning-Wesch
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julita Mikulec
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Niebler
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Frank Rösl
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina E. Vinzón
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Cladel NM, Budgeon LR, Cooper TK, Balogh KK, Christensen ND, Myers R, Majerciak V, Gotte D, Zheng ZM, Hu J. Mouse papillomavirus infections spread to cutaneous sites with progression to malignancy. J Gen Virol 2017; 98:2520-2529. [PMID: 28942760 DOI: 10.1099/jgv.0.000926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report secondary cutaneous infections in the mouse papillomavirus (MmuPV1)/mouse model. Our previous study demonstrated that cutaneous MmuPV1 infection could spread to mucosal sites. Recently, we observed that mucosal infections could also spread to various cutaneous sites including the back, tail, muzzle and mammary tissues. The secondary site lesions were positive for viral DNA, viral capsid protein and viral particles as determined by in situ hybridization, immunohistochemistry and transmission electron microscopy analyses, respectively. We also demonstrated differential viral production and tumour growth at different secondarily infected skin sites. For example, fewer viral particles were detected in the least susceptible back tissues when compared with those in the infected muzzle and tail, although similar amounts of viral DNA were detected. Follow-up studies demonstrated that significantly lower amounts of viral DNA were packaged in the back lesions. Lavages harvested from the oral cavity and lower genital tracts were equally infectious at both cutaneous and mucosal sites, supporting the broad tissue tropism of this papillomavirus. Importantly, two secondary skin lesions on the forearms of two mice displayed a malignant phenotype at about 9.5 months post-primary infection. Therefore, MmuPV1 induces not only dysplasia at mucosal sites such as the vagina, anus and oral cavity but also skin carcinoma at cutaneous sites. These findings demonstrate that MmuPV1 mucosal infection can be spread to cutaneous sites and suggest that the model could serve a useful role in the study of the viral life cycle and pathogenesis of papillomavirus.
Collapse
Affiliation(s)
- Nancy M Cladel
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lynn R Budgeon
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Karla K Balogh
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Roland Myers
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Deanna Gotte
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Jiafen Hu
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.,The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
32
|
Joh J, Chilton PM, Wilcher SA, Zahin M, Park J, Proctor ML, Ghim SJ, Jenson AB. T cell-mediated antitumor immune response eliminates skin tumors induced by mouse papillomavirus, MmuPV1. Exp Mol Pathol 2017; 103:181-190. [PMID: 28939161 DOI: 10.1016/j.yexmp.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Previous studies of naturally occurring mouse papillomavirus (PV) MmuPV1-induced tumors in B6.Cg-Foxn1nu/nu mice suggest that T cell deficiency is necessary and sufficient for the development of such tumors. To confirm this, MmuPV1-induced tumors were transplanted from T cell-deficient mice into immunocompetent congenic mice. Consequently, the tumors regressed and eventually disappeared. The elimination of MmuPV1-infected skin/tumors in immunocompetent mice was consistent with the induction of antitumor T cell immunity. This was confirmed by adoptive cell experiments using hyperimmune splenocytes collected from graft-recipient mice. In the present study, such splenocytes were injected into T cell-deficient mice infected with MmuPV1, and they eliminated both early-stage and fully formed tumors. We clearly show that anti-tumor T cell immunity activated during tumor regression in immunocompetent mice effectively eliminates tumors developing in T cell-deficient congenic mice. The results corroborate the notion that PV-induced tumors are strongly linked to the immune status of the host, and that PV antigens are major anti-tumor antigens. Successful anti-PV T cell responses should, therefore, lead to effective anti-tumor immune therapy in human PV-infected patients.
Collapse
Affiliation(s)
- Joongho Joh
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA.
| | - Paula M Chilton
- Christine M. Kleinert Institute for Hand & Microsurgery, 225 Abraham Flexner Way, Suite 850, Louisville, KY, USA
| | - Sarah A Wilcher
- Research Resources Center, 530 South Jackson Street, Louisville, KY, USA
| | - Maryam Zahin
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Jino Park
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Mary L Proctor
- Research Resources Center, 530 South Jackson Street, Louisville, KY, USA
| | - Shin-Je Ghim
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alfred B Jenson
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
33
|
Hu J, Cladel NM, Budgeon LR, Balogh KK, Christensen ND. The Mouse Papillomavirus Infection Model. Viruses 2017; 9:v9090246. [PMID: 28867783 PMCID: PMC5618012 DOI: 10.3390/v9090246] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become a powerful research tool. Through collective efforts from different groups, significant progress has been made in the understanding of molecular, virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in the context of a small common laboratory animal for which abundant reagents are available and for which many strains exist. The model is a major step forward in the study of papillomavirus disease and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated disease progression.
Collapse
Affiliation(s)
- Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Nancy M Cladel
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Lynn R Budgeon
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Karla K Balogh
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, USA.
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
34
|
Ahn J, Peng S, Hung CF, Roden RBS, Wu TC, Best SR. Immunologic responses to a novel DNA vaccine targeting human papillomavirus-11 E6E7. Laryngoscope 2017; 127:2713-2720. [PMID: 28714529 DOI: 10.1002/lary.26737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVES/HYPOTHESIS Recurrent respiratory papillomatosis (RRP) is a benign disease caused by human papillomavirus (HPV) types 6 and 11. Although a prophylactic vaccine against RRP is available, a therapeutic vaccine is needed to treat those already infected. The objective of our study was to design and test a DNA vaccine targeting HPV11 proteins. STUDY DESIGN Preclinical scientific investigation. METHODS A DNA vaccine encoding the HPV11 E6 and E7 genes linked to calreticulin (CRT) was generated. Immunologic response to the HPV11 CRT/E6E7 vaccine was measured by vaccinating C57BL/6 mice via electroporation and measuring CD8 + T cell responses from harvested splenocytes. A tumor cell line containing HPV11-E6E7 was created, and the ability of novel DNA vaccine to control tumor growth was measured in vivo. RESULTS Our vaccine generated a significant and specific CD8 + T-cell response against the HPV11-E6aa41-70 peptide. The CD8 + T-cell responses did not recognize E7 epitopes, indicating E6 immunodominance. CD8 + responses were augmented in the CRT-linked vaccine compared to a control non-CRT vaccine. The HPV11 CRT/E6E7 vaccine was used to treat mice inoculated with a HPV11 E6E7 expressing tumor cell line after temporary CD3 depletion to facilitate tumor growth. Vaccinated mice had a significantly lower tumor growth rate (P = .029) and smaller tumor volumes compared to control mice, indicating an augmented immunologic response in vaccinated mice. CONCLUSIONS A DNA vaccine targeting HPV11 E6E7 generates a specific HPV11 CD-8 + T-cell response capable of reducing the growth of HPV11-expressing tumors. DNA vaccines are a promising immunologic strategy for treating RRP. LEVEL OF EVIDENCE NA. Laryngoscope, 127:2713-2720, 2017.
Collapse
Affiliation(s)
- Julie Ahn
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Tzyy-Choou Wu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| | - Simon R Best
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, U.S.A
| |
Collapse
|
35
|
Spontaneous and Vaccine-Induced Clearance of Mus Musculus Papillomavirus 1 Infection. J Virol 2017; 91:JVI.00699-17. [PMID: 28515303 PMCID: PMC5512245 DOI: 10.1128/jvi.00699-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 12/24/2022] Open
Abstract
Mus musculus papillomavirus 1 (MmuPV1/MusPV1) induces persistent papillomas in immunodeficient mice but not in common laboratory strains. To facilitate the study of immune control, we sought an outbred and immunocompetent laboratory mouse strain in which persistent papillomas could be established. We found that challenge of SKH1 mice (Crl:SKH1-Hrhr) with MmuPV1 by scarification on their tail resulted in three clinical outcomes: (i) persistent (>2-month) papillomas (∼20%); (ii) transient papillomas that spontaneously regress, typically within 2 months (∼15%); and (iii) no visible papillomas and viral clearance (∼65%). SKH1 mice with persistent papillomas were treated by using a candidate preventive/therapeutic naked-DNA vaccine that expresses human calreticulin (hCRT) fused in frame to MmuPV1 E6 (mE6) and mE7 early proteins and residues 11 to 200 of the late protein L2 (hCRTmE6/mE7/mL2). Three intramuscular DNA vaccinations were delivered biweekly via in vivo electroporation, and both humoral and CD8 T cell responses were mapped and measured. Previously persistent papillomas disappeared within 2 months after the final vaccination. Coincident virologic clearance was confirmed by in situ hybridization and a failure of disease to recur after CD3 T cell depletion. Vaccination induced strong mE6 and mE7 CD8+ T cell responses in all mice, although they were significantly weaker in mice that initially presented with persistent warts than in those that spontaneously cleared their infection. A human papillomavirus 16 (HPV16)-targeted version of the DNA vaccine also induced L2 antibodies and protected mice from vaginal challenge with an HPV16 pseudovirus. Thus, MmuPV1 challenge of SKH1 mice is a promising model of spontaneous and immunotherapy-directed clearances of HPV-related disease.IMPORTANCE High-risk-type human papillomaviruses (hrHPVs) cause 5% of all cancer cases worldwide, notably cervical, anogenital, and oropharyngeal cancers. Since preventative HPV vaccines have not been widely used in many countries and do not impact existing infections, there is considerable interest in the development of therapeutic vaccines to address existing disease and infections. The strict tropism of HPV requires the use of animal papillomavirus models for therapeutic vaccine development. However, MmuPV1 failed to grow in common laboratory strains of mice with an intact immune system. We show that MmuPV1 challenge of the outbred immunocompetent SKH1 strain produces both transient and persistent papillomas and that vaccination of the mice with a DNA expressing an MmuPV1 E6E7L2 fusion with calreticulin can rapidly clear persistent papillomas. Furthermore, an HPV16-targeted version of the DNA can protect against vaginal challenge with HPV16, suggesting the promise of this approach to both prevent and treat papillomavirus-related disease.
Collapse
|
36
|
Nowak K, Linzner D, Thrasher AJ, Lambert PF, Di WL, Burns SO. Absence of γ-Chain in Keratinocytes Alters Chemokine Secretion, Resulting in Reduced Immune Cell Recruitment. J Invest Dermatol 2017. [PMID: 28634034 DOI: 10.1016/j.jid.2017.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Loss-of-function mutations in the common gamma (γc) chain cytokine receptor subunit give rise to severe combined immunodeficiency characterized by lack of T and natural killer cells and infant death from infection. Hematopoietic stem cell transplantation or gene therapy offer a cure, but despite successful replacement of lymphoid immune lineages, a long-term risk of severe cutaneous human papilloma virus infections persists, possibly related to persistent γc-deficiency in other cell types. Here we show that keratinocytes, the only cell type directly infected by human papilloma virus, express functional γc and its co-receptors. After stimulation with the γc-ligand IL-15, γc-deficient keratinocytes show significantly impaired secretion of specific chemokines including CXCL1, CXCL8, and CCL20, resulting in reduced chemotaxis of dendritic cells and CD4+ T cells. Furthermore, γc-deficient keratinocytes also exhibit defective induction of T-cell chemotaxis in a model of stable human papilloma virus-18 infection. These findings suggest that persistent γc-deficiency in keratinocytes alters immune cell recruitment to the skin, which may contribute to the development and persistence of warts in this condition and would require different treatment approaches.
Collapse
Affiliation(s)
- Karolin Nowak
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK
| | - Daniela Linzner
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Paul F Lambert
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Wei-Li Di
- Immunobiology, Institute of Child Health, University College London, London, UK
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, UK; Department of Immunology, Royal Free Hospital Foundation Trust, London, UK.
| |
Collapse
|
37
|
Ma Y, Yang A, Peng S, Qiu J, Farmer E, Hung CF, Wu TC. Characterization of HPV18 E6-specific T cell responses and establishment of HPV18 E6-expressing tumor model. Vaccine 2017; 35:3850-3858. [PMID: 28599791 DOI: 10.1016/j.vaccine.2017.05.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/02/2017] [Accepted: 05/26/2017] [Indexed: 02/02/2023]
Abstract
Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer, and subsets of anogenital and oropharyngeal cancers. HPV18 is the second most prevalent high-risk HPV type after HPV16. Furthermore, HPV18 is responsible for approximately 12% of cervical squamous cell carcinoma and 37% of cervical adenocarcinoma cases worldwide. In this study, we aimed to characterize the HPV18-E6-specific epitope and establish an HPV18 animal tumor model to evaluate the E6-specific immune response induced by our DNA vaccine. We vaccinated naïve C57BL/6 mice with a prototype DNA vaccine, pcDNA3-HPV18-E6, via intramuscular injection followed by electroporation, and analyzed the E6-specific CD8+ T cell responses by flow cytometry using a reported T cell epitope. We then characterized the MHC restriction element for the characterized HPV18-E6 epitope. Additionally, we generated an HPV18-E6-expressing tumor cell line to study the antitumor effect mediated by E6-specific immunity. We observed a robust HPV18-E6aa67-75 peptide-specific CD8+ T cell response after vaccination with pcDNA3-HPV18-E6. Further characterization demonstrated that this epitope was mainly restricted by H-2Kb, but was also weakly presented by HLA-A∗0201, as previously reported. We observed that vaccination with pcDNA3-HPV18-E6 significantly inhibited the growth of HPV18-E6-expressing tumor cells, TC-1/HPV18-E6, in mice. An antibody depletion study demonstrated that both CD4+ and CD8+ T cells are necessary for the observed antitumor immunity. The characterization of HPV18-E6-specific T cell responses and the establishment of HPV18-E6-expressing tumor cell line provide infrastructures for further development of HPV18-E6 targeted immunotherapy.
Collapse
Affiliation(s)
- Ying Ma
- Department of Gynecology and Obstetrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Jin Qiu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Emily Farmer
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| | - T-C Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.
| |
Collapse
|
38
|
Santos C, Vilanova M, Medeiros R, Gil da Costa RM. HPV-transgenic mouse models: Tools for studying the cancer-associated immune response. Virus Res 2017; 235:49-57. [DOI: 10.1016/j.virusres.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
39
|
Ma W, Melief CJ, van der Burg SH. Control of immune escaped human papilloma virus is regained after therapeutic vaccination. Curr Opin Virol 2017; 23:16-22. [PMID: 28282583 DOI: 10.1016/j.coviro.2017.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/20/2017] [Indexed: 11/15/2022]
Abstract
High-risk human papillomaviruses infect the basal cells of human epithelia. There it deploys several mechanisms to suppress pathogen receptor recognition signalling, impeding the immune system to control viral infection. Furthermore, infected cells become more resistant to type I and II interferon, tumour necrosis factor-α and CD40 activation, via interference with downstream programs halting viral replication or regulating the proliferation and cell death. Consequently, some infected individuals fail to raise early protein-specific T-cell responses that are strong enough to protect against virus-induced premalignant disease and ultimately cancer. Therapeutic vaccines triggering a strong T-cell response against the early proteins can successfully be used to treat patients at the premalignant stage but combinations of different treatment modalities are required for cancer therapy.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Medical Oncology, Building 1, C7-141, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | - Sjoerd H van der Burg
- Department of Medical Oncology, Building 1, C7-141, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
40
|
Christensen ND, Budgeon LR, Cladel NM, Hu J. Recent advances in preclinical model systems for papillomaviruses. Virus Res 2016; 231:108-118. [PMID: 27956145 DOI: 10.1016/j.virusres.2016.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
Preclinical model systems to study multiple features of the papillomavirus life cycle have greatly aided our understanding of Human Papillomavirus (HPV) biology, disease progression and treatments. The challenge to studying HPV in hosts is that HPV along with most PVs are both species and tissue restricted. Thus, fundamental properties of HPV viral proteins can be assessed in specialized cell culture systems but host responses that involve innate immunity and host restriction factors requires preclinical surrogate models. Fortunately, there are several well-characterized and new animal models of papillomavirus infections that are available to the PV research community. Old models that continue to have value include canine, bovine and rabbit PV models and new rodent models are in place to better assess host-virus interactions. Questions arise as to the strengths and weaknesses of animal PV models for HPV disease and how accurately these preclinical models predict malignant progression, vaccine efficacy and therapeutic control of HPV-associated disease. In this review, we examine current preclinical models and highlight the strengths and weaknesses of the various models as well as provide an update on new opportunities to study the numerous unknowns that persist in the HPV research field.
Collapse
Affiliation(s)
- Neil D Christensen
- Department of Pathology and Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, USA.
| | - Lynn R Budgeon
- Department of Pathology and Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, USA
| | - Nancy M Cladel
- Department of Pathology and Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, USA
| | - Jiafen Hu
- Department of Pathology and Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, USA
| |
Collapse
|
41
|
Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res 2016; 231:166-175. [PMID: 27889616 DOI: 10.1016/j.virusres.2016.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/21/2022]
Abstract
Infections with sexually transmitted high-risk Human Papillomavirus (hrHPV), of which there are at least 15 genotypes, are responsible for a tremendous disease burden by causing cervical, and subsets of other ano-genital and oro-pharyngeal carcinomas, together representing 5% of all cancer cases worldwide. HPV subunit vaccines consisting of virus-like particles (VLP) self-assembled from major capsid protein L1 plus adjuvant have been licensed. Prophylactic vaccinations with the 2-valent (HPV16/18), 4-valent (HPV6/11/16/18), or 9-valent (HPV6/11/16/18/31/33/45/52/58) vaccine induce high-titer neutralizing antibodies restricted to the vaccine types that cause up to 90% of cervical carcinomas, a subset of other ano-genital and oro-pharyngeal cancers and 90% of benign ano-genital warts (condylomata). The complexity of manufacturing multivalent L1-VLP vaccines limits the number of included VLP types and thus the vaccines' spectrum of protection, leaving a panel of oncogenic mucosal HPV unaddressed. In addition, current vaccines do not protect against cutaneous HPV types causing benign skin warts, or against beta-papillomavirus (betaPV) types implicated in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. In contrast with L1-VLP, the minor capsid protein L2 contains type-common epitopes that induce low-titer yet broadly cross-neutralizing antibodies to heterologous PV types and provide cross-protection in animal challenge models. Efforts to increase the low immunogenicity of L2 (poly)-peptides and thereby to develop broader-spectrum HPV vaccines are the focus of this review.
Collapse
|
42
|
Uberoi A, Yoshida S, Frazer IH, Pitot HC, Lambert PF. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease. PLoS Pathog 2016; 12:e1005664. [PMID: 27244228 PMCID: PMC4887022 DOI: 10.1371/journal.ppat.1005664] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/06/2016] [Indexed: 01/16/2023] Open
Abstract
Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.
Collapse
Affiliation(s)
- Aayushi Uberoi
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Satoshi Yoshida
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Henry C. Pitot
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
43
|
Jiang RT, Schellenbacher C, Chackerian B, Roden RBS. Progress and prospects for L2-based human papillomavirus vaccines. Expert Rev Vaccines 2016; 15:853-62. [PMID: 26901354 DOI: 10.1586/14760584.2016.1157479] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized.
Collapse
Affiliation(s)
- Rosie T Jiang
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA
| | - Christina Schellenbacher
- b Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology , Medical University Vienna (MUW) , Vienna , Austria
| | - Bryce Chackerian
- c Department of Molecular Genetics and Microbiology , University of New Mexico School of Medicine , Albuquerque , NM , USA
| | - Richard B S Roden
- a Department of Pathology , The Johns Hopkins University , Baltimore , MD , USA.,d Department of Oncology , The Johns Hopkins University , Baltimore , MD , USA.,e Department of Gynecology & Obstetrics , The Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|